WO2023273751A1 - 用于发声装置的振膜及发声装置 - Google Patents

用于发声装置的振膜及发声装置 Download PDF

Info

Publication number
WO2023273751A1
WO2023273751A1 PCT/CN2022/095827 CN2022095827W WO2023273751A1 WO 2023273751 A1 WO2023273751 A1 WO 2023273751A1 CN 2022095827 W CN2022095827 W CN 2022095827W WO 2023273751 A1 WO2023273751 A1 WO 2023273751A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
damping
polysiloxane
sio
sound
Prior art date
Application number
PCT/CN2022/095827
Other languages
English (en)
French (fr)
Inventor
王海峰
王婷
李春
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023273751A1 publication Critical patent/WO2023273751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the invention relates to the technical field of acoustic products, in particular to a vibrating membrane used for a sound generating device and a sound generating device.
  • the materials for preparing the diaphragm of the sounding device include elastic materials such as plastics and thermoplastic resins; among them, silicone rubber has good high and low temperature performance, resilience and fatigue resistance, and has a low glass transition temperature. widely used in the process.
  • Acoustic diaphragms prepared from traditional silicone rubber can improve the acoustic performance and reliability of the diaphragm at high temperature and high power, and avoid problems such as membrane folding and rupture;
  • traditional silicone rubber has regular structure, small steric hindrance, small intermolecular friction and low loss because the main chain is mainly Si-O-Si, and the side group is mainly -CH 3 ;
  • the glass transition temperature of traditional silicone rubber is relatively low, generally below -100°C, and the material in the glass transition temperature region has the highest damping.
  • the damping of the traditional silicone rubber diaphragm is low, generally less than 0.1, resulting in high total harmonic distortion (THD) of the speaker using the silicone rubber diaphragm, and poor hearing.
  • TDD total harmonic distortion
  • the object of the present invention is to provide a vibrating membrane and a sounding device for a sounding device to solve the problem of low damping of the traditional silicon rubber diaphragm, high total harmonic distortion THD of the sounding device using the vibrating film, and poor listening ability. Poor, poor user experience and other issues.
  • the present invention provides a vibrating membrane for a sounding device, wherein the vibrating membrane is obtained by adding damping additives, fillers, structure control agents, and crosslinking agents to the base polymer, kneading, and It is molded at 80°C to 200°C, wherein the damping additive is selected from one or more polysiloxanes, and the polysiloxane main chain has the structure shown in the following average composition formula 1:
  • the R group is and one of -C 3 H 6 NH 2 ; x, y, and z are all positive integers, and x is 1-1000, y is 1-1000, and z is 1-1000.
  • the damping additive is used in an amount of 1% to 50% of the total weight of the base polymer, damping additive, filler, structure control agent and crosslinking agent.
  • the damping additive is used in an amount of 15% to 25% of the total weight of the base polymer, damping additive, filler, structure control agent and crosslinking agent.
  • the base polymer is a polysiloxane or a combination of several polysiloxanes comprising in its main chain selected from the group consisting of Me2SiO , MeViSiO, MePhSiO, Ph
  • Me2SiO MeViSiO
  • MePhSiO MePhSiO
  • Ph One or several structural units of 2 SiO, the end groups are Me 3 SiO and/or ViMe 2 SiO, wherein Me is methyl, Vi is vinyl, and Ph is phenyl.
  • the base polymer can be one or more of methylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, vinylphenylpolysiloxane .
  • the filler is one or more of silica, mica, graphene, clay, calcium carbonate, carbon nanotubes, kaolin, and talc.
  • the structure control agent is dihydric alcohol, diorganocyclosilyl ether, diorganosilanediol, alkoxysilane, low molar mass hydroxyl silicone oil, organosilicon compound containing Si-N bond, And one or more of the organosilicon compounds containing Si-O-B bonds.
  • the crosslinking agent is 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, 2,5-dimethyl-2,5-di-tert-butylperoxyhexane, di A mixture of one or more of tert-butyl peroxide and dicumyl peroxide; or, the crosslinking agent is one of platinum-containing compound/composition, hydrogen-containing silicone oil, and acetylenic alcohol inhibitor species or several.
  • the damping of the diaphragm is 0.1-0.75.
  • the hardness of the diaphragm is 20A-95A.
  • the tensile strength of the diaphragm is 1 MPa ⁇ 15 MPa.
  • the thickness of the diaphragm is 40 ⁇ m ⁇ 150 ⁇ m.
  • the present invention provides a sound generating device, including a vibration system and a magnetic circuit system matched with the vibration system. coil, the magnetic circuit system drives the voice coil to vibrate to drive the diaphragm to produce sound, and the diaphragm is the diaphragm of the present invention.
  • the present invention also provides another sound generating device, which includes a casing, a magnetic circuit system and a vibration system arranged in the casing, the vibration system includes a voice coil, a first diaphragm and a second diaphragm, and the voice coil
  • the vibration system includes a voice coil, a first diaphragm and a second diaphragm
  • the voice coil The top of the diaphragm is connected with the first diaphragm
  • the magnetic circuit system drives the voice coil to vibrate to drive the first diaphragm to produce sound
  • the two ends of the second diaphragm are respectively connected to the housing and the The bottom of the voice coil is connected
  • the second diaphragm is the diaphragm of the present invention.
  • the present invention adds damping additives and mixes them with basic polymers, fillers, cross-linking agents, and structure control agents to obtain a diaphragm, which can increase the damping of the diaphragm to above 0.10 at room temperature.
  • the sounding device using the diaphragm can obtain lower total harmonic distortion (THD) under the same performance. Excellent clarity, fullness, sense of space, brightness and softness, no abnormal sound and high fidelity, and the diaphragm shakes less during the vibration process, and the listening sound is more stable, which can improve the user experience.
  • TDD total harmonic distortion
  • Fig. 1 is a schematic diagram of a production process for a diaphragm of a sounding device according to an embodiment of the present invention
  • Fig. 2 is the harmonic distortion THD test curve diagram of the vibrating membrane of the embodiment of the present invention and the vibrating membrane of the comparative ratio;
  • Fig. 3 is a schematic structural diagram of a sounding device according to an embodiment of the present invention.
  • FIG. 4 is an exploded schematic diagram of FIG. 3 .
  • 10 is the housing
  • 20 is the magnetic circuit system
  • 31 is the first diaphragm
  • 32 is the second diaphragm
  • 33 is the voice coil.
  • the vibrating membrane used for sounding devices provided by the invention is obtained by kneading base polymer, damping additive, filler, structure control agent and cross-linking agent, and molding at 80°C to 200°C.
  • the damping additive is selected from one or more modified polysiloxanes, and the modified polysiloxane main chain has the structure shown in the following average composition formula 1:
  • the R group is and one of -C 3 H 6 NH 2 ; x, y, and z in the structure are all positive integers. Wherein, x is 1-1000, y is 1-1000, and z is 1-1000.
  • the damping additive of the present invention is a random copolymer, and its average composition formula 1 The three units are randomly distributed and arranged irregularly.
  • the molecular weight of the damping additive in the present invention may be 5,000-200,000.
  • the damping of the diaphragm can be increased to above 0.1, and the sounding device using the diaphragm has lower total harmonic distortion THD, better sounding effect, and no abnormal sound fidelity High, the diaphragm shakes less during the vibration process, and the listening is more stable.
  • the methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane and tetramethyltetravinyl ring Tetrasiloxane is prepared under the condition of basic catalyst and DMSO (dimethyl sulfoxide).
  • DMSO dimethyl sulfoxide
  • the R group it can be prepared by modifying polysiloxane in which the R group in the structure is -C 3 H 6 NH 2 and phthalic anhydride.
  • the R group can be prepared by modifying polysiloxane in which the R group in the structure is -C 3 H 6 NH 2 and 1,8-naphthalene dicarboxylic anhydride.
  • the damping additive of the present invention can be terminated with methyl group or vinyl group, but of course it is not limited thereto.
  • the modified polysiloxane used as a damping additive when the R groups are -C 3 H 6 NH 2
  • the preparation method is as follows.
  • the average composition formula 1 is , the preparation method: add methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane, tetramethyltetravinylcyclotetrasiloxane, basic catalyst, water, DMSO ( Dimethyl sulfoxide) and decamethyltetrasiloxane, heat up to 80°C-120°C in a nitrogen atmosphere, stir for 3-5 hours, vacuumize for 0.5-8 hours, cool down and add acetic acid for neutralization, and heat up to 100°C ⁇ 200°C, remove small molecular substances in the system to obtain the damping additive, namely aminopropyl phenyl silicone oil.
  • DMSO Dimethyl sulfoxide
  • the aminopropylphenyl silicone oil may be terminated with methyl group, vinyl group, etc.
  • the specific value and/or ratio of the raw materials can be determined, such as determining the ring body of methylphenylsiloxane, aminopropylmethyldiethoxysilane, tetramethyl Specific values for yltetravinylcyclotetrasiloxane.
  • the amount of the basic catalyst can be 0.001% of the mass sum of three raw materials, methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane and tetramethyltetravinylcyclotetrasiloxane ⁇ 0.01%.
  • the amount of water used can be 1% to 10% of the sum of the quality of the three raw materials, methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane, and tetramethyltetravinylcyclotetrasiloxane. %.
  • the amount of DMSO can be 100% to 1000% of the sum of the quality of the three raw materials, methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane, and tetramethyltetravinylcyclotetrasiloxane. %.
  • the amount of the decamethyltetrasiloxane can be determined according to the modified polysiloxane with the desired structure, further, the amount of the decamethyltetrasiloxane can be , 0.01% to 10% of the sum of the mass of the three raw materials of aminopropylmethyldiethoxysilane and tetramethyltetravinylcyclotetrasiloxane.
  • the R group is , that is, the average composition formula 1 is , the preparation method: dissolve the aminopropylphenyl silicone oil prepared above in xylene, then add phthalic anhydride, protect it with nitrogen gas, and then reflux at 40-120°C for about 2h-16h, then use
  • the damping additive can be obtained by washing with an aqueous alkali solution to remove unreacted acid anhydride, then separating the organic matter in the upper layer, and extracting the xylene under vacuum and decompression.
  • the R group is , that is, the average composition formula 1 is , the preparation method: dissolve the aminopropylphenyl silicone oil prepared above in xylene, then add 1,8-naphthalene dicarboxylic anhydride, protect it with nitrogen, and then reflux at 40-120°C for about 2h-16h , wash with alkaline aqueous solution to remove unreacted acid anhydride, then separate the organic matter in the upper layer, and extract the xylene under vacuum to obtain the damping additive.
  • one or more of the following three specific modified polysiloxanes can be used as damping additives.
  • the first modified polysiloxane the R group is x is 100, y is 50 and z is 30.
