WO2023273721A1 - 一种光调制模组及可切换式立体显示装置 - Google Patents

一种光调制模组及可切换式立体显示装置 Download PDF

Info

Publication number
WO2023273721A1
WO2023273721A1 PCT/CN2022/095189 CN2022095189W WO2023273721A1 WO 2023273721 A1 WO2023273721 A1 WO 2023273721A1 CN 2022095189 W CN2022095189 W CN 2022095189W WO 2023273721 A1 WO2023273721 A1 WO 2023273721A1
Authority
WO
WIPO (PCT)
Prior art keywords
light modulation
modulation module
electrodes
driving layer
electrode
Prior art date
Application number
PCT/CN2022/095189
Other languages
English (en)
French (fr)
Inventor
张建伟
Original Assignee
纵深视觉科技(南京)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纵深视觉科技(南京)有限责任公司 filed Critical 纵深视觉科技(南京)有限责任公司
Priority to DE212022000120.6U priority Critical patent/DE212022000120U1/de
Priority to CN202280002926.7A priority patent/CN115280221A/zh
Publication of WO2023273721A1 publication Critical patent/WO2023273721A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the embodiments of the present application relate to the field of display technology, for example, to a light modulation module and a switchable stereoscopic display device.
  • a switchable stereoscopic display device usually includes a control system, a display module and a light modulation module, wherein the light modulation module can modulate the image light emitted by the display module through its switch state under the control of the control system to realize display Free switching of two-dimensional (2-dimension, 2D)/three-dimensional (3-dimension, 3D) devices.
  • a light modulation module usually includes a lens substrate, a lens electrode, a lens structure, a liquid crystal, a spacer electrode and a spacer substrate which are sequentially stacked. Due to the existence of the lens structure, the thickness of the liquid crystal is different in each region, so the required theoretical driving voltage is different.
  • the lens electrodes and spacer electrodes in the related art are all electrodes on the whole surface, and the electric field strength of each point inside is the same, which will cause some areas where the liquid crystal has completely stood up, and some areas have not yet completely stood up, causing light to flow in this area.
  • the perceived refractive index is deviated, which affects the optical effect; or the liquid crystal in some areas has exceeded its saturation voltage (also known as overdrive), resulting in a decrease in the life of the liquid crystal and an increase in the power consumption of the light modulation module.
  • This application provides a light modulation module and a switchable stereoscopic display device, which can adjust the voltage received by electro-optic materials with different thicknesses, and ensure that the electro-optic materials work under suitable conditions, thereby prolonging the life of the electro-optic materials and reducing the light consumption.
  • the power consumption of the modulation module improves the optical effect of the light modulation module.
  • an embodiment of the present application provides a light modulation module, including: a first substrate and a second substrate oppositely arranged; a first driving layer and an optical structure layer arranged on the side of the first substrate close to the second substrate ; the second driving layer arranged on the side of the second substrate close to the first substrate; the electro-optical material arranged between the first driving layer and the second driving layer; wherein,
  • the orthographic projection of at least one of the first driving layer and the second driving layer on the plane where the light modulation module is located is strip-shaped.
  • the embodiment of the present application also provides a switchable stereoscopic display device, including: a control system, a display module, and a light modulation module as described in the first aspect; wherein,
  • the display module is connected to the control system, and the display module is set to emit image light under the control of the control system;
  • the light modulation module is connected with the control system and arranged on the side where the display module emits image light.
  • the light modulation module is configured to modulate the image light under the control of the control system to form a planar image or a stereoscopic image.
  • FIG. 1 is a schematic cross-sectional structure diagram of an optical modulation module in the related art when no voltage is applied;
  • FIG. 2 is a schematic cross-sectional structure diagram of an optical modulation module in the related art when a voltage is applied;
  • Fig. 3 is a schematic cross-sectional structure diagram of an optical modulation module provided by an embodiment of the present application.
  • Fig. 4 is a partially enlarged schematic diagram of the optical structure layer and the first driving layer shown in Fig. 3 provided by the embodiment of the present application;
  • Fig. 5 is a schematic diagram of a three-dimensional structure of an optical modulation module provided by an embodiment of the present application.
  • Fig. 6 is a schematic cross-sectional structure diagram of another light modulation module provided by an embodiment of the present application.
  • Fig. 7 is a schematic cross-sectional structure diagram of another light modulation module provided by the embodiment of the present application.
  • Fig. 8 is a schematic cross-sectional structure diagram of another light modulation module provided by the embodiment of the present application.
  • Fig. 9 is a schematic cross-sectional structure diagram of another light modulation module provided by the embodiment of the present application.
  • Fig. 10 is a schematic cross-sectional structure diagram of yet another light modulation module provided by an embodiment of the present application.
  • Fig. 11 is a schematic cross-sectional structure diagram of yet another light modulation module provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a switchable stereoscopic display device provided by an embodiment of the present application.
  • sequence of processes may be performed differently than that described.
  • two consecutively described processes may be performed substantially at the same time or performed in an order opposite to that described.
  • Stereoscopic display is a way of realizing virtual reality. Its principle is to use the difference between the image information seen by the viewer's left eye and the image information seen by the right eye, so that the viewer's binocular parallax fusion produces a three-dimensional effect.
  • the common stereoscopic display technology uses 3D glasses to transmit the left and right eye images to the viewer's left and right eyes respectively; the naked eye stereoscopic display technology gets rid of the shackles of 3D glasses, improves the comfort of the viewer, and becomes the future development direction and target.
  • a switchable stereoscopic display device usually includes a control system, a display module, and a light modulation module.
  • the image light is modulated to realize the free switching between 2D/3D of the display device.
  • FIG. 1 shows a schematic cross-sectional structure of an optical modulation module in the related art when no voltage is applied
  • FIG. 2 shows a schematic cross-sectional structure of an optical modulation module in the related art when a voltage is applied.
  • the light modulation module includes a lens substrate 1 , a lens electrode 2 , a lens structure 3 , a liquid crystal 4 , a spacer electrode 5 and a spacer substrate 6 which are sequentially stacked.
