WO2023274301A1 - 检测核酸的芯片装置和仪器及其应用 - Google Patents

检测核酸的芯片装置和仪器及其应用 Download PDF

Info

Publication number
WO2023274301A1
WO2023274301A1 PCT/CN2022/102391 CN2022102391W WO2023274301A1 WO 2023274301 A1 WO2023274301 A1 WO 2023274301A1 CN 2022102391 W CN2022102391 W CN 2022102391W WO 2023274301 A1 WO2023274301 A1 WO 2023274301A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
piston
valve
cavity
sample
Prior art date
Application number
PCT/CN2022/102391
Other languages
English (en)
French (fr)
Inventor
赵海峰
Original Assignee
恒泰医疗有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恒泰医疗有限公司 filed Critical 恒泰医疗有限公司
Priority to EP22832113.9A priority Critical patent/EP4365564A1/en
Publication of WO2023274301A1 publication Critical patent/WO2023274301A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/706Specific hybridization probes for hepatitis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/32Mycobacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/37Proteus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/44Staphylococcus
    • C12R2001/445Staphylococcus aureus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/46Streptococcus ; Enterococcus; Lactococcus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/63Vibrio

Definitions

  • the invention relates to the field of biotechnology and equipment application, in particular to a chip device and instrument for detecting nucleic acid in a sample, and its application in biological sample detection.
  • nucleic acid The detection of nucleic acid is the core of clinical trials, identification of pathogenic microorganisms and many other fields.
  • Various diseases such as cancer, microbial infection and genetic markers can be detected through nucleic acid extraction, amplification and detection analysis.
  • PCR and real-time PCR is an effective method for exponentially amplifying and detecting genes.
  • the genetic testing market using PCR/real-time PCR devices is rapidly expanding in the genetic testing of infectious diseases such as viral, sexually transmitted diseases, and influenza.
  • infectious diseases such as viral, sexually transmitted diseases, and influenza.
  • the role of genetic testing in cancer treatment has become apparent.
  • automation, especially small automation, of applications employing PCR and RT-PCR is not easy.
  • Multiplex PCR which simultaneously amplifies multiple gene regions by using multiple pairs of primers in one PCR system, has attracted attention.
  • Real-time multiplex PCR developed from multiplex PCR, aims to detect and quantify multiple different genes of interest independently without being affected by other genes of interest (crosstalk) and without compromising sensitivity.
  • crosstalk genes of interest
  • the power source provides power for the movement of the microfluidics within the carrier (such as chip, pipe, etc.).
  • the carrier such as chip, pipe, etc.
  • Currently commonly used methods include injection, centrifugal, pneumatic and so on. Valves can control the movement behavior of microfluidics in the carrier. Due to the small scale of microfluidics, it is very difficult to construct valves with sufficient precision, sufficient quantity and convenient opening and closing inside the carrier. For laboratories studying microfluidics, syringe pumps are the most commonly used power source.
  • the carrier By sucking the fluid into the syringe, connecting the syringe to the inlet of the microfluidic carrier (hereinafter referred to as the carrier), and then using a high-precision syringe pump to push the syringe, the injection of the microfluid into the carrier is realized.
  • the carrier By sucking the fluid into the syringe, connecting the syringe to the inlet of the microfluidic carrier (hereinafter referred to as the carrier), and then using a high-precision syringe pump to push the syringe, the injection of the microfluid into the carrier is realized.
  • this kind of operation has many steps, it is difficult to switch fluid samples, and it is difficult to realize automatic sampling of microfluidics.
  • the field also needs high-speed real-time, small and convenient nucleic acid amplification and detection devices and instruments, especially chip devices and instruments suitable for on-site rapid inspection (point-of-care testing, POCT).
  • POCT point-of-care testing
  • the invention provides a chip device for detecting nucleic acid in a sample, which has a substrate and a piston-type container, and the piston-type container communicates with each other through a microfluidic channel, wherein the piston-type container includes a cavity and a The piston in the body has an opening in communication with the microfluidic channel at the bottom of the cavity.
  • the chip device further has a piston valve located between the containers for controlling fluid communication between the interconnected containers, and the piston valve includes a valve cavity and a valve located in the valve cavity
  • the piston includes a valve cavity and a valve located in the valve cavity
  • the valve piston can move to the bottom of the cavity and cover the openings, blocking the communication between the cavity and the fluid channel, thereby blocking the flow through the
  • the fluid communication between the containers connected by the fluid channel preferably, the fluid channel communicates with the opening at the bottom of the cavity through an upward flow channel from the bottom of the cavity.
  • the chip device includes one or a combination or all of the following modules:
  • the sample cracking and nucleic acid extraction module can be used to perform cracking reaction and/or nucleic acid extraction reaction on the sample, and obtain purified nucleic acid from the sample;
  • the sample cracking and extraction module has a sample cracking module and/or nucleic acid extraction module, optionally Yes, the nucleic acid extraction module includes a nucleic acid binding unit, a nucleic acid cleaning unit and a nucleic acid eluting unit;
  • the nucleic acid amplification module is used for distributing nucleic acid samples to multiple amplification zone containers (such as amplification reaction chambers) and amplifying and/or detecting nucleic acid molecules; the nucleic acid amplification module includes multiple amplification zone modules and any The selected preamplifier module.
  • the chip device includes the following modules:
  • the sample cracking and nucleic acid extraction module can be used to perform cracking reaction and/or nucleic acid extraction reaction on the sample, and obtain purified nucleic acid from the sample;
  • the sample cracking and extraction module has a sample cracking module and/or nucleic acid extraction module, optionally Yes, the nucleic acid extraction module includes a nucleic acid binding unit, a nucleic acid cleaning unit and a nucleic acid eluting unit;
  • the nucleic acid amplification module is used for distributing nucleic acid samples to multiple amplification zone containers (such as amplification reaction chambers) and amplifying and/or detecting nucleic acid molecules; the nucleic acid amplification module includes multiple amplification zone modules and any The selected preamplifier module.
  • the sample receiving module in the chip device includes a sampling cavity, which is a piston container, including a cavity and a piston located in the cavity.
  • the sample receiving module includes a sample loading chamber and a sampling chamber.
  • it also includes a sampling cavity valve between the sampling cavity and the sampling cavity, for example, it is a piston valve, including a valve cavity and a valve piston positioned in the valve cavity, and the bottom of the valve cavity has a The two openings connected to the sampling cavity, the piston can move to the bottom of the cavity and cover the openings, blocking the fluid communication between the sampling cavity and the sampling cavity.
  • the sample lysing and extraction module in the chip device includes a first mixing chamber and a second mixing chamber
  • the first mixing chamber and the second mixing chamber are piston-type containers, including a chamber Body and piston located in the cavity.
  • a mixing chamber valve between the first mixing chamber and the second mixing chamber for example, it is a piston valve, including a valve chamber and a valve piston located in the valve chamber, and the bottom of the valve chamber is respectively connected to the first mixing chamber.
  • Two openings communicating between the mixing chamber and the second mixing chamber, the piston can move to the bottom of the chamber and cover the openings, blocking the fluid communication between the first mixing chamber and the second mixing chamber.
  • a sampling valve between the first mixing chamber and the upstream sample receiving module (such as the sampling chamber therein), which is, for example, a piston valve, including a valve cavity and a valve cavity located in the valve cavity.
  • the valve piston the bottom of the valve cavity has two openings respectively communicated with the sampling chamber and the first mixing chamber, the piston can move to the bottom of the cavity and cover the opening, blocking the sampling chamber and the first mixing chamber fluid communication between them.
  • the sample lysis module of the sample lysis and nucleic acid extraction module in the chip device includes a lysis reagent storage chamber for containing the lysis reagent, which is a piston container, including a cavity and a the piston.
  • the sample lysing module also includes a lysing reagent valve between the lysing reagent storage chamber and the chamber for sample lysing, the lysing reagent valve is, for example, a piston valve, including a valve chamber and a valve chamber located in the valve chamber.
  • the valve piston has two openings at the bottom of the valve chamber which are connected with the lysis reagent storage chamber and the sample lysis chamber respectively. The piston can move to the bottom of the chamber and cover the openings, blocking the lysis reagent storage chamber and the sample lysis chamber. Fluid communication between the lysed chambers.
  • the sample lysis and nucleic acid extraction module in the chip device has one or more of a binding unit, a cleaning unit, and an eluting unit, which respectively have a nucleic acid binding reagent, a nucleic acid Nucleic acid binding reagent storage cavity, nucleic acid cleaning reagent storage cavity and nucleic acid elution reagent storage cavity for cleaning reagent and nucleic acid eluting reagent.
  • the nucleic acid binding reagent storage chamber, the nucleic acid cleaning reagent storage chamber and the nucleic acid elution reagent storage chamber are piston-type containers, including a cavity body and a piston located in the cavity.
  • the nucleic acid binding reagent storage chamber, the nucleic acid cleaning reagent storage chamber and the nucleic acid eluting reagent storage chamber are respectively connected with the nucleic acid binding reagent valve, nucleic acid cleaning reagent valve or nucleic acid eluting reagent valve for nucleic acid binding, nucleic acid reagent or nucleic acid
  • the chambers for the elution reaction are connected.
  • the nucleic acid binding reagent valve, nucleic acid cleaning reagent valve or nucleic acid eluting reagent valve is, for example, a piston valve.
  • the cavity for sample lysis and the cavity for nucleic acid binding, nucleic acid reagent and/or nucleic acid elution reaction in the chip device is the first mixing cavity and/or the second mixing cavity. mixing chamber.
  • the nucleic acid extraction module in the chip device also includes a water adding chamber, which is connected to the lysing reagent storage chamber, the nucleic acid binding reagent storage chamber, the nucleic acid cleaning reagent storage chamber and the nucleic acid elution reagent storage chamber through the flow channel.
  • a water adding chamber which is connected to the lysing reagent storage chamber, the nucleic acid binding reagent storage chamber, the nucleic acid cleaning reagent storage chamber and the nucleic acid elution reagent storage chamber through the flow channel.
  • One or more of the cavities are connected.
  • a valve between one or more of the water adding chamber and the lysing reagent storage chamber, the nucleic acid binding reagent storage chamber, the nucleic acid cleaning reagent storage chamber and the nucleic acid elution reagent storage chamber is also included, the valve is, for example, a piston valve .
  • the lysing reagent storage chamber and/or the nucleic acid binding reagent storage chamber in the chip device is the first mixing chamber and/or the second mixing chamber.
  • the sample lysis and extraction module in the chip device further includes a chamber for the sample to be amplified, which is a piston container, including a chamber and a piston located in the chamber, for containing the lysed and Extracted nucleic acid solution samples.
  • a piston valve upstream of the sample cavity to be amplified which includes a valve cavity and a valve piston located in the valve cavity, and the bottom of the valve cavity is respectively connected to the upstream module or unit and the downstream amplification module.
  • Two openings, the pistons are movable to the bottom of the chamber and cover said openings, blocking fluid communication between the upstream module or unit and the downstream amplification module.
  • the sample lysis and extraction module in the chip device further includes a dilution chamber.
  • a dilution valve such as a piston container, between the dilution chamber and its upstream module or unit (eg, the second mixing chamber).
  • the sample lysis and extraction module in the chip device further includes a filter unit.
  • the filter unit is a filter chamber, which is a piston-type container with a piston in the cavity, and two openings at the bottom of the cavity that communicate with the flow channel, and the flow channel is respectively connected to the upstream
  • the diluting chamber is connected with the sample chamber to be amplified downstream, and there is a filter for filtering unwanted substances (such as cells, cell fragments or large protein molecules, etc.) in the nucleic acid extraction solution between the bottom of the chamber and the piston.
  • the nucleic acid amplification module has one or more multiple amplification region units.
  • the multiple amplification area unit includes a plurality of amplification reaction chambers (set in the bottom plate) for performing nucleic acid amplification reactions, and the nucleic acid sample solution from the sample lysis and extraction module is distributed to each of the amplification reaction chambers through a microfluidic channel. Increased reaction chamber.
  • between the multiple amplification area unit and the upstream sample lysing and extraction module (such as between the multiple amplification area unit and the upstream sample chamber to be amplified Between) has a piston valve, the valve cavity has a piston, and the bottom of the valve cavity has an opening that communicates with the flow channel that communicates with the upstream sample cavity to be amplified, and an opening that communicates with the downstream amplification region unit.
  • the multiple amplification reaction chambers of the multiple amplification zone unit are distributed along the circumference.
  • a multiple amplification sampling valve above it which is a piston valve, with a piston in the valve cavity, and an opening at the bottom of the valve cavity that communicates with the flow channel of the upstream sample cavity to be amplified, and a plurality of openings respectively communicating with each of the plurality of amplification reaction chambers below.
  • the multiple amplification reaction chambers of the multiple amplification zone unit are arranged in an array.
  • each amplification reaction chamber communicates with the main channel of the amplification zone unit through a branch flow channel, and the main channel of the multiple amplification zone unit communicates with the upstream sample lysis and extraction module.
  • the chip device there is a piston valve between the multiple amplification region unit and the upstream sample lysing and extraction module, a piston in the valve cavity, and a valve at the bottom of the valve cavity.
  • the opening communicates with the flow channel of the upstream sample cavity to be amplified, and the opening communicates with the main channel of the downstream amplification zone unit.
  • the nucleic acid amplification module has an inert liquid module for storing and providing an inert liquid (such as mineral oil or paraffin oil) for sealing the amplification reaction chamber and the flow channel interface .
  • the inert liquid module has an oil filling cavity.
  • the inert liquid module also includes a refueling valve between the refueling chamber and the multiple amplification zone unit, which is, for example, a piston valve, with a piston in the valve chamber, and a flow channel connected to the refueling chamber at the bottom of the valve chamber. The opening communicating with the channel, and the opening communicating with the amplification region unit.
  • the nucleic acid amplification module further has a pre-amplification area unit arranged upstream of the multiple amplification area unit for performing the first round of amplification on nucleic acid molecules. expansion, such as nested amplification.
  • the pre-amplification unit has a nested amplification cavity, for example, it is a cylindrical cavity arranged in the bottom plate, which has a sample lysing and extraction module and a The downstream reamplification zone unit is connected to the flow channel.
  • the amplification reaction chambers of the amplification reaction unit are isolated by materials that completely absorb or substantially completely absorb signals generated by the amplification reaction.
  • the bottom of each amplification reaction chamber of the amplification reaction unit is prepared or sealed with a material that does not absorb at all or substantially does not absorb signals generated by the amplification reaction.
  • the piston valve has a piston movement control member disposed above the valve piston, for controlling the up and down movement of the valve piston in the cavity.
  • the cavity wall of the valve cavity of the piston valve has internal threads.
  • the piston movement control member has an external thread, which forms a thread pair with the internal thread of the cavity wall, and the piston movement control member rotates along the thread to move in the cavity, Movement of the piston within the cavity is controlled.
  • the piston movement control member has a cavity suitable for inserting a control rod, and the cross section of the cavity is a shape adapted to the control rod.
  • the bottom of the valve piston of the piston valve mechanism has a piston support body, and the piston support body is a protrusion at the bottom of the piston, which is made of elastic material.
  • the cross-sectional diameter of the piston container or piston valve is about 0.5mm-25mm, preferably about 1-20mm, more preferably about 3-15mm.
  • the present invention also provides an instrument for detecting nucleic acid in a sample, especially a POCT instrument, which includes the aforementioned chip device provided by the present invention.
  • the chip device has a substrate and a piston container, and the piston container communicates with the microfluidic channel, wherein the piston container includes a cavity and a piston located in the cavity, and the bottom of the cavity has a The opening of channel communication;
  • the chip device also has a piston valve located between the containers, used to control the fluid communication between the interconnected containers, the piston valve includes a valve cavity and a valve piston located in the valve cavity, the valve
  • the bottom of the cavity has two or more openings communicating with the flow channel, the valve piston can move to the bottom of the cavity and cover the openings, blocking the communication between the cavity and the fluid channel, thereby blocking the connection through the fluid channel fluid communication between the vessels,
  • the chip device includes:
  • the sample cracking and nucleic acid extraction module can be used to perform cracking reaction and/or nucleic acid extraction reaction on the sample, and obtain purified nucleic acid from the sample;
  • the sample cracking and extraction module has a sample cracking module and/or nucleic acid extraction module, optionally Yes, the nucleic acid extraction module includes a nucleic acid binding unit, a nucleic acid cleaning unit and a nucleic acid eluting unit;
  • the nucleic acid amplification module is used for distributing nucleic acid samples to multiple amplification zone containers (such as amplification reaction chambers) and amplifying and/or detecting nucleic acid molecules; the nucleic acid amplification module includes multiple amplification zone modules and any The selected preamplifier module.
  • the instrument has a chip device receiving and movement control system for receiving the above chip device and transferring it to a designated position in the instrument to perform various processes on the chip.
  • the instrument has a magnet and a system for controlling the movement of the magnet, and is used for purifying nucleic acid in a sample using a magnetic bead method.
  • the nucleic acid is bound by contacting the nucleic acid-binding magnetic material and/or binding solution with the sample that has been lysed, thereby allowing the nucleic acid to bind to the magnetic material.
  • the complex formed after the nucleic acid is combined with the magnetic material can controllably move, stir or precipitate in the container under the action of a magnetic field, so as to achieve the purposes of nucleic acid binding, nucleic acid cleaning and nucleic acid elution.
  • the instrument has a control mechanism for regulating the movement of a piston motion control in the piston valve.
  • the control mechanism includes a control rod and a control rod movement mechanism, the control rod can rotate or move up and down, wherein the control rod movement mechanism includes a component for controlling the control rod up and down movement and rotation, Such as motors.
  • the instrument has a signal detection module for detecting nucleic acid amplification products, such as a fluorescence detection system.
  • the instrument has a temperature control system for the nucleic acid amplification region of the chip.
  • the instrument has a nucleic acid amplification result analysis and/or output system.
  • a method for detecting nucleic acid in a sample using the chip device or instrument of the present invention is provided.
  • the detection method comprises the following steps:
  • the chip device has a substrate and a piston container, and the piston container communicates with each other through a microfluidic channel, wherein the piston container includes a cavity and a The piston in the body, the bottom of the cavity has an opening communicating with the microfluidic channel, and the chip device also has a piston valve located between the containers for controlling the fluid communication between the interconnected containers, the piston valve includes The valve cavity and the valve piston located in the valve cavity, the bottom of the valve cavity has two or more openings communicating with the flow channel, the valve piston can move to the bottom of the cavity and cover the openings, blocking the cavity and the fluid channel communication, thereby blocking the fluid communication between the containers connected through the fluid channel (the fluid channel communicates with the opening at the bottom of the cavity through the upward flow channel from below the cavity).
  • the chip arrangement may include:
  • the sample cracking and nucleic acid extraction module can be used to perform cracking reaction and/or nucleic acid extraction reaction on the sample, and obtain purified nucleic acid from the sample;
  • the sample cracking and extraction module has a sample cracking module and/or nucleic acid extraction module, optionally Yes, the nucleic acid extraction module includes a nucleic acid binding unit, a nucleic acid cleaning unit and a nucleic acid eluting unit;
  • the nucleic acid amplification module is used for distributing nucleic acid samples to multiple amplification zone containers (such as amplification reaction chambers) and amplifying and/or detecting nucleic acid molecules; the nucleic acid amplification module includes multiple amplification zone modules and any The selected preamplifier module.
  • the apparatus optionally includes:
  • Chip device receiving and motion control system
  • a control mechanism for regulating the movement of the piston motion control member in the piston valve includes a control rod and a control rod kinematic mechanism, the control rod can be rotated or moved up and down, wherein the control rod kinematic mechanism includes control of the Parts that control levers that move up and down and rotate, such as motors;
  • a signal detection module for detecting nucleic acid amplification products such as a fluorescence detection system
  • the method optionally includes the steps of:
  • the nucleic acid amplification module is used for distributing nucleic acid samples to multiple amplification zone containers and performing amplification and/or detection on nucleic acid molecules.
  • the diagnostic instrument is used for identification of infection source, genetic disease, cancer detection or gene variation detection.
  • the diagnostic instrument is used for the detection of the following pathogens: coronavirus, influenza virus, enterovirus, hepatitis B virus, hepatitis C virus, Ebola virus, Marburg virus, SARS virus, Zika virus , Bunia virus, rhinovirus, respiratory nucleocytosis virus, cholera virus and other viral pathogens, or Mycobacterium tuberculosis, Escherichia coli, Acinetobacter baumannii, Diplococcus pneumoniae, Streptococcus lactis, Sarcina urea, Staphylococcus aureus, Bacillus subtilis, Bacillus anthracis, Bacillus subtilis, Streptococcus, Proteus, Vibrio cholerae, Treponema pallidum and other bacterial pathogens.
  • pathogens coronavirus, influenza virus, enterovirus, hepatitis B virus, hepatitis C virus, Ebola virus, Marburg virus, SARS virus, Zi
  • the diagnostic instrument is used for the detection of the following cancers: leukemia, Hodgkin's disease, Wilm's tumor (Wilms tumor), melanoma, retinoblastoma, gastric cancer, liver cancer, lung cancer , Esophageal cancer, cervical cancer, breast cancer, colon cancer, rectal cancer, nasopharyngeal cancer, ovarian cancer, kidney cancer, bladder cancer, thyroid cancer, skin cancer, etc.
  • Fig. 1 is a stereoscopic perspective view of an exemplary chip device provided by the present invention for nucleic acid detection in a sample.
  • FIG. 2 is another perspective view of the exemplary chip device for nucleic acid detection in a sample shown in FIG. 1 . Compared with FIG. 1 , FIG. 2 does not show the internal thread on the cavity wall of some piston containers or piston valves in the chip device and the piston movement control parts in the cavity of the piston valve.
  • FIG. 3 is a schematic top plan view of the structure of the exemplary chip device for detecting nucleic acid in a sample shown in FIG. 1 and the communication relationship of its flow channels.
  • FIG. 4 is a schematic diagram of the structure and working mode of an exemplary piston valve and piston motion control mechanism in the chip device for nucleic acid detection in samples provided by the present invention.
  • FIG. 4( a ) is a schematic cross-sectional view of the structure of the exemplary piston valve.
  • Figure 4(b) and (c) are schematic diagrams of the working mode of the exemplary piston valve.
  • Fig. 4(b) shows an exemplary working mode of controlling the downward movement of the piston
  • Fig. 4(c) shows an exemplary working mode of controlling the upward movement of the piston.
  • Fig. 5 is a perspective view of yet another exemplary chip device used in the detection of nucleic acid in a sample provided by the present invention.
  • the figure does not show the internal thread on the cavity wall of some piston containers or piston valves in the chip device provided by the present invention and the piston movement control parts in the cavity of the piston valve.
  • FIG. 6 is another perspective view of the exemplary chip device for nucleic acid detection in a sample shown in FIG. 5 .
  • the figure does not show the piston in the piston container or the piston valve in the chip device provided by the present invention.
  • FIG. 7 is a schematic diagram of the top-view structure of the exemplary chip device for detecting nucleic acid in a sample shown in FIG. 5 and the communication relationship of its flow channels.
  • the invention provides a chip device for nucleic acid detection in samples.
  • the chip device is usually used to extract and amplify nucleic acid in a sample and detect its presence and amount.