  • the second modified polysiloxane the R group is x is 300, y is 200 and z is 90.
  • the third modified polysiloxane is -C 3 H 6 NH 2 , specifically -(CH 2 ) 3 NH 2 , x is 200, y is 100, and z is 60.
  • the damping additive is used in an amount of 1% to 50% of the total weight of the base polymer, damping additive, filler, structure control agent and crosslinking agent.
  • the damping additive can be added in an amount of 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50%, etc.
  • the damping of the diaphragm is increased to 0.1 to 0.75, for example, it can be 0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 , 0.65, 0.7 and 0.75 etc.
  • the Shore hardness of the diaphragm is 20A-95A, for example, 20A, 30A, 35A, 40A, 45A, 50A, 55A, 60A, 70A, 80A, 90A and 95A.
  • the elongation at break of the diaphragm is 150% to 750%, such as 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 550%, 600%, 650% %, 700% and 750% etc.
  • the thickness of the diaphragm is 40 ⁇ m-150 ⁇ m; for example, it can be 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m and 150 ⁇ m.
  • the tensile strength of the diaphragm is 1MPa ⁇ 15MPa, for example, 1MPa, 5MPa, 10MPa, 15MPa and so on. It can be seen that in this embodiment, the damping of the diaphragm can be increased to 0.1-0.75 by controlling the addition amount of the damping additive at 1%-50%, and the mechanical properties of the diaphragm are better.
  • the amount of the damping additive is 15% to 25% of the total weight of the five raw materials of the base polymer, damping additive, filler, structure control agent and crosslinking agent, for example, it can be 17%, 19% , 21% and 23% etc.
  • the damping of the diaphragm can be 0.3-0.65, such as 0.3, 0.4, 0.45, 0.5, 0.55, 0.6 and 0.65;
  • the Shore hardness of the diaphragm is 40A to 70A; the elongation at break of the diaphragm is 230% to 650%; the tensile strength of the diaphragm is 3MPa to 15MPa, such as 3MPa, 6MPa, 9MPa and 13MPa etc. It can be seen that by optimizing the addition amount of the damping additive, not only the damping of the diaphragm can be improved, but also the diaphragm can have better mechanical properties.
  • the base polymer can be a commonly used siloxane polymer.
  • the base polymer may be a polysiloxane or a mixture of several polysiloxanes, and the polysiloxane includes in its main chain selected from Me 2 SiO, MeViSiO, MePhSiO, Ph 2 One or several structural units of SiO, the end groups are Me 3 SiO and/or ViMe 2 SiO.
  • the base polymer can be one or more selected from phenylsiloxane-free polymers, such as polydimethylsiloxane, etc.; it can also be selected from phenylsiloxane-containing polymers One or more of, such as methylphenylpolysiloxane and/or vinylphenylpolysiloxane, etc.; can also include phenylsiloxane-containing polymers and phenylsiloxane-containing polymers one or more of.
  • the phenylsiloxane-free polymer may include one or two structural units selected from MeViSiO and Me 2 SiO in its main chain, and its terminal group is Me 3 SiO or ViMe 2 SiO. Methyl or vinyl-terminated; Me is methyl, Vi is vinyl; molecular weight can be 2000-1000000.
  • the base polymer can be polydimethylsiloxane and/or methyl vinyl polysiloxane; for example, the base polymer can be methyl silicone rubber, methyl silicone oil, vinyl silicone One or more of rubber and vinyl silicone oil, the materials can be purchased directly.
  • the present invention uses a phenylsiloxane-free polymer as the base polymer, which can ensure that the diaphragm has mechanical properties such as high and low temperature resistance, high rebound, and fatigue resistance, and can improve the acoustic performance of the diaphragm under high power, and must To a certain extent, the probability of membrane folding or rupture can be reduced.
  • the phenyl-containing siloxane polymer may be a structural unit including Me 2 SiO/ and MeViSiO and one or both of MePhSiO and Ph 2 SiO in its main chain, and its terminal group is Me 3 SiO Or ViMe 2 SiO is terminated with a methyl group or a vinyl group; wherein, Me is a methyl group, Vi is a vinyl group, and Ph is a phenyl group; the molecular weight can be 2,000 to 1,000,000.
  • the present invention adopts the above-mentioned phenyl-containing siloxane polymer as the basic polymer, and the introduced polar phenyl group can destroy the regularity of the siloxane polymer structure, increase the friction between molecules, reduce the The crystallinity of the polymer is improved, and the structure of the siloxane polymer is improved, so that the damping of the diaphragm can be further improved.
  • the phenyl content in the phenyl-containing siloxane polymer, by weight, can be 0.5% to 75%, for example, it can be 1%, 5%, 10%, 15%, 20%, 25% %, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70% and 75%, etc., preferably, the phenyl content is 5% to 15%.
  • This preferred range can not only improve the damping of the diaphragm, but also make the mechanical properties of the diaphragm more excellent.
  • the phenyl-containing siloxane polymer can be one or more selected from methylphenylpolysiloxane, and/or one or more selected from vinylphenylpolysiloxane or more.
  • the base polymer can be one or more of methyl phenyl silicone rubber, methyl phenyl silicone oil, vinyl phenyl silicone rubber, vinyl phenyl silicone oil, all of which can be purchased directly .
  • the methylphenyl polysiloxane includes Me 2 SiO and one or two structural units selected from MePhSiO and Ph 2 SiO in its main chain, and the terminal group is Me 3 SiO, Wherein Me is a methyl group and Ph is a phenyl group.
  • it can be methyl phenyl polysiloxane with Me 2 SiO and MePhSiO as the main chain and Me 3 SiO terminal; or it can be Me 2 SiO and Ph 2 SiO as the main chain with Me 3 SiO terminal or methyl phenyl polysiloxane with Me 2 SiO, MePhSiO, Ph 2 SiO as the main chain and Me 3 SiO end groups.
  • the above-mentioned methylphenyl polysiloxanes can be directly purchased and used.
  • the methyl phenyl polysiloxane in the embodiment of the present invention is a methyl phenyl polysiloxane with Me 2 SiO and MePhSiO as the main chain, Me 3 SiO end groups, and a phenyl content of 7%. Not limited to this.
  • the vinylphenyl polysiloxane includes MeViSiO and Me 2 SiO and one or two structural units selected from MePhSiO and Ph 2 SiO in its main chain, and the terminal group is Me 3 SiO or ViMe 2 SiO, where Me is a methyl group, Vi is a vinyl group, and Ph is a phenyl group.
  • the phenyl-containing siloxane polymer can be vinyl phenyl polysiloxane with MeViSiO, Me 2 SiO, MePhSiO as the main chain and ViMe 2 SiO as the end group; or it can be based on MeViSiO, Me 2 SiO, MePhSiO, Ph 2 SiO as the main chain, vinyl phenyl polysiloxane with Me 3 SiO as the end group; or MeViSiO, Me 2 SiO, MePhSiO, Ph 2 SiO as the main chain Chain, vinyl phenyl polysiloxane with ViMe 2 SiO as the end group.
  • the above-mentioned vinylphenyl polysiloxanes can be directly purchased and used.
  • Me represents methyl (-CH 3 )
  • Ph represents phenyl
  • Me 2 SiO, MeViSiO, MePhSiO, Ph 2 SiO, Me 3 SiO, and ViMe 2 SiO are respectively
  • the material used as the base polymer in the present invention can be one of Me 2 SiO, MeViSiO, MePhSiO, Ph 2 SiO or Several kinds of siloxane polymers with Me 3 SiO or ViMe 2 SiO as the main chain and end groups; phenyl groups in phenyl-containing siloxane polymers exist in the structure of MePhSiO or Ph 2 SiO.
  • the base polymer is one or more of methylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, vinylphenylpolysiloxane , which can be directly purchased and used from various manufacturers.
  • the filler may be one or more of silica, mica, graphene, clay, calcium carbonate, carbon nanotubes, kaolin, and talcum powder. But not limited thereto, other fillers not listed in this embodiment but well known to those skilled in the art may also be used.
  • the filler is silica, which can improve the fatigue resistance and other properties of the material, has better processing performance and dispersibility, can make the filler and the base polymer more tightly combined, and enhance the reinforcing effect of the filler. It makes the diaphragm not easy to rupture during vibration.
  • the structure control agent can be dihydric alcohol, diorganocyclosilyl ether, diorganosilanediol, alkoxysilane, low molar mass hydroxyl silicone oil, Si-N bond-containing organic One or more of silicon compounds and organosilicon compounds containing Si-O-B bonds.
  • low molar mass hydroxy silicone oil generally refers to hydroxy silicone oil with a molecular weight lower than 100,000.
  • the structure control agent is hydroxy silicone oil and/or hydroxy vinyl silicone oil, wherein the hydroxy silicone oil in the embodiment of the present invention is selected from hydroxy silicone oil with a molecular weight of 50,000 to 60,000, and the hydroxy silicone oil within this molecular weight range can simplify
  • the silicone rubber processing technology improves the process performance; the hydroxy vinyl silicone oil can improve the temperature resistance and weather resistance of the material as a structure control agent in the silicone rubber processing.
  • the crosslinking agent can use any one of the following two types.
  • the first crosslinking agent is: a mixture of one or more compounds containing peroxy groups; wherein, the compounds containing peroxy groups include 2,4-dichlorobenzoyl peroxide, Benzoyl Peroxide, 2,5-Dimethyl-2,5-Di-tert-Butyl Hexyl Peroxide, Di-tert-Butyl Peroxide, and Dicumyl Peroxide.
  • the second crosslinking agent includes: one or more compositions of compounds containing platinum, hydrogen-containing silicone oil, and one or more of acetylenic alcohol inhibitors.
  • the compound containing platinum element may be, for example, an alcohol solution of chloroplatinic acid, platinum(0)-1,3-diethylene-1,1,3,3-tetramethyldisiloxane, and the like.
  • the hydrogen-containing silicone oil may be side-side hydrogen-containing silicone oil, end-side hydrogen-containing silicone oil or terminal hydrogen silicone oil.
  • the acetylenic alcohol inhibitor can be, for example, 1-ethynylcyclohexanol and the like.
  • the first crosslinking agent is preferably 2,5-dimethyl-2,5-di-tert-butylperoxyhexane.
  • the second crosslinking agent is preferably an alcohol solution of chloroplatinic acid, an acetylenic alcohol inhibitor, and a mixture selected from side hydrogen silicone oil, terminal side hydrogen silicone oil and terminal hydrogen silicone oil as a crosslinking agent, wherein each component
  • the dosage is not specifically limited.
  • the alcohol solution of chloroplatinic acid can be prepared by the following method: add 3g of chloroplatinic acid H 2 PtCl 6 .6H 2 O into 100ml of anhydrous isopropanol, stir well to dissolve the chloroplatinic acid for 4 hours ⁇ 8h, and then let the solution stand still for 12h ⁇ 14h to prepare the complex catalyst of chloroplatinic acid and isopropanol.
  • Fig. 1 schematically shows a production process flow of a diaphragm.
  • the production process of the diaphragm includes: first kneading/mixing the base polymer, filler, structure control agent, and damping additive in a kneader/internal mixer at 80°C to 150°C under reduced pressure The mixed rubber is kneaded and cooled to normal temperature for use; then a cross-linking agent is added for kneading/kneading, and the vibrating film is prepared by injection molding or molding at 80°C to 200°C.
  • each raw material may include: 40% to 90% of the base polymer; 3% to 60% of the filler; 1% to 50% of the damping additive, and 0.5% to 10% of the crosslinking agent; The proportion of the structure control agent is 1%-10%, and the total content of each raw material is 100%.
  • the present invention also provides a sound generating device, which may include a vibrating system and a magnetic circuit system matched with the vibrating system, and the vibrating system includes a vibrating membrane and a voice coil combined on one side of the vibrating membrane.