  • the light modulation module can form a light modulator to modulate the image light emitted by the display module to realize free switching between 2D and 3D display devices.
  • the lens electrode 2 and the spacer electrode 5 are all electrodes on the entire surface, and the electric field strength at each point in it is the same, which will cause some areas where the liquid crystal has completely stood up, and some areas have not yet fully formed. Standing, the refractive index experienced by light in this area deviates, which affects the optical effect; or causes the liquid crystal in some areas to exceed its saturation voltage (also known as overdrive), resulting in a reduction in the life of the liquid crystal and a decrease in the power consumption of the light modulation module. Increase.
  • the embodiment of the present application provides a light modulation module and a switchable three-dimensional display device, which can adjust the voltage received by electro-optic materials with different thicknesses to ensure that the electro-optic materials work under suitable conditions, thereby prolonging the electro-optic
  • the life of the material reduces the power consumption of the light modulation module and improves the optical effect of the light modulation module.
  • An embodiment of the present application provides an optical modulation module, including: a first substrate and a second substrate oppositely arranged; a first driving layer and an optical structure layer arranged on the side of the first substrate close to the second substrate; The second driving layer on the side of the substrate close to the first substrate; the electro-optical material arranged between the first driving layer and the second driving layer.
  • first driving layer and the second driving layer can adopt any one of the following three designs:
  • Design 1 The orthographic projection of the first driving layer on the plane where the light modulation module is located is strip-shaped, and the orthographic projection of the second driving layer on the plane where the light modulation module is located is the same as that of the first substrate on the plane where the light modulation module is located. Orthographic projection coincidence.
  • the above three designs design the first driving layer and/or the second driving layer so that the first driving layer and/or the second driving layer are no longer full-surface electrodes but strip electrodes.
  • electro-optic materials with different thicknesses can work under suitable conditions (that is, the electro-optic materials can stand completely without causing overdrive).
  • FIG. 3 shows a schematic cross-sectional structure diagram of an optical modulation module provided by an embodiment of the present application.
  • the light modulation module includes: a first substrate 101 and a second substrate 102 oppositely arranged; a first drive layer 103 and an optical structure layer 104 arranged on the side of the first substrate 101 close to the second substrate 102; The second driving layer 105 disposed on the side of the second substrate 102 close to the first substrate 101 ; the electro-optical material 106 disposed between the first driving layer 103 and the second driving layer 105 .
  • the first substrate 101 may be a lens substrate, and the second substrate 102 may be a spacer substrate; or, the first substrate 101 may be a spacer substrate, and the second substrate 102 may be a lens substrate.
  • the first substrate 101 and the second substrate 102 are generally made of transparent materials such as glass and resin.
  • the first driving layer 103 is disposed between the optical structure layer 104 and the first substrate 101 .
  • the first driving layer 103 includes a plurality of first electrodes, and the orthographic projection of each first electrode on the plane where the light modulation module is located is strip-shaped (that is, the first electrode is a strip-shaped electrode); the second driving layer 105 includes a first electrode Two electrodes, the orthographic projection of the second electrode on the plane where the light modulation module is located coincides with the orthographic projection of the first substrate 101 on the plane where the light modulation module is located (that is, the second electrode is a planar electrode).
  • the first driving layer 103 and the second driving layer 105 can generally be made of transparent conductive materials such as indium tin oxide (ITO).
  • the light modulation module may further include: a first alignment layer 107 and a second alignment layer 108 .
  • the first alignment layer 107 is arranged between the first driving layer 103 and the electro-optic material 106, and is in direct contact with the electro-optic material 106;
  • the second alignment layer 108 is arranged between the second driving layer 105 and the electro-optic material 106, and is in contact with the electro-optic material 106 direct contacts.
  • the first alignment layer 107 and the second alignment layer 108 can be made of materials such as polyimide.
  • the optical structure layer 104 includes a plurality of lenses arranged in sequence (in FIG. 3 , the lens is drawn as an example of a cylindrical lens). As shown in FIG. 3 , each lenticular lens has a different thickness of the electro-optic material 106 above it due to the limitation of its own shape. Therefore, the number of first electrodes corresponding to each lenticular lens is at least two. In this way, by adjusting the voltage applied to the first electrode, the electro-optic material 106 with different thicknesses can work under suitable conditions (that is, the electro-optic material 106 can stand completely without causing overdrive).
  • the number of first electrodes corresponding to each lens can be designed according to actual needs.
  • FIG. 4 shows a partially enlarged schematic diagram of the optical structure layer and the first driving layer shown in FIG. 3 provided by the embodiment of the present application. As shown in FIG. 4 , when the widths a of the plurality of first electrodes are equal, the distance b between any two adjacent first electrodes is smaller than or equal to the width a of the first electrodes.
  • FIG. 5 shows a schematic perspective view of a light modulation module provided by an embodiment of the present application.
  • a first electrode since only one voltage can be applied to a first electrode, it is necessary to ensure that the thickness of the electro-optical material 106 of a first electrode in its extending direction is all the same, that is, the extending direction of the first electrode is the same as that of the lens. parallel to the direction of extension.
  • the lenticular lens when the lens is a lenticular lens, the lenticular lens has a centrosymmetric structure, so the thickness of the electro-optic material 106 above the lenticular lens is also centrosymmetric.
  • the light modulation module has at least one of the following characteristics:
  • the first electrode corresponding to each lenticular lens is centrally symmetrical along the central axis of the lenticular lens;
  • the voltage applied to the first electrode corresponding to each lenticular lens is symmetrical about the center axis of the lenticular lens.
  • FIG. 6 shows a schematic cross-sectional structure diagram of another light modulation module provided by an embodiment of the present application.