  • Fig. 1 is a stereoscopic perspective view of an exemplary chip device provided by the present invention for nucleic acid detection in a sample.
  • the chip device provided by the present invention has a substrate 1 and a container area 2 perpendicular to the substrate, a columnar container 3 arranged in parallel is arranged in the container area, and a micro flow channel 4 is arranged in the substrate below the container area,
  • the cavity bottom of the columnar container has an opening 5 communicating with the microfluidic channel, and fluid communication between the columnar containers can be realized through the microfluidic channel.
  • Piston containers are used to contain a sample or formulation (solid or liquid formulation), which resides in the space between the piston and the bottom of the chamber.
  • the bottom of the cavity has an opening communicating with the fluid channel, and the solution is transferred between the containers through the micro flow channel.
  • the columnar container also includes a piston valve (such as the piston valve 8 in Fig. 1) for controlling fluid communication between the interconnected containers.
  • the piston can move to the bottom of the cavity of the piston valve and cover the opening, blocking the communication between the cavity and the microfluidic channel, thereby blocking the upper channel connected by the fluid channel Fluid communication between downstream vessels.
  • the microfluidic channel communicates with the opening at the bottom of the cavity from below the cavity of the piston container or piston valve through an upward channel.
  • the chip device provided by the present invention is usually used for temperature-controlled amplification reaction of nucleic acid, and the temperature-controlled amplification reaction is usually carried out in multiple reaction chambers 9 arranged in the substrate.
  • the chip device provided by the invention is used for detecting the presence and quantity of nucleic acid in a sample after extraction and amplification.
  • the chip device provided by the present invention may include one or more of the following modules:
  • a sample receiving module for receiving, dispensing, and holding an appropriate amount of sample for testing
  • Sample lysis and nucleic acid extraction module The module is used to accommodate lysis and nucleic acid extraction reagents, perform lysis reaction and/or nucleic acid extraction reaction on the sample, and obtain purified nucleic acid from the sample for the next step of nucleic acid amplification reaction.
  • the sample lysis and extraction module may include a sample lysis module for accommodating lysis reagents and performing a lysis reaction on the sample, and may include a nucleic acid extraction module that may include a nucleic acid binding unit, a nucleic acid cleaning unit, and a nucleic acid elution unit , which are respectively used to accommodate nucleic acid binding reagents, nucleic acid cleaning reagents and nucleic acid elution reagents, and perform reactions such as nucleic acid binding, nucleic acid reagents, and nucleic acid elution respectively;
  • the nucleic acid amplification module is used for distributing the nucleic acid extracted from the sample to the nucleic acid amplification reaction chamber and amplifying the nucleic acid molecule, especially performing nucleic acid multiple amplification in multiple nucleic acid amplification reaction chambers.
  • a first round of nucleic acid amplification can also be performed upstream of the multiple nucleic acid amplification, and the first round of nucleic acid amplification is, for example, nested amplification.
  • the nucleic acid amplification module may include a multiple amplification region module and an optional pre-amplification region module.
  • the containers used to accommodate solid or liquid preparations or react in each module of the chip device provided by the present invention can be piston containers, and the interconnected containers are connected through fluid channels arranged in the lower substrate, so
  • the piston-type container includes a cavity and a piston located in the cavity, the bottom of the cavity has an opening communicating with the fluid channel, the solid or liquid preparation can be accommodated in the space between the piston and the bottom of the cavity, and the solution can pass through the microchannel in the transfer between containers.
  • piston valves are provided between the interconnected containers.
  • the piston valve includes a valve cavity and a valve piston located in the valve cavity, and the bottom of the valve cavity has two or more openings communicating with the flow channel.
  • the fluid channel communicates with the opening at the bottom of the cavity from below the cavity through an upward flow channel.
  • the opening is not located on the side wall of the cavity of the piston valve.
  • a piston is movable to the bottom of the cavity and covers the opening, blocking communication of the cavity with the fluid passage, thereby blocking fluid communication between containers connected by the fluid passage.
  • Nucleic acid samples for use in the methods described herein may be from any source.
  • a sample may be biological material isolated from its natural environment and comprising polynucleotides.
  • a sample may consist of a purified or isolated polynucleotide, or may comprise a biological sample such as a tissue sample, a biological fluid sample or a cell sample comprising the polynucleotide.
  • Biological fluids include blood, plasma, sputum, urine, cerebrospinal fluid, lavage fluid samples as non-limiting examples.
  • Nucleic acid samples may be of plant, animal, bacterial or viral origin.
  • Samples may be obtained from various sources, including but not limited to, from different individuals, different developmental stages of the same or different individuals, different diseased individuals, normal individuals, different disease stages of the same or different individuals, individuals undergoing different disease treatments, in Samples of individuals with different environmental factors, or individuals with predisposition to disease, or individuals exposed to infectious disease agents.
  • unit as used herein is intended to denote an element or combination of elements configured to operate together to perform one or more functions or produce one or more desired results, wherein each element may have a separate , distinct and/or independent functions. It will be understood that each element within a unit need not be directly connected to each other element.
  • module used herein is used to denote a unit or a combination of units configured to operate together to realize the functions of one or more subsystems of the device of the present invention. It should be understood that each unit within a module need not be directly connected to each other unit.
  • FIG. 1 is a stereoscopic perspective view of an exemplary chip device provided by the present invention for nucleic acid detection in a sample.
  • FIG. 2 is another perspective view of the exemplary chip device for nucleic acid detection in a sample shown in FIG. 1 . Compared with FIG. 1 , FIG. 2 does not show the internal thread on the cavity wall of some piston containers or piston valves in the chip device provided by the present invention and the piston movement control parts in the cavity of the piston valve.
  • FIG. 3 is a schematic top plan view of the structure of the exemplary chip device for detecting nucleic acid in a sample shown in FIG. 1 and the communication relationship of its flow channels.
  • the chip device for detecting nucleic acid in a sample provided by the present invention includes a substrate 1 and a container area 2 perpendicular to the substrate, and a plurality of cylindrical cavities 3 are arranged in the container area 2 .
  • the cylindrical cavity is bounded by the walls of the container area perpendicular to the bottom plate, and the bottom has an opening 5 communicating with a fluid channel 4 provided in the bottom plate.
  • the plurality of cylindrical cavities communicate with each other through fluid channels 4 provided in the bottom plate.
  • the fluid channel is located below the cavity, and communicates with the opening at the bottom of the cavity through an upward flow channel.
  • the base plate and container region are made of rigid material. Such materials include, but are not limited to, silica, silicon, quartz, glass, or polymeric materials (eg, PDMS, plastic, etc.).
  • the fluid channel provided in the substrate is generally a microfluidic channel, the size of which is on the order of millimeters, for example, the width of the cross-section of the channel is about 0.1-5 mm.
  • the terms "fluidic channel”, “microfluidic channel” and “microfluidic channel” are used interchangeably.
  • the cross section of the flow channel of the fluid channel can be in various shapes, including ellipse, rectangle, square, circle and so on. In one aspect of the present invention, the cross-section of the flow channel has a width of about 0.1-5 mm, preferably about 0.2 mm-2 mm.
  • the wall of the cylindrical cavity and the bottom plate can be made of materials that completely absorb or substantially absorb the target signal (such as fluorescence).
  • the bottom of the amplification reaction area (usually a cavity) is prepared or sealed with a material that does not absorb at all or substantially does not absorb the signal to be detected.
  • the signal detection module disposed in the chip or an external detection system can detect the fluorescent signals generated in each amplification reaction region through the bottom of the amplification reaction region.
  • the plurality of cylindrical cavities include a piston container, such as the piston container 7 in FIG.
  • the cavity and the piston 71 in the cavity, the piston can move up and down in the cavity.
  • the plurality of piston containers communicate with each other through fluid channels 4 provided in the base plate.
  • the fluid channel is located below the cavity and communicates with the opening 5 at the bottom of the cavity through an upward flow channel.
  • piston valves are also included in the plurality of cylindrical cavities, such as piston valve 8 in FIG. 1, for controlling the fluid communication between the interconnected piston containers. .
  • the piston valve includes a valve cavity surrounded by a piston wall perpendicular to the bottom plate and a valve piston 81 located in the valve cavity, and the bottom of the valve cavity (not the side wall) has flow passages connected to the upstream and downstream containers controlled by it respectively Two or more openings 6 in communication, the valve piston 81 can move to the bottom of the cavity and cover the opening 6, blocking the communication between the cavity and the fluid channel, thereby blocking the connection between the containers connected by the fluid channel of fluid communication.
  • the fluid channel communicates with the opening at the bottom of the valve cavity through an upward channel from the bottom of the valve cavity.
  • FIG. 2 is another perspective view of the partial structure of the exemplary chip device for detecting nucleic acid in a sample provided by the present invention in FIG. 1 .
  • FIG. 2 does not show the internal thread on the cavity wall of the piston valve used in the chip device provided by the present invention and the piston movement control member in the cavity.
  • the device for nucleic acid detection in a sample provided by the present invention has a sample receiving module, including a sampling chamber 101 and a sampling chamber 103 , and a sampling chamber valve 102 located between the sampling chamber 1 and the sampling chamber 3 .
  • the original sample to be tested can be added into the sample loading chamber 101 .
  • the sampling cavity valve 102 is a piston valve, with a piston in the valve cavity and two openings at the bottom of the valve cavity communicating with the flow channels in the substrate.
  • the sampling cavity 103 is connected.
  • the sampling cavity 103 is a piston-type container with a piston in the cavity and an opening at the bottom of the cavity that communicates with the flow channel in the substrate.
  • the initial state of the device for nucleic acid detection in a sample is: the sampling chamber valve 102 is in a closed state (that is, the piston of the sampling chamber valve 102 is located at the bottom of the chamber and covers the opening, blocking the chamber communication with the fluid channel), the piston in the sampling chamber 103 is located at a specified height (at this time, the volume between the piston and the bottom of the sampling chamber is the specified volume, for example, the specified sample volume for the sample cracking reaction).
  • the sampling chamber valve 102 When keeping the sampling chamber valve 102 in the closed state, add the sample in the sample chamber 101; then the sampling chamber valve 102 is opened (the piston of the sampling chamber valve 102 is about to rise), because the initial state of the sampling chamber 103 is a vacuum state, The solution in the sampling chamber 101 of the specified volume is sucked into the sampling chamber 103 through the sampling chamber valve 102; the sampling chamber valve 102 is closed (the piston of the sampling chamber valve 102 is pushed to the bottom of the chamber).
  • the chip device used for nucleic acid detection in samples provided by the present invention has a sample lysis and nucleic acid extraction module, which includes a first mixing chamber 105 and a second mixing chamber 107, and is located between the first mixing chamber 105 and the second mixing chamber.
  • a mixing chamber valve 106 between the two mixing chambers 107.
  • the first mixing chamber 105 and the second mixing chamber 107 are both piston-type containers, with a piston inside the chamber, and an opening at the bottom of the chamber communicating with the flow channel in the substrate.
  • the injection valve 104 and the mixing chamber valve 106 are both piston valves, with a piston in the valve cavity, and two openings at the bottom of the valve cavity that communicate with the flow channel in the substrate, and the two openings are respectively connected with the upstream and downstream Flow channels of the container phase: the two flow channels controlled by the sampling valve 104 communicate with the first mixing chamber 105 and the sampling chamber 103 respectively, and the two flow channels controlled by the mixing chamber valve 106 communicate with the first mixing chamber 105 and the second mixing chamber respectively.
  • the cavity 107 communicates.
  • the chip device for nucleic acid detection in this embodiment is particularly suitable for nucleic acid extraction from a sample by direct extraction, that is, the solution obtained after the sample contacts and reacts with a nucleic acid extraction reagent contains nucleic acid that can be used for subsequent amplification reactions.
  • Samples suitable for nucleic acid extraction and amplification by direct extraction include artificially synthesized cloning liquid, in vitro transcribed RNA, plasmids, serum, plasma, urine, cotton swab eluate, sputum, alveolar lavage fluid, etc. .
  • the nucleic acid extraction reagents used to extract the above samples usually contain lysing agents, including various surfactants such as SDS, Triton, NP-40, etc., and other chemical reagents such as buffers, protease inhibitors, reducing agents, etc., and various lysing agents Enzymes of components in the cell wall or cell membrane, such as Labiase lyase, lysostaphin, lysozyme from egg protein, human lysozyme, achromopeptidase, mutanolysin from Streptomyces coccidioides, chitinase, lysozyme Rhizoctonia-derived lyase, Arthrobacter luteus-derived lyase, Trichoderma harzianum-derived lyase, Streptococcus pyogenes-derived streptolysin O, Bacillus tetani-derived tetanolysin
  • nucleic acid extraction reagent The main main function of described nucleic acid extraction reagent is: (1) utilize detergent to destroy lipid bilayer, rupture cell; (2) dissolve protein; (3) promote protein denaturation; (4) inhibit protease and nuclease active.
  • Commercially available direct extraction nucleic acid extraction reagents such as the sample release agent (model S1014) provided by China Sunshine Biotechnology Co., Ltd.
  • the initial state of the chip device for nucleic acid detection in a sample is: the sampling valve 104 and the mixing chamber valve 106 are in a closed state; Extraction reagents for nucleic acid extraction.
  • the sampling chamber valve 102 is closed and there is a sample solution in the sampling chamber 103
  • the sampling valve 104 is opened to move the piston of the sampling chamber 103 downward, and the sample solution in the sampling chamber 103 is pressed to the first mixing chamber 105, Dissolve the pre-placed direct extraction reagent; close the injection valve 104.
  • the mixing chamber valve 106 is opened, and the pistons of the first mixing chamber 105 and the second mixing chamber 107 are alternately moved downward, so that the straight-lift nucleic acid extraction reagent is fully mixed and reacted with the sample solution, and the cells in the sample are lysed, The nucleic acid is released, and finally the piston of the first mixing chamber 105 moves downward, so that the solution containing the released and isolated nucleic acid flows into the second mixing chamber 107, and the valve 106 of the mixing chamber is closed.
  • the nucleic acid extraction module further includes a dilution chamber 109 .
  • the diluting chamber 109 is a piston-type container with a piston in the chamber and an opening communicating with the flow channel at the bottom of the chamber.
  • the flow channels connected to the two openings communicate with the second mixing chamber 107 and the diluting chamber 109 respectively.
  • the chip device for nucleic acid detection in this embodiment, after the nucleic acid is extracted from the sample, it usually needs to be diluted before being used for subsequent nucleic acid detection reactions, such as amplification reactions.
  • the initial state of the chip device for nucleic acid detection in a sample is: the dilution valve 108 is in a closed state; Prepare diluent for diluting the extracted nucleic acid solution.
  • the dilution valve 108 is opened, the piston of the second mixing chamber 107 moves downward, and the piston of the dilution chamber 109 moves upward, so that the second mixing chamber 107
  • the solution of separated nucleic acids flows to the dilution chamber 109 .
  • the pistons of the second mixing chamber 107 and the diluting chamber 109 are moved downward alternately, so that the nucleic acid sample solution is fully mixed.
  • the piston of the second mixing chamber 107 moves downward, so that the nucleic acid-containing solution flows into the diluting chamber 109, and the diluting valve 108 is closed.
  • the nucleic acid extraction module further includes a filter unit and a sample chamber 110 downstream of it to be amplified.
  • the filter unit is a filter cavity 125, which is a piston-type container with a piston 126 in the cavity, and two openings that communicate with the dilution cavity 9 and the sample cavity 110 to be amplified respectively at the bottom of the cavity;
  • the bottom has a filter element 127 for filtering unwanted substances (such as cells, cell fragments or large protein molecules, etc.) in the nucleic acid extraction solution.
  • the filter element is prepared by using filter materials.
  • the piston in the filter cavity is fixed in the cavity, and the space formed by the piston and the bottom of the cavity is filled with the filter material.
  • the pore size of the filter material can allow the nucleic acid in the solution (including genomic nucleic acid or its fragments, etc.) to pass through freely, and retain tissue fragments, cells and cell fragments, or large protein molecules, etc.
  • the filter material used does not physically adsorb or substantially does not physically adsorb the nucleic acid in the solution, and does not react or inhibit the nucleic acid.
  • the initial state of the chip device for nucleic acid detection in a sample is: the piston 126 of the filter cavity 125 is fixed in the cavity and pressed on the top of the filter element 127; the sample to be amplified is The piston in chamber 110 is located at the bottom of the chamber.
  • the piston in the dilution chamber 109 moves downward, and the piston in the sample chamber 110 to be amplified moves upward, thereby diluting
  • the separated and diluted nucleic acid solution in the cavity 109 flows through the filter material 127 through the two openings of the filter cavity 110 and then flows into the sample cavity 110 to be amplified.
  • a filter membrane may be provided in the flow channel between the second mixing chamber 107 and the sample chamber 109 to be amplified.
  • a plurality of filter chambers or filter membranes or a combination thereof may be arranged between the second mixing chamber 107 and the sample chamber 109 to be amplified, and the multiple filter chambers or filter membranes may have different The size of the sieve is used to realize the multiple filtration of the nucleic acid-containing solution obtained after the nucleic acid extraction of the sample by the direct extraction method, which can avoid the clogging of the filter material.
  • the chip device provided by the present invention for detecting nucleic acid in a sample does not need a filter chamber.
  • the chip device for nucleic acid detection in samples provided by the present invention also has a nucleic acid amplification module.
  • the nucleic acid amplification module has a multiple amplification unit, and the amplification unit includes a plurality of amplification reaction chambers 122 arranged in the bottom plate of the chip device and a plurality of amplification reaction chambers arranged in the plurality of amplification chambers.
  • the multiple amplification sampling valve 121 above the reaction chamber 122 is added.
  • the multiple amplification sample injection valve 121 is a piston valve, with a piston 123 in the valve cavity, and a flow channel communicating with the upstream sample cavity 110 to be amplified in the center of the bottom of the valve cavity.
  • An opening 124 and a plurality of openings 125 connected to the flow channels of each of the plurality of amplification reaction chambers 122 are provided in the circumference of the bottom of the valve cavity.
  • the plurality of amplification reaction chambers 122 are arranged in the bottom plate of the chip below the valve chamber of the multiple amplification sampling valve 121, which can accommodate the reactants or reaction systems of the amplification reaction, and the nucleic acid extraction module.
  • the isolated nucleic acid solution can be subjected to an amplification reaction under suitable conditions.
  • the nucleic acid amplification module in the chip device may have multiple nucleic acid amplification units, such as 2 or 4 or 6 or 8 units.
  • multiple amplification can be used to detect multiple target sequences on the nucleic acid of the same sample under the same reaction conditions.
  • multiplex PCR multiplex PCR
  • multiplex PCR that is, a PCR reaction in which different primer pairs are used in the same PCR reaction system to simultaneously amplify multiple nucleic acid fragments.
  • the initial state of the chip device for nucleic acid detection in a sample is: different primer pairs, probes, One or more of reactants such as enzymes (in another exemplary working situation, the enzyme is pre-set in the sample chamber 110 to be amplified, and is dissolved in the solution after adding the diluted nucleic acid sample solution) , and kept in a vacuum state; the piston of the multiple amplification sampling valve 121 is located at the bottom of the cavity, sealing the opening 124 communicating with the flow channel connected to the upstream sample cavity 110 to be amplified and each of the multiple amplification reaction The cavity 122 communicates with the opening 125 .
  • reactants such as enzymes
  • the piston of the multiple amplification sampling valve 121 is moved upwards, thereby making the nucleic acid sample in the sample chamber 110 to be amplified
  • the solution enters the cavity of the multiple amplification sampling valve 121 and then is evenly dispensed into the multiple amplification reaction cavities 122 .
  • nucleic acid amplification reactions can be performed in the plurality of amplification reaction chambers 122 .
  • Various nucleic acid amplification methods using primers known in the art can be used in the present invention, including variable temperature or isothermal amplification methods, such as polymerase chain reaction (PCR), strand displacement amplification (SDA), nucleic acid sequence-based Amplification (NASBA), cascade rolling circle amplification (CRCA), loop-mediated DNA isothermal amplification (LAMP), isothermal and chimeric primer-initiated nucleic acid amplification (ICAN), target-based unwinding Enzyme-dependent amplification (HDA), transcription-mediated amplification (TMA), etc.
  • PCR polymerase chain reaction
  • SDA strand displacement amplification
  • NASBA nucleic acid sequence-based Amplification
  • CRCA cascade rolling circle amplification
  • LAMP loop-mediated DNA isothermal amplification
  • ICAN isothermal and chimeric primer-initiated nucle
  • a variable temperature amplification method such as PCR
  • the nucleic acid amplification module of the device also includes a temperature control unit for the plurality of amplification reaction chambers 122, for example, a temperature regulator , the amplification reaction chamber 122 is cyclically heated and cooled according to a predetermined program and lasts for a predetermined time.
  • the nucleic acid amplification module of the device also includes a temperature control unit for the plurality of amplification reaction chambers 122, for example, a temperature regulator , so that the amplification reaction chamber 122 maintains a constant temperature.
  • a temperature control unit for the plurality of amplification reaction chambers 122 for example, a temperature regulator
  • the chip device for detecting nucleic acid in a sample may also include a signal detection module (not shown in the figure) for detecting the detection results of each amplification reaction chamber 122 .
  • the detection module of the present invention is a module suitable for detecting identifiable labels carried by nucleic acids in any manner, including but not limited to fluorescence or other forms (such as chemiluminescence, bioluminescence, radioluminescence, electroluminescence, electrochemiluminescence, Mechanical luminescence, crystalline luminescence, thermoluminescence, sonoluminescence, phosphorescence and photoluminescence, etc.) luminescence, enzymatic reactions, radioactivity, etc.
  • the amplification reaction chambers of the amplification reaction unit are insulated by materials that completely absorb or substantially completely absorb the signals generated by the amplification reaction, so as to avoid the gap between adjacent amplification reaction chambers.
  • the wall of the amplification reaction unit can be made of a material that completely absorbs or substantially completely absorbs the signal generated by the amplification reaction.
  • the bottom of the amplification reaction chamber is prepared or sealed with a material that does not absorb at all or substantially does not absorb the signal to be detected.
  • the detection of the amplified nucleic acid is by detecting the fluorescent signal carried by the nucleic acid.
  • the probes, primers and oligonucleotides contained in the reaction system of the amplification reaction chamber 122 can be detectably labeled radioactively, fluorescently or non-radioactively by methods well known to those skilled in the art.
  • the bottom of the amplification reaction chamber 122 is prepared or sealed with a material that does not absorb at all or substantially does not absorb the signal to be detected.
  • the signal detection module disposed in the chip or an external detection system can detect the fluorescent signals generated in each amplification reaction chamber 122 through the bottom of the amplification reaction chamber 122 . Commonly used fluorescent dyes and their signal-related wavelengths are shown in Table 1 below.
  • the bottom of the amplification reaction chamber 122 can be made of a material that does not absorb the fluorescent signal generated by the amplification reaction.
  • various known optical systems including optical filters, cameras, etc. can be used to collect and analyze the fluorescence signals generated at the bottom of each amplification reaction chamber 122 to obtain detection results.
  • the piston container eg
  • the piston container is used to accommodate solid or liquid preparations or to conduct reactions.
  • Liquid formulations can be transferred between interconnected containers through fluid channels.
  • the solid formulation can be formed into a solution after addition of a suitable solvent, and then transferred between interconnected containers through fluid channels.