  • the voice coil can vibrate up and down under the action of the magnetic field force of the magnetic circuit system after the voice coil is energized to drive the vibration of the diaphragm, and the sound can be produced when the diaphragm vibrates.
  • the sound generating device prepared by adopting the diaphragm of the present invention can obtain lower total harmonic distortion (THD) under the same performance, and the THD can be as low as 12% at low frequencies, and the sound generating device has better sound effect , If the sound quality is good, it can have high clarity, fullness, sense of space, brightness and softness, no abnormal sound, high fidelity, and less shaking vibration during the vibration process, and the listening sound is more stable.
  • THD total harmonic distortion
  • the present invention also proposes a sounding device.
  • the sounding device may include a housing 10 and a magnetic circuit system 20 and a vibration system disposed in the housing 10, and the vibration system may include a voice coil 33, The first diaphragm 31 and the second diaphragm 32, wherein the top of the voice coil 33 is connected to the first diaphragm 31, the magnetic circuit system 20 drives the voice coil 33 to vibrate to drive the first diaphragm 31 to sound, and the second diaphragm 32 The two ends of are respectively connected to the bottom of the housing 10 and the voice coil 33 .
  • the second diaphragm 32 may be the diaphragm according to the above embodiments of the present invention.
  • the first diaphragm 31 can be used to vibrate and produce sound
  • the second diaphragm 32 can be used to balance the vibration of the voice coil 33 .
  • the voice coil 33 can vibrate up and down under the action of the magnetic field force of the magnetic circuit system 20 after the voice coil 33 is energized to drive the first diaphragm 31 to vibrate.
  • the first diaphragm 31 vibrates, it can Make a sound.
  • the second diaphragm 32 can also vibrate up and down following the voice coil 33.
  • the second diaphragm 32 can balance the vibration of the voice coil 33, preventing Polarization occurs in the voice coil 33 , so that the sounding effect of the sounding device can be improved.
  • first diaphragm 31 and the second diaphragm 32 can adopt the diaphragm of the above-mentioned embodiments of the present invention at the same time, or one of the first diaphragm 31 and the second diaphragm 32 can adopt the present invention.
  • the diaphragm of the above embodiment is not specifically limited in the present invention.
  • one or more of the following three modified polysiloxanes are used as damping additives.
  • Aminopropylphenyl silicone oil whose R group is -C 3 H 6 NH 2 , x is 200, y is 100, and z is 60.
  • methylphenylsiloxane ring body aminopropylmethyldiethoxysilane, tetramethyltetravinylcyclotetrasiloxane, basic catalyst, water, DMSO (dimethyl sulfoxide) and ten
  • methyltetrasiloxane heat up to 90°C in a nitrogen atmosphere, stir for 3.5 hours, vacuumize for 1 hour, cool down and add acetic acid to neutralize, raise the temperature to 150°C, remove small molecular substances in the system, and obtain the third polysilicon Oxane is aminopropylphenyl silicone oil, wherein the basic catalyst is potassium hydroxide, and the aminopropylphenyl silicone oil is terminated with a methyl group.
  • the mass ratio of the methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane and tetramethyltetravinylcyclotetrasiloxane is 41:29:30.
  • the dosage of the basic catalyst is 0.005% of the mass sum of the three raw materials of methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane and tetramethyltetravinylcyclotetrasiloxane.
  • the amount of water used is 1.5% of the mass sum of the three raw materials of methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane and tetramethyltetravinylcyclotetrasiloxane.
  • the dosage of the DMSO is 200% of the mass sum of the three raw materials of methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane and tetramethyltetravinylcyclotetrasiloxane.
  • the consumption of described decamethyltetrasiloxane is the sum of three kinds of raw material quality of methylphenylsiloxane ring body, aminopropylmethyldiethoxysilane, tetramethyltetravinylcyclotetrasiloxane 2%.
  • the R group is Polysiloxane where x is 100, y is 50, and z is 30.
  • the R group is Polysiloxane where x is 300, y is 200, and z is 90.
  • Methyl vinyl polysiloxane is used as the base polymer
  • silica is used as the filler
  • hydroxyl silicone oil is used as the structure control agent
  • 2,5-dimethyl-2,5-di-tert-butylperoxyhexane is used as the cross-linking agent.
  • Joint agent without adding damping additives. Specifically, in terms of mass percentage, 65% of methyl vinyl polysiloxane, 30% of silicon dioxide, 3% of hydroxyl silicone oil, 2,5-dimethyl-2,5-di-tert-butyl peroxide 2% alkane for batching.
  • the basic polymer, filler and structure control agent are mixed in an internal mixer under reduced pressure at 100°C to obtain a mixed rubber, which is cooled to room temperature for use; then a crosslinking agent is added to the mixed rubber for mixing, and Vulcanize and mold at 150°C to obtain a diaphragm with a thickness of 100 ⁇ m.
  • the Shore hardness of the vibrating membrane of the comparative example 1 is about 50A, and the damping of the vibrating membrane is only 0.07; the elongation at break is 430%, and the tensile strength is 8.5MPa; Wave distortion THD test curve is shown in Figure 2, at 100Hz frequency, THD is above 30%. It can be seen that the comparative diaphragm has low damping, high harmonic distortion, and poor sound producing effect.
  • Polydimethylsiloxane is used as the base polymer, silica is used as the filler, the above-mentioned first modified polysiloxane is added as the damping additive, and hydroxyvinyl silicone oil and hydroxy silicone oil are used as the structure control agent , using 2,5-dimethyl-2,5-di-tert-butylperoxyhexane as a crosslinking agent.
  • hydroxyvinyl silicone oil and hydroxy silicone oil are used as the structure control agent , using 2,5-dimethyl-2,5-di-tert-butylperoxyhexane as a crosslinking agent.
  • mass percentage according to polydimethylsiloxane 80%, silicon dioxide 9%, damping additive 3%, hydroxyvinyl silicone oil 3%, hydroxy silicone oil 3%, 2,5-dimethyl- 2,5-di-tert-butylperoxyhexane 2%, for batching.
  • the Shore hardness of the vibrating film of this embodiment is about 20A, and the damping of the vibrating film is 0.11; the elongation at break is about 721%, and the tensile strength is 5.0MPa;
  • the wave distortion THD test curve is shown in FIG. 2 .
  • the THD of this embodiment is reduced by about 25% at a frequency of 100 Hz.
  • the damping of the diaphragm is improved, the THD is reduced, and the mechanical properties are better.
  • the speaker using this diaphragm has high definition, fullness, sense of space, brightness and softness, no abnormal sound and high fidelity, and the diaphragm shakes less during the vibration process, and the listening is more stable.
  • Methyl vinyl polysiloxane is used as the base polymer, silicon dioxide is used as the filler, the above-mentioned first modified polysiloxane is added as the damping additive, and hydroxyvinyl silicone oil is used as the structure control agent. Hydrogen silicone oil, acetylenic alcohol inhibitor and alcohol solution of chloroplatinic acid are used as crosslinking agent. Specifically, in terms of mass percentage, 75% of methyl vinyl polysiloxane, 10% of silicon dioxide, 10% of damping additive, 2% of hydroxyvinyl silicone oil, 2.5% of end-side hydrogen silicone oil and propargyl alcohol inhibitor %, 0.5% alcohol solution of chloroplatinic acid for batching.
  • the Shore hardness of the second diaphragm of this embodiment is about 35A, and the damping of the diaphragm is 0.17; the elongation at break is about 654%, and the tensile strength is 6.5MPa; the harmonic of the loudspeaker using the diaphragm is
  • the wave distortion THD test curve is shown in Figure 2. At a frequency of 100 Hz, the THD is about 21%.
  • the damping of the diaphragm is improved, THD is reduced, and it has excellent mechanical properties.
  • the speaker using this diaphragm has high definition, fullness, sense of space, brightness and softness, no abnormal sound and high fidelity, and the diaphragm shakes less during the vibration process, and the listening is more stable.
  • Methyl vinyl polysiloxane is used as the base polymer, silica is used as the filler, the above-mentioned third modified polysiloxane is added as the damping additive, and hydroxy vinyl silicone oil and hydroxy silicone oil are used as the structure control agent, the alcohol solution containing hydrogen silicone oil, acetylenic alcohol inhibitor and chloroplatinic acid is used as the crosslinking agent.
  • the Shore hardness of the vibrating membrane of this embodiment is about 60A, and the damping of the vibrating membrane is 0.45; the elongation at break is about 632%, and the tensile strength is 9.0MPa;
  • the wave distortion THD test curve is shown in Figure 2. At a frequency of 100 Hz, the THD is about 19%.
  • the damping of the diaphragm is improved, the THD is reduced, and it has excellent mechanical properties.
  • the speaker using this diaphragm has high definition, fullness, sense of space, brightness and softness, no abnormal sound and high fidelity, and the diaphragm shakes less during the vibration process, and the listening is more stable.
  • the damping additive uses hydroxyl silicone oil as a structure control agent and 2,5-dimethyl-2,5-di-tert-butylperoxyhexane as a crosslinking agent. Specifically, in terms of mass percentage, 25% of methyl vinyl polysiloxane, 25% of methyl phenyl polysiloxane, 16% of silicon dioxide, 9% of the first polysiloxane damping additive, and 9% of the first polysiloxane damping additive. 20% of two kinds of polysiloxane damping additives, 2% of hydroxy silicone oil, and 3% of 2,5-dimethyl-2,5-di-tert-butylperoxyhexane are used for batching.
  • the Shore hardness of the first diaphragm of this embodiment is about 65A, and the damping of the diaphragm is 0.62; the elongation at break is about 232%, and the tensile strength is 7.3MPa; the harmonic of the loudspeaker using the diaphragm is
  • the wave distortion THD test curve is shown in Figure 2. At a frequency of 100 Hz, the THD is about 15%.
  • methyl phenyl polysiloxane as the base polymer, silica as the filler, adding the above-mentioned first and second modified polysiloxanes together as damping additives, and using hydroxyl silicone oil as the structure control agent, 2,5-dimethyl-2,5-di-tert-butylperoxyhexane is used as a cross-linking agent.
  • the Shore hardness of the first diaphragm of this embodiment is about 90A, and the damping of the diaphragm is 0.73; the elongation at break is about 153%, and the tensile strength is 7.0MPa; the resonance of the loudspeaker using the diaphragm is Wave distortion THD test curve is shown in Figure 2, at 100Hz frequency, THD is about 12%.
  • the diaphragm damping in Embodiment 1 to Embodiment 5 of the present invention is all above 0.11; and as shown in Figure 2, when the frequency is 100 Hz to 1000 Hz, the THD of the present invention is much lower than that of Comparative Example 1, for example, at the frequency When it is 100Hz, the THD of Comparative Example 1 is about 32%, while that of Embodiment 1 to Embodiment 5 of the present invention is about 26%, 22%, 19%, 15%, and 12% respectively; it can be seen that Embodiments 1 to 5 of the present invention pass Adding damping additives increases the damping loss of the diaphragm and reduces THD.
  • the damping additive amount of the present invention is preferably 15-25%.
  • the damping of the diaphragm is increased to above 0.11, the mechanical performance of the diaphragm can also be guaranteed not to decrease.
  • the sound generating device using this diaphragm can also obtain lower total harmonic distortion (THD) under the same performance, with Better acoustic performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

