WO2023273490A1 - 控制电路、电路板组件及电池并联系统 - Google Patents

控制电路、电路板组件及电池并联系统 Download PDF

Info

Publication number
WO2023273490A1
WO2023273490A1 PCT/CN2022/085165 CN2022085165W WO2023273490A1 WO 2023273490 A1 WO2023273490 A1 WO 2023273490A1 CN 2022085165 W CN2022085165 W CN 2022085165W WO 2023273490 A1 WO2023273490 A1 WO 2023273490A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
switch tube
current limiting
limiting circuit
Prior art date
Application number
PCT/CN2022/085165
Other languages
English (en)
French (fr)
Inventor
邵云露
王方淳
易凌松
王文兵
高成
彭宇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22831321.9A priority Critical patent/EP4366124A1/en
Priority to US18/564,065 priority patent/US20240266846A1/en
Publication of WO2023273490A1 publication Critical patent/WO2023273490A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current

Definitions

  • the embodiments of the present application relate to the field of circuit design, and in particular to a control circuit, a circuit board assembly, and a battery parallel system.
  • each battery and the device used to connect to the load or external power supply The current on the connecting lines between the busbars is usually too large, and the battery will often work in an overcurrent state, resulting in a short service life and low reliability.
  • the embodiment of the present application provides a control circuit, which is arranged between the battery and the busbar.
  • the control circuit includes an acquisition unit, a control unit and a current limiting circuit; the positive pole of the battery is connected to the first terminal of the current limiting circuit.
  • the acquisition unit is used to collect the current of the positive pole of the battery; Start timing when the threshold is reached, and after the duration of the positive battery current greater than the preset threshold is longer than the preset time, the current of the positive battery is reduced by controlling the current limiting circuit until the current of the positive battery is less than or equal to the preset threshold.
  • the embodiment of the present application also provides a circuit board assembly, including the above-mentioned control circuit.
  • the embodiment of the present application also provides a battery parallel system, including each battery for parallel operation, the above-mentioned circuit board assembly, bus bars connected to each battery through each circuit board assembly, and a host computer connected to each circuit board assembly.
  • Fig. 1 is a schematic block diagram of a battery parallel system according to an embodiment of the present application
  • Fig. 2 is a circuit diagram 1 of a control circuit according to an embodiment of the present application.
  • Fig. 3 is a control flow chart 1 of a control unit in a control circuit according to an embodiment of the present application
  • Fig. 4 is a circuit diagram 2 of a control circuit according to an embodiment of the present application.
  • Fig. 5 is a control flow chart II of the control unit in the control circuit according to an embodiment of the present application.
  • FIG. 6 is a circuit diagram three of a control circuit according to an embodiment of the present application.
  • FIG. 7 is a third control flow diagram of the control unit in the control circuit according to an embodiment of the present application.
  • FIG. 8 is a circuit diagram 1 of a control circuit provided with a full-bridge DC conversion circuit according to an embodiment of the present application;
  • FIG. 9 is a circuit diagram 2 of a control circuit provided with a full-bridge DC conversion circuit according to an embodiment of the present application.
  • Fig. 10 is a fourth control flowchart of the control unit in the control circuit according to an embodiment of the present application.
  • An embodiment of the present application relates to a control circuit. Please refer to FIG. 1 .
  • the control circuit 100 is set in a battery parallel system, specifically between each battery 200 for parallel operation and a bus bar 300 connected to each battery 200 During the period, the control circuit 100 is used to control the current of the batteries 200 running in parallel within a normal range, and the control circuit 100 specifically includes an acquisition unit 1 , a control unit 2 and a current limiting circuit 3 .
  • the positive pole of the battery 200 is connected to the first terminal 301 of the current limiting circuit 3
  • the second terminal 302 of the current limiting circuit 3 is connected to the positive pole of the bus bar 300
  • the negative pole of the bus bar 300 is connected to the third terminal 303 of the current limiting circuit 3
  • the fourth terminal 304 of the current limiting circuit 3 is connected to the negative pole of the battery 200
  • the input terminal 11 of the acquisition unit 1 is connected to the positive pole of the battery 200
  • the output terminal 12 of the acquisition unit 1 is connected to the input terminal 21 of the control unit 2
  • the output terminal 22 is connected to the current limiting circuit 3.
  • the acquisition unit 1 will collect the current of the positive pole of the battery 200, and the control unit 2 will start timing when the current of the positive pole of the battery 200 is greater than the preset threshold value, and after the duration of the positive pole current of the battery 200 greater than the preset threshold value is longer than the preset time, The current of the positive pole of the battery 200 is reduced by controlling the current limiting circuit 3 until the current of the positive pole of the battery 200 is less than or equal to a preset threshold.
  • a control circuit In this embodiment, a control circuit, a circuit board assembly and a battery parallel system are provided, which can control the current of the batteries running in parallel to be within a normal range, increase the service life of the battery, and improve the reliability of the circuit.