  • the optical structure layer 104 includes a plurality of lenses arranged in sequence, and the lenses are prisms. Referring to FIG. 6, it can be seen that in the area corresponding to each lens, the thickness of the electro-optic material 106 gradually decreases along the direction from left to right in FIG. The voltage applied to it gradually decreases.
  • FIG. 7 shows a schematic cross-sectional structure diagram of another light modulation module provided by an embodiment of the present application.
  • the first driving layer 103 is disposed between the optical structure layer 104 and the electro-optic material 106 .
  • the first driving layer 103 is arranged on the top of the optical structure layer 104, and the voltage applied to the strip electrodes can still be adjusted to realize the operation of electro-optic materials with different thicknesses under suitable conditions (that is, the electro-optic materials can stand completely and will not cause overdrive).
  • FIG. 8 shows a schematic cross-sectional structure diagram of another light modulation module provided by the embodiment of the present application.
  • the light modulation module includes: a first substrate 101 and a second substrate 102 arranged oppositely; a first driving layer 103 and an optical structure layer 104 arranged on the side of the first substrate 101 close to the second substrate 102; The second driving layer 105 disposed on the side of the second substrate 102 close to the first substrate 101 ; the electro-optical material 106 disposed between the first driving layer 103 and the second driving layer 105 .
  • the first substrate 101 may be a lens substrate, and the second substrate 102 may be a spacer substrate; or, the first substrate 101 may be a spacer substrate, and the second substrate 102 may be a lens substrate.
  • the first substrate 101 and the second substrate 102 are generally made of transparent materials such as glass and resin.
  • the first driving layer 103 is disposed between the optical structure layer 104 and the first substrate 101 .
  • the first driving layer 103 includes a first electrode, and the orthographic projection of the first electrode on the plane where the light modulation module is located coincides with the orthographic projection of the first substrate 101 on the plane where the light modulation module is located (that is, the first electrode is planar. electrode);
  • the second driving layer 105 includes a plurality of second electrodes, and the orthographic projection of each second electrode on the plane where the light modulation module is located is strip-shaped (that is, the second electrode is a strip-shaped electrode).
  • the first driving layer 103 and the second driving layer 105 can generally be made of transparent conductive materials such as ITO.
  • the light modulation module may further include: a first alignment layer 107 and a second alignment layer 108 .
  • the first alignment layer 107 is arranged between the first driving layer 103 and the electro-optic material 106, and is in direct contact with the electro-optic material 106;
  • the second alignment layer 108 is arranged between the second driving layer 105 and the electro-optic material 106, and is in contact with the electro-optic material 106 direct contacts.
  • the first alignment layer 107 and the second alignment layer 108 can be made of materials such as polyimide.
  • the optical structure layer 104 includes a plurality of lenses arranged in sequence (in FIG. 8 , the lens is drawn as an example of a cylindrical lens). As shown in FIG. 8 , each lenticular lens has a different thickness of the electro-optical material 106 above it due to the limitation of its own shape. Therefore, the number of second electrodes corresponding to each lens is at least two. In this way, by adjusting the voltage applied to the second electrode, the electro-optic material 106 with different thicknesses can work under suitable conditions (that is, the electro-optic material 106 can stand completely without causing overdrive).
  • the greater the number of second electrodes corresponding to each lens the finer the control over the different thicknesses of the electro-optical material 106 .
  • the number of second electrodes corresponding to each lens can be designed according to actual needs.
  • the distance between any two adjacent second electrodes should not be too large.
  • the distance between any two adjacent second electrodes is smaller than or equal to the width of the second electrodes.
  • the thickness of the electro-optical material 106 of a second electrode in its extending direction is the same, that is, the extending direction of the second electrode is parallel to the extending direction of the lens. .
  • the lenticular lens when the lens is a lenticular lens, the lenticular lens is a centrosymmetric structure, so the thickness of the electro-optic material 106 above the lenticular lens is also centrosymmetric.
  • the light modulation module has at least one of the following characteristics:
  • the second electrode corresponding to each lenticular lens is centrally symmetrical along the central axis of the lenticular lens;
  • the voltage applied to the second electrode corresponding to each lenticular lens is symmetrical about the central axis of the lenticular lens.
  • FIG. 9 shows a schematic cross-sectional structure diagram of another light modulation module provided by an embodiment of the present application.
  • the first driving layer 103 is disposed between the optical structure layer 104 and the electro-optic material 106 .
  • the first driving layer 103 is arranged on the top of the optical structure layer 104, and the voltage applied to the strip electrodes can still be adjusted to realize the operation of electro-optic materials with different thicknesses under suitable conditions (that is, the electro-optic materials can stand completely and will not cause overdrive).
  • FIG. 10 shows a schematic cross-sectional structure diagram of yet another light modulation module provided by an embodiment of the present application.
  • the light modulation module includes: a first substrate 101 and a second substrate 102 arranged oppositely; a first driving layer 103 and an optical structure layer 104 arranged on the side of the first substrate 101 close to the second substrate 102; The second driving layer 105 disposed on the side of the second substrate 102 close to the first substrate 101 ; the electro-optical material 106 disposed between the first driving layer 103 and the second driving layer 105 .
  • the first substrate 101 may be a lens substrate, and the second substrate 102 may be a spacer substrate; or, the first substrate 101 may be a spacer substrate, and the second substrate 102 may be a lens substrate.
  • the first substrate 101 and the second substrate 102 are generally made of transparent materials such as glass and resin.
  • the first driving layer 103 is disposed between the optical structure layer 104 and the first substrate 101 .
  • the first driving layer 103 includes a plurality of first electrodes, and the orthographic projection of each first electrode on the plane where the light modulation module is located is strip-shaped (that is, the first electrode is a strip-shaped electrode);
  • the second driving layer 105 includes a plurality of For the second electrodes, the orthographic projection of each second electrode on the plane where the light modulation module is located is strip-shaped (that is, the second electrode is also a strip-shaped electrode).