一种用于发声装置的振膜及发声装置,所述振膜是在基础聚合物中添加阻尼添加剂、填料、结构控制剂、交联剂,经混炼,并在80℃~200℃成型得到,其中,所述阻尼添加剂选自聚硅氧烷中的一种或多种,所述聚硅氧烷主链中具有平均组成式1所示结构式(1) ,其中,R基团为式 (2)、式(3) 、以及-C 3H 6NH 2中的一种,通过添加阻尼添加剂,可以提高振膜阻尼,减少发声装置的失真。

Description

用于发声装置的振膜及发声装置 技术领域
本发明涉及声学产品技术领域,特别是涉及一种用于发声装置的振膜及发声装置。
背景技术
目前制备发声装置振膜的材料包括塑料、热塑性树脂等弹性体材料;其中,硅橡胶因其具有良好的高低温性能、回弹性能和抗疲劳性能,且玻璃化温度较低,在制作振膜过程中被广泛应用。
传统的硅橡胶例如甲基硅橡胶、乙烯基硅橡胶等制备得到的声学振膜,虽然可以改善振膜在高温及大功率下的声学性能及可靠性,避免出现膜折以及破膜等问题;但是,传统的硅橡胶一方面因为主链主要为Si-O-Si,且侧基主要为-CH 3,结构规整,空间位阻小,分子间摩擦力小,损耗较低;另一方面,传统硅橡胶的玻璃化温度较低,一般在-100℃以下,而玻璃化温度区域内材料的阻尼最高。因此,在其使用温度和频率范围内,传统硅橡胶振膜的阻尼较低,一般小于0.1,从而导致使用所述硅橡胶振膜的扬声器总谐波失真(THD)偏高,听音差,用户使用体验较差,故限制了其在高性能发声装置领域中的应用。
发明内容
基于上述问题,本发明的目的在于提供一种用于发声装置的振膜及发声 装置,以解决传统硅橡胶振膜阻尼低、使用所述振膜的发声装置总谐波失真THD高、听音差、用户体验差等问题。
本发明的上述目的是通过以下技术方案实现的:
根据本发明的一个方面,本发明提供的一种用于发声装置的振膜,所述振膜是在基础聚合物中添加阻尼添加剂、填料、结构控制剂、交联剂,经混炼,并在80℃~200℃成型得到,其中,所述阻尼添加剂选自聚硅氧烷中的一种或多种,所述聚硅氧烷主链中具有如下平均组成式1所示结构:
[平均组成式1]
Figure PCTCN2022095827-appb-000001
其中,R基团为
Figure PCTCN2022095827-appb-000002
以及-C 3H 6NH 2中的一种;x,y,z均为正整数,且x为1~1000,y为1~1000,z为1~1000。
可选地,所述阻尼添加剂的用量为所述基础聚合物、阻尼添加剂、填料、结构控制剂和交联剂总重量的1%~50%。优选地,所述阻尼添加剂的用量为所述基础聚合物、阻尼添加剂、填料、结构控制剂和交联剂总重量的15%~25%。
可选地,所述基础聚合物为一种聚硅氧烷或几种聚硅氧烷的组合物,所述聚硅氧烷在其主链中包括选自Me 2SiO、MeViSiO、MePhSiO、Ph 2SiO中的一种或几种的结构单元,端基为Me 3SiO和/或ViMe 2SiO,其中,Me为甲基,Vi为乙烯基,Ph为苯基。
进一步地,所述基础聚合物可以为甲基聚硅氧烷、甲基乙烯基聚硅氧烷、甲基苯基聚硅氧烷、乙烯基苯基聚硅氧烷中的一种或几种。
可选地,所述填料为二氧化硅、云母、石墨烯、粘土、碳酸钙、碳纳米管、高岭土、以及滑石粉中的一种或几种。
可选地,所述结构控制剂为二元醇、二有机基环硅醚、二有机基硅二醇、烷氧基硅烷、低摩尔质量的羟基硅油、含Si-N键的有机硅化合物、以及含Si-O-B键的有机硅化合物中的一种或几种。
可选地,所述交联剂为2,4-二氯过氧化苯甲酰、过氧化苯甲酰、2,5-二甲基-2,5-二叔丁基过氧化己烷、二叔丁基过氧化物以及过氧化二异丙苯的一种或几种的混合物;或者,所述交联剂为含有铂元素化合物/组合物、含氢硅油、以及炔醇抑制剂中的一种或几种。
可选地,所述振膜的阻尼为0.1~0.75.
可选地,所述振膜的硬度为20A~95A。
可选地,所述振膜的拉伸强度为1MPa~15MPa。
可选地,所述振膜的厚度为40μm~150μm。
根据本发明的另一个方面,本发明提供一种发声装置,包括振动系统以及与所述振动系统相配合的磁路系统,所述振动系统包括振膜和结合在所述振膜一侧的音圈,所述磁路系统驱动所述音圈振动以带动所述振膜发声,所述振膜为本发明的振膜。
本发明还提供另一种发声装置,包括壳体以及设在所述壳体内的磁路系统和振动系统,所述振动系统包括音圈、第一振膜和第二振膜,所述音圈的顶部与所述第一振膜相连,所述磁路系统驱动所述音圈振动以带动所述第一振膜发声,所述第二振膜的两端分别与所述壳体和所述音圈的底部相连,所 述第二振膜为本发明的振膜。
与现有技术相比,本发明通过添加阻尼添加剂,将其与基础聚合物、填料、交联剂、结构控制剂经混炼加热成型得到振膜,可将常温下振膜阻尼提高至0.10以上。使用所述振膜的发声装置,在相同性能下,可获得更低的总谐波失真(THD),例如低频下THD可低至12%左右,发声装置能够具有更好的发声效果,较高的清晰度、丰满度、空间感、明亮度和柔和度,无异音保真度高,而且振膜在振动过程中摇摆振动少,听音更稳定,从而可提高用户体验。
附图说明
图1是本发明一实施例用于发声装置的振膜的生产工艺流程示意图;
图2是本发明实施例振膜与对比例振膜的谐波失真THD测试曲线图;
图3是本发明一实施例发声装置的结构示意图;
图4是图3的分解示意图。
其中,图3-图4中,10壳体,20磁路系统,31第一振膜,32第二振膜,33音圈。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的用于发声装置的振膜,是通过将基础聚合物、阻尼添加剂、填料、结构控制剂、交联剂,经混炼,并在80℃~200℃成型得到。其中,所述阻尼添加剂选自一种或多种改性后的聚硅氧烷,所述改性后的聚硅氧烷主链中具有如下平均组成式1所示结构:
[平均组成式1]
Figure PCTCN2022095827-appb-000003
其中,R基团为
Figure PCTCN2022095827-appb-000004
以及-C 3H 6NH 2中的一种;所述结构中的x,y,z均为正整数。其中,x为1~1000,y为1~1000,z为1~1000。
需要说明的是,本发明阻尼添加剂为无规共聚物,其平均组成式1中的
Figure PCTCN2022095827-appb-000005
三种单元是随机分布无规则排列的。
进一步地,本发明中所述阻尼添加剂的分子量可以为5000~200000。
本发明通过添加上述阻尼添加剂,可使振膜的阻尼提升至0.1以上,采用所述振膜的发声装置具有更低的总谐波失真THD,具有更好的发声效果,无异音保真度高,振膜在振动过程中摇摆振动少,听音更稳定。
可选实施例中,当R基团为-C 3H 6NH 2时,可以通过甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷以及四甲基四乙烯基环四硅氧烷在碱性催化剂和DMSO(二甲基亚枫)条件下制备得到。当R基团为
Figure PCTCN2022095827-appb-000006
时,可以通过所述 结构中R基团为-C 3H 6NH 2的改性的聚硅氧烷与邻苯二甲酸酐制备得到。当R基团为
Figure PCTCN2022095827-appb-000007
时,可以通过所述结构中R基团为-C 3H 6NH 2的改性后的聚硅氧烷与1,8-萘二甲酸酐制备得到。本发明阻尼添加剂可以以甲基、乙烯基来封端,当然并不限于此。
具体地,作为阻尼添加剂的改性后的聚硅氧烷,当R基团分别为
Figure PCTCN2022095827-appb-000008
Figure PCTCN2022095827-appb-000009
-C 3H 6NH 2时的制备方法如下。
R基团为-C 3H 6NH 2时,即平均组成式1为
Figure PCTCN2022095827-appb-000010
时,制备方法:按计量比例加入甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷,碱性催化剂、水、DMSO(二甲基亚枫)和十甲基四硅氧烷,在氮气气氛中升温至80℃~120℃,搅拌3~5小时,抽真空0.5~8小时,降温加入乙酸中和,升温到100℃~200℃,去除体系中的小分子物质,得到该阻尼添加剂,即氨丙基苯基硅油。所述氨丙基苯基硅油可以是以甲基、乙烯基等来封端。其中,根据具有期望结构的改性聚硅氧烷,可以确定原料的具体值和/或比例,例如确定甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷的具体值。所述碱性催化剂的用量可以为甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三种原料质量之和的0.001%~0.01%。所述水的用量可以为甲基苯基 硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三种原料质量之和的1%~10%。所述DMSO的用量可以为甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三种原料质量之和的100%~1000%。所述十甲基四硅氧烷的用量可以根据具有期望结构的改性聚硅氧烷确定,进一步地,所述十甲基四硅氧烷的用量可以为甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三种原料质量之和的0.01%~10%。
R基团为
Figure PCTCN2022095827-appb-000011
时,即平均组成式1为
Figure PCTCN2022095827-appb-000012
时,制备方法:将上述制备得到的氨丙基苯基硅油用二甲苯溶解,然后加入邻苯二甲酸酐,通氮气保护,然后在40~120℃下冷流回流约2h~16h后,用碱水溶液清洗去除未反应的酸酐,然后分离出上层有机物,真空减压抽出二甲苯,即可得到该阻尼添加剂。
R基团为
Figure PCTCN2022095827-appb-000013
时,即平均组成式1为
Figure PCTCN2022095827-appb-000014
时,制备方法:将上述制备得到的氨丙基苯基硅油用二甲苯溶解然后加入1,8-萘二甲酸酐,通氮气保护,然后在40~120℃下冷流回流约2h~16h后,用碱水溶液清 洗去除未反应的酸酐,然后分离出上层有机物,真空减压抽出二甲苯,即可得到该阻尼添加剂。
在具体实施例中,可以采用下述的三种具体的改性后聚硅氧烷中一种或多种作为阻尼添加剂。
第一种改性后聚硅氧烷:R基团为
Figure PCTCN2022095827-appb-000015
x为100,y为50,z为30。
第二种改性后聚硅氧烷:R基团为
Figure PCTCN2022095827-appb-000016
x为300,y为200,z为90。
第三种改性后聚硅氧烷:R基团为-C 3H 6NH 2,具体为-(CH 2) 3NH 2,x为200,y为100,z为60。