  • two or more piston containers can be used to control the flow of fluid (stationary or moving), as well as its flow direction and/or flow rate.
  • the liquid can be mixed effectively through two or more piston containers connected.
  • the pistons of the first mixing chamber 105 and the second mixing chamber 107 can be moved down alternately, so that the direct extraction nucleic acid extraction reagent and the sample solution are fully mixed and reacted.
  • the movement of the piston in the cavity can be controlled by mechanical transmission.
  • the piston is fixedly connected with the connecting rod, and the position of the piston in the cavity is controlled by pushing and pulling the connecting rod.
  • the piston moves to the bottom of the cavity, it can continue to apply pressure, thereby deforming the piston, sealing the opening where the fluid channel communicates with the cavity, and completely blocking the fluid communication between the fluid channels.
  • the movement of the piston can also be controlled by other means, such as pneumatic transmission or hydraulic transmission.
  • the movement of the piston in the piston valve in the cavity can be controlled by a piston movement control mechanism.
  • the piston movement control mechanism includes a piston movement control member 82 arranged above the piston 81 in the cavity, the piston movement control member 82 has an external thread, and is connected to the cavity wall of the piston.
  • the inner thread of the piston forms a thread pair, and when the piston movement control member 82 is rotated along the thread, it moves upward or downward in the cavity of the piston, thereby controlling the upward or downward movement of the piston.
  • FIG. 4 is a schematic diagram of the structure and working mode of the aforementioned exemplary piston valve and piston motion control mechanism in the chip device provided by the present invention.
  • Fig. 4(a) is a schematic cross-sectional view of the structure of the exemplary piston valve
  • Fig. 4(b) and (c) are schematic views of the working mode of the exemplary piston valve.
  • the piston 81 is located in a cavity 83 formed by the space limited by the cavity wall, and can move up and down in the cavity.
  • the piston is movable into full contact with the bottom of the cavity and covers the opening 43 through which all fluid channels (eg, fluid channels 41 and 42 as shown) communicate with the cavity, thereby blocking fluid communication.
  • the piston movement control member 82 is arranged above the piston 81 and has an external thread 821 forming a thread pair with the internal thread 831 on the cavity wall of the piston valve. As the piston motion control member 82 is threaded, it moves upward or downward within the cavity of the piston.
  • Figure 4(b) and (c) are schematic diagrams of the working mode of the exemplary piston valve, wherein Figure 4(b) shows an exemplary working mode of controlling the downward movement of the piston, and Figure 4(c) shows an exemplary control How the upward movement of the piston works.
  • the movement of the piston motion control member 82 is regulated by the control mechanism 84 of the piston motion control member. As shown in FIG.
  • the control mechanism includes a control rod 841 and a motor 842 .
  • the lever can be rotated and/or moved up and down.
  • the control rod movement motor can be an electric batch, which can set parameters such as the rotation direction, rotation speed, rotation angle, and stop torque of the control rod.
  • the piston movement control member 82 has a cavity 822 suitable for inserting a control rod, and the cross section of the cavity is in a shape adapted to the control rod (such as the hexalobe screw in the embodiment shown in FIG. 4( b )).
  • Fig. 4(b) is a schematic diagram of controlling the downward movement of the piston movement control member.
  • the clockwise rotation of the control rod can drive the piston motion control part 82 to rotate along the screw thread, and the piston motion control part 82 is generated in the cavity. downward movement.
  • the control rod is insertable in a slowly rotating manner into the cavity of the piston motion control member. Inserting while rotating allows the ribs on the lever to engage with the interior of the cavity, effectively solving the alignment problem.
  • the bottom of the piston has a piston supporting body 812, which is a protrusion at the bottom of the piston, made of elastic material, and will be deformed and compressed when subjected to pressure.
  • a piston supporting body 812 which is a protrusion at the bottom of the piston, made of elastic material, and will be deformed and compressed when subjected to pressure.
  • the piston is under pressure (for example, when the piston motion control member rotates along the thread and moves toward the piston in the cavity, contacts the piston and pushes it to the bottom of the cavity), the piston support body 812 is compressed to the entire bottom of the piston and the cavity
  • the bottom of the bottom fully contacts and covers the opening 43 that all fluid passages (fluid passages 41 and 42 as shown in the figure) communicate with the cavity, thus blocking the fluid communication of each fluid passage (as shown in Figure 5 (b).
  • the piston support body 812 When the piston When the received pressure disappears (for example, when the piston motion control member is threaded and moves away from the piston in the cavity), the piston support body 812 returns to its natural deformation state (that is, the piston support body under no additional pressure on the piston) 812 natural deformation), in this state, the position where the piston support body contacts the bottom of the piston does not cover any opening 43 where any fluid channel communicates with the cavity, and each fluid channel generates fluid communication with each other through the cavity. By adjusting The movement distance of the control rod is used to adjust the contact and compression of the piston motion control part 82 and the piston 81.
  • the limit 823 to the piston motion control part can be set at the top of the chamber wall, so that when the piston motion control part moves to the limit, After the torque received by the control rod in the piston movement control part exceeds the stop torque value set by the electric batch, the electric batch stops the rotation of the motor, and then the control rod can be pulled out.
  • Fig. 4(c) is a schematic diagram of controlling the upward movement of the piston movement control member.
  • the counterclockwise rotation of the control rod can drive the piston movement control member 82 to rotate along the thread, and the piston movement control member moves upward in the cavity.
  • the piston support body 812 returns to its natural deformation state (that is, the natural deformation of the piston support body under no additional pressure on the piston), where In this state, the part of the piston support body in contact with the bottom of the piston does not cover any opening where the fluid channel communicates with the cavity, and each fluid channel communicates with each other through the cavity.
  • the piston movement control part moves to the top, because of the existence of the limit position 823, the torque increases. After exceeding the stop torque value set by the electric batch, the electric batch will stop the rotation of the control rod, and then the control rod can be pulled out.
  • the initial working state of the piston in the aforementioned piston container is located at a specified height in the cavity.
  • the piston in the sampling chamber 103 in FIG. 2 is at a specified height in the initial working state (at this time, the volume between the piston and the bottom of the sampling chamber is a specified volume, such as the specified sample volume for the sample cracking reaction).
  • the positioning of the piston in the cavity can be achieved by increasing the friction between the piston and the piston wall by etching internal threads on the piston wall or the like.
  • the cavity wall of the piston container 3 has an internal thread 31 , and the lower end of the internal thread is the upper end of the predetermined piston position.
  • FIG. 5 is a perspective view of yet another exemplary chip device used in the detection of nucleic acid in a sample provided by the present invention.
  • the figure does not show the internal thread on the cavity wall of some piston containers or piston valves in the chip device provided by the present invention and the piston movement control parts in the cavity of the piston valve.
  • FIG. 6 is another perspective view of the exemplary chip device for nucleic acid detection in a sample shown in FIG. 5 .
  • the figure does not show the piston in the piston container or the piston valve in the chip device provided by the present invention.
  • FIG. 7 is a schematic diagram of the top-view structure of the exemplary chip device for detecting nucleic acid in a sample shown in FIG. 5 and the communication relationship of its flow channels.
  • the chip device for nucleic acid detection in samples provided by the present invention includes a substrate 1 and a container area 2 perpendicular to the substrate, and a plurality of cylindrical cavities are arranged in the container area.
  • the cylindrical cavity is bounded by walls of the container area perpendicular to the bottom plate.
  • the plurality of cylindrical cavities communicate with each other through fluid channels provided in the bottom plate.
  • the fluid channel is located below the cavity and communicates with the opening at the bottom of the cavity through an upward flow channel.
  • the chip device used for nucleic acid detection in samples provided by the present invention has a sample receiving module, including a sample loading chamber 201 and a sampling chamber 203, and a Sampling cavity valve 202.
  • the sample to be tested can be added into the sample loading chamber.
  • water or other suitable solutions such as PBS buffer can be added to the sample loading chamber.
  • the sampling chamber valve 202 is a piston valve with a piston inside the valve chamber and two openings at the bottom of the valve chamber that communicate with the flow channel in the substrate.
  • the flow channels communicate with the sampling chamber 201 and the sampling chamber 203 respectively.
  • the sampling cavity 203 is a piston-type container with a piston in the cavity and an opening at the bottom of the cavity that communicates with the flow channel in the substrate.
  • the initial state of the device for nucleic acid detection in a sample is: the sampling cavity valve 202 is in a closed state (that is, the piston of the sampling cavity valve 202 is located at the bottom of the cavity and covers the opening, blocking the cavity communication with the fluid channel), the piston in the sampling chamber 203 is at a specified height (the volume between the piston and the bottom of the sampling chamber is a specified volume at this time, for example, the specified sample volume for the sample cracking reaction).
  • the sampling chamber valve 202 When keeping the sampling chamber valve 202 in the closed state, add the sample in the sample chamber 201; then the sampling chamber valve 202 is opened (the piston of the sampling chamber valve 202 is about to rise), because the initial state of the sampling chamber 203 is a vacuum state, The solution in the sampling chamber 201 of the specified volume is sucked into the sampling chamber 203 through the sampling chamber valve 202; the sampling chamber valve 202 is closed (the piston of the sampling chamber valve 202 is pushed to the bottom of the chamber).
  • the chip device for nucleic acid detection in the sample has a sample lysis and nucleic acid extraction module, which includes a first mixing chamber 205 and a second mixing chamber 207, and is located in the first mixing chamber Mixing chamber valve 206 between 205 and second mixing chamber 207. There is also a sampling valve 204 between the sampling chamber 203 and the first mixing chamber 205 .
  • both the first mixing chamber 205 and the second mixing chamber 207 are piston-type containers with pistons inside the chambers.
  • the sampling valve 204 and the mixing chamber valve 206 are both piston valves.
  • the flow channels of the upstream and downstream container phases the two flow channels controlled by the sampling valve 204 communicate with the first mixing chamber 205 and the sampling chamber 203 respectively, and the two flow channels controlled by the mixing chamber valve 206 communicate with the first mixing chamber 205 and the second mixing chamber respectively.
  • the two mixing chambers 207 are connected.
  • the chip device for nucleic acid detection in this embodiment is suitable for nucleic acid extraction after lysing the sample by lysing method, that is, after the sample contacts and reacts with the sample lysing reagent, it needs to be further processed by nucleic acid extraction methods such as magnetic bead method to obtain usable Nucleic acid in subsequent amplification reactions.
  • nucleic acid extraction methods such as magnetic bead method to obtain usable Nucleic acid in subsequent amplification reactions.
  • the nucleic acid is bound by contacting the nucleic acid-binding magnetic material and/or binding solution with the sample that has been lysed, thereby allowing the nucleic acid to bind to the magnetic material.
  • the complex formed after the nucleic acid is combined with the magnetic material can controllably move, stir or precipitate in the container under the action of a magnetic field, so as to achieve the purposes of nucleic acid binding, nucleic acid cleaning and nucleic acid elution.
  • the nucleic acid extraction module in the chip device provided by the present invention is composed of a binding unit, a cleaning unit and an elution unit, and nucleic acid is extracted through nucleic acid binding, cleaning and elution steps, wherein nucleic acid binding, nucleic acid cleaning and nucleic acid elution reagents need to be added ( Including nucleic acid extraction magnetic beads, washing solution, eluent, etc.).
  • the chip device for detecting nucleic acid in a sample has a sample lysis and nucleic acid extraction module, which includes a sample lysis module and a nucleic acid extraction module.
  • the sample lysing module includes a lysing reagent storage chamber 215 for accommodating a lysing reagent (solid), and a lysing reagent valve 225 located between the first mixing chamber 205 and the lysing reagent storage chamber 215 .
  • the lysing reagent valve is a piston valve, comprising a valve cavity and a valve piston positioned in the valve cavity.
  • the piston can move to the bottom of the chamber and cover the openings, blocking the fluid communication between the lysis reagent storage chamber and the chamber where sample lysis is performed (eg, the first mixing chamber 205 ).
  • said nucleic acid extraction module comprises three nucleic acid cleaning reagent storage chambers 213, 214 and 216 that accommodate nucleic acid cleaning reagents (solid), and the first mixing chamber 205 and each of said nucleic acid cleaning reagent storage chambers 213, 214 and Nucleic acid cleaning reagent valves 223, 224, 226 between 216.
  • the nucleic acid extraction module also includes a nucleic acid elution reagent storage cavity 217 for holding a nucleic acid elution reagent (solid), and a nucleic acid cleaning reagent valve 227 between the first mixing chamber 205 and the nucleic acid elution reagent storage cavity 217 .
  • the sample lysis and nucleic acid extraction module of the chip device for nucleic acid detection in samples provided by the present invention also includes a water adding chamber 211 and a water inlet valve 212 .
  • the water inlet valve 212 is a piston valve, has a piston in the valve cavity, and has an opening 2121 communicated with the water adding cavity 211 at the bottom of the valve cavity, and is connected with the lysing reagent storage cavity 215 and the nucleic acid cleaning reagent storage cavity 213, 214 respectively. , 216 and five openings 2122 communicating with the nucleic acid eluting reagent storage cavity 217.
  • the initial state of the chip device for nucleic acid detection in a sample is: the water inlet valve 212, the lysing reagent valve 225, the nucleic acid cleaning reagent valves 223, 224, 226 and the nucleic acid cleaning reagent valve 227 are in Disabled.
  • the water inlet valve 212 When starting to work, add distilled water to the water adding chamber 211, open the water inlet valve 212, and the distilled water in the water adding chamber 211 will be sucked into the lysing reagent storage chamber 215, nucleic acid cleaning reagent storage chambers 213, 214, 216 and nucleic acid eluting reagent storage chambers. chamber 217, and reconstitute the reagents therein.
  • the initial state of the chip device for nucleic acid detection in the sample is: the sampling valve 204 and the mixing chamber valve 206 are closed; the second mixing chamber 207 is preloaded with magnetic beads that can bind nucleic acid.
  • the sampling chamber valve 202 is closed and there is a sample solution in the sampling chamber 203, open the sampling valve 204 to move the piston of the sampling chamber 203 downward, and press the sample solution in the sampling chamber 203 to the first mixing chamber 205; Close injection valve 204.
  • nucleic acid cleaning reagent storage chambers 214 and 216 The same operation is performed on the nucleic acid cleaning reagent storage chambers 214 and 216 in sequence to complete the second and third cleaning of the magnetic beads adsorbed nucleic acid.
  • a magnetic device such as a magnet is placed close to the first mixing chamber 205 and/or the second mixing chamber 207, so that the magnetic beads are attracted on the wall of the chamber, and finally the piston of the first mixing chamber 205 moves downward, so that the nucleic acid contained in the released separation
  • the solution flows into the second mixing chamber 207, and the mixing chamber valve 206 is closed.
  • all or part of the components (such as enzymes) in the sample lysing reagent can be preloaded in the first mixing chamber 205 .
  • the lysing reagent, nucleic acid cleaning reagent and nucleic acid eluting reagent of the lysing reagent (solid) in the sample lysing and nucleic acid extraction module in the chip device for nucleic acid detection in the sample of the present invention can also be liquid The form is preset in the lysing reagent storage chamber, the nucleic acid washing reagent storage chamber or the nucleic acid eluting reagent storage chamber.
  • the nucleic acid extraction module further includes a mixing chamber 209 for a sample to be amplified and a chamber 210 for a sample to be amplified.
  • the mixing chamber 209 for the sample to be amplified and the chamber 210 for the sample to be amplified are piston-type containers with a piston inside the chamber and an opening at the bottom of the chamber communicating with the flow channel.
  • a sample valve 208 to be amplified which is a piston valve with a piston in the valve chamber and a flow channel connected to the substrate at the bottom of the valve chamber.
  • the two openings communicate with each other, and the flow channels connected by the two openings communicate with the second mixing chamber 207 and the sample mixing chamber 209 to be amplified respectively.
  • the initial state of the chip device for nucleic acid detection in a sample is: the sample to be amplified valve 208 is in a closed state; the sample to be amplified mixing chamber 209 and/or the sample to be amplified chamber 210 Reagents (such as common amplification reagents such as enzymes or buffer reagents, etc., but not including reagents for specific amplification, such as specific primers or probes) that are pre-installed in the kit for subsequent nucleic acid detection reactions (such as amplification reactions) Wait).
  • Reagents such as common amplification reagents such as enzymes or buffer reagents, etc., but not including reagents for specific amplification, such as specific primers or probes
  • the piston of the second mixing chamber 207 moves downward, and the piston of the sample mixing chamber 209 to be amplified moves upward, so that The solution of the separated nucleic acid in the second mixing chamber 207 flows to the sample mixing chamber 209 to be amplified.
  • the piston of the sample chamber 210 to be amplified is moved upwards at the same time, so that the solution of the separated nucleic acid flows to the sample to be amplified.
  • the chip device for nucleic acid detection in a sample provided by the present invention also has a nucleic acid amplification module.
  • the nucleic acid amplification module includes a plurality of amplification reaction chambers 222 arranged in an array arranged in the bottom plate of the chip device, wherein each amplification reaction chamber 222 passes through a branch channel 229 communicates with branch channels 2291 between every two rows of amplification reaction chambers, and multiple branch channels 2291 merge at both ends of the amplification reaction chamber array to form a main channel 228 .
  • the main channel 2281 at one end of the amplification reaction chamber array communicates with the upstream multiple amplification sampling valve 221.
  • the multiple amplification sampling valve 221 is a piston valve with a piston in the valve cavity and a valve at the bottom of the valve cavity. Two openings communicating with the flow channels in the substrate, the flow channels connected by the two openings communicate with the sample cavity 210 to be amplified and the main flow channel 2281 respectively.
  • an inert liquid such as mineral oil can be used to seal the outlet of the chamber for nucleic acid amplification reaction.
  • the nucleic acid amplification module of the chip device for nucleic acid detection in samples provided by the present invention further includes an inert liquid module for storing the inert liquid and transferring the inert liquid.
  • the inert liquid module has an oil filling chamber for storing and providing an inert liquid (such as mineral oil or paraffin oil) that seals the interface between the amplification reaction chamber and the branch flow channel; optionally, it also includes an oil filling chamber and multiple amplification zone units
  • the refueling valve between them is a piston valve, with a piston in the valve cavity, and an opening communicating with the flow channel communicating with the refueling cavity and an opening communicating with the amplification zone unit at the bottom of the valve cavity.
  • the inert liquid module includes an oil filling cavity 231 .
  • the refueling valve 230 is a piston valve with a piston in the valve chamber and a Two openings connected by the flow channel in the base plate, the flow channels connected by the two openings communicate with the oil filling chamber 231 and the main flow channel 2282 respectively.
  • the initial state of the chip device for nucleic acid detection in a sample is: different primer pairs, probes, etc.
  • One or more of reactants such as needles and enzymes
  • the enzyme is preset in the sample chamber 210 to be amplified, and after adding the diluted nucleic acid sample solution, dissolves in the solution), and kept in a vacuum state; the piston of the multiple amplification sampling valve 221 is located at the bottom of the cavity, and closes the opening communicating with the flow channel connected to the upstream sample chamber 210 to be amplified and the opening communicating with the main flow channel 2281.
  • the piston of the multiple amplification sampling valve 221 is moved upwards, thereby making the nucleic acid sample in the sample chamber 210 to be amplified
  • the solution enters the cavity of the multiple amplification sampling valve 221 , then enters each branch flow channel 229 through the main flow channel 2281 and the branch flow channel 2291 , and finally is evenly distributed into the multiple amplification reaction chambers 222 .
  • the initial state of the chip device for nucleic acid detection in a sample is: the refueling valve 230 is in a closed state; the refueling cavity 231 is pre-filled with mineral oil.
  • the reaction systems have been divided into the multiple amplification reaction chambers 222, open the refueling valve 230, press down the piston of the refueling chamber 231, and the mineral oil present in the refueling chamber 231 will pass through the refueling valve 230 and enter the main channel 2282
  • the mineral oil passes through the branch flow channel 2291, closes each branch flow channel 229, and then passes through the main flow channel 2281 and flows through the multiple amplification sampling valve 221 into the sample chamber to be amplified 210 and the sample mixing chamber 209 to be amplified . Close the filling valve 230 and the multiple amplification sampling valve 221.
  • the mineral oil pre-stored in the oiling chamber 231 is excessive, which can ensure that the connections between the various amplification reaction chambers
  • Nucleic acid amplification reactions can be performed in the plurality of amplification reaction chambers 222 .
  • various nucleic acid amplification methods using primers known in the art can be used in the present invention.
  • a variable temperature amplification method such as PCR is used.
  • an isothermal amplification method such as LAMP is used.
  • the detection module used to detect each amplification reaction chamber 222 is a module suitable for detecting identifiable labels carried by nucleic acids in any manner, including but not limited to fluorescence or other forms of luminescence, enzymatic reactions, radioactivity, and the like.
  • the piston container eg
  • the piston container is used to contain solid or liquid preparations or to perform reactions.
  • Liquid formulations can be transferred between interconnected containers through fluid channels.
  • the solid formulation can be formed into a solution after addition of a suitable solvent, and then transferred between interconnected containers through fluid channels.
  • two or more pistons are used to control the flow of fluid (stationary or moving), as well as its flow direction and/or flow rate.
  • the piston valve in the chip device for nucleic acid detection in samples provided by the present invention can adopt the piston and the piston motion control mechanism as described in FIG. 4 .
  • the initial working state of the piston in the aforementioned piston container is located at a certain specified height in the cavity.
  • the positioning of the piston in the cavity can be achieved by increasing the friction between the piston and the piston wall by etching internal threads on the piston wall or the like.
  • Embodiment 3 is used for the instrument of nucleic acid detection in the sample
  • the present invention provides an instrument for nucleic acid detection in a sample, which is a POCT instrument, which includes the chip device defined and described in Example 1 or 2.
  • the instrument has a chip device receiving and motion control system for receiving and transferring the above chip device to a designated position within the instrument for various processes on the chip.
  • the instrument has a magnet and a system to control the movement of the magnet, and is used to purify nucleic acid in a sample using the magnetic bead method.
  • the nucleic acid is bound by contacting the nucleic acid-binding magnetic material and/or binding solution with the sample that has been lysed, thereby allowing the nucleic acid to bind to the magnetic material.
  • the complex formed after the nucleic acid is combined with the magnetic material can controllably move, stir or precipitate in the container under the action of a magnetic field, so as to achieve the purposes of nucleic acid binding, nucleic acid cleaning and nucleic acid elution.
  • the instrument has a control mechanism for regulating the movement of a piston motion control in the piston valve.
  • the control mechanism includes a control rod and a control rod movement mechanism, the control rod can rotate or move up and down, wherein the control rod movement mechanism includes a component for controlling the control rod up and down movement and rotation, Such as motors.
  • the instrument has a signal detection module for detecting nucleic acid amplification products, such as a fluorescence detection system.
  • the instrument has a temperature control system for the nucleic acid amplification area of the chip.
  • the instrument has a nucleic acid amplification result analysis and/or output system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Virology (AREA)
  • Clinical Laboratory Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种用于样品中核酸检测的芯片装置具有基板(1)和活塞式容器(2),活塞式容器(2)之间通过微流体通道(4)连通,核酸检测的芯片装置还具有位于容器(2)之间的活塞阀(8),用于控制相互连通的容器(2)之间的流体连通,其中,核酸检测的芯片装置包括:样品接收模块;样品裂解和核酸提取模块,任选的,核酸提取模块包括核酸结合单元、核酸清洗单元和核酸洗脱单元;和核酸扩增模块。核酸扩增模块包括多重扩增区单元和任选的前置扩增区单元。一种采用核酸检测的芯片装置的用于样品中核酸检测的仪器,特别是POCT仪器。一种用于样品中核酸检测的芯片装置或仪器检测样本中的核酸的方法。