  • a control circuit is set between the battery and the busbar. The control circuit can collect the current of the positive pole of the battery. After the duration of the battery is longer than the preset time, the current limiting circuit is controlled to reduce the current of the positive electrode of the battery until the current of the positive electrode of the battery is less than or equal to the preset threshold.
  • This application can effectively monitor and adjust the current of the positive pole of the battery by setting the control circuit, and because the current of the positive pole of the battery is not always stable, for example, the current of the positive pole of the battery may change during the process of connecting the external power supply to the battery through the bus bar. It is greater than the preset threshold for a short time, but when the current of the positive electrode of the battery stabilizes, it may not exceed the preset threshold. In order to avoid reducing the current of the positive electrode of the battery in this case, there will be power transmission between the battery and the busbar.
  • the present application adjusts the preset time, and after the current of the positive electrode of the battery is greater than the preset threshold and lasts for the preset time, the control unit controls the current limiting circuit to reduce the current of the positive electrode of the battery to achieve After confirming that the battery is indeed operating stably in the overvoltage or overcurrent operating state, the current of the positive electrode of the battery is adjusted to ensure the efficiency of electric energy transmission between the battery and the busbar to a certain extent.
  • the current of the positive electrode of the battery can be effectively monitored and adjusted within a normal range, thereby increasing the service life of the battery, improving the reliability of the circuit, and simultaneously improving the output efficiency of the battery.
  • the control circuit 100 further includes a voltage stabilizing capacitor C, the first end of the voltage stabilizing capacitor C is connected to the positive pole of the bus bar 300 , and the second end of the voltage stabilizing capacitor C is connected to the bus bar 300 or, the first end of the voltage stabilizing capacitor C is connected to the positive pole of the battery 200, and the second end of the voltage stabilizing capacitor C is connected to the negative pole of the battery 200, or between the positive and negative poles of the busbar 300 and the battery 200 A voltage stabilizing capacitor C is arranged between the positive and negative poles of the busbar 300 to stabilize the voltage.
  • a voltage stabilizing capacitor C is arranged between the positive and negative poles of the busbar 300 to stabilize the voltage.
  • control circuit 100 further includes: a first switch K1, a second switch K2, a first diode D1 and a second diode D2, the first switch K1 and the second switch
  • the second switch tube K2 can be a MOS tube.
  • the positive pole of the battery 200 is connected to the first terminal 301 of the current limiting circuit 3 through the first switch tube K1, the second terminal 302 of the current limiting circuit 3 is connected to the positive pole of the bus bar 300 through the second switch tube K2, and the first diode
  • the positive pole/negative pole of D1 is connected to the positive pole of the battery 200
  • the negative pole/positive pole of the first diode D1 is connected to the first end 301 of the current limiting circuit 3
  • the negative pole/positive pole of the second diode D2 is connected to the current limiting circuit 3
  • the second terminal 302 of the second diode D2, the anode/negative pole of the second diode D2 is connected to the anode of the bus bar 300
  • the output terminal of the control unit 2 is also respectively connected to the control terminal of the first switching tube K1 and the control terminal of the second switching tube K2 end.
  • the control unit 2 will turn on/off the first switch tube K1 and turn off/on the second switch tube K2 when it is determined that the battery 200 is in a charging state; when it is determined that the battery 200 is in a discharging state, turn off/on The first switch tube K1, and turn on/off the second switch tube K2, please refer to the control flow chart of the control unit 2 in Figure 3, the direction of D1 and D2 in Figure 2 is shown in Figure 3 as an example, at this time, The control unit 2 will turn on the first switch tube K1 and turn off the second switch tube K2 when it is determined that the battery 200 is in a charging state; when it is determined that the battery 200 is in a discharging state, turn off the first switch tube K1 and turn on The second switch tube K2.
  • this embodiment also provides a specific implementation method for the control unit to determine that the battery is in a charging/discharging state.
  • the control unit 2 will determine that each battery 200 is currently in a charging state after receiving the charging command output by the host computer 400 ; and determine that each battery 200 is currently in a discharging state after receiving a discharge command output by the host computer 400 .
  • the conduction path of the battery is the same when the battery is in the discharge state, only the conduction path from the battery to the busbar is formed, thereby effectively reducing the internal friction caused by mutual charging between the batteries, and improving the charging efficiency of the entire battery parallel system. discharge efficiency.
  • the current limiting circuit 3 includes: a first inductor L1, a third switching tube K3 and a fourth switching tube K4,
  • the third switch tube K3 and the fourth switch tube K4 may be MOS tubes.
  • the circuit connection structure is as follows:
  • the first end of the first inductor L1 is used as the first end 301 of the current limiting circuit 3
  • the second end of the first inductor L1 is used as the second end 302 of the current limiting circuit 3
  • the first end of the third switch tube K3 is connected to the first end of the current limiting circuit 3.