本发明中,所述阻尼添加剂的用量为基础聚合物、阻尼添加剂、填料、结构控制剂和交联剂总重量的1%~50%。例如,阻尼添加剂的添加量可以为1%、5%、10%、15%、20%、25%、30%、35%、40%、45%和50%等。该实施例通过将阻尼添加剂添加量控制在1%~50%,使得所述振膜的阻尼提升至0.1~0.75,例如可以为0.1、0.2、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7和0.75等。所述振膜的邵氏硬度为20A~95A,例如可以为20A、30A、35A、40A、45A、50A、55A、60A、70A、80A、90A和95A等。所述振膜的断裂伸长率为150%~750%,例如可以为150%、200%、250%、300%、350%、400%、450%、500%、550%、600%、650%、700%和750%等。所述振膜的厚度为40μm~150μm;例如可以为40μm、50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm和150μm等。所述振膜的拉伸强度为1MPa~15MPa,例如可以为1MPa、5MPa、10MPa、15MPa等。可见,该 实施例通过将阻尼添加剂添加量控制在1%~50%,可以将振膜阻尼提升至0.1~0.75,且该振膜的力学性能较好。
在一优选实施例中,所述阻尼添加剂的用量为基础聚合物、阻尼添加剂、填料、结构控制剂和交联剂五种原材料总重量的15%~25%,例如可以为17%、19%、21%和23%等。本发明该实施例通过将阻尼添加剂的用量控制在上述优选范围内,可以使得所述振膜的阻尼为0.3~0.65,例如可以为0.3、0.4、0.45、0.5、0.55、0.6和0.65等;所述振膜的邵氏硬度为40A~70A;所述振膜的断裂伸长率为230%~650%;所述振膜的拉伸强度为3MPa~15MPa,例如可以为3MPa、6MPa、9MPa和13MPa等。可见,通过优化阻尼添加剂的添加量,不仅可以提高振膜的阻尼,而且还可以保证振膜具有更优异的力学性能。
本发明中,所述基础聚合物可以选用常用的硅氧烷聚合物。进一步地,所述基础聚合物可以为一种聚硅氧烷或几种聚硅氧烷的混合物,所述聚硅氧烷在其主链中包括选自Me 2SiO、MeViSiO、MePhSiO、Ph 2SiO中的一种或几种的结构单元,端基为Me 3SiO和/或ViMe 2SiO。所述基础聚合物可以是选自不含苯基硅氧烷聚合物中的一种或多种,例如聚二甲基硅氧烷等;也可以是选自含苯基硅氧烷聚合物中的一种或多种,例如甲基苯基聚硅氧烷和/或乙烯基苯基聚硅氧烷等;还可以是包括含苯基硅氧烷聚合物和含苯基硅氧烷聚合物中的一种或多种。
所述不含苯基硅氧烷聚合物可以为在其主链中包括选自MeViSiO、Me 2SiO中的一种或两种的结构单元,其端基为Me 3SiO或ViMe 2SiO即以甲基或乙烯基封端;其中Me为甲基,Vi为乙烯基;分子量可以为2000~1000000。进一步地,所述基础聚合物可以为聚二甲基硅氧烷和/或甲基乙烯基聚硅氧烷; 例如,所述基础聚合物可以为甲基硅橡胶、甲基硅油、乙烯基硅橡胶、乙烯基硅油中的一种或多种,所述材料均可以直接购买得到。本发明采用不含苯基硅氧烷聚合物作为基础聚合物,可以保证振膜具有耐高低温、高回弹、抗疲劳等力学性能,可改善振膜在大功率下的声学性能,且一定程度上可降低出现膜折或破膜现象的概率。
所述含苯基硅氧烷聚合物可以为在其主链中包括Me 2SiO/和MeViSiO以及选自MePhSiO和Ph 2SiO中的一种或两种的结构单元,其端基为Me 3SiO或ViMe 2SiO即以甲基或乙烯基封端;其中,Me为甲基,Vi为乙烯基,Ph为苯基;分子量可以为2000~1000000。本发明通过采用上述含苯基硅氧烷聚合物作为基础聚合物,其引入的极性苯基基团,可以破坏硅氧烷聚合物结构的规整性,增大了分子间的摩擦力,降低了聚合物结晶度,改善了硅氧烷聚合物的结构,从而可以进一步地提高振膜的阻尼。进一步地,所述含苯基硅氧烷聚合物中,以重量计,苯基含量可以为0.5%~75%,例如,可以为1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%和75%等,优选地,苯基含量为5%~15%。该优选范围不仅可以提高振膜阻尼,还可以使得振膜的力学性能更优异。
进一步地,所述含苯基硅氧烷聚合物可以为选自甲基苯基聚硅氧烷中的一种或多种,和/或选自乙烯基苯基聚硅氧烷中的一种或多种。例如,所述基础聚合物可以为甲基苯基硅橡胶、甲基苯基硅油、乙烯基苯基硅橡胶、乙烯基苯基硅油中的一种或多种,所述材料均可以直接购买得到。
本发明中,所述甲基苯基聚硅氧烷在其主链中包括Me 2SiO以及选自MePhSiO和Ph 2SiO中的一种或两种的结构单元,且端基为Me 3SiO,其中Me 为甲基,Ph为苯基。例如,可以为以Me 2SiO和MePhSiO为主链,以Me 3SiO端基的甲基苯基聚硅氧烷;或者可以为以Me 2SiO和Ph 2SiO为主链,以Me 3SiO端基的甲基苯基聚硅氧烷;又或者可以以Me 2SiO、MePhSiO、Ph 2SiO为主链,以Me 3SiO端基的甲基苯基聚硅氧烷。上述的甲基苯基聚硅氧烷均可直接购买使用。本发明实施例中的甲基苯基聚硅氧烷是以Me 2SiO和MePhSiO为主链,以Me 3SiO端基,苯基含量为7%的甲基苯基聚硅氧烷,当然并不限于此。
所述乙烯基苯基聚硅氧烷在其主链中包括MeViSiO和Me 2SiO以及选自MePhSiO和Ph 2SiO中的一种或两种的结构单元,且端基为Me 3SiO或ViMe 2SiO,其中Me为甲基,Vi为乙烯基,Ph为苯基。具体地,例如,所述含苯基硅氧烷聚合物可以为以MeViSiO、Me 2SiO、MePhSiO为主链,以ViMe 2SiO为端基的乙烯基苯基聚硅氧烷;或者可以是以MeViSiO、Me 2SiO、MePhSiO、Ph 2SiO为主链,以Me 3SiO为端基的乙烯基苯基聚硅氧烷;又或者可以是以MeViSiO、Me 2SiO、MePhSiO、Ph 2SiO为主链,以ViMe 2SiO为端基的乙烯基苯基聚硅氧烷。上述的乙烯基苯基聚硅氧烷均可直接购买使用。
上述基础聚合物实施例中,Me代表甲基(-CH 3),Vi代表乙烯基(-CH=CH 2),Ph代表苯基
Figure PCTCN2022095827-appb-000017
Me 2SiO、MeViSiO、MePhSiO、Ph 2SiO、Me 3SiO、ViMe 2SiO以结构式表示分别为
Figure PCTCN2022095827-appb-000018
Figure PCTCN2022095827-appb-000019
本发明中作为基础聚合物的物质,无论是含苯基硅氧烷聚合物还是不含苯基硅氧烷聚合物均可以是以Me 2SiO、MeViSiO、MePhSiO、Ph 2SiO中的一 种或几种为主链,以Me 3SiO或ViMe 2SiO为端基的硅氧烷聚合物;含苯基硅氧烷聚合物中苯基是以MePhSiO或Ph 2SiO结构存在。具体地,例如所述基础聚合物为甲基聚硅氧烷、甲基乙烯基聚硅氧烷、甲基苯基聚硅氧烷、乙烯基苯基聚硅氧烷中的一种或几种,其均可从各厂家直接购买使用。
本发明中,所述填料可以为二氧化硅、云母、石墨烯、粘土、碳酸钙、碳纳米管、高岭土、以及滑石粉中的一种或几种。但不局限于此,也可以是其他未列举在本实施例中的但被本领域技术人员所熟知的其他填料。例如,所述填料为二氧化硅,二氧化硅可以提高材料抗疲劳等性能,具有更好的加工性能,分散性,可使得填料与基础聚合物结合更紧密,增强了填料的补强作用,使得振膜在震动过程中不容易破膜。
本发明实施例中,所述结构控制剂可以为二元醇、二有机基环硅醚、二有机基硅二醇、烷氧基硅烷、低摩尔质量的羟基硅油、含Si-N键的有机硅化合物、以及含Si-O-B键的有机硅化合物中的一种或几种。其中,低摩尔质量的羟基硅油一般是指分子量低于100000的羟基硅油。更优选地,所述结构控制剂为羟基硅油和/或羟基乙烯基硅油,其中,本发明实施例中的所述羟基硅油选择分子量在50000~60000的羟基硅油,该分子量范围内羟基硅油可简化硅橡胶加工工艺,提高工艺性能;所述羟基乙烯基硅油作为硅橡胶加工中结构控制剂可以提高材料的耐温和耐候性。
本发明中,所述交联剂可以采用以下两种中的任意一种。其中,第一种交联剂为:含有过氧基团的化合物的一种或几种的混合物;其中,所述含有过氧基团的化合物包括2,4-二氯过氧化苯甲酰、过氧化苯甲酰、2,5-二甲基-2,5-二叔丁基过氧化己烷、二叔丁基过氧化物以及过氧化二异丙苯。第二种交联 剂为包括:含有铂元素的化合物的一种或几种组合物、含氢硅油、以及炔醇抑制剂中的一种或几种。其中,含有铂元素的化合物例如可以为氯铂酸的醇溶液、铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷等。所述含氢硅油可以为侧氢硅油、端侧含氢硅油或端氢硅油。所述炔醇抑制剂例如可以为1-乙炔基环己醇等。其中,第一种交联剂优选采用2,5-二甲基-2,5-二叔丁基过氧化己烷。第二种交联剂优选采用氯铂酸的醇溶液、炔醇抑制剂、以及选自侧氢硅油、端侧氢硅油和端氢硅油中的一种混合共同作为交联剂,其中各组分用量不做具体限定。本发明实施例中,氯铂酸醇溶液可以通过以下方法制备得到:将3g氯铂酸H 2PtCl 6.6H 2O加入到100ml的无水异丙醇中,充分搅拌使氯铂酸溶解4h~8h,然后将此溶液静止12h~14h,制得氯铂酸与异丙醇的络合物催化剂。
图1示意性示出了一种振膜的生产工艺流程。如图1所示,所述振膜的生产工艺流程包括:先将基础聚合物、填料、结构控制剂、阻尼添加剂在捏合机/密炼机中于80℃~150℃下减压捏合/混炼得到混炼胶,冷却至常温待用;然后加入交联剂捏合/混炼,并在80℃~200℃下通过注塑或模压硫化成型,制备得到振膜。其中,制备过程中,各原材料按照百分含量计,可以包括:基础聚合物40%~90%;填料3%~60%;阻尼添加剂1%~50%,交联剂0.5%~10%;结构控制剂1%~10%进行配比,且各原材料总含量为100%。
本发明还提供一种发声装置,可以包括振动系统和与所述振动系统相配合的磁路系统,所述振动系统包括振膜和结合在所述振膜一侧的音圈。当发声装置工作时,音圈通电后在磁路系统的磁场力的作用下,音圈可以上下振动以带动振膜振动,振膜振动时可以进行发声。采用本发明所述振膜制备的发声装置如扬声器,在相同性能下,可获得更低的总谐波失真(THD),低频 下THD可低至12%,该发声装置具有更好的发声效果,如音质好,能够具有较高的清晰度、丰满度、空间感、明亮度和柔和度,无异音保真度高,且在振动过程中摇摆振动少,听音更稳定。
本发明又提出了一种发声装置,如图3和图4所示,发声装置可以包括壳体10以及设在壳体10内的磁路系统20和振动系统,振动系统可以包括音圈33、第一振膜31和第二振膜32,其中,音圈33的顶部与第一振膜31相连,磁路系统20驱动音圈33振动以带动第一振膜31发声,第二振膜32的两端分别与壳体10和音圈33的底部相连。其中,第二振膜32可以为根据本发明上述实施例中的振膜。
也就是说,第一振膜31可以用于振动发声,第二振膜32可以用于平衡音圈33的振动。具体而言,当发声装置工作时,音圈33通电后在磁路系统20的磁场力的作用下,音圈33可以上下振动以带动第一振膜31振动,第一振膜31振动时可以进行发声。第二振膜32也可以跟随音圈33上下振动,由于第二振膜32的两端分别与壳体10和音圈33的底部相连,第二振膜32可以平衡音圈33的振动,可以防止音圈33出现偏振的现象,从而可以提升发声装置的发声效果。
需要进行说明的是,可以将第一振膜31和第二振膜32同时采用本发明上述实施例的振膜,也可以是第一振膜31和第二振膜32中的一个采用本发明上述实施例的振膜,本发明对此不作具体限制。
下面结合附图、具体实施例一至实施例五、及对比例一对本发明的技术方案做进一步说明。显然,以下示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对比例一、实施例一至实施例五物性检测中,阻尼/拉伸强度采用动态机械分析仪,测试频率1Hz;硬度检测标准为GB/T 1698-2003;断裂伸长率检测标准:GB/T 1701-2001。