Description

检测核酸的芯片装置和仪器及其应用
本申请要求以下中国专利申请的优先权:2021年6月30日提交的、申请号为202110743068.9、发明名称为“检测核酸的芯片装置和仪器”,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及生物技术和设备应用领域,具体涉及一种用于检测样品中核酸的芯片装置和仪器,以及其在生物样品检测中的应用。
背景技术
核酸的检测是临床试验、病原微生物类型鉴定等诸多领域的核心。通过核酸提取、扩增和检测分析,能够检测诸如癌症、微生物感染和基因标记等各种疾病。
采用利用PCR和实时PCR等方法是对基因进行呈指数地扩增和检测的有效方法。使用PCR/实时PCR装置的基因检测市场在诸如病毒性、性传播疾病和流感等传染性疾病的基因检测迅速展开。基因检测对于癌症治疗的作用已变得明显。然而,采用PCR和RT-PCR的应用的自动化,特别是小型自动化并不容易。
通过在一个PCR系统中使用多对引物而同时扩增多个基因区域的多重PCR引起人们的关注。从多重PCR发展而来的实时多重PCR,旨在受其他目的基因的影响(串扰)较小并且不损害灵敏度的条件下单独检测和定量多个不同的目的基因。然而,据报道,由于可标记的荧光物质波长重叠和种类问题使得两个以上的定量多重反应往往很难进行。
目前,小型流道系统的两个主要问题包括动力源和阀的问题。动力源为微流体在载体(如芯片、管道等)内的运动提供动力。目前普遍采用的方式包括注射式、离心式、气压式等。阀则能控制微流体在载体内的运动行为。由于微流体尺度很小,所以在其载体内部构造足够精度、足够数量且方便开断的阀门十分困难。对于研究微流体的实验室,注射泵是最常用的动力源。通过将流体吸入注射器内,再将注射器与微流体载体(后面简称载体)的入口相连接,然后用一高精度注射泵推动注射器,以实现微流体向载体中的进样。但这种操作步骤多,流体样品切换困难,难以实现微 流体的自动化进样。
因此,本领域还需要高速实时、小型和方便操作的核酸扩增和检测装置和仪器,特别是适合用于现场快速检验(point-of-care testing,POCT)的芯片装置和仪器。
发明内容
本发明提供了一种用于样品中核酸检测的芯片装置,其具有基板和活塞式容器,所述活塞式容器之间通过微流体通道连通,其中,所述活塞式容器包括腔体和位于腔体内的活塞,腔体底部具有与所述微流体通道连通的开口。
在本发明的其中一个方面,所述芯片装置还具有位于容器之间的活塞阀,用于控制相互连通的容器之间的流体连通,所述活塞阀包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有与流道连通的两个或多个开口,阀活塞可运动到腔体底部和掩盖所述开口,阻断腔体与流体通道的连通,由此阻断通过所述流体通道相连的容器之间的流体连通,优选的,所述流体通道从腔体下方通过向上的流道与所述腔体的底部的开口连通。
在本发明的其中一个方面,所述芯片装置包括以下模块中的一个或任选多个的组合或全部:
样品接收模块;
样品裂解和核酸提取模块,可用于对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;所述样品裂解和提取模块中具有样品裂解模块和/或核酸提取模块,任选的,所述核酸提取模块包括核酸结合单元、核酸清洗单元和核酸洗脱单元;
核酸扩增模块,用于将核酸样品分配到多个扩增区容器(例如为扩增反应腔)以及对核酸分子进行扩增和/或检测;核酸扩增模块包括多重扩增区模块和任选的前置扩增区模块。
在本发明的其中一个方面,所述芯片装置包括以下模块:
样品接收模块;
样品裂解和核酸提取模块,可用于对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;所述样品裂解和提取模块中具有样品裂解模块和/或核酸提取模块,任选的,所述核酸提取模块包括核酸结合单元、 核酸清洗单元和核酸洗脱单元;
核酸扩增模块,用于将核酸样品分配到多个扩增区容器(例如为扩增反应腔)以及对核酸分子进行扩增和/或检测;核酸扩增模块包括多重扩增区模块和任选的前置扩增区模块。
在本发明的其中一个方面,所述芯片装置中的所述样本接收模块包括取样腔,其为活塞式容器,包括腔体和位于腔体内的活塞。任选的,所述样本接收模块包括加样腔和取样腔。进一步任选的,还包括加样腔和取样腔之间的取样腔阀,例如其为活塞阀,包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有分别与加样腔和取样腔连通的两个开口,活塞可运动到腔体底部和掩盖所述开口,阻断加样腔和取样腔之间的流体连通。
在本发明的其中一个方面,所述芯片装置中的所述样品裂解和提取模块包括第一混合腔和第二混合腔,所述第一混合腔和第二混合腔为活塞式容器,包括腔体和位于腔体内的活塞。任选的,所述第一混合腔和第二混合腔之间具有混合腔阀,例如其为活塞阀,包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有分别与第一混合腔和第二混合腔连通的两个开口,活塞可运动到腔体底部和掩盖所述开口,阻断第一混合腔和第二混合腔之间的流体连通。
在本发明的其中又一个方面,所述第一混合腔与上游的样本接收模块(例如其中的取样腔)之间具有进样阀,其例如为活塞阀,包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有分别与所述取样腔和第一混合腔连通的两个开口,活塞可运动到腔体底部和掩盖所述开口,阻断所述取样腔和第一混合腔之间的流体连通。
在本发明的其中一个方面,所述芯片装置中所述样品裂解和核酸提取模块的样品裂解模块包括用于容纳裂解试剂的裂解试剂存储腔,其为活塞式容器,包括腔体和位于腔体内的活塞。任选的,所述样品裂解模块还包括所述裂解试剂存储腔与进行样品裂解的腔体之间的裂解试剂阀,所述裂解试剂阀例如为活塞阀,包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有分别与裂解试剂存储腔和进行样品裂解的腔体连通的两个开口,活塞可运动到腔体底部和掩盖所述开口,阻断裂解试剂存储腔和进行样品裂解的腔体之间的流体连通。
在本发明的其中一个方面,所述芯片装置中所述样品裂解和核酸提取 模块的具有结合单元、清洗单元和洗脱单元中的一个或多个,其分别具有用于容纳核酸结合试剂、核酸清洗试剂和核酸洗脱试剂的核酸结合试剂存储腔、核酸清洗试剂存储腔和核酸洗脱试剂存储腔。所述核酸结合试剂存储腔、核酸清洗试剂存储腔和核酸洗脱试剂存储腔为活塞式容器,包括腔体和位于腔体内的活塞。任选的,所述核酸结合试剂存储腔、核酸清洗试剂存储腔和核酸洗脱试剂存储腔分别通过核酸结合试剂阀、核酸清洗试剂阀或核酸洗脱试剂阀与进行核酸结合、核酸试剂或核酸洗脱反应的腔体连通。所述核酸结合试剂阀、核酸清洗试剂阀或核酸洗脱试剂阀例如为活塞阀。
在本发明的其中一个方面,所述芯片装置中所述进行样品裂解的腔体以及进行核酸结合、核酸试剂和/或核酸洗脱反应的腔体为所述第一混合腔和/或第二混合腔。
在本发明的其中一个方面,所述芯片装置中所述核酸提取模块还包括加水腔,其通过流道与裂解试剂存储腔、核酸结合试剂存储腔、核酸清洗试剂存储腔和核酸洗脱试剂存储腔中的一个或多个相连通。任选的,还包括加水腔与裂解试剂存储腔、核酸结合试剂存储腔、核酸清洗试剂存储腔和核酸洗脱试剂存储腔中的一个或多个之间的阀,所述阀例如为活塞阀。
在本发明的其中一个方面,所述芯片装置中所述裂解试剂存储腔和/或所述核酸结合试剂存储腔为所述第一混合腔和/或第二混合腔。
在本发明的其中一个方面,所述芯片装置中所述样品裂解和提取模块还包括待扩增样品腔,其为活塞式容器,包括腔体和位于腔体内的活塞,用于容纳经裂解和提取的核酸溶液样品。任选的,在待扩增样品腔的上游还具有活塞阀,其包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有分别与上游模块或单元和下游的扩增模块连通的两个开口,活塞可运动到腔体底部和掩盖所述开口,阻断上游模块或单元和下游的扩增模块的流体连通。
在本发明的其中一个方面,所述芯片装置中所述样品裂解和提取模块还包括稀释腔。任选的,所述稀释腔与其上游模块或单元(例如第二混合腔)之间具有稀释阀,其例如为活塞式容器。
在本发明的其中一个方面,所述芯片装置中所述样品裂解和提取模块还包括过滤单元。在本发明的其中一个又方面,所述过滤单元为过滤腔,其为活塞式容器,在其腔体内具有活塞,腔体底部具有与流道连通的两个 开口,所述流道分别与上游的稀释腔和下游的待扩增样品腔连通,在腔体底部和活塞之间具有用于过滤核酸提取液中不需要的物质(例如细胞、细胞碎片或大蛋白质分子等)的过滤件。
在本发明的其中一个方面,所述芯片装置中,所述核酸扩增模块具有一个或多个多重扩增区单元。所述多重扩增区单元包括用于进行核酸扩增反应的多个扩增反应腔(设置在底板内),通过微流道将来自样品裂解和提取模块的核酸样品溶液分配到各个所述扩增反应腔。
在本发明的其中一个方面,所述芯片装置中,所述多重扩增区单元与上游的样品裂解和提取模块之间(如在所述多重扩增区单元和上游的待扩增样品腔之间)具有活塞阀,阀腔体内具有活塞,在其阀腔体底部具有与上游的待扩增样品腔连通的流道相通的开口,以及与下游的扩增区单元相通的开口。
在本发明的其中一个方面,所述芯片装置中,所述多重扩增区单元的多个扩增反应腔沿圆周分布。任选的,在其上方具有多重扩增进样阀,其为活塞阀,阀腔体内具有活塞,在其阀腔体底部具有与上游的待扩增样品腔连通的流道相通的开口,以及多个分别与下方的所述多个扩增反应腔的每一个连通的开口。
在本发明的其中一个方面,所述芯片装置中,所述多重扩增区单元的多个扩增反应腔以阵列形式排列。任选的,每个扩增反应腔通过支线流道与所述扩增区单元的主流道连通,所述多重扩增区单元的主流道与上游的样品裂解和提取模块相连通。
在本发明的其中一个方面,所述芯片装置中,在所述多重扩增区单元和其上游的样品裂解和提取模块之间具有活塞阀,阀腔体内具有活塞,在其阀腔体底部具有与上游的待扩增样品腔连通的流道相通的开口,以及与下游的扩增区单元的主流道相通的开口。
在本发明的其中一个方面,所述芯片装置中,所述核酸扩增模块具有惰性液体模块,用于储存和提供封闭扩增反应腔与流道接口的惰性液体(如矿物油或石蜡油)。在本发明的其中又一个方面,所述惰性液体模块具有加油腔。任选的,所述惰性液体模块还包括加油腔与多重扩增区单元之间的加油阀,其例如为活塞阀,阀腔体内具有活塞,在其阀腔体底部具有与加油腔连通的流道相通的开口,以及与所述扩增区单元相通的开口。
在本发明的其中一个方面,所述芯片装置中,所述核酸扩增模块还具 有设置在所述多重扩增区单元上游的前置扩增区单元,用于对核酸分子进行第一轮扩增,例如进行巢式扩增。在本发明的其中又一个方面,所述前置扩增区单元具有巢式扩增腔,例如,其为设置在底板内的圆柱状腔体,其具有分别与上游的样品裂解和提取模块和下游的重扩增区单元连通的流道。
在本发明的其中一个方面,所述芯片装置中,所述扩增反应单元的各个扩增反应腔之间采用完全吸收或基本完全吸收扩增反应产生的信号的材料进行隔绝。
在本发明的其中一个方面,所述芯片装置中,所述扩增反应单元的各个扩增反应腔的底部采用完全不吸收或基本不吸收扩增反应产生的信号的材料进行制备或封闭。
在本发明的其中一个方面,所述芯片装置中,所述活塞阀具有设置在阀活塞上方的活塞运动控制件,用于控制阀活塞在腔体内的上下运动。
在本发明的其中一个方面,所述芯片装置中,所述活塞阀的阀腔体的腔壁具有内螺纹。
在本发明的其中一个方面,所述芯片装置中,所述活塞运动控制件具有外螺纹,与所述腔壁的内螺纹形成螺纹副,活塞运动控制件沿螺纹转动而在腔体内产生移动,控制所述活塞在腔体内的移动。
在本发明的其中一个方面,所述芯片装置中,所述活塞运动控制件具有适合插入控制杆的空腔,所述空腔横截面为与控制杆适配的形状。
在本发明的其中一个方面,所述芯片装置中,所述活塞阀机构的阀活塞的底部具有活塞支撑体,所述活塞支撑体为位于活塞底部的凸起,其由具有弹性的材料制备。
在本发明的其中一个方面,所述芯片装置中,所述活塞式容器或活塞阀的横截面的直径为约0.5mm-25mm,优选为约1-20mm,更优选为约3-15mm。
本发明还提供了一种用于样品中核酸检测的仪器,特别是POCT仪器,其中包括前述本发明提供的的芯片装置。所述芯片装置具有基板和活塞式容器,所述活塞式容器之间通过微流体通道连通,其中,所述活塞式容器包括腔体和位于腔体内的活塞,腔体底部具有与所述微流体通道连通的开口;所述芯片装置还具有位于容器之间的活塞阀,用于控制相互连通的容器之间的流体连通,所述活塞阀包括阀腔体和位于阀腔体内的阀活塞,阀 腔体底部具有与流道连通的两个或多个开口,阀活塞可运动到腔体底部和掩盖所述开口,阻断腔体与流体通道的连通,由此阻断通过所述流体通道相连的容器之间的流体连通,
其中,所述芯片装置包括:
样品接收模块;
样品裂解和核酸提取模块,可用于对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;所述样品裂解和提取模块中具有样品裂解模块和/或核酸提取模块,任选的,所述核酸提取模块包括核酸结合单元、核酸清洗单元和核酸洗脱单元;
核酸扩增模块,用于将核酸样品分配到多个扩增区容器(例如为扩增反应腔)以及对核酸分子进行扩增和/或检测;核酸扩增模块包括多重扩增区模块和任选的前置扩增区模块。
在本发明的其中一个方面,所述仪器具有芯片装置接收和运动控制系统,用于接纳上述芯片装置和将其转移至仪器内的指定位置以对所述芯片进行各种处理。
在本发明的其中一个方面,所述仪器具有磁体和控制磁体移动的系统,用于采用磁珠法提纯样品中的核酸。磁珠法中,核酸的结合通过将可与核酸结合的磁性材料和/或结合液与已经裂解步骤的样品接触,由此使得核酸与所述磁性材料结合。核酸与所述磁性材料结合后形成的复合物可以在磁场作用下在容器中可控地移动、搅拌或沉淀,达到核酸结合、核酸清洗和核酸洗脱的目的。
在本发明的其中一个方面,所述仪器具有用于调节所述活塞阀中的活塞运动控制件的运动的控制机构。在本发明的其中一个方面,所述控制机构包括控制杆和控制杆运动机构,控制杆可进行旋转或上下运动,其中所述控制杆运动机构包括控制所述控制杆上下运动和旋转的部件,例如电机。
在本发明的其中一个方面,所述仪器具有检测核酸扩增产物的信号检测模块,例如为荧光检测系统。
在本发明的其中一个方面,所述仪器具有对所述芯片的核酸扩增区域进行温控的系统。
在本发明的其中一个方面,所述仪器具有核酸扩增结果分析和/或输出系统。
在本发明的其中一个方面,提供了一种采用前述本发明的芯片装置或仪器检测样本中的核酸的方法。
在本发明的其中一个方面,所述检测方法包括以下步骤:
提供上述芯片装置或具有所述芯片装置的仪器,所述芯片装置具有基板和活塞式容器,所述活塞式容器之间通过微流体通道连通,其中,所述活塞式容器包括腔体和位于腔体内的活塞,腔体底部具有与所述微流体通道连通的开口,所述芯片装置还具有位于容器之间的活塞阀,用于控制相互连通的容器之间的流体连通,所述活塞阀包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有与流道连通的两个或多个开口,阀活塞可运动到腔体底部和掩盖所述开口,阻断腔体与流体通道的连通,由此阻断通过所述流体通道相连的容器之间的流体连通(所述流体通道从腔体下方通过向上的流道与所述腔体的底部的开口连通)。
如前所述,所述芯片装置可包括:
样品接收模块;
样品裂解和核酸提取模块,可用于对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;所述样品裂解和提取模块中具有样品裂解模块和/或核酸提取模块,任选的,所述核酸提取模块包括核酸结合单元、核酸清洗单元和核酸洗脱单元;
核酸扩增模块,用于将核酸样品分配到多个扩增区容器(例如为扩增反应腔)以及对核酸分子进行扩增和/或检测;核酸扩增模块包括多重扩增区模块和任选的前置扩增区模块。
如前所述,所述仪器任选包括:
芯片装置接收和运动控制系统;
磁体和控制磁体移动的系统;
调节所述活塞阀中的活塞运动控制件的运动的控制机构,所述控制机构包括控制杆和控制杆运动机构,控制杆可进行旋转或上下运动,其中所述控制杆运动机构包括控制所述控制杆上下运动和旋转的部件,例如电机;
检测核酸扩增产物的信号检测模块,例如为荧光检测系统;
对所述芯片的核酸扩增区域进行温控的系统;
核酸扩增结果分析和/或输出系统。
在本发明的其中一个方面,所述方法任选包括以下步骤:
通过所述芯片装置的样品接收模块加入待测样品;
通过所述芯片装置的样品裂解和核酸提取模块对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;
通过所述核酸扩增模块,用于将核酸样品分配到多个扩增区容器以及对核酸分子进行扩增和/或检测。
在本发明的其中一个方面,所述诊断仪器用于感染源鉴别、遗传学疾病、癌症检测或基因变异检测。
在本发明的其中一个方面,所述诊断仪器用于以下病原的检测:冠状病毒、流感病毒、肠道病毒、乙肝病毒、丙肝病毒、埃博拉病毒、马尔堡病毒、SARS病毒、塞卡病毒、布尼亚病毒、鼻病毒、呼吸核胞病毒、霍乱病毒等病毒性病原,或是结核杆菌、大肠杆菌、鲍曼不动杆菌、肺炎双球菌、乳酸链球菌、尿素生孢八叠球菌、金黄色葡萄球菌、枯草芽孢杆菌、炭疽芽孢杆菌、枯草杆菌、链杆菌、变形杆菌、霍乱弧菌、梅毒螺旋体等细菌性病原。
在本发明的其中一个方面,所述诊断仪器用于以下癌症的检测:白血病、霍奇金病、威尔姆氏瘤(肾母细胞瘤)、黑色素瘤、视网膜细胞瘤、胃癌、肝癌、肺癌、食管癌、子宫颈癌、乳腺癌、结肠癌、直肠癌、鼻咽癌、卵巢癌、肾癌、膀胱癌、甲状腺癌、皮肤癌等。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种示例性的本发明提供的用于样品中核酸检测的芯片装置的立体透视图。