  • the first driving layer 103 and the second driving layer 105 can generally be made of transparent conductive materials such as ITO.
  • the orthographic projection of the first driving layer 103 on the plane where the light modulation module is located may completely coincide with the orthographic projection of the second driving layer 105 on the plane where the light modulation module is located (that is, each first electrode corresponds to For a second electrode, the size of the first electrode and the second electrode are the same, and the first electrode and the second electrode are completely aligned), or they may not completely overlap.
  • the orthographic projection of the first driving layer 103 on the plane where the light modulation module is located can completely coincide with the orthographic projection of the second driving layer 105 on the plane where the light modulation module is located, the first driving layer 103 and the second driving layer 105 A mask plate can be shared during manufacture, which reduces the difficulty of the process.
  • the light modulation module may further include: a first alignment layer 107 and a second alignment layer 108 .
  • the first alignment layer 107 is arranged between the first driving layer 103 and the electro-optic material 106, and is in direct contact with the electro-optic material 106;
  • the second alignment layer 108 is arranged between the second driving layer 105 and the electro-optic material 106, and is in contact with the electro-optic material 106 direct contacts.
  • the first alignment layer 107 and the second alignment layer 108 can be made of materials such as polyimide.
  • the optical structure layer 104 includes a plurality of lenses arranged in sequence (in FIG. 10 , the lens is drawn as an example of a cylindrical lens). As shown in FIG. 10 , due to the limitation of its own shape, each lenticular lens will cause the thickness of the electro-optic material 106 above it to be different. Therefore, the number of first electrodes corresponding to each lens is at least two, and each lens corresponds to The number of second electrodes is at least two. In this way, by adjusting the voltages applied to the first electrode and the second electrode, the electro-optic material 106 with different thicknesses can work under suitable conditions (that is, the electro-optic material 106 can stand completely without causing overdrive).
  • the distance between any two adjacent first electrodes is less than or equal to the width of the first electrodes; when the widths of the plurality of second electrodes are equal, The distance between any two adjacent second electrodes is less than or equal to the width of the second electrodes.
  • the extension direction of the first electrode is parallel to the extension direction of the lens; the extension direction of the second electrode is parallel to the extension direction of the lens.
  • the lens is a lenticular lens
  • the light modulation module has at least one of the following features:
  • the first electrode corresponding to each lenticular lens is centrally symmetrical along the central axis of the lenticular lens;
  • the voltage applied to the first electrode corresponding to each lenticular lens is symmetrical about the central axis of the lenticular lens;
  • the second electrode corresponding to each lenticular lens is centrally symmetrical along the central axis of the lenticular lens;
  • the voltage applied to the second electrode corresponding to each lenticular lens is symmetrical about the central axis of the lenticular lens.
  • FIG. 11 shows a schematic cross-sectional structure diagram of yet another light modulation module provided by an embodiment of the present application.
  • the first driving layer 103 is disposed between the optical structure layer 104 and the electro-optic material 106 .
  • the first driving layer 103 is arranged above the optical structure layer 104, and the voltage applied to the strip electrodes can still be adjusted to make electro-optic materials with different thicknesses work under suitable conditions (that is, the electro-optic materials can stand completely and will not cause overdrive).
  • the electro-optical material 106 can generally be liquid crystal; the material of the optical structure layer 104 can usually be transparent resin or glass.
  • An embodiment of the present application provides a light modulation module, including a first substrate and a second substrate oppositely arranged; a first driving layer and an optical structure layer arranged on the side of the first substrate close to the second substrate; The second driving layer on the side close to the first substrate; the electro-optical material arranged between the first driving layer and the second driving layer; wherein, the first driving layer and/or the second driving layer are on the plane where the light modulation module is located
  • the orthographic projection of is in the form of bars.
  • the voltages received by electro-optic materials of different thicknesses are adjusted to ensure that the electro-optic materials work under suitable conditions (that is, the electro-optic materials can stand completely without causing overdrive), thus prolonging the life of the electro-optic materials.
  • the life of the electro-optical material reduces the power consumption of the light modulation module and improves the optical effect of the light modulation module.
  • FIG. 12 shows a schematic structural diagram of a switchable stereoscopic display device provided by an embodiment of the present application.
  • the switchable stereoscopic display device includes: a control system 201 , a display module 202 and the light modulation module 203 described in any of the above-mentioned embodiments.
  • the display module 202 is connected to the control system 201, and the display module 202 is configured to emit image light under the control of the control system 201;
  • the light modulation module 203 is connected to the control system 201 and is arranged on the side where the display module 202 emits image light.
  • the light modulation module 203 is configured to modulate the image light under the control of the control system 201 to form a planar image or Stereoscopic image.
  • the display module 202 may be a liquid crystal display (Liquid Crystal Display, LCD), a light emitting diode (Light Emitting Diode, LED) display device, an organic light emitting diode (Organic Light-Emitting Diode, OLED) display device, Any one of electronic paper, QLED (Quantum Dot Light Emitting Diodes, quantum dot light-emitting) display device, micro LED (micro LED, ⁇ LED) display device, micro OLED display device, projection module, etc. Not limited.
  • LCD liquid crystal display
  • LED Light Emitting Diode
  • OLED Organic Light-Emitting Diode
  • Any one of electronic paper QLED (Quantum Dot Light Emitting Diodes, quantum dot light-emitting) display device, micro LED (micro LED, ⁇ LED) display device, micro OLED display device, projection module, etc. Not limited.
  • the solution provided by this application can be applied to a switchable naked-eye 3D optical device, can also be used on a switchable anti-peeping device, and can also be used on other switchable light modulation devices using liquid crystals. No limit.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