具体实施例一至实施例五中,采用下述的三种改性后聚硅氧烷中一种或多种作为阻尼添加剂。第一种改性后聚硅氧烷:R基团为
Figure PCTCN2022095827-appb-000020
x为100,y为50,z为30。第二种改性后聚硅氧烷:R基团为
Figure PCTCN2022095827-appb-000021
x为300,y为200,z为90。第三种改性后聚硅氧烷:R基团为-C 3H 6NH 2,具体为-(CH 2) 3NH 2,x为200,y为100,z为60。
下面采用三个具体实施例描述本申请中的阻尼添加剂采用的三种改性后的聚硅氧烷的的制备方法。
第三种改性后的聚硅氧烷的制备方法
R基团为-C 3H 6NH 2,x为200,y为100,z为60的氨丙基苯基硅油。
加入甲基苯基硅氧烷环体、氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷、碱性催化剂、水、DMSO(二甲基亚枫)和十甲基四硅氧烷,在氮气气氛中升温至90℃,搅拌3.5小时,抽真空1小时,降温加入乙酸中和,升温到150℃,去除体系中的小分子物质,得到第三种聚硅氧烷即氨丙基苯基硅油,其中,所述碱性催化剂为氢氧化钾,所述氨丙基苯基硅油中是以甲基封端。所述甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三者的质量比为41:29:30。所述碱性催化剂的用量为甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三种原 料质量之和的0.005%。所述水的用量为甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三种原料质量之和的1.5%。所述DMSO的用量为甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三种原料质量之和的200%。所述十甲基四硅氧烷的用量为甲基苯基硅氧烷环体,氨丙基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷三种原料质量之和的2%。
第一种改性后的聚硅氧烷的制备方法
R基团为
Figure PCTCN2022095827-appb-000022
x为100,y为50,z为30的聚硅氧烷。
将采用第三种改性后的聚硅氧烷制备方法制得的氨丙基苯基硅油用二甲苯溶解,然后加入与氨丙基苯基硅油中的氨丙基甲基二乙氧基硅烷同摩尔数的邻苯二甲酸酐,通氮气保护,然后在80℃下冷流回流约3h后,用碱水溶液清洗去除未反应的酸酐,然后分离出上层有机物,真空减压抽出二甲苯,即可得到第一种改性后的聚硅氧烷。
第二种改性后的聚硅氧烷的制备方法
R基团为
Figure PCTCN2022095827-appb-000023
x为300,y为200,z为90的聚硅氧烷。
将采用第三种改性后的聚硅氧烷制备方法制得的氨丙基苯基硅油用二甲苯溶解,然后加入与氨丙基苯基硅油中的氨丙基甲基二乙氧基硅烷同摩尔数的1,8-萘二甲酸酐,通氮气保护,然后在80℃下冷流回流约3h后,用碱水溶液清洗去除未反应的酸酐,然后分离出上层有机物,真空减压抽出二甲苯,即可得到第二种改性后的聚硅氧烷。
下面详细描述对比例一、实施例一至实施例五中的振膜的制备方法以及对应的振膜的相关物性检测结果。
对比例一
采用甲基乙烯基聚硅氧烷作为基础聚合物,以二氧化硅为填料,羟基硅油为结构控制剂,2,5-二甲基-2,5-二叔丁基过氧化己烷为交联剂,不添加阻尼添加剂。具体地,以质量百分数计,按照甲基乙烯基聚硅氧烷65%,二氧化硅30%,羟基硅油3%,2,5-二甲基-2,5-二叔丁基过氧化己烷2%,进行配料。
将基础聚合物、填料、结构控制剂在密炼机中于100℃下减压混炼,得到混炼胶,冷却到常温待用;然后在混炼胶中加入交联剂进行混炼,并在150℃硫化成型,得到厚度为100μm的振膜。
经检测,该对比例一振膜的邵氏硬度约为50A,所述振膜的阻尼仅为0.07;断裂伸长率为430%,拉伸强度8.5MPa;采用所述振膜的扬声器的谐波失真THD测试曲线如图2所示,在100Hz频率下,THD在30%以上。可见,该对比例振膜阻尼低,且谐波失真较高,发声效果不佳。
实施例一
采用聚二甲基硅氧烷作为基础聚合物,以二氧化硅为填料,添加上述的第一种改性后的聚硅氧烷作为阻尼添加剂,以羟基乙烯基硅油和羟基硅油为结构控制剂,以2,5-二甲基-2,5-二叔丁基过氧化己烷为交联剂。具体地,以质量百分数计,按照聚二甲基硅氧烷80%,二氧化硅9%,阻尼添加剂3%,羟基乙烯基硅油3%,羟基硅油3%,2,5-二甲基-2,5-二叔丁基过氧化己烷2%,进行配料。
将基础聚合物、填料、结构控制剂、阻尼添加剂在密炼机中于100℃下减 压混炼6小时,得到混炼胶,冷却到常温待用;然后在混炼胶中加入交联剂进行混炼,并在150℃硫化成型,得到厚度为120μm的振膜。
经检测,该实施例一振膜的邵氏硬度约为20A,所述振膜的阻尼为0.11;断裂伸长率约为721%,拉伸强度5.0MPa;采用所述振膜的扬声器的谐波失真THD测试曲线如图2所示,与对比例一相比,该实施例在100Hz频率下,THD有所降低,约为25%。
可见,该实施例通过添加3%的第一种阻尼添加剂,提升了振膜阻尼,降低了THD,且具有较好的力学性能。经测试采用该振膜的扬声器具有较高清晰度、丰满度、空间感、明亮度和柔和度,无异音保真度高,且振膜在振动过程中摇摆振动少,听音更稳定。
实施例二
采用甲基乙烯基聚硅氧烷作为基础聚合物,以二氧化硅为填料,添加上述第一种改性后的聚硅氧烷作为阻尼添加剂,以羟基乙烯基硅油为结构控制剂,以含氢硅油、炔醇抑制剂和氯铂酸的醇溶液共同作为交联剂。具体地,以质量百分数计,按照甲基乙烯基聚硅氧烷75%,二氧化硅10%,阻尼添加剂10%,羟基乙烯基硅油2%,端侧氢硅油和炔丙醇抑制剂共2.5%,氯铂酸的醇溶液0.5%,进行配料。
将基础聚合物、填料、结构控制剂、阻尼添加剂在密炼机中于150℃下减压混炼,得到混炼胶,冷却到常温待用;然后在混炼胶中加入交联剂进行混炼,并在180℃硫化成型,得到厚度为110μm的振膜。
经检测,该实施例二振膜的邵氏硬度约为35A,所述振膜的阻尼为0.17;断裂伸长率约为654%,拉伸强度6.5MPa;采用所述振膜的扬声器的谐波失 真THD测试曲线如图2所示,100Hz频率下,THD约为21%。
可见,该实施例通过添加10%的第一种阻尼添加剂,提升了振膜阻尼,降低了THD,且具有优异的力学性能。经测试采用该振膜的扬声器具有较高清晰度、丰满度、空间感、明亮度和柔和度,无异音保真度高,且振膜在振动过程中摇摆振动少,听音更稳定。
实施例三
采用甲基乙烯基聚硅氧烷作为基础聚合物,以二氧化硅为填料,添加上述的第三种改性后的聚硅氧烷作为阻尼添加剂,以羟基乙烯基硅油和羟基硅油为结构控制剂,以含氢硅油、炔醇抑制剂和氯铂酸的醇溶液共同作为交联剂。具体地,以质量百分数计,按照甲基乙烯基聚硅氧烷60%,二氧化硅19%,阻尼添加剂15%,羟基乙烯基硅油2%,羟基硅油1%,含氢硅油和炔醇抑制剂共2.5%,氯铂酸的醇溶液0.5%,进行配料。
将基础聚合物、填料、结构控制剂、阻尼添加剂在密炼机中于120℃下减压混炼,得到混炼胶,冷却到常温待用;然后在混炼胶中加入交联剂进行混炼,并在120℃硫化成型,得到厚度为90μm的振膜。
经检测,该实施例一振膜的邵氏硬度约为60A,所述振膜的阻尼为0.45;断裂伸长率约为632%,拉伸强度9.0MPa;采用所述振膜的扬声器的谐波失真THD测试曲线如图2所示,100Hz频率下,THD约为19%。
可见,该实施例通过添加15%的第三种阻尼添加剂,提升了振膜阻尼,降低了THD,且具有优异的力学性能。经测试采用该振膜的扬声器具有较高清晰度、丰满度、空间感、明亮度和柔和度,无异音保真度高,且振膜在振动过程中摇摆振动少,听音更稳定。
实施例四
采用甲基乙烯基聚硅氧烷和甲基苯基聚硅氧烷作为基础聚合物,以二氧化硅为填料,添加上述的第一种和第二种改性后的聚硅氧烷共同作为阻尼添加剂,以羟基硅油为结构控制剂,以2,5-二甲基-2,5-二叔丁基过氧化己烷作为交联剂。具体地,以质量百分数计,按照甲基乙烯基聚硅氧烷25%,甲基苯基聚硅氧烷25%,二氧化硅16%,第一种聚硅氧烷阻尼添加剂9%,第二种聚硅氧烷阻尼添加剂20%,羟基硅油2%,2,5-二甲基-2,5-二叔丁基过氧化己烷3%,进行配料。
将基础聚合物、填料、结构控制剂、阻尼添加剂在密炼机中于100℃下减压混炼,得到混炼胶,冷却到常温待用;然后在混炼胶中加入交联剂进行混炼,并在150℃硫化成型,得到厚度为85μm的振膜。
经检测,该实施例一振膜的邵氏硬度约为65A,所述振膜的阻尼为0.62;断裂伸长率约为232%,拉伸强度7.3MPa;采用所述振膜的扬声器的谐波失真THD测试曲线如图2所示,100Hz频率下,THD约为15%。
可见,该实施例在甲基乙烯基聚硅氧烷和甲基苯基聚硅氧烷作为基础聚合物情况下,添加9%的第一种阻尼添加剂和20%的第二种阻尼添加剂,提升了振膜阻尼,且降低了THD。经测试采用该振膜的扬声器具有较高清晰度、丰满度、空间感、明亮度和柔和度,无异音保真度高,且振膜在振动过程中摇摆振动少,听音更稳定。
实施例五
采用甲基苯基聚硅氧烷作为基础聚合物,以二氧化硅为填料,添加上述的第一种和第二种改性后的聚硅氧烷共同作为阻尼添加剂,以羟基硅油为结 构控制剂,以2,5-二甲基-2,5-二叔丁基过氧化己烷作为交联剂。具体地,以质量百分数计,按照甲基苯基聚硅氧烷52%,二氧化硅4%,第一种聚硅氧烷阻尼添加剂9%,第二种聚硅氧烷阻尼添加剂30%,羟基硅油2%,2,5-二甲基-2,5-二叔丁基过氧化己烷3%,进行配料。
将基础聚合物、填料、结构控制剂、阻尼添加剂在密炼机中于100℃下减压混炼,得到混炼胶,冷却到常温待用;然后在混炼胶中加入交联剂进行混炼,并在150℃硫化成型,得到厚度为90μm的振膜。
经检测,该实施例一振膜的邵氏硬度约为90A,所述振膜的阻尼为0.73;断裂伸长率约为153%,拉伸强度7.0MPa;采用所述振膜的扬声器的谐波失真THD测试曲线如图2所示,100Hz频率下,THD约为12%。
可见,该实施例在甲基苯基聚硅氧烷作为基础聚合物情况下,添加9%的第一种阻尼添加剂和30%的第二种阻尼添加剂,提升了振膜阻尼,且降低了THD。经测试采用该振膜的扬声器具有较高清晰度、丰满度、空间感、明亮度和柔和度,无异音保真度高,且振膜在振动过程中摇摆振动少,听音更稳定。
综上,本发明实施例一至实施例五中的振膜阻尼均在0.11以上;而且如图2所示,在频率为100Hz~1000Hz时,本发明THD远低于对比例一,例如,在频率为100Hz时,对比例一的THD约为32%,而本发明实施例一至实施例五分别约为26%,22%,19%,15%,12%;可见,本发明实施例一至五通过添加阻尼添加剂,提升了振膜阻尼损耗,降低了THD。
另外,若阻尼添加剂总添加量若过高,会导致断裂伸长率和拉伸强度降低,当综合考虑振膜阻尼、力学性能以及THD时,本发明阻尼添加量优选15~ 25%,这样可以将振膜阻尼提升至0.11以上的情况下,还可保证振膜力学性能不降低,使用该振膜的发声装置,在相同性能下,还可获得更低的总谐波失真(THD),具有更优的声学性能。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (14)