图2为图1所示的示例性的用于样品中核酸检测的芯片装置的另一立体透视图。与图1相比较,图2未示出所述芯片装置中部分活塞式容器或活塞阀中的腔壁上的内螺纹以及活塞阀腔体内的活塞运动控制件。
图3为图1所示的示例性的用于样品中核酸检测的芯片装置的结构以及其流道连通关系的俯视平面示意图。
图4为本发明提供的用于样品中核酸检测的芯片装置中的一种示例性的活塞阀和活塞运动控制机构的结构和工作方式示意图。图4(a)为该示例性的活塞阀的结构的截面示意图。图4(b)和(c)为该示例性的活塞阀 的工作方式示意图。图4(b)显示示例性的控制活塞向下运动的工作方式,图4(c)显示示例性的控制活塞向上运动的工作方式。
图5为又一种示例性的本发明提供的用于样品中核酸检测的芯片装置的立体透视图。图中未示出本发明提供的芯片装置中部分活塞式容器或活塞阀中的腔壁上的内螺纹以及活塞阀腔体内的活塞运动控制件。
图6为图5所示的示例性的用于样品中核酸检测的芯片装置的另一立体透视图。图中未示出本发明提供的芯片装置中活塞式容器或活塞阀中的活塞。
图7为图5所示的示例性的用于样品中核酸检测的芯片装置的俯视平面的结构以及其流道连通关系的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的区间。
实施例1
本发明提供了一种用于样品中核酸检测的芯片装置。所述芯片装置通常用于对样品中的核酸进行提取和扩增后检测其是否存在和存在的量。图1为示例性的本发明提供的用于样品中核酸检测的芯片装置的立体透视图。如图1所示,本发明提供的芯片装置,其具有基板1和与基板垂直的容器区2,容器区内具有平行设置的柱状容器3,在容器区下方的基板内具有微流道4,所述柱状容器的腔体底部具有与所述微流体道连通的开口5,柱状容器之间可通过微流体通道实现流体连通。所述柱状容器内具有可在腔体内移动的活塞6,活塞和腔体构成活塞式容器(如图1中柱状活塞式容器7)。活塞式容器用于容纳样品或制剂(固体或液体制剂),样品或制剂在活塞和腔体底部之间的空间停留。腔体底部具有与流体通道连通的开口,溶液通过微流道在容器间转移。所述柱状容器还包括用于控制相互连通的容器之间的流体连通的活塞阀(如图1中活塞阀8),所述活塞阀的腔体底部具有分别与其控制的上下游容器相连的微流道连通的两个或多个开口,活塞 可运动到活塞阀的腔体底部和掩盖所述开口,阻断腔体与微流体通道的连通,由此阻断通过所述流体通道相连的上下游的容器之间的流体连通。优选的,在本发明提供的芯片装置中,所述微流体通道从活塞式容器或活塞阀的腔体的下方通过向上的流道与所述腔体的底部的开口连通。本发明提供的芯片装置通常用于对核酸进行控温的扩增反应,所述控温的扩增反应通常在设置在基板内的多个反应腔9内进行。
本发明提供的芯片装置用于对样品中的核酸进行提取和扩增后检测其是否存在和存在的量。本发明提供的所述芯片装置可包括以下模块中的一个或多个:
样品接收模块,用于接收、分配和容纳适量用于检测的样品;
样品裂解和核酸提取模块模块,用于容纳裂解和核酸提取试剂,对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸,以进行下一步的核酸扩增反应。对应的,样品裂解和提取模块中可包括样品裂解模块,用于容纳裂解试剂,和对样本进行裂解反应,以及可包括核酸提取模块,其可包含核酸结合单元、核酸清洗单元和核酸洗脱单元,分别用于容纳核酸结合试剂、核酸清洗试剂和核酸洗脱试剂,以及分别进行核酸结合、核酸试剂和核酸洗脱等反应;
核酸扩增模块,用于将从样品中提取的核酸分配到核酸扩增反应腔以及对核酸分子进行扩增,特别是在多个核酸扩增反应腔中进行核酸多重扩增。任选的,在核酸多重扩增上游还可进行第一轮核酸扩增,该第一轮核酸扩增例如为巢式扩增。对应的,核酸扩增模块可包括多重扩增区模块和任选的前置扩增区模块。
本发明提供的所述芯片装置中的各个模块中用于容纳固体或液体制剂或进行反应的容器可为活塞式容器,相互连通的容器之间通过设置在下方的基板内的流体通道相连,所述活塞式容器包括腔体和位于腔体内的活塞,腔体底部具有与流体通道连通的开口,固体或液体制剂可容纳在活塞和腔体底部之间的空间,以及溶液可通过微流道在容器间转移。
本发明提供的所述芯片装置中,相互连通的容器之间具有活塞阀。所述活塞阀包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有与流道连通的两个或多个开口。所述流体通道从腔体下方通过向上的流道与所述腔体的底部的开口连通。在本发明中,所述开口不位于活塞阀腔体的侧壁。活塞可运动到腔体底部和掩盖所述开口,阻断腔体与流体通道的连通,由 此阻断通过所述流体通道相连的容器之间的流体连通。
本文中所描述的芯片装置应用于分析任何用途所用的任何含有核酸的样本,包括但不限于用于人类基因的遗传测试和各种传染性疾病的临床测试。应用于本文所述方法的核酸样品可来自于任何来源。通常,样品可以是与其天然环境所相分离并包含多核苷酸的生物材料。样品可由纯化的或分离的多核苷酸组成,或可包含生物样品例如包含多核苷酸的组织样品、生物流体样品或细胞样品。生物流体包括作为非限制性例子的血液、血浆、痰液、尿、脑脊液、灌洗液样品。核酸样品可来自于植物、动物、细菌或病毒来源。样品可获得自不同来源,包括但不限于来自不同个体、相同或不同个体的不同发育阶段、不同患病个体、正常个体、相同或不同个体的不同疾病阶段、进行了不同疾病处理的个体、处于不同环境因素的个体、或具有易患病体质的个体、或暴露于传染性疾病介质的个体的样品。
本文中使用的术语“单元”用以表示元件或元件的组合,将其配置成一起运行以实现一种或多种功能或产生一种或多种所需的结果,其中每个元件可以具有单独的,清楚的和/或独立的功能。需要理解的是,单元内的各元件无需与各其它元件直接连接。
本文中使用的术语“模块”用以表示单元或单元的组合,将其配置成一起运行以实现本实用新型装置的一个或多个子系统功能。需要理解的是,模块内的各单元无需与各其它单元直接连接。
为了更好地理解和阐释本实用新型,下面将参照各附图对本实用新型作进一步的详细描述。
图1为一种示例性的本发明提供的用于样品中核酸检测的芯片装置的立体透视图。图2为图1所示的示例性的用于样品中核酸检测的芯片装置的另一立体透视图。与图1相比较,图2未示出本发明提供的芯片装置中部分活塞式容器或活塞阀中的腔壁上的内螺纹以及活塞阀腔体内的活塞运动控制件。图3为图1所示的示例性的用于样品中核酸检测的芯片装置的结构以及其流道连通关系的俯视平面示意图。
如图1和图2所示,本发明提供的用于样品中核酸检测的芯片装置包括具有基板1和与基板垂直的容器区2,容器区2内设置多个圆柱状腔体3。所述圆柱状的腔体由与所述底板垂直的容器区的壁围成,底部具有与设置在所述底板中的流体通道4相通的开孔5。所述多个圆柱状腔体通过设置在所述底板中的流体通道4相互连通。所述流体通道位于腔体下方,通过向 上的流道与所述腔体的底部的开口连通。
所述基板和容器区由刚性材料制备。所述材料包括但不限于硅石、硅、石英、玻璃或聚合材料(例如PDMS、塑料等)。设置在所述基板内的流体通道通常为微流体通道,其尺寸在毫米级别,例如其流道的横截面的宽度为约0.1-5mm。在本发明中,“流体通道”、“微流体通道”和“微流道”等术语可互相通用。所述流体通道的流道的截面可以为各种形状,包括椭圆、矩形、方形、圆形等。在本发明的其中一个方面,所述流道的横截面的宽度为约0.1-5mm,优选为约0.2mm-2mm。
在本发明的其中一个方面,由于对核酸的检测是通过对扩增的核酸携带的荧光信号进行检测,为了避免或尽量消除核酸扩增模块中多个扩增区的相邻核酸扩增区的信号产生干扰,可采用完全吸收或基本吸收目标信号(例如荧光)的材料制备所述圆柱状腔体的壁和所述底板。而扩增反应区(通常为腔体)的底部以完全不吸收或基本不吸收待检测信号的材料制备或封闭。由此,设置在芯片中的信号检测模块或是外部的检测系统可通过扩增反应区的底部检测各个扩增反应区内产生的荧光信号。
在如图1所示的本发明的芯片装置中,所述多个圆柱状腔体中包括活塞式容器,如图1中的活塞式容器7,其具有与所述基板垂直的活塞壁围成的腔体和腔体内的活塞71,所述活塞可在腔体内上下运动。所述多个活塞式容器通过设置在所述基板中的流体通道4相互连通。所述流体通道位于腔体下方,通过向上的流道与所述腔体的底部的开口5连通。在如图1所示的本发明的装置中,所述多个圆柱状腔体中还包括活塞阀,如图1中的活塞阀8,用于控制相互连通的活塞式容器之间的流体连通。所述活塞阀包括与所述底板垂直的活塞壁围成的阀腔体和位于阀腔体内的阀活塞81,阀腔体底部(非侧壁)具有分别与其控制的上下游容器相连的流道连通的两个或多个开口6,阀活塞81可运动到腔体底部和掩盖所述开口6,阻断腔体与流体通道的连通,由此阻断通过所述流体通道相连的容器之间的流体连通。所述流体通道从阀腔体下方通过向上的流道与所述阀腔体的底部的开口连通。
图2为图1的示例性的本发明提供的用于样品中核酸检测的芯片装置的部分结构的另一立体透视图。与图1相比较,图2未示出本发明提供的芯片装置中采用的活塞阀中的腔壁上的内螺纹以及腔体内的活塞运动控制件。如图2所示,本发明提供的用于样品中核酸检测的装置具有样本接收 模块,包括加样腔101和取样腔103,以及位于加样腔1和取样腔3之间的取样腔阀102。可将原始待测样品加入到所述加样腔101内。当原始待测样品的浓度大于指定浓度时,可在加样腔中加入水或其它合适的溶液如PBS缓冲液。取样腔阀102为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与基板内的流道连通的两个开口,所述两个开口连接的流道分别与加样腔101和取样腔103连通。取样腔103为活塞式容器,其腔体内具有活塞,腔体底部具有一个与基板内的流道连通的开口。在示例性的工作情形中,所述用于样品中核酸检测的装置的初始状态为:取样腔阀102处于关闭状态(即取样腔阀102的活塞位于腔体底部和掩盖开口,阻断腔体与流体通道的连通),取样腔103中的活塞位于指定高度(此时活塞与取样腔底部的容积为指定容积,例如为指定的用于样品裂解反应的样品体积)。在保持取样腔阀102处于关闭状态时,在加样腔101内加入样品;然后将取样腔阀102打开(即将取样腔阀102的活塞升起),由于取样腔103的初始状态为真空状态,指定体积的加样腔101内的溶液经取样腔阀102被吸入到取样腔103内;关闭取样腔阀102(即将取样腔阀102的活塞推至腔体底部)。
如图2所示,本发明提供的用于样品中核酸检测的芯片装置具有样品裂解和核酸提取模块,其包括第一混合腔105和第二混合腔107,以及位于第一混合腔105和第二混合腔107之间的混合腔阀106。在取样腔103和第一混合腔105之间还具有进样阀104。其中,第一混合腔105和第二混合腔107均为活塞式容器,其腔体内具有活塞,腔体底部具有一个与基板内的流道连通的开口。进样阀104和混合腔阀106均为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与基板内的流道连通的两个开口,所述两个开口分别连接与上下游容器相的流道:进样阀104控制的两个流道分别与第一混合腔105和取样腔103连通,混合腔阀106控制的两个流道分别与第一混合腔105和第二混合腔107连通。
本实施例中的核酸检测的芯片装置特别适于采用直提法对样品进行核酸提取,即样本与核酸提取试剂接触和反应后获得的溶液中含有可用于后续扩增反应的核酸。适合采用直提法进行核酸提取和扩增的样品包括人工合成的克隆菌液、体外转录RNA、质粒,血清、血浆、尿液、棉拭子洗脱物、痰液、肺泡灌洗液等样本。用于提取上述样本的核酸提取试剂通常含有裂解剂,包括各种表面活性剂如SDS、Triton、NP-40等,以及其它化学试剂 如缓冲剂、蛋白酶抑制剂、还原剂等,以及各种裂解细胞壁或细胞膜中成分的酶,例如Labiase裂解酶、溶葡球菌酶、鸡蛋蛋白来源溶菌酶、人源溶菌酶、消色肽酶、球孢链霉菌源变溶菌素、几丁质酶、立枯丝核菌源裂解酶、藤黄节杆菌源裂解酶、哈茨木霉源裂解酶、酿脓链球菌源链球菌溶血素O、破伤风杆菌源破伤风菌溶血素等。所述核酸提取试剂的主要要功能为:(1)利用去污剂破坏脂质双分子层,破裂细胞;(2)溶解蛋白;(3)促进蛋白变性;(4)抑制蛋白酶和核酸酶的活性。可商购的直提式核酸提取试剂例如中国圣湘生物科技股份有限公司提供的样本释放剂(型号S1014)。
在示例性的工作情形中,所述用于样品中核酸检测的芯片装置的初始状态为:进样阀104和混合腔阀106处于关闭状态;在第一混合腔105中预装冻干的直提式核酸提取试剂。在取样腔阀102关闭以及取样腔103内存在样本溶液的情况下,打开进样阀104,使取样腔103的活塞向下运动,将取样腔103内的样本溶液压到第一混合腔105,溶解预先放置的直提试剂;关闭进样阀104。然后,打开混合腔阀106,交替使第一混合腔105和第二混合腔107的活塞向下运动,使得直提式核酸提取试剂与样本溶液充分混合和反应,样本中的细胞等被裂解,核酸释放,最后第一混合腔105的活塞向下运动,使得含有已释放分离的核酸的溶液流入第二混合腔107,并关闭混合腔阀106。
在本发明提供的用于样品中核酸检测的芯片装置中,所述核酸提取模块中还包括稀释腔109。稀释腔109为活塞式容器,其腔体内具有活塞,腔体底部具有与流道连通的开口。在第二混合腔107和稀释腔109之间还具有稀释阀108,其为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与基板内的流道连通的两个开口,所述两个开口连接的流道分别与第二混合腔107和稀释腔109连通。
本实施例中的核酸检测的芯片装置中,对样品进行核酸提取后,通常需要经过稀释后才用于后续核酸的检测反应,例如扩增反应。
在示例性的工作情形中,所述用于样品中核酸检测的芯片装置的初始状态为:稀释阀108处于关闭状态;稀释腔109的活塞位于指定高度,在活塞与底部形成的腔体中预置用于稀释提取的核酸溶液的稀释液。在第二混合腔107内存在含已分离的核酸的溶液的情况下,打开稀释阀108,第二混合腔107的活塞向下运动,稀释腔109的活塞向上运动,使第二混合腔 107内已分离的核酸的溶液流到稀释腔109。任选的,交替使第二混合腔107和稀释腔109的活塞向下运动,使得核酸样品溶液充分混合。最后第二混合腔107的活塞向下运动,使得含有核酸的溶液流入稀释腔109,并关闭稀释阀108。
在本发明提供的用于样品中核酸检测的芯片装置中,所述核酸提取模块中还包括过滤单元和其下游的待扩增样品腔110。在本实施例中,过滤单元是过滤腔125,其为活塞式容器,其腔体内具有活塞126,腔体底部具有分别与稀释腔9和待扩增样品腔110连通的两个开口;腔体底部具有用于过滤核酸提取液中不需要的物质(例如细胞、细胞碎片或大蛋白质分子等)的过滤件127。在本发明中,所述过滤件采用过滤材料制备而得。在本发明的其中一个方面,过滤腔中的活塞固定在腔体内,在活塞与腔体底部构成的空间填充所述过滤材料。所述过滤材料的孔径可使得溶液中的核酸(包括基因组核酸或其片段等)自由通过,截留组织碎片、细胞和细胞碎片或大蛋白质分子等。在本发明中,采用的过滤材料对溶液中的核酸不产生物理吸附或基本上不产生物理吸附,且不与核酸发生反应或产生抑制。
在示例性的工作情形中,所述用于样品中核酸检测的芯片装置的初始状态为:所述过滤腔125的活塞126固定在腔体内并压在所述过滤件127顶部;待扩增样品腔110中的活塞位于腔体底部。在稀释阀108关闭以及稀释腔109内存在含已分离和稀释的核酸的溶液的情况下,使稀释腔109内的活塞向下运动,待扩增样品腔110的活塞向上运动,由此将稀释腔109内已分离和稀释的核酸的溶液通过过滤腔110的两个开口流经过滤材料127后流入待扩增样品腔110。
在本发明的另一种实施方式中,第二混合腔107与待扩增样品腔109之间的流道可设置滤膜。在本发明的又一种实施方式中,第二混合腔107与待扩增样品腔109之间可设置多个过滤腔或滤膜或其组合,所述多个过滤腔或滤膜可具有不同的过筛尺寸,用于实现对采用直提法对样品进行核酸提取后得到的含核酸溶液的多重过滤,可避免过滤材料的堵塞。
在本发明的另一种实施方式中,本发明提供的用于样品中核酸检测的芯片装置中不需要过滤腔。
如图2和图3所示,本发明提供的用于样品中核酸检测的芯片装置还具有核酸扩增模块。在图示的示例性装置中,所述核酸扩增模块具有一个 多重扩增单元,所述扩增单元包括设置在芯片装置底板内的多个扩增反应腔122和设置在所述多个扩增反应腔122上方的多重扩增进样阀121。如图2所示,所述多重扩增进样阀121为活塞阀,阀腔体内具有活塞123,在其阀腔体底部的中央具有与上游的待扩增样品腔110连通的流道相通的一个开口124,以及在阀腔体底部的圆周边内具有多个分别与所述多个扩增反应腔122的每一个连通的流道相接的开口125。所述多个扩增反应腔122设置在所述多重扩增进样阀121的阀腔体的下方的芯片的底板内,其可容纳扩增反应的反应物或反应体系,以及来自核酸提取模块的已分离的核酸溶液,并且可以在合适的条件下进行扩增反应。在本发明的其它方面,所述芯片装置中的核酸扩增模块可具有多个所述核酸扩增单元,例如2个或4个或6个或8个。
在本发明中,可采用多重扩增(或多探针识别)来对同一样品的核酸在同一个反应条件下检测多个靶序列。例如通过多重PCR(multiplex PCR),即在同一PCR反应体系里采用不同的引物对,同时扩增出多个核酸片段的PCR反应。通过将所述对同一样品的核酸的多个扩增和检测分别设置在本发明提供的装置的多个扩增反应腔内进行,可方便地实现对样品的快速和高效的检测。
在示例性的工作情形中,所述用于样品中核酸检测的芯片装置的初始状态为:在所述多个扩增反应腔122内预置扩增所需的不同的引物对、探针、酶等反应物中的一种或多种(在另一示例性的工作情形中,酶预置在待扩增样品腔110中,在加入已稀释的核酸样品溶液后,溶于所述溶液),且保持为真空状态;多重扩增进样阀121的活塞位于腔体底部,封闭与上游的待扩增样品腔110连通的流道相通的开口124以及每个与所述多个扩增反应腔122连通的开口125。在稀释阀108关闭以及待扩增样品腔110内存在已稀释的核酸样品溶液的情况下,使多重扩增进样阀121的活塞向上运动,由此使得待扩增样品腔110内的核酸样品溶液进入多重扩增进样阀121的腔体内,然后均匀地分装到所述多个扩增反应腔122内。