本申请公开了一种光调制模组及可切换式立体显示装置。光调制模组包括:相对设置的第一基板和第二基板;设置在第一基板靠近第二基板一侧的第一驱动层和光学结构层;设置在第二基板靠近第一基板一侧的第二驱动层;设置在第一驱动层和第二驱动层之间的电光材料;其中,第一驱动层和第二驱动层中的至少之一在光调制模组所在平面上的正投影呈条状。

Description

一种光调制模组及可切换式立体显示装置
本申请要求在2021年6月30日提交中国专利局、申请号为202110739694.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,例如涉及一种光调制模组及可切换式立体显示装置。
背景技术
随着显示技术的发展,可切换式立体显示装置也开始获得用户的广泛关注。可切换式立体显示装置通常包括控制系统、显示模组和光调制模组,其中,光调制模组可以在控制系统的控制下,通过其开关状态对显示模组发出的图像光进行调制,实现显示装置二维(2-dimension,2D)/三维(3-dimension,3D)的自由切换。
光调制模组通常包括依次叠层设置的透镜基板、透镜电极、透镜结构、液晶、间隔电极和间隔基板。由于透镜结构的存在,液晶的厚度各个区域不同,因此所需的理论驱动电压不同。然而,相关技术中的透镜电极和间隔电极都是整面电极,其内各点的电场强度相同,这会导致有的区域液晶已经完全站立,有的区域还没有完全站立,造成光在此区域感受到的折射率有偏差,影响光学效果;或者导致有的区域液晶已经超过了其饱和电压(又称过驱动),造成液晶寿命的降低和光调制模组功耗的增加。
发明内容
本申请提供一种光调制模组及可切换式立体显示装置,能够调整不同厚度的电光材料所受到的电压,保证电光材料工作在适宜的条件下,从而延长了电光材料的寿命,减少了光调制模组的功耗,提升了光调制模组的光学效果。
第一方面,本申请实施例提供了一种光调制模组,包括:相对设置的第一基板和第二基板;设置在第一基板靠近第二基板一侧的第一驱动层和光学结构层;设置在第二基板靠近第一基板一侧的第二驱动层;设置在第一驱动层和第二驱动层之间的电光材料;其中,
第一驱动层和第二驱动层中的至少之一在光调制模组所在平面上的正投影呈条状。
第二方面,本申请实施例还提供了一种可切换式立体显示装置,包括:控制系统、显示模组和具有如第一方面所述的光调制模组;其中,
显示模组与控制系统连接,所述显示模组设置为在控制系统的控制下,发出图像光;
光调制模组与控制系统连接、且设置在显示模组发出图像光的一侧,所述光调制模组设置为在控制系统的控制下,对图像光进行调制,形成平面图像或者立体图像。
附图说明
图1是相关技术中的一种光调制模组在不施加电压时的剖面结构示意图;
图2是相关技术中的一种光调制模组在施加电压时的剖面结构示意图;
图3是本申请实施例提供的一种光调制模组的剖面结构示意图;
图4是本申请实施例提供的图3所示的光学结构层和第一驱动层的局部放大示意图;
图5是本申请实施例提供的一种光调制模组的立体结构示意图;
图6是本申请实施例提供的另一种光调制模组的剖面结构示意图;
图7是本申请实施例提供的又一种光调制模组的剖面结构示意图;
图8是本申请实施例提供的再一种光调制模组的剖面结构示意图;
图9是本申请实施例提供的还一种光调制模组的剖面结构示意图;
图10是本申请实施例提供的又另一种光调制模组的剖面结构示意图;
图11是本申请实施例提供的又再一种光调制模组的剖面结构示意图;
图12是本申请实施例提供的一种可切换式立体显示装置的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
同时,附图和实施例的描述是说明性的而不是限制性的。贯穿说明书的同样的附图标记表示同样的元件。另外,出于理解和易于描述,附图中可能夸大了一些层、膜、面板、区域等的厚度。同时可以理解的是,当诸如层、膜、区域或基板的元件被称作“在”另一元件“上”时,该元件可以直接在其它元件上或者也可以存在中间元件。另外,“在......上”是指将元件定位在另一元件上或者在另一元件下方,但是本质上不是指根据重力方向定位在另一元件的上侧上。为了便于理解,本申请附图中都是将元件画在另一元件的上侧。
另外,除非明确地描述为相反,否则词语“包括”和诸如“包含”或“具有”的变形将被理解为暗示包含该元件,但不排除任意其它元件。
还需要说明的是,本申请实施例中提到的“和/或”是指包括一个或更多个相关所列项目的任何和所有组合。本申请实施例中用“第一”、“第二”、“第三”等来描述各种组件,但是这些组件不应该受这些术语限制。这些术语仅用来将一个组件与另一组件区分开。并且,除非上下文另有明确指示,否则单数形式“一个”、“一种”和“该()”也意图包括复数形式。
当可以不同地实施某个实施例时,工艺顺序可以与所描述的顺序不同地执行。例如,两个连续描述的工艺可以基本上在同一时间执行或者按与所描述顺序相反的顺序来执行。
立体显示是虚拟现实的一个实现方式,其原理是利用观看者左眼看到的图像信息和右眼看到的图像信息的差异,使观看者的双眼视差融合产生立体感。常见的立体显示技术是利用3D眼镜来实现将左右眼图像分别传送到观看者的左右眼的;裸眼立体显示技术摆脱了3D眼镜的束缚,提高了观看者的舒适度, 成为了未来的发展方向和目标。
在裸眼立体显示技术中,可切换式立体显示装置通常包括控制系统、显示模组和光调制模组,其中,光调制模组可以在控制系统的控制下,通过其开关状态对显示模组发出的图像光进行调制,实现显示装置2D/3D的自由切换。图1示出了相关技术中的一种光调制模组在不施加电压时的剖面结构示意图,图2示出了相关技术中的一种光调制模组在施加电压时的剖面结构示意图。光调制模组包括依次叠层设置的透镜基板1、透镜电极2、透镜结构3、液晶4、间隔电极5和间隔基板6。如图1所示,当透镜电极2和间隔电极5之间不施加电压时,液晶4处于平躺的状态;如图2所示,当透镜电极2和间隔电极5之间施加电压时,液晶4处于站立的状态。从而光调制模组可以形成光调制器,对显示模组发出的图像光进行调制,实现显示装置2D/3D的自由切换。
由于透镜结构3的存在,不同区域液晶的厚度不同,因此所需的理论驱动电压不同。然而,如图1和图2所示,透镜电极2和间隔电极5都是整面电极,其内各点的电场强度相同,这会导致有的区域液晶已经完全站立,有的区域还没有完全站立,造成光在此区域感受到的折射率有偏差,影响光学效果;或者导致有的区域液晶已经超过了其饱和电压(又称过驱动),造成液晶寿命的降低和光调制模组功耗的增加。为解决上述问题,本申请实施例提供一种光调制模组及可切换式立体显示装置,能够调整不同厚度的电光材料所受到的电压,保证电光材料工作在适宜的条件下,从而延长了电光材料的寿命,减少了光调制模组的功耗,提升了光调制模组的光学效果。
下面,对光调制模组、可切换式立体显示装置及其技术效果进行详细描述。
本申请实施例提供一种光调制模组,包括:相对设置的第一基板和第二基板;设置在第一基板靠近第二基板一侧的第一驱动层和光学结构层;设置在第二基板靠近第一基板一侧的第二驱动层;设置在第一驱动层和第二驱动层之间的电光材料。
其中,第一驱动层和第二驱动层可以采用如下三种设计中的任意一种:
设计一、第一驱动层在光调制模组所在平面上的正投影呈条状,第二驱动层在光调制模组所在平面上的正投影与第一基板在光调制模组所在平面上的正投影重合。
设计二、第一驱动层在光调制模组所在平面上的正投影与第一基板在光调制模组所在平面上的正投影重合,第二驱动层在光调制模组所在平面上的正投影呈条状。
设计三、第一驱动层和第二驱动层在光调制模组所在平面上的正投影均呈条状。
上述三种设计通过对第一驱动层和/或第二驱动层进行设计,使得第一驱动层和/或第二驱动层不再是整面电极而是条状电极。通过对条状电极施加的电压进行调整,可以令不同厚度的电光材料工作在适宜的条件下(即电光材料既可以完全站立,又不会造成过驱动)。为了便于理解,下面结合附图对上述三种设计进行详细说明。
在第一种可能的实现方式中,图3示出了本申请实施例提供的一种光调制模组的剖面结构示意图。如图3所示,光调制模组包括:相对设置的第一基板101和第二基板102;设置在第一基板101靠近第二基板102一侧的第一驱动层103和光学结构层104;设置在第二基板102靠近第一基板101一侧的第二驱动层105;设置在第一驱动层103和第二驱动层105之间的电光材料106。
可选的,第一基板101可以为透镜基板,第二基板102可以为间隔基板;或者,第一基板101可以为间隔基板,第二基板102可以为透镜基板。第一基板101和第二基板102通常采用玻璃、树脂等透明材质制作。
第一驱动层103设置在光学结构层104和第一基板101之间。第一驱动层103包括多个第一电极,每个第一电极在光调制模组所在平面上的正投影呈条状(即第一电极为条状电极);第二驱动层105包括一个第二电极,第二电极在光调制模组所在平面上的正投影与第一基板101在光调制模组所在平面上的正投 影重合(即第二电极为面状电极)。第一驱动层103和第二驱动层105通常可以采用氧化铟锡(Indium tin oxide,ITO)等透明导电材质制作。
继续参考图3,在一实施例中,光调制模组还可以包括:第一配向层107和第二配向层108。第一配向层107设置在第一驱动层103和电光材料106之间、且与电光材料106直接接触;第二配向层108设置在第二驱动层105和电光材料106之间、且与电光材料106直接接触。第一配向层107和第二配向层108可以由聚酰亚胺等材质制作。
光学结构层104包括多个依次排列的透镜(图3中以透镜是柱状透镜为例进行绘制)。如图3所示,每个柱状透镜由于其本身形状的限定,会导致其上方的电光材料106的厚度不同,因此,每个透镜对应的第一电极的数量为至少两个。如此,通过对第一电极施加的电压进行调整,可以令不同厚度的电光材料106工作在适宜的条件下(即电光材料106既可以完全站立,又不会造成过驱动)。
可以理解的是,每个透镜对应的第一电极的数量越多,对不同厚度的电光材料106的控制就越精细。考虑到光调制模组的工艺精度和生产成本,可以根据实际需求设计每个透镜对应的第一电极的数量。
在一实施例中,电光材料106的厚度越厚,其需要的驱动电压越大,因此,每个第一电极上施加的电压与该第一电极上方的电光材料106的厚度正相关。
为了保证任意相邻的两个第一电极之间的区域对应的电光材料106能够正常工作,任意相邻的两个第一电极之间的间距不宜过大。图4示出了本申请实施例提供的图3所示的光学结构层和第一驱动层的局部放大示意图。如图4所示,当多个第一电极的宽度a相等时,任意相邻的两个第一电极之间的间距b小于或者等于第一电极的宽度a。
图5示出了本申请实施例提供的一种光调制模组的立体结构示意图。如图5所示,由于一个第一电极上只能施加一个电压,因此需要保证一个第一电极在其延伸方向上的电光材料106的厚度都是相同的,即第一电极的延伸方向与透镜的延伸方向平行。
继续参考图3和图4,当透镜为柱状透镜时,柱状透镜为中心对称结构,因此柱状透镜上方的电光材料106的厚度也呈中心对称态。光调制模组具有以下特征中的至少一项:
每个柱状透镜对应的第一电极沿柱状透镜的中轴线中心对称;
每个柱状透镜对应的第一电极上施加的电压沿柱状透镜的中轴线中心对称。
图6示出了本申请实施例提供的另一种光调制模组的剖面结构示意图。与上述图3所示的光调制模组不同的是,光学结构层104包括多个依次排列的透镜,透镜为棱镜。参考图6可知,在每个透镜对应的区域内,沿图6从左至右的方向电光材料106的厚度逐渐变小,因此,每个透镜对应的第一电极沿图6从左至右的方向其上施加的电压也逐渐变小。
图7示出了本申请实施例提供的又一种光调制模组的剖面结构示意图。与上述图3所示的光调制模组不同的是,第一驱动层103设置在光学结构层104和电光材料106之间。第一驱动层103设置在光学结构层104的上方,依旧可以通过对条状电极施加的电压进行调整,实现令不同厚度的电光材料工作在适宜的条件下(即电光材料既可以完全站立,又不会造成过驱动)的效果。
在第二种可能的实现方式中,图8示出了本申请实施例提供的再一种光调制模组的剖面结构示意图。如图8所示,光调制模组包括:相对设置的第一基板101和第二基板102;设置在第一基板101靠近第二基板102一侧的第一驱动层103和光学结构层104;设置在第二基板102靠近第一基板101一侧的第二驱动层105;设置在第一驱动层103和第二驱动层105之间的电光材料106。
可选的,第一基板101可以为透镜基板,第二基板102可以为间隔基板;或者,第一基板101可以为间隔基板,第二基板102可以为透镜基板。第一基板101和第二基板102通常采用玻璃、树脂等透明材质制作。
第一驱动层103设置在光学结构层104和第一基板101之间。第一驱动层103包括一个第一电极,第一电极在光调制模组所在平面上的正投影与第一基板101在光调制模组所在平面上的正投影重合(即第一电极为面状电极);第二驱 动层105包括多个第二电极,每个第二电极在光调制模组所在平面上的正投影呈条状(即第二电极为条状电极)。第一驱动层103和第二驱动层105通常可以采用ITO等透明导电材质制作。
继续参考图8,在一实施例中,光调制模组还可以包括:第一配向层107和第二配向层108。第一配向层107设置在第一驱动层103和电光材料106之间、且与电光材料106直接接触;第二配向层108设置在第二驱动层105和电光材料106之间、且与电光材料106直接接触。第一配向层107和第二配向层108可以由聚酰亚胺等材质制作。
光学结构层104包括多个依次排列的透镜(图8中以透镜是柱状透镜为例进行绘制)。如图8所示,每个柱状透镜由于其本身形状的限定,会导致其上方的电光材料106的厚度不同,因此,每个透镜对应的第二电极的数量为至少两个。如此,通过对第二电极施加的电压进行调整,可以令不同厚度的电光材料106工作在适宜的条件下(即电光材料106既可以完全站立,又不会造成过驱动)。
可以理解的是,每个透镜对应的第二电极的数量越多,对不同厚度的电光材料106的控制就越精细。考虑到光调制模组的工艺精度和生产成本,可以根据实际需求设计每个透镜对应的第二电极的数量。
在一实施例中,电光材料106的厚度越厚,其需要的驱动电压越大,因此,每个第二电极上施加的电压与该第二电极下方的电光材料106的厚度正相关。