  1. 一种用于发声装置的振膜,其特征在于,所述振膜以聚硅氧烷为基础聚合物,并在所述基础聚合物中添加阻尼添加剂、填料、结构控制剂、交联剂,经混炼,并在80℃~200℃成型得到,其中,所述阻尼添加剂选自改性后的聚硅氧烷,所述改性后的聚硅氧烷主链中具有如下平均组成式1所示结构:
    [平均组成式1]
    Figure PCTCN2022095827-appb-100001
    其中,R基团为
    Figure PCTCN2022095827-appb-100002
    以及-C 3H 6NH 2中的一种;x,y,z均为正整数,且x为1~1000,y为1~1000,z为1~1000。
  2. 根据权利要求1所述的用于发声装置的振膜,其特征在于,
    所述阻尼添加剂的用量为所述基础聚合物、阻尼添加剂、填料、结构控制剂和交联剂总重量的1%~50%。
  3. 根据权利要求2所述的用于发声装置的振膜,其特征在于,
    所述阻尼添加剂的用量为所述基础聚合物、阻尼添加剂、填料、结构控制剂和交联剂总重量的15%~25%。
  4. 根据权利要求1所述的用于发声装置的振膜,其特征在于,
    所述基础聚合物为一种聚硅氧烷或几种聚硅氧烷的组合物,所述聚硅氧烷在其主链中包括选自Me 2SiO、MeViSiO、MePhSiO、Ph 2SiO中的一种或几 种的结构单元,端基为Me 3SiO和/或ViMe 2SiO,其中,Me为甲基,Vi为乙烯基,Ph为苯基。
  5. 根据权利要求4所述的用于发声装置的振膜,其特征在于,
    所述基础聚合物为甲基聚硅氧烷、甲基乙烯基聚硅氧烷、甲基苯基聚硅氧烷、乙烯基苯基聚硅氧烷中的一种或几种。
  6. 根据权利要求1所述的用于发声装置的振膜,其特征在于,
    所述填料为二氧化硅、云母、石墨烯、粘土、碳酸钙、碳纳米管、高岭土、以及滑石粉中的一种或几种。
  7. 根据权利要求1所述的用于发声装置的振膜,其特征在于,
    所述结构控制剂为二元醇、二有机基环硅醚、二有机基硅二醇、烷氧基硅烷、低摩尔质量的羟基硅油、含Si-N键的有机硅化合物、以及含Si-O-B键的有机硅化合物中的一种或几种。
  8. 根据权利要求1所述的用于发声装置的振膜,其特征在于,
    所述交联剂为2,4-二氯过氧化苯甲酰、过氧化苯甲酰、2,5-二甲基-2,5-二叔丁基过氧化己烷、二叔丁基过氧化物以及过氧化二异丙苯的一种或几种的混合物;
    或者,所述交联剂为含有铂元素化合物/组合物、含氢硅油、以及炔醇抑制剂中的一种或几种。
  9. 根据权利要求1所述的用于发声装置的振膜,其特征在于,所述振膜的阻尼为0.1~0.75。
  10. 根据权利要求1所述的用于发声装置的振膜,其特征在于,所述振膜的硬度为20A~95A。
  11. 如权利要求1所述的用于发声装置的振膜,其特征在于,所述振膜的 拉伸强度为1MPa~15MPa。
  12. 根据权利要求1所述的用于发声装置的振膜,其特征在于,所述振膜的厚度为40μm~150μm。
  13. 一种发声装置,其特征在于,包括振动系统以及与所述振动系统相配合的磁路系统,所述振动系统包括振膜和结合在所述振膜一侧的音圈,所述磁路系统驱动所述音圈振动以带动所述振膜发声,所述振膜为权利要求1~12中任一项所述的振膜。
  14. 一种发声装置,其特征在于,包括壳体以及设在所述壳体内的磁路系统和振动系统,所述振动系统包括音圈、第一振膜和第二振膜,所述音圈的顶部与所述第一振膜相连,所述磁路系统驱动所述音圈振动以带动所述第一振膜发声,所述第二振膜的两端分别与所述壳体和所述音圈的底部相连,所述第二振膜为权利要求1~12中任一项所述的振膜。
PCT/CN2022/095827 2021-06-30 2022-05-29 用于发声装置的振膜及发声装置 WO2023273751A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110738074.5 2021-06-30
CN202110738074.5A CN113490128B (zh) 2021-06-30 2021-06-30 用于发声装置的振膜及发声装置