进一步的,在所述多个扩增反应腔122内可进行核酸扩增反应。本领域已知的各种使用引物的核酸扩增方法均可用于本发明,包括变温的或等温的扩增方法,如聚合酶链反应(PCR)、链置换扩增(SDA)、基于核酸序列的扩增(NASBA)、级联滚环扩增(CRCA)、环介导的DNA等温扩增(LAMP)、等温和嵌合引物-起始的核酸扩增(ICAN)、基于靶的解旋酶依赖性扩增 (HDA)、转录介导的扩增(TMA)等。
在本发明的其中一种实施方式中,采用变温的扩增方法如PCR,所述装置的核酸扩增模块还包括对所述多个扩增反应腔122的控温单元,例如具有温度调节器,以预定的程序循环加热和冷却扩增反应腔122并持续预定的时间。
在本发明的另一种实施方式中,采用等温的扩增方法如LAMP,所述装置的核酸扩增模块还包括对所述多个扩增反应腔122的控温单元,例如具有温度调节器,使得扩增反应腔122保持恒温。
本发明提供的用于样品中核酸检测的芯片装置还可包括信号检测模块(图中未显示),用于检测各个扩增反应腔122的检测结果。本发明的检测模块为适合以任何方式对核酸携带的可识别的标记进行检测的模块,包括但不限于荧光或其它形式的(例如化学发光,生物发光,辐射发光,电发光,电化学发光,机械发光,结晶发光,热致发光,声致发光,磷光和光致发光等)发光,酶促反应,放射性等。
在本发明的其中一个方面,所述扩增反应单元的各个扩增反应腔之间采用完全吸收或基本完全吸收扩增反应产生的信号的材料进行隔绝,以避免相邻扩增反应腔之间信号的相互干扰。例如,扩增反应单元的壁可采用完全吸收或基本完全吸收扩增反应产生的信号的材料。同时,扩增反应腔的底部以完全不吸收或基本不吸收待检测信号的材料制备或封闭。由此,可以有效地通过扩增反应腔的底部来检测各个扩增反应腔内核酸扩增产生的信号。
在本发明的其中一个方面,对扩增的核酸的检测是通过对核酸携带的荧光信号进行检测。在扩增反应腔122的反应体系中包含的探针、引物和寡核苷酸可通过本领域技术人员所熟知的方法进行放射性、荧光或非放射性的可检测标记。扩增反应腔122的底部以完全不吸收或基本不吸收待检测信号的材料制备或封闭。由此,设置在芯片中的所述信号检测模块或是外部的检测系统可通过扩增反应腔122的底部检测各个扩增反应腔122内产生的荧光信号。常用的荧光染料和其信号相关波长如下表1所示。
表1荧光染料
染料名称 激发波长 发射波长
FAM/SYBGREEN 492nm 516nm
HEX/JOE/VIC 535nm 555nm
ROX/TEXRED 585nm 610nm
CY5 635nm 665nm
在本发明的其中一个方面,所述扩增反应腔122的底部可采用不吸收扩增反应产生的荧光信号的材料。另外,可通过已知的各种光学系统(包括滤光片、相机等)对各个扩增反应腔122的底部产生的荧光信号进行采集和分析,进而得到检测结果。
在本发明提供的用于样品中核酸检测的芯片装置中,所述活塞式容器(如)用于容纳固体或液体制剂或进行反应。液体制剂可在相互连通的容器之间通过流体通道转移。固体制剂可在加入合适的溶剂后形成溶液,进而在相互连通的容器之间通过流体通道转移。
本发明提供的用于样品中核酸检测的芯片装置中,可通过采用两个或多个活塞式容器来控制流体的流动(静止或运动),以及其流动方向和/或流量。另外,可通过相连通的两个或多个活塞式容器对液体进行有效的混合。例如,如前所述,可交替使第一混合腔105和第二混合腔107的活塞向下运动,使得直提式核酸提取试剂与样本溶液充分混合和反应。
在本发明提供的用于样品中核酸检测的芯片装置中,所述活塞在腔体内的运动可由机械传动控制。例如,活塞与连杆固定连接,通过推拉连杆来控制活塞在腔体中的位置。活塞在运动到腔体底部时,可对其继续施加压力,由此使得活塞发生形变,密封流体通道与腔体连通的开口,完全阻断各流体通道之间的流体连通。在本发明的其它实施方式中,活塞的运动还可通过其它方式控制,例如气压传动或液压传动等。
在其中一种实施方式中,在本发明的提供的用于样品中核酸检测的芯片装置中,前述活塞阀中的活塞在腔体内的运动可通过活塞运动控制机构进行控制。如图1所示,在活塞阀8中,所述活塞运动控制机构包括设置在腔体内活塞81上方的活塞运动控制件82,所述活塞运动控制件82具有外螺纹,与活塞的腔壁上的内螺纹形成螺纹副,当活塞运动控制件82沿着螺纹转动时,其在活塞的腔体内发生向上或向下的运动,由此控制活塞向上或向下的运动。
图4为本发明提供的芯片装置中的前述示例性的活塞阀和活塞运动控制机构的结构和工作方式示意图。图4(a)为该示例性的活塞阀的结构的截面示意图,图4(b)和(c)为该示例性的活塞阀的工作方式示意图。如图4(a)显示的示例性的活塞阀8中,活塞81位于由腔壁限制的空间形成的腔体83内,可在腔体内上下运动。活塞可运动至与腔体的底部完全接触并掩盖所有流体通道(如图示流体通道41和42)与腔体连通的开口43,由此阻断流体连通。活塞运动控制件82设置在所述活塞81的上方,其具有外螺纹821,与活塞阀的腔壁上的内螺纹831形成螺纹副。当活塞运动控制件82沿着螺纹转动时,其在活塞的腔体内发生向上或向下的运动。图4(b)和(c)为该示例性的活塞阀的工作方式示意图,其中图4(b)显示示例性的控制活塞向下运动的工作方式,图4(c)显示示例性的控制活塞向上运动的工作方式。在图4(b)和(c)显示的示例性活塞阀中,活塞运动控制件82的运动通过活塞运动控制件的控制机构84调节。如图4(b)所示,所述控制机构包括控制杆841和电机842。控制杆可进行旋转和/或上下运动。在其中一种实施方式中,所述控制杆运动电机可为电批,其可设定控制杆的转动方向、转速、转动角度、停止力矩等参数。所述活塞运动控制件82具有适合插入控制杆的空腔822,空腔横截面为与控制杆(例如图4(b)示实施例中的六棱螺杆)适配的形状。图4(b)为控制活塞运动控制件向下运动的示意图。如图4(b)所示,所述控制杆841插入活塞运动控制件的空腔后,控制杆的顺时针旋转可带动活塞运动控制件82沿着螺纹转动,活塞运动控制件在腔体内发生向下的运动。在本发明的其中一个方面,所述控制杆可以以缓慢地旋转的方式插入到活塞运动控制件的空腔中。边旋转边插入的方式可以使得控制杆上的棱与腔体的内部相啮合,有效地解决了对准问题。图4显示的示例性的活塞机构中,活塞运动控制件82与活塞81之间不存在固定连接。活塞的底部具有活塞支撑体812,其为位于活塞底部的凸起,由具有弹性的材料制成,在受到压力时会发生形变而被压缩。在活塞受到压力时(例如在活塞运动控制件沿螺纹转动并在腔体内向活塞方向运动,接触活塞并将其向腔体底部推动时),活塞支撑体812被压缩至整个活塞底部与腔体的底部完全接触并掩盖所有流体通道(如图示流体通道41和42)与腔体连通的开口43,由此阻断各条流体通道的流体连通(如图5(b)所示。当活塞受到的压力消失(例如在活塞运动控制件沿螺纹转动并在腔体内向离开活塞的方向运动 时)时,活塞支撑体812恢复其自然形变状态(即在活塞未受到额外压力下的活塞支撑体812的自然形变),在此状态下活塞支撑体与活塞底部接触的部位不覆盖任何一个流体通道与腔体连通的开口43,各条流体通道通过腔体产生相互之间的流体连通。通过调整控制杆的运动距离,来调节活塞运动控制件82与活塞81的接触和压迫。同时,可在腔壁顶部设置对活塞运动控制件的限位823,使得当活塞运动控制件运动到限位,活塞运动控制件内的控制杆受到的力矩超过电批设定的停止力矩值后,电批停止电机的转动,进而可以将控制杆拔出。
图4(c)为控制活塞运动控制件向上运动的示意图。如图4(c)所示,所述控制杆841插入空腔后,控制杆的逆时针旋转可带动活塞运动控制件82沿着螺纹转动,活塞运动控制件在腔体内发生向上的运动。当活塞81受到的压力消失(例如在活塞运动控制件不接触活塞时)时,活塞支撑体812恢复其自然形变状态(即在活塞未受到额外压力下的活塞支撑体的自然形变),在此状态下活塞支撑体与活塞底部接触的部位不覆盖任何一个流体通道与腔体连通的开口,各条流体通道通过腔体产生相互之间的流体连通。当活塞运动控制件运动到顶部时,因为限位823的存在,使得力矩增大,超过电批设定的停止力矩值后,电批将停止控制杆的转动,进而可以将控制杆拔出。
在其中一种实施方式中,在本发明的提供的用于样品中核酸检测的芯片装置中,前述活塞式容器中的活塞的初始工作状态为位于腔体中的某个指定高度。例如,图2中的取样腔103中的活塞在初始工作状态中位于指定高度(此时活塞与取样腔底部的容积为指定容积,例如为指定的用于样品裂解反应的样品体积)。所述活塞在腔体中的定位可通过在活塞壁上刻蚀内螺纹等方式来增加活塞与活塞壁的摩擦来实现。如图1所示,活塞式容器3的腔壁上具有内螺纹31,内螺纹的下端为预设的活塞位置的上端。
实施例2
图5为又一种示例性的本发明提供的用于样品中核酸检测的芯片装置的立体透视图。图中未示出本发明提供的芯片装置中部分活塞式容器或活塞阀中的腔壁上的内螺纹以及活塞阀腔体内的活塞运动控制件。图6为图5所示的示例性的用于样品中核酸检测的芯片装置的另一立体透视图。图中未示出本发明提供的芯片装置中活塞式容器或活塞阀中的活塞。图7为图5 所示的示例性的用于样品中核酸检测的芯片装置的俯视平面的结构以及其流道连通关系的示意图。
如图5所示,本发明提供的用于样品中核酸检测的芯片装置包括具有基板1和与基板垂直的容器区2,容器区内设置多个圆柱状腔体。所述圆柱状的腔体由与所述底板垂直的容器区的壁围成。所述多个圆柱状腔体通过设置在所述底板中的流体通道相互连通。所述流体通道位于腔体下方,通过向上的流道与所述腔体的底部的开口连通。
如图5和图6所示,本发明提供的用于样品中核酸检测的芯片装置具有样本接收模块,包括加样腔201和取样腔203,以及位于加样腔201和取样腔203之间的取样腔阀202。可将待测样品加入到所述加样腔内。当待测样品的浓度大于指定浓度时,可在加样腔中加入水或其它合适的溶液如PBS缓冲液。取样腔阀202为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与基板内的流道连通的两个开口,所述流道分别与加样腔201和取样腔203连通。取样腔203为活塞式容器,其腔体内具有活塞,腔体底部具有一个与基板内的流道连通的开口。在示例性的工作情形中,所述用于样品中核酸检测的装置的初始状态为:取样腔阀202处于关闭状态(即取样腔阀202的活塞位于腔体底部和掩盖开口,阻断腔体与流体通道的连通),取样腔203中的活塞位于指定高度(此时活塞与取样腔底部的容积为指定容积,例如为指定的用于样品裂解反应的样品体积)。在保持取样腔阀202处于关闭状态时,在加样腔201内加入样品;然后将取样腔阀202打开(即将取样腔阀202的活塞升起),由于取样腔203的初始状态为真空状态,指定体积的加样腔201内的溶液经取样腔阀202被吸入到取样腔203内;关闭取样腔阀202(即将取样腔阀202的活塞推至腔体底部)。
如图5和图6所示,本发明提供的用于样品中核酸检测的芯片装置具有样品裂解和核酸提取模块,其包括第一混合腔205和第二混合腔207,以及位于第一混合腔205和第二混合腔207之间的混合腔阀206。在取样腔203和第一混合腔205之间还具有进样阀204。其中,第一混合腔205和第二混合腔207均为活塞式容器,其腔体内具有活塞。其中,进样阀204和混合腔阀206均为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与基板内的流道连通的两个开口,所述两个开口分别连接与上下游容器相的流道:进样阀204控制的两个流道分别与第一混合腔205和取样腔203连通,混合腔阀206控制的两个流道分别与第一混合腔205和第二混合腔 207连通。
本实施例中的核酸检测的芯片装置适于采用裂解法对样品进行裂解后再进行核酸提取,即样本与样品裂解试剂接触和反应后,需要经过磁珠法等核酸提取方法进一步处理才能获得可用于后续扩增反应的核酸。磁珠法中,核酸的结合通过将可与核酸结合的磁性材料和/或结合液与已经裂解步骤的样品接触,由此使得核酸与所述磁性材料结合。核酸与所述磁性材料结合后形成的复合物可以在磁场作用下在容器中可控地移动、搅拌或沉淀,达到核酸结合、核酸清洗和核酸洗脱的目的。本发明提供的芯片装置中的核酸提取模块由结合单元、清洗单元和洗脱单元组成,通过核酸结合、清洗和洗脱步骤来提取核酸,其中需要加入核酸结合、核酸清洗和核酸洗脱试剂(包括核酸提取磁珠、清洗液、洗脱液等)。
如图5和图6所示,本发明提供的用于样品中核酸检测的芯片装置具有样品裂解和核酸提取模块,其包括样品裂解模块和核酸提取模块。其中,样品裂解模块包括用于容纳裂解试剂(固体)的裂解试剂存储腔215,以及位于第一混合腔205和裂解试剂存储腔215之间的裂解试剂阀225。所述裂解试剂阀为活塞阀,包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有分别与裂解试剂存储腔和进行样品裂解的腔体(例如第一混合腔205)连通的的两个开口,活塞可运动到腔体底部和掩盖所述开口,阻断裂解试剂存储腔和进行样品裂解的腔体(例如第一混合腔205)之间的流体连通。以及,其中所述核酸提取模块包括容纳核酸清洗试剂(固体)的三个核酸清洗试剂存储腔213、214和216,以及位于第一混合腔205和各个所述核酸清洗试剂存储腔213、214和216之间的核酸清洗试剂阀223、224、226。以及,其中核酸提取模块还包括容纳核酸洗脱试剂(固体)的核酸洗脱试剂存储腔217,以及位于第一混合腔205和所述核酸洗脱试剂存储腔217之间的核酸清洗试剂阀227。
如图5和图7所示,本发明提供的用于样品中核酸检测的芯片装置的样品裂解和核酸提取模块中还包括加水腔211,以及进水阀212。其中,进水阀212为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与加水腔211连通的开口2121,以及分别与裂解试剂存储腔215、核酸清洗试剂存储腔213、214、216以及核酸洗脱试剂存储腔217连通的五个开口2122。
在示例性的工作情形中,所述用于样品中核酸检测的芯片装置的初始状态为:进水阀212、裂解试剂阀225、核酸清洗试剂阀223、224、226和 核酸清洗试剂阀227处于关闭状态。开始工作时,往加水腔211中加入蒸馏水,打开进水阀212,加水腔211中的蒸馏水会被吸入到裂解试剂存储腔215、核酸清洗试剂存储腔213、214、216以及核酸洗脱试剂存储腔217中,并复溶其中的试剂。然后关闭进水阀212。同时,所述用于样品中核酸检测的芯片装置的初始状态为:进样阀204和混合腔阀206处于关闭状态;在第二混合腔207中预装可结合核酸的磁珠。在取样腔阀202关闭以及取样腔203内存在样本溶液的情况下,打开进样阀204,使取样腔203的活塞向下运动,将取样腔203内的样本溶液压到第一混合腔205;关闭进样阀204。然后,打开裂解试剂阀225,下压裂解试剂存储腔215的活塞,将裂解试剂溶液压入到第一混合腔205中,然后关闭裂解试剂阀225。打开混合腔阀206,交替使第一混合腔205和第二混合腔207的活塞向下运动,使得样本溶液与裂解试剂溶液和结合核酸的磁珠充分混合和反应,样本中的细胞等被裂解,核酸释放并结合在磁珠上。将磁体器件如磁铁靠近第一混合腔205和/或第二混合腔207,使得磁珠被吸在腔体壁上,下压第二混合腔207的活塞到底部,使得全部液体排至第一混合腔205中,然后关闭混合腔阀206,打开进样阀204和裂解试剂阀225,下压第一混合腔205的活塞,使得废液进入到取样腔203和裂解试剂存储腔215中,然后关闭进样阀204和裂解试剂阀225,由此完成对样品的裂解和核酸提取中的结合反应。
打开核酸清洗试剂阀223,下压核酸清洗试剂存储腔213的活塞,将第一次核酸清洗的核酸清洗试剂压入到第一混合腔205中,然后关闭核酸清洗试剂阀223。移走磁体器件如磁铁,使得磁珠从腔体壁上脱落和分散在核酸清洗试剂溶液中。打开混合腔阀206,交替使第一混合腔205和第二混合腔207的活塞向下运动,使得磁珠在核酸清洗试剂中充分混合和清洗。将磁体器件如磁铁靠近第一混合腔205和/或第二混合腔207,使得磁珠被吸在腔体壁上,下压第二混合腔207的活塞到底部,使得全部液体排至第一混合腔205中,然后关闭混合腔阀206,打开核酸清洗试剂阀223,下压第一混合腔205的活塞,使得废液进入到核酸清洗试剂存储腔213中,然后关闭核酸清洗试剂阀223,由此完成对吸附了核酸的磁珠的第一次清洗。
依次对核酸清洗试剂存储腔214、216进行同样的操作,完成对吸附了核酸的磁珠的第二次和第三次清洗。
打开核酸清洗试剂阀227,下压核酸洗脱试剂存储腔217的活塞,将核酸洗脱试剂压入到第一混合腔205中,然后关闭核酸清洗试剂阀227。移走 磁体器件如磁铁,使得磁珠从腔体壁上脱落和分散在核酸洗脱试剂溶液中。打开混合腔阀206,交替使第一混合腔205和第二混合腔207的活塞向下运动,使得磁珠在核酸洗脱试剂中充分混合和反应。将磁体器件如磁铁靠近第一混合腔205和/或第二混合腔207,使得磁珠被吸在腔体壁上,最后第一混合腔205的活塞向下运动,使得含有已释放分离的核酸的溶液流入第二混合腔207,并关闭混合腔阀206。
在本发明的另一个方面,可以在第一混合腔205中预装样品裂解试剂中的全部或部分成分(例如酶)。
在本发明的另一个方面,在本发明的用于样品中核酸检测的芯片装置中样品裂解和核酸提取模块中的裂解试剂(固体)的裂解试剂、核酸清洗试剂和核酸洗脱试剂也可以液体形式预置于所述裂解试剂存储腔、核酸清洗试剂存储腔或核酸洗脱试剂存储腔中。