为了保证任意相邻的两个第二电极之间的区域对应的电光材料106能够正常工作,任意相邻的两个第二电极之间的间距不宜过大。示例性的,当多个第二电极的宽度相等时,任意相邻的两个第二电极之间的间距小于或者等于第二电极的宽度。
另外,由于一个第二电极上只能施加一个电压,因此需要保证一个第二电极在其延伸方向上的电光材料106的厚度都是相同的,即第二电极的延伸方向与透镜的延伸方向平行。
继续参考图8,当透镜为柱状透镜时,柱状透镜为中心对称结构,因此柱状 透镜上方的电光材料106的厚度也呈中心对称态。光调制模组具有以下特征中的至少一项:
每个柱状透镜对应的第二电极沿柱状透镜的中轴线中心对称;
每个柱状透镜对应的第二电极上施加的电压沿柱状透镜的中轴线中心对称。
图9示出了本申请实施例提供的还一种光调制模组的剖面结构示意图。与上述图8所示的光调制模组不同的是,第一驱动层103设置在光学结构层104和电光材料106之间。第一驱动层103设置在光学结构层104的上方,依旧可以通过对条状电极施加的电压进行调整,实现令不同厚度的电光材料工作在适宜的条件下(即电光材料既可以完全站立,又不会造成过驱动)的效果。
在第三种可能的实现方式中,图10示出了本申请实施例提供的又另一种光调制模组的剖面结构示意图。如图10所示,光调制模组包括:相对设置的第一基板101和第二基板102;设置在第一基板101靠近第二基板102一侧的第一驱动层103和光学结构层104;设置在第二基板102靠近第一基板101一侧的第二驱动层105;设置在第一驱动层103和第二驱动层105之间的电光材料106。
可选的,第一基板101可以为透镜基板,第二基板102可以为间隔基板;或者,第一基板101可以为间隔基板,第二基板102可以为透镜基板。第一基板101和第二基板102通常采用玻璃、树脂等透明材质制作。
第一驱动层103设置在光学结构层104和第一基板101之间。第一驱动层103包括多个第一电极,每个第一电极在光调制模组所在平面上的正投影呈条状(即第一电极为条状电极);第二驱动层105包括多个第二电极,每个第二电极在光调制模组所在平面上的正投影呈条状(即第二电极也为条状电极)。第一驱动层103和第二驱动层105通常可以采用ITO等透明导电材质制作。
在一实施例中,第一驱动层103在光调制模组所在平面上的正投影可以与第二驱动层105在光调制模组所在平面上的正投影完全重合(即每个第一电极对应一个第二电极,第一电极和第二电极的大小相同、且第一电极与第二电极完全对齐),也可以不完全重合。当第一驱动层103在光调制模组所在平面上的 正投影可以与第二驱动层105在光调制模组所在平面上的正投影完全重合时,第一驱动层103和第二驱动层105在制作时可以共用一个掩膜板,降低了工艺难度。
继续参考图10,在一实施例中,光调制模组还可以包括:第一配向层107和第二配向层108。第一配向层107设置在第一驱动层103和电光材料106之间、且与电光材料106直接接触;第二配向层108设置在第二驱动层105和电光材料106之间、且与电光材料106直接接触。第一配向层107和第二配向层108可以由聚酰亚胺等材质制作。
光学结构层104包括多个依次排列的透镜(图10中以透镜是柱状透镜为例进行绘制)。如图10所示,每个柱状透镜由于其本身形状的限定,会导致其上方的电光材料106的厚度不同,因此,每个透镜对应的第一电极的数量为至少两个,每个透镜对应的第二电极的数量为至少两个。如此,通过对第一电极和第二电极施加的电压进行调整,可以令不同厚度的电光材料106工作在适宜的条件下(即电光材料106既可以完全站立,又不会造成过驱动)。
在一实施例中,电光材料106的厚度越厚,其需要的驱动电压越大,因此,每个第一电极上施加的电压与该第一电极上方的电光材料106的厚度正相关;每个第二电极上施加的电压与该第二电极下方的电光材料106的厚度正相关。
在一实施例中,当多个第一电极的宽度相等时,任意相邻的两个第一电极之间的间距小于或者等于第一电极的宽度;当多个第二电极的宽度相等时,任意相邻的两个第二电极之间的间距小于或者等于第二电极的宽度。
在一实施例中,第一电极的延伸方向与透镜的延伸方向平行;第二电极的延伸方向与透镜的延伸方向平行。
在一实施例中,透镜为柱状透镜,光调制模组具有以下特征中的至少一项:
每个柱状透镜对应的第一电极沿柱状透镜的中轴线中心对称;
每个柱状透镜对应的第一电极上施加的电压沿柱状透镜的中轴线中心对称;
每个柱状透镜对应的第二电极沿柱状透镜的中轴线中心对称;
每个柱状透镜对应的第二电极上施加的电压沿柱状透镜的中轴线中心对称。
图11示出了本申请实施例提供的又再一种光调制模组的剖面结构示意图。与上述图10所示的光调制模组不同的是,第一驱动层103设置在光学结构层104和电光材料106之间。第一驱动层103设置在光学结构层104的上方,依旧可以通过对条状电极施加的电压进行调整,实现令不同厚度的电光材料工作在适宜的条件下(即电光材料既可以完全站立,又不会造成过驱动)的效果。
在本申请上述实施例中,电光材料106通常可以为液晶;光学结构层104的材料通常可以为透明树脂或者玻璃。
本申请实施例提供一种光调制模组,包括相对设置的第一基板和第二基板;设置在第一基板靠近第二基板一侧的第一驱动层和光学结构层;设置在第二基板靠近第一基板一侧的第二驱动层;设置在第一驱动层和第二驱动层之间的电光材料;其中,第一驱动层和/或第二驱动层在光调制模组所在平面上的正投影呈条状。通过对第一驱动层和/或第二驱动层进行设计,使得第一驱动层和/或第二驱动层不再是整面电极而是条状电极。通过对条状电极施加不同的电压,调整不同厚度的电光材料所受到的电压,保证电光材料工作在适宜的条件下(即电光材料既可以完全站立,又不会造成过驱动),从而延长了电光材料的寿命,减少了光调制模组的功耗,提升了光调制模组的光学效果。
图12示出了本申请实施例提供的一种可切换式立体显示装置的结构示意图。如图12所示,可切换式立体显示装置包括:控制系统201、显示模组202和上述任一实施例所描述的光调制模组203。
显示模组202与控制系统201连接,显示模组202设置为在控制系统201的控制下,发出图像光;
光调制模组203与控制系统201连接、且设置在显示模组202发出图像光的一侧,光调制模组203设置为在控制系统201的控制下,对图像光进行调制,形成平面图像或者立体图像。
在一实施例中,显示模组202可以为液晶显示装置(Liquid Crystal Display,LCD)、发光二极管(Light Emitting Diode,LED)显示装置、有机发光二极管(Organic Light-Emitting Diode,OLED)显示装置、电子纸、QLED(Quantum Dot Light Emitting Diodes,量子点发光)显示装置、micro LED(微发光二极管,μLED)显示装置、micro OLED显示装置、投影模块等显示装置中的任意一种,本申请对此并不限制。
本申请提供的方案可以应用在可切换裸眼3D的光学器件上,也可以利用在可切换的防窥器件上,还可以利用在其它应用液晶的可切换光调制器件上,本申请实施例对此不作限制。