  • the first end of an inductor L1 the second end of the third switching tube K3 serves as the fourth end 304 of the current limiting circuit 3
  • the first end of the fourth switching tube K4 is connected to the second end of the first inductor L1
  • the second terminal of the fourth switching tube K4 is used as the third terminal 303 of the current limiting circuit 3
  • the second terminal of the third switching tube K3 is connected to the second terminal of the fourth switching tube K4, and the output terminals of the control unit 2 are respectively connected to The control terminal of the third switch tube K3 and the control terminal of the fourth switch tube K4.
  • the control unit 2 will start timing when the battery 200 is in a charging state and the current of the positive pole of the battery 200 is greater than the preset threshold, and when the current of the positive pole of the battery 200 is greater than the preset threshold After the duration is longer than the preset time, turn off the third switch tube K3 and turn on the fourth switch tube K4; the current at the positive pole of the battery 200 is less than or equal to the preset threshold value, or the positive pole current of the battery 200 obtained by timing is greater than the preset threshold After the duration of the threshold is set to be less than or equal to the preset time, the switching states of the third switching tube K3 and the fourth switching tube K4 are kept unchanged.
  • the control unit 2 will start timing when the battery 200 is in a discharging state and the current of the positive pole of the battery 200 is greater than the preset threshold, and after the duration of the positive pole current of the battery 200 greater than the preset threshold is greater than the preset time, the third switch is turned on
  • the tube K3 is to turn off the fourth switching tube K4; when the current of the positive pole of the battery 200 is less than or equal to the preset threshold value, or after the time duration of the positive pole current of the battery 200 obtained by timing is greater than the preset threshold value is less than or equal to the preset time,
  • the switching states of the third switching tube K3 and the fourth switching tube K4 are kept unchanged.
  • both the third switch tube K3 and the fourth switch tube K4 are controlled to be in the disconnected state.
  • the battery 200 and the busbar 300 can be directly connected to each other.
  • the first inductance L1 controls the current on the connection line to gradually increase or decrease, so as to avoid the impact of sudden current increase and decrease on battery life, and the current limiting circuit 3 does not work at this time.
  • the control unit 2 will control only the fourth switch tube K4 to be turned on. Part of the current flowing from the positive pole of the busbar 300 will flow directly back to the negative pole of the busbar 300 from the fourth switching tube K4, so the magnitude of the current transmitted from the busbar 300 to the battery 200 can be limited; when the battery 200 is in a discharge state, Electric energy is transmitted from the battery 200 to the busbar 300.
  • control unit 2 will control only the third switch tube K3 to be turned on, and a part of the current flowing from the positive electrode of the battery 200 will flow directly back to the battery from the third switch tube K3. 200, so the current transmitted from the battery 200 to the bus bar 300 can be limited.
  • a control circuit for limiting the current of the positive electrode of the battery is provided.
  • the current limiting circuit specifically includes a first inductor, which is used to limit the gradual increase or decrease of the current on the connection line between the battery and the busbar, so as to avoid The impact of sudden increase and decrease of current on battery life, if the battery positive current is within the preset threshold, or the battery positive current obtained by timing is greater than the preset threshold for a preset period of time, that is, if the battery is not continuously In the overcurrent state, the control unit will disconnect the third switching tube and the fourth switching tube, and the battery is only connected to the busbar through the first inductor.
  • the control unit When the battery is in the charging state, if the current of the positive electrode of the battery is greater than the preset threshold and lasts for a preset time, the control unit will control only the fourth switch to be turned on. At this time, the current output by the busbar will flow through the fourth switch. Returning to the busbar, it will not flow to the battery, effectively ensuring that the battery will not continue to be in an overcurrent state.
  • the control unit When the battery is in the discharge state, if the current of the positive electrode of the battery is greater than the preset threshold and lasts for a preset time, the control unit will control only the third switch to be turned on, and the current output by the battery will flow back through the third switch. To the battery, it will not flow to the external load, effectively ensuring that the load will not continue to be in an overcurrent state, and improving the reliability of the circuit.
  • the switch tube K5 may be a MOS tube.
  • the circuit connection structure is as follows:
  • the first end of the second inductance L2 serves as the first end 301 of the current limiting circuit 3
  • the second end of the second inductance L2 serves as the second end 302 of the current limiting circuit 3
  • the first end of the fifth switching tube K5 is connected to the first end of the current limiting circuit 3.
  • the second end of the second inductance L2, the second end of the fifth switching tube K5 is used as the fourth end 304 of the current limiting circuit 3, the cathode of the third diode D3 is connected to the second end of the second inductance L2, the third and second The anode of the diode D3 is used as the third end 303 of the current limiting circuit 3