在本实施例提供的用于样品中核酸检测的芯片装置中,所述核酸提取模块中还包括待扩增样品混合腔209和待扩增样品腔210。待扩增样品混合腔209和待扩增样品腔210为活塞式容器,其腔体内具有活塞,腔体底部具有与流道连通的开口。在第二混合腔207和待扩增样品混合腔209之间还具有待扩增样品阀208,其为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与基板内的流道连通的两个开口,所述两个开口连接的流道分别与第二混合腔207和待扩增样品混合腔209连通。
在示例性的工作情形中,所述用于样品中核酸检测的芯片装置的初始状态为:待扩增样品阀208处于关闭状态;待扩增样品混合腔209和/或待扩增样品腔210中预装用于后续核酸的检测反应(例如扩增反应)的试剂(例如酶或缓冲液试剂等扩增共用试剂,但不包括各特异性扩增用的试剂,如特异性引物或探针等)。在第二混合腔207内存在含已分离的核酸的溶液的情况下,打开待扩增样品208,第二混合腔207的活塞向下运动,待扩增样品混合腔209的活塞向上运动,使第二混合腔207内已分离的核酸的溶液流到待扩增样品混合腔209,任选的,还同时将待扩增样品腔210的活塞向上运动,使已分离的核酸的溶液流到待扩增样品腔210;关闭待扩增样品阀208;交替使待扩增样品混合腔209和待扩增样品腔210的活塞向下运动,使得核酸样品溶液充分混合。最后待扩增样品混合腔209的活塞向下运动,使得含有核酸的溶液流入待扩增样品腔210。
如图5和图6所示,本发明提供的用于样品中核酸检测的芯片装置还 具有核酸扩增模块。在图示的示例性芯片装置中,所述核酸扩增模块包括设置在芯片装置底板内的形成阵列式排布的多个扩增反应腔222,其中每个扩增反应腔222通过分支流道229与每两排扩增反应腔之间的支流道2291相通,多个支流道2291在所述扩增反应腔阵列两端汇合形成主流道228。扩增反应腔阵列其中一端的主流道2281与上游的多重扩增进样阀221相通,所述多重扩增进样阀221为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与基板内的流道连通的两个开口,所述两个开口连接的流道分别与待扩增样品腔210和主流道2281连通。
在本发明中,可采用惰性液体如矿物油来封闭进行核酸扩增反应的腔体的出口。在本发明的一种实施方式中,本发明提供的用于样品中核酸检测的芯片装置的核酸扩增模块中还包括用于储存所述惰性液体以及转移所述惰性液体的惰性液体模块。所述惰性液体模块具有加油腔用于储存和提供封闭扩增反应腔与支线流道的接口的惰性液体(如矿物油或石蜡油);任选的,还包括加油腔与多重扩增区单元之间的加油阀,其为活塞阀,阀腔体内具有活塞,在其阀腔体底部具有与加油腔连通的流道相通的开口,以及与所述扩增区单元相通的开口。如图5和图6和图7所示,所述惰性液体模块包括加油腔231。在所述扩增反应腔阵列另一端的主流道2282与加油腔231之间还具有加油阀230,所述加油阀230为活塞阀,阀腔体内具有活塞,以及在其阀腔体底部具有与基板内的流道连通的两个开口,所述两个开口连接的流道分别与加油腔231和主流道2282连通。
在示例性的工作情形中,所述用于样品中核酸检测的芯片装置的初始状态为:在所述多个扩增反应腔222内预置核酸多重扩增所需的不同的引物对、探针、酶等反应物中的一种或多种(在另一示例性的工作情形中,酶预置在待扩增样品腔210中,在加入已稀释的核酸样品溶液后,溶于所述溶液),且保持为真空状态;多重扩增进样阀221的活塞位于腔体底部,封闭与上游的待扩增样品腔210连通的流道相通的开口以及与主流道2281连通的开口。在待扩增样品阀208关闭以及待扩增样品腔210内存在核酸样品溶液的情况下,使多重扩增进样阀221的活塞向上运动,由此使得待扩增样品腔210内的核酸样品溶液进入多重扩增进样阀221的腔体内,然后通过主流道2281和支流道2291进入到每条分支流道229,最后均匀地分装到所述多个扩增反应腔222内。
另外,在示例性的工作情形中,所述用于样品中核酸检测的芯片装置 的初始状态为:加油阀230处于关闭状态;加油腔231中预装矿物油。在所述多个扩增反应腔222内已经分装反应体系后,打开加油阀230,下压加油腔231的活塞,存在于加油腔231的矿物油会通过加油阀230而进入到主流道2282中,矿物油通过支流道2291,封闭每条分支流道229,然后再通过主流道2281和流过多重扩增进样阀221进入到待扩增样品腔210和待扩增样品混合腔209中。关闭加油阀230和多重扩增进样阀221。预存于加油腔231中的矿物油是过量的,可以保证各个扩增反应腔222之间的连接被油相分隔开。
在所述多个扩增反应腔222内可进行核酸扩增反应。如实施例1中所述,本领域已知的各种使用引物的核酸扩增方法均可用于本发明。在本发明的其中一种实施方式中,采用变温的扩增方法如PCR。在本发明的另一种实施方式中,采用等温的扩增方法如LAMP。用于检测各个扩增反应腔222的检测模块为适合以任何方式对核酸携带的可识别的标记进行检测的模块,包括但不限于荧光或其它形式的发光,酶促反应,放射性等。
如实施例1中所述,在本发明提供的用于样品中核酸检测的芯片装置中,所述活塞式容器(如)用于容纳固体或液体制剂或进行反应。液体制剂可在相互连通的容器之间通过流体通道转移。固体制剂可在加入合适的溶剂后形成溶液,进而在相互连通的容器之间通过流体通道转移。本发明提供的用于样品中核酸检测的装置中,通过采用两个或多个活塞来控制流体的流动(静止或运动),以及其流动方向和/或流量。
如实施例1中所述,在本发明提供的用于样品中核酸检测的芯片装置中的活塞阀可采用如图4描述的活塞和活塞运动控制机构。
如实施例1中所述,在本发明的提供的用于样品中核酸检测的芯片装置中,前述活塞式容器中的活塞的初始工作状态为位于腔体中的某个指定高度。所述活塞在腔体中的定位可通过在活塞壁上刻蚀内螺纹等方式来增加活塞与活塞壁的摩擦来实现。
实施例3用于样品中核酸检测的仪器
在其中一种实施方式中,本发明提供了一种用于样品中核酸检测的仪器,其为POCT仪器,其中包括实施例1或2中定义和描述的芯片装置。
所述仪器具有芯片装置接收和运动控制系统,用于接纳上述芯片装置和将其转移至仪器内的指定位置以对所述芯片进行各种处理。
所述仪器具有磁体和控制磁体移动的系统,用于采用磁珠法提纯样品中的核酸。磁珠法中,核酸的结合通过将可与核酸结合的磁性材料和/或结合液与已经裂解步骤的样品接触,由此使得核酸与所述磁性材料结合。核酸与所述磁性材料结合后形成的复合物可以在磁场作用下在容器中可控地移动、搅拌或沉淀,达到核酸结合、核酸清洗和核酸洗脱的目的。
所述仪器具有用于调节所述活塞阀中的活塞运动控制件的运动的控制机构。在本发明的其中一个方面,所述控制机构包括控制杆和控制杆运动机构,控制杆可进行旋转或上下运动,其中所述控制杆运动机构包括控制所述控制杆上下运动和旋转的部件,例如电机。
所述仪器具有检测核酸扩增产物的信号检测模块,例如为荧光检测系统。
所述仪器具有对所述芯片的核酸扩增区域进行温控的系统。
所述仪器具有核酸扩增结果分析和/或输出系统。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种用于样品中核酸检测的芯片装置,其具有基板和活塞式容器,所述活塞式容器之间通过微流体通道连通,其中,所述活塞式容器包括腔体和位于腔体内的活塞,腔体底部具有与所述微流体通道连通的开口,
    所述芯片装置还具有位于容器之间的活塞阀,用于控制相互连通的容器之间的流体连通,所述活塞阀包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有与流道连通的两个或多个开口,阀活塞可运动到腔体底部和掩盖所述开口,阻断腔体与流体通道的连通,由此阻断通过所述流体通道相连的容器之间的流体连通,
    其中,所述芯片装置包括:
    样品接收模块;
    样品裂解和核酸提取模块,可用于对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;所述样品裂解和提取模块中具有样品裂解模块和/或核酸提取模块,任选的,所述核酸提取模块包括核酸结合单元、核酸清洗单元和核酸洗脱单元;
    核酸扩增模块,用于将核酸样品分配到多个扩增区容器以及对核酸分子进行扩增和/或检测;核酸扩增模块包括多重扩增区模块和任选的前置扩增区模块。
  2. 根据权利要求1所述的芯片装置,其特征在于,所述样本接收模块包括取样腔,其为活塞式容器,包括腔体和位于腔体内的活塞;
    优选的,所述样本接收模块包括加样腔和取样腔,还包括加样腔和取样腔之间的取样腔阀,其为活塞阀。
  3. 根据权利要求1所述的芯片装置,其特征在于,所述样品裂解和提取模块包括第一混合腔和第二混合腔,所述第一混合腔和第二混合腔为活塞式容器,包括腔体和位于腔体内的活塞,
    优选的,所述第一混合腔和第二混合腔之间具有混合腔阀,其为活塞阀,
    更优选的,所述第一混合腔与上游的样本接收模块(例如其中的取样腔)之间具有进样阀,其为活塞阀,包括阀腔体和位于阀腔体内的阀活塞。
  4. 根据权利要求1-3中任一项所述的芯片装置,其特征在于,所述样品裂解和核酸提取模块的样品裂解模块包括用于容纳裂解试剂的裂解试剂存储腔,其为活塞式容器,包括腔体和位于腔体内的活塞,
    任选的,所述样品裂解模块还包括所述裂解试剂存储腔与进行样品裂解的腔体之间的裂解试剂阀,所述裂解试剂阀为活塞阀,
    优选的,所述样品裂解和核酸提取模块的具有结合单元、清洗单元和洗脱单元中的一个或多个,其分别具有用于容纳核酸结合试剂、核酸清洗试剂和核酸洗脱试剂的核酸结合试剂存储腔、核酸清洗试剂存储腔和核酸洗脱试剂存储腔,所述核酸结合试剂存储腔、核酸清洗试剂存储腔和核酸洗脱试剂存储腔为活塞式容器,包括腔体和位于腔体内的活塞,
    任选的,所述核酸结合试剂存储腔、核酸清洗试剂存储腔和核酸洗脱试剂存储腔分别通过核酸结合试剂阀、核酸清洗试剂阀或核酸洗脱试剂阀与进行核酸结合、核酸试剂或核酸洗脱反应的腔体连通,所述核酸结合试剂阀、核酸清洗试剂阀或核酸洗脱试剂阀为活塞阀。
  5. 根据权利要求1所述的芯片装置,其特征在于,所述样品裂解和提取模块还包括待扩增样品腔,其为活塞式容器,包括腔体和位于腔体内的活塞,用于容纳经裂解和提取的核酸溶液样品,
    优选的,在待扩增样品腔的上游还具有活塞阀,其包括阀腔体和位于阀腔体内的阀活塞。
  6. 根据权利要求1所述的芯片装置,其特征在于,所述样品裂解和提取模块还包括稀释腔,优选的,所述稀释腔与其上游模块或单元(例如第二混合腔)之间具有稀释阀,其为活塞式容器。
  7. 根据权利要求1所述的芯片装置,其特征在于,所述核酸扩增模块具有一个或多个多重扩增区单元,所述多重扩增区单元包括用于进行核酸扩增反应的多个扩增反应腔,通过微流道将来自样品裂解和提取模块的核酸样品溶液分配到各个所述扩增反应腔,
    任选的,所述多重扩增区单元与上游的样品裂解和提取模块之间(如在所述多重扩增区单元和上游的待扩增样品腔之间)具有活塞阀。
  8. 根据权利要求7所述的芯片装置,其特征在于,所述多重扩增区单元的多个扩增反应腔沿圆周分布,任选的,在其上方具有多重扩增进样阀,其为活塞阀,阀腔体内具有活塞,在其阀腔体底部具有与上游的待扩增样品腔连通的流道相通的开口,以及多个分别与下方的所述多个扩增反应腔 的每一个连通的开口。
  9. 根据权利要求7所述的芯片装置,其特征在于,所述多重扩增区单元的多个扩增反应腔以阵列形式排列,任选的,每个扩增反应腔通过支线流道与所述扩增区单元的主流道连通,所述多重扩增区单元的主流道与上游的样品裂解和提取模块相连通。
  10. 根据权利要求1所述的芯片装置,其特征在于,所述核酸扩增模块具有惰性液体模块,用于储存和提供封闭扩增反应腔与流道接口的惰性液体(如矿物油或石蜡油),
    例如,所述惰性液体模块具有加油腔,任选的,还包括加油腔与多重扩增区单元之间的加油阀,其为活塞阀,阀腔体内具有活塞,在其阀腔体底部具有与加油腔连通的流道相通的开口,以及与所述扩增区单元相通的开口。
  11. 根据权利要求1所述的芯片装置,其特征在于,所述核酸扩增模块还具有设置在所述多重扩增区单元上游的前置扩增区单元,用于对核酸分子进行第一轮扩增,例如进行巢式扩增,所述前置扩增区单元具有巢式扩增腔,例如,其为设置在底板内的圆柱状腔体,其具有分别与上游的样品裂解和提取模块和下游的重扩增区单元连通的流道。
  12. 根据权利要求1-11中任一项所述的芯片装置,其特征在于,所述活塞阀具有设置在阀活塞上方的活塞运动控制件,用于控制阀活塞在腔体内的上下运动。
  13. 根据权利要求1-12所述的芯片装置,其特征在于,所述活塞阀的阀腔体的腔壁具有内螺纹,所述活塞运动控制件具有外螺纹,与所述腔壁的内螺纹形成螺纹副,活塞运动控制件沿螺纹转动而在腔体内产生移动,控制所述活塞在腔体内的移动,所述活塞运动控制件具有适合插入控制杆的空腔,所述空腔横截面为与控制杆适配的形状。
  14. 根据权利要求1-13中任一项所述的芯片装置,其特征在于,所述活塞阀机构的阀活塞的底部具有活塞支撑体,所述活塞支撑体为位于活塞底部的凸起,其由具有弹性的材料制备。
  15. 一种用于样品中核酸检测的仪器(优选为POCT仪器),其中包括权利要求1-14中任一项所述的芯片装置,其中所述芯片装置具有基板和活塞式容器,所述活塞式容器之间通过微流体通道连通,其中,所述活塞式容器包括腔体和位于腔体内的活塞,腔体底部具有与所述微流体通道连 通的开口,
    所述芯片装置还具有位于容器之间的活塞阀,用于控制相互连通的容器之间的流体连通,所述活塞阀包括阀腔体和位于阀腔体内的阀活塞,阀腔体底部具有与流道连通的两个或多个开口,阀活塞可运动到腔体底部和掩盖所述开口,阻断腔体与流体通道的连通,由此阻断通过所述流体通道相连的容器之间的流体连通(所述流体通道从腔体下方通过向上的流道与所述腔体的底部的开口连通),
    其中,所述芯片装置包括:
    样品接收模块;
    样品裂解和核酸提取模块,可用于对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;所述样品裂解和提取模块中具有样品裂解模块和/或核酸提取模块,任选的,所述核酸提取模块包括核酸结合单元、核酸清洗单元和核酸洗脱单元;
    核酸扩增模块,用于将核酸样品分配到多个扩增区容器(例如为扩增反应腔)以及对核酸分子进行扩增和/或检测;核酸扩增模块包括多重扩增区模块和任选的前置扩增区模块。
  16. 根据权利要求15所述的仪器,其特征在于,其还任选包括:其具有芯片装置接收和运动控制系统;
    磁体和控制磁体移动的系统;
    调节所述活塞阀中的活塞运动控制件的运动的控制机构,所述控制机构包括控制杆和控制杆运动机构,控制杆可进行旋转或上下运动,其中所述控制杆运动机构包括控制所述控制杆上下运动和旋转的部件,例如电机;
    检测核酸扩增产物的信号检测模块,例如为荧光检测系统;
    对所述芯片的核酸扩增区域进行温控的系统;
    核酸扩增结果分析和/或输出系统。
  17. 一种采用权利要求1-14中任一项的芯片装置或权利要求15-16中任一项的仪器检测样本中的核酸的方法,所述检测方法包括以下步骤:
    提供权利要求1-14中任一项的芯片装置或具有所述芯片装置的仪器,所述芯片装置具有基板和活塞式容器,所述活塞式容器之间通过微流体通道连通,其中,所述活塞式容器包括腔体和位于腔体内的活塞,腔体底部具有与所述微流体通道连通的开口,
    所述芯片装置还具有位于容器之间的活塞阀,用于控制相互连通的容器之间的流体连通,所述活塞阀包括阀腔体和位于阀腔体内的阀活塞,
    其中,所述芯片装置包括:
    样品接收模块;
    样品裂解和核酸提取模块,可用于对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;所述样品裂解和提取模块中具有样品裂解模块和/或核酸提取模块,任选的,所述核酸提取模块包括核酸结合单元、核酸清洗单元和核酸洗脱单元;
    核酸扩增模块,用于将核酸样品分配到多个扩增区容器(例如为扩增反应腔)以及对核酸分子进行扩增和/或检测;核酸扩增模块包括多重扩增区模块和任选的前置扩增区模块,
    其中,所述仪器任选包括:
    芯片装置接收和运动控制系统;
    磁体和控制磁体移动的系统;
    调节所述活塞阀中的活塞运动控制件的运动的控制机构,所述控制机构包括控制杆和控制杆运动机构,控制杆可进行旋转或上下运动,其中所述控制杆运动机构包括控制所述控制杆上下运动和旋转的部件,例如电机;
    检测核酸扩增产物的信号检测模块,例如为荧光检测系统;
    对所述芯片的核酸扩增区域进行温控的系统;
    核酸扩增结果分析和/或输出系统,
    所述方法任选包括以下步骤:
    通过所述芯片装置的样品接收模块加入待测样品;
    通过所述芯片装置的样品裂解和核酸提取模块对样品进行裂解反应和/或核酸提取反应,从样品中获得纯化的核酸;
    通过所述核酸扩增模块,用于将核酸样品分配到多个扩增区容器以及对核酸分子进行扩增和/或检测。
PCT/CN2022/102391 2021-06-30 2022-06-29 检测核酸的芯片装置和仪器及其应用 WO2023274301A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22832113.9A EP4365564A1 (en) 2021-06-30 2022-06-29 Chip device and instrument for nucleic acid detection, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110743068.9 2021-06-30
CN202110743068 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023274301A1 true WO2023274301A1 (zh) 2023-01-05