Claims (16)

  1. 一种光调制模组,包括:相对设置的第一基板和第二基板;设置在所述第一基板靠近所述第二基板一侧的第一驱动层和光学结构层;设置在所述第二基板靠近所述第一基板一侧的第二驱动层;设置在所述第一驱动层和所述第二驱动层之间的电光材料;其中,
    所述第一驱动层和所述第二驱动层中的至少之一在所述光调制模组所在平面上的正投影呈条状。
  2. 根据权利要求1所述的光调制模组,其中,
    所述第一驱动层包括多个第一电极,每个所述第一电极在所述光调制模组所在平面上的正投影呈条状;所述第二驱动层包括一个第二电极,所述第二电极在所述光调制模组所在平面上的正投影与所述第一基板在所述光调制模组所在平面上的正投影重合;或者,
    所述第一驱动层包括一个第一电极,所述第一电极在所述光调制模组所在平面上的正投影与所述第一基板在所述光调制模组所在平面上的正投影重合;所述第二驱动层包括多个第二电极,每个所述第二电极在所述光调制模组所在平面上的正投影呈条状;或者,
    所述第一驱动层包括多个第一电极,所述第二驱动层包括多个第二电极;每个所述第一电极和每个所述第二电极在所述光调制模组所在平面上的正投影均呈条状、且所述第一驱动层在所述光调制模组所在平面上的正投影与所述第二驱动层在所述光调制模组所在平面上的正投影完全重合。
  3. 根据权利要求1所述的光调制模组,其中,
    所述第一驱动层设置在所述光学结构层和所述第一基板之间;或者,
    所述第一驱动层设置在所述光学结构层和所述电光材料之间。
  4. 根据权利要求1所述的光调制模组,还包括:第一配向层和第二配向层;其中,
    所述第一配向层设置在所述第一驱动层和所述电光材料之间、且与所述电光材料直接接触;所述第二配向层设置在所述第二驱动层和所述电光材料之间、 且与所述电光材料直接接触。
  5. 根据权利要求1所述的光调制模组,其中,所述光学结构层包括多个依次排列的透镜;
    在所述第一驱动层在所述光调制模组所在平面上的正投影呈条状的情况下,所述第一驱动层包括多个第一电极,每个所述透镜对应的所述第一电极的数量为至少两个。
  6. 根据权利要求5所述的光调制模组,其中,所述第一电极上施加的电压与所述第一电极上方的所述电光材料的厚度正相关。
  7. 根据权利要求5所述的光调制模组,其中,在多个所述第一电极的宽度相等的情况下,任意相邻的两个所述第一电极之间的间距小于或者等于所述第一电极的宽度。
  8. 根据权利要求5所述的光调制模组,其中,每个所述第一电极的延伸方向与每个所述透镜的延伸方向平行。
  9. 根据权利要求5所述的光调制模组,其中,多个所述透镜为柱状透镜,所述光调制模组具有以下特征中的至少一项:
    每个所述柱状透镜对应的所述第一电极沿所述柱状透镜的中轴线中心对称;
    每个所述柱状透镜对应的所述第一电极上施加的电压沿所述柱状透镜的中轴线中心对称。
  10. 根据权利要求1所述的光调制模组,其中,所述光学结构层包括多个依次排列的透镜;
    在所述第二驱动层在所述光调制模组所在平面上的正投影呈条状的情况下,所述第二驱动层包括多个第二电极,每个所述透镜对应的所述第二电极的数量为至少两个。
  11. 根据权利要求10所述的光调制模组,其中,每个所述第二电极上施加的电压与所述第二电极下方的所述电光材料的厚度正相关。
  12. 根据权利要求10所述的光调制模组,其中,在多个所述第二电极的宽 度相等的情况下,任意相邻的两个所述第二电极之间的间距小于或者等于所述第二电极的宽度。
  13. 根据权利要求10所述的光调制模组,其中,每个所述第二电极的延伸方向与每个所述透镜的延伸方向平行。
  14. 根据权利要求10所述的光调制模组,其中,多个所述透镜为柱状透镜,所述光调制模组具有以下特征中的至少一项:
    每个所述柱状透镜对应的所述第二电极沿所述柱状透镜的中轴线中心对称;
    每个所述柱状透镜对应的所述第二电极上施加的电压沿所述柱状透镜的中轴线中心对称。
  15. 根据权利要求1所述的光调制模组,其中,所述电光材料为液晶。
  16. 一种可切换式立体显示装置,包括:控制系统、显示模组和具有如权利要求1-15中任一项所述的光调制模组;其中,
    所述显示模组与所述控制系统连接,所述显示模组设置为在所述控制系统的控制下,发出图像光;
    所述光调制模组与所述控制系统连接、且设置在所述显示模组发出所述图像光的一侧,所述光调制模组设置为在所述控制系统的控制下,对所述图像光进行调制,形成平面图像或者立体图像。
PCT/CN2022/095189 2021-06-30 2022-05-26 一种光调制模组及可切换式立体显示装置 WO2023273721A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212022000120.6U DE212022000120U1 (de) 2021-06-30 2022-05-26 Lichtmodulationsmodul und schaltbare stereoskopische Anzeigevorrichtung
CN202280002926.7A CN115280221A (zh) 2021-06-30 2022-05-26 一种光调制模组及可切换式立体显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110739694.0A CN113433713A (zh) 2021-06-30 2021-06-30 一种光调制模组及可切换式立体显示装置
CN202110739694.0 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273721A1 true WO2023273721A1 (zh) 2023-01-05

Family

ID=77758238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095189 WO2023273721A1 (zh) 2021-06-30 2022-05-26 一种光调制模组及可切换式立体显示装置

Country Status (2)

Country Link
CN (1) CN113433713A (zh)
WO (1) WO2023273721A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433713A (zh) * 2021-06-30 2021-09-24 纵深视觉科技(南京)有限责任公司 一种光调制模组及可切换式立体显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185982A (zh) * 2011-12-29 2013-07-03 上海天马微电子有限公司 背光源装置、2d/3d切换型显示装置
CN103995402A (zh) * 2013-07-02 2014-08-20 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置及其驱动方法
CN206892489U (zh) * 2017-06-29 2018-01-16 张家港康得新光电材料有限公司 可切换透镜结构与3d显示装置
CN206892488U (zh) * 2017-06-29 2018-01-16 张家港康得新光电材料有限公司 可切换透镜结构与3d显示装置
CN108803052A (zh) * 2018-05-29 2018-11-13 张家港康得新光电材料有限公司 一种立体显示设备
CN113433713A (zh) * 2021-06-30 2021-09-24 纵深视觉科技(南京)有限责任公司 一种光调制模组及可切换式立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185982A (zh) * 2011-12-29 2013-07-03 上海天马微电子有限公司 背光源装置、2d/3d切换型显示装置
CN103995402A (zh) * 2013-07-02 2014-08-20 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置及其驱动方法
CN206892489U (zh) * 2017-06-29 2018-01-16 张家港康得新光电材料有限公司 可切换透镜结构与3d显示装置
CN206892488U (zh) * 2017-06-29 2018-01-16 张家港康得新光电材料有限公司 可切换透镜结构与3d显示装置
CN108803052A (zh) * 2018-05-29 2018-11-13 张家港康得新光电材料有限公司 一种立体显示设备
CN113433713A (zh) * 2021-06-30 2021-09-24 纵深视觉科技(南京)有限责任公司 一种光调制模组及可切换式立体显示装置

Also Published As

Publication number Publication date
CN113433713A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
JP5142356B2 (ja) 立体画像変換パネル
EP2535746B1 (en) Liquid crystal lens and display including the same
CN102819147B (zh) 显示装置
US9223160B2 (en) Display
US8582043B2 (en) 2D/3D switchable LC lens unit for use in a display device
US11314117B2 (en) Display assembly, display device and control method thereof
JP2007226231A (ja) 立体画像変換パネル及びそれを有する立体画像表示装置
CN102854693A (zh) 液晶透镜及包括该液晶透镜的显示装置
TWI514004B (zh) 液晶顯示器件及光學器件
US20150138457A1 (en) Autostereoscopic display device and driving method
KR20150116974A (ko) 영상 표시 장치
US20130222234A1 (en) Image display apparatus
JP2013054331A (ja) 表示方法、表示装置、電子機器および照明装置
WO2017118224A1 (zh) 视角定向光源装置及显示装置
WO2023273721A1 (zh) 一种光调制模组及可切换式立体显示装置
WO2023273723A1 (zh) 一种光调制模组及可切换式立体显示装置
US9041999B2 (en) Electrowetting device and method of manufacturing the same
US20170059876A1 (en) Polarization control panel, method of manufacturing the same, and stereoscopic display device using the same
KR20130021702A (ko) 입체 영상 표시 장치
EP3375186B1 (en) Display device and display control method
US8847854B2 (en) Non-spectacled stereoscopic display apparatus capable of improving optical characteristics
KR102267429B1 (ko) 액정을 포함한 광 변조 장치 및 이를 이용한 광학 표시 장치
CN115315658B (zh) 一种光调制模组及可切换式立体显示装置
CN115280221A (zh) 一种光调制模组及可切换式立体显示装置
KR102315964B1 (ko) 편광 제어 필름 및 이를 이용한 입체 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212022000120

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831544

Country of ref document: EP

Kind code of ref document: A1