Publications (1)

Publication Number Publication Date
WO2023273751A1 true WO2023273751A1 (zh) 2023-01-05

Family

ID=77936830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095827 WO2023273751A1 (zh) 2021-06-30 2022-05-29 用于发声装置的振膜及发声装置

Country Status (2)

Country Link
CN (1) CN113490128B (zh)
WO (1) WO2023273751A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490128B (zh) * 2021-06-30 2022-11-18 歌尔股份有限公司 用于发声装置的振膜及发声装置
CN114989616B (zh) * 2022-05-25 2024-03-08 歌尔股份有限公司 发声装置的振膜及其制备方法、发声装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115100A (en) * 1980-01-22 1981-09-10 Matsushita Electric Ind Co Ltd Damping agent for speaker
CN106188547A (zh) * 2016-07-08 2016-12-07 山东大学 一种有机硅阻尼添加剂及其制备方法
CN107868474A (zh) * 2017-12-15 2018-04-03 合肥工业大学 一种高阻尼宽阻尼温域的导热硅橡胶复合材料及制备方法
CN109195074A (zh) * 2018-11-21 2019-01-11 常州驰科光电科技有限公司 一种超弹性硅胶振膜材料
CN111935602A (zh) * 2020-09-23 2020-11-13 歌尔股份有限公司 一种发声装置的振膜及其制备方法、发声装置
CN212034341U (zh) * 2020-05-20 2020-11-27 瑞声光电科技(常州)有限公司 一种扬声器
CN112280309A (zh) * 2020-11-11 2021-01-29 株洲时代新材料科技股份有限公司 一种用于硅橡胶的阻尼剂、硅橡胶材料及其制备方法
CN113490128A (zh) * 2021-06-30 2021-10-08 歌尔股份有限公司 用于发声装置的振膜及发声装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205029853U (zh) * 2015-10-27 2016-02-10 歌尔声学股份有限公司 硅胶振膜以及扬声器
CN107129687A (zh) * 2017-05-19 2017-09-05 歌尔股份有限公司 振膜、振膜组件以及振膜和振膜组件的制备方法
CN110012394B (zh) * 2019-03-26 2021-04-27 瑞声科技(新加坡)有限公司 振膜基材及其制备方法、振膜及扬声器
CN111095947B (zh) * 2019-03-29 2021-09-17 美特科技(苏州)有限公司 一种扬声器及其应用
CN110708634B (zh) * 2019-10-31 2021-07-09 歌尔股份有限公司 发声装置的振膜以及发声装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115100A (en) * 1980-01-22 1981-09-10 Matsushita Electric Ind Co Ltd Damping agent for speaker
CN106188547A (zh) * 2016-07-08 2016-12-07 山东大学 一种有机硅阻尼添加剂及其制备方法
CN107868474A (zh) * 2017-12-15 2018-04-03 合肥工业大学 一种高阻尼宽阻尼温域的导热硅橡胶复合材料及制备方法
CN109195074A (zh) * 2018-11-21 2019-01-11 常州驰科光电科技有限公司 一种超弹性硅胶振膜材料
CN212034341U (zh) * 2020-05-20 2020-11-27 瑞声光电科技(常州)有限公司 一种扬声器
CN111935602A (zh) * 2020-09-23 2020-11-13 歌尔股份有限公司 一种发声装置的振膜及其制备方法、发声装置
CN112280309A (zh) * 2020-11-11 2021-01-29 株洲时代新材料科技股份有限公司 一种用于硅橡胶的阻尼剂、硅橡胶材料及其制备方法
CN113490128A (zh) * 2021-06-30 2021-10-08 歌尔股份有限公司 用于发声装置的振膜及发声装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG YING: "Synthesis and Research on Properties of High Damping Silicone Rubber", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 30 May 2016 (2016-05-30), pages 1 - 91, XP093020062, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN113490128A (zh) 2021-10-08
CN113490128B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2023273751A1 (zh) 用于发声装置的振膜及发声装置
KR100197347B1 (ko) 압축성 실리콘러버
WO2023016133A1 (zh) 发声装置的振膜及其制备方法、发声装置
TWI304431B (zh)
WO2023016132A1 (zh) 发声装置的振膜及其制备方法、发声装置
CA2628768A1 (en) Silicone elastomer composition
WO2021082247A1 (zh) 发声装置的振膜以及发声装置
WO2023029720A1 (zh) 发声装置的振膜及其发声装置
Racles et al. All-silicone elastic composites with counter-intuitive piezoelectric response, designed for electromechanical applications
CN115197573B (zh) 一种组合物、低成本高介电常数低模量高击穿电压强度硅橡胶介电弹性体及其应用
WO2023273750A1 (zh) 用于发声装置的振膜及发声装置
CN114827871B (zh) 振膜及发声装置
WO2022160693A1 (zh) 振膜及发声装置
JP2004525249A (ja) 付加架橋可能なアルケニル末端を有するポリジオルガノシロキサンを含有する高粘性シリコーンコンパウンド
CN114933804A (zh) 发声装置的振膜及其制备方法、发声装置
JPH1036671A (ja) 改善されたシート強度及び低い圧縮永久歪を有するシリコーンゴム
JP2016108396A (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡ならびに音響波プローブ用シリコーン樹脂の製造方法
CN114933807B (zh) 发声装置的振膜及其制备方法、发声装置
JP2002060624A (ja) シリコーンゴム組成物
CN114539533A (zh) 一种多支链聚硅氧烷及其制备方法和导热硅凝胶
JPH07252361A (ja) 立体規則性ポリ(メチル(3,3,3−トリフルオロプロピル)シロキサン)重合体及びその製造方法
CN114940824B (zh) 发声装置的振膜及其制备方法、发声装置
JP2009084499A (ja) 硬化性組成物、及びその架橋ゴム
CN114989616B (zh) 发声装置的振膜及其制备方法、发声装置
CN114989619B (zh) 发声装置的振膜及其制备方法、发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831573

Country of ref document: EP

Kind code of ref document: A1