Family

ID=84691452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102391 WO2023274301A1 (zh) 2021-06-30 2022-06-29 检测核酸的芯片装置和仪器及其应用

Country Status (3)

Country Link
EP (1) EP4365564A1 (zh)
CN (2) CN219792985U (zh)
WO (1) WO2023274301A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117264749A (zh) * 2023-11-23 2023-12-22 中国科学院空天信息创新研究院 多指标检测装置及其使用方法
CN117282483A (zh) * 2023-11-23 2023-12-26 中国科学院空天信息创新研究院 分析试管和分析装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222569A1 (en) * 2003-04-25 2006-10-05 Roland Barten Device and method for the preparation of analyte comprising liquids
CN105189784A (zh) * 2013-05-07 2015-12-23 精密公司 用于制备和分析核酸的装置
CN107541452A (zh) * 2017-09-20 2018-01-05 清华大学 一种微流控芯片及芯片组件
US20190212233A1 (en) * 2016-11-29 2019-07-11 Stevan Jovanovich Method and apparatus for processing tissue samples
CN110257245A (zh) * 2019-07-16 2019-09-20 东莞博识生物科技有限公司 核酸检测试剂卡
CN111647498A (zh) * 2020-05-25 2020-09-11 清华大学 一种一体化自助式核酸检测装置及其使用方法
CN112871230A (zh) * 2021-03-05 2021-06-01 江苏汇先医药技术有限公司 一种核酸扩增用的立式微流控芯片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222569A1 (en) * 2003-04-25 2006-10-05 Roland Barten Device and method for the preparation of analyte comprising liquids
CN105189784A (zh) * 2013-05-07 2015-12-23 精密公司 用于制备和分析核酸的装置
US20190212233A1 (en) * 2016-11-29 2019-07-11 Stevan Jovanovich Method and apparatus for processing tissue samples
CN107541452A (zh) * 2017-09-20 2018-01-05 清华大学 一种微流控芯片及芯片组件
CN110257245A (zh) * 2019-07-16 2019-09-20 东莞博识生物科技有限公司 核酸检测试剂卡
CN111647498A (zh) * 2020-05-25 2020-09-11 清华大学 一种一体化自助式核酸检测装置及其使用方法
CN112871230A (zh) * 2021-03-05 2021-06-01 江苏汇先医药技术有限公司 一种核酸扩增用的立式微流控芯片

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117264749A (zh) * 2023-11-23 2023-12-22 中国科学院空天信息创新研究院 多指标检测装置及其使用方法
CN117282483A (zh) * 2023-11-23 2023-12-26 中国科学院空天信息创新研究院 分析试管和分析装置
CN117264749B (zh) * 2023-11-23 2024-02-02 中国科学院空天信息创新研究院 多指标检测装置及其使用方法
CN117282483B (zh) * 2023-11-23 2024-02-02 中国科学院空天信息创新研究院 分析试管和分析装置

Also Published As

Publication number Publication date
EP4365564A1 (en) 2024-05-08
CN115537317A (zh) 2022-12-30
CN219792985U (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
Yin et al. Integrated microfluidic systems with sample preparation and nucleic acid amplification
US8748165B2 (en) Methods for generating short tandem repeat (STR) profiles
US20220034770A1 (en) Sample preparation for difficult sample types
WO2023274301A1 (zh) 检测核酸的芯片装置和仪器及其应用
JP5782384B2 (ja) 未処理試料から核酸を単離するための自己完結型装置および精製方法
Chen et al. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids
Sauer-Budge et al. Low cost and manufacturable complete microTAS for detecting bacteria
US20050221281A1 (en) Self-contained microfluidic biochip and apparatus
EP2261650A2 (en) Microfluidic devices
KR20120051709A (ko) 미세유체 장치 및 이의 용도
EP4170008A1 (en) Sample processing and detection apparatus and application thereof
US20180369819A1 (en) Multi-functional Microfluidics Device for Biological Sample Screening
AU2017235971A1 (en) Nucleic Acid Purification
Han et al. Disposable, pressure-driven, and self-contained cartridge with pre-stored reagents for automated nucleic acid extraction
US8808643B1 (en) Fluidics platform and method for sample preparation and analysis
WO2023186159A1 (zh) 快速检测核酸的芯片装置和仪器以及其应用
Tupik et al. Helicase-Dependent Isothermal Amplification of Nucleic Acids on Microfluidic Array Chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022832113

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18574796

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022832113

Country of ref document: EP

Effective date: 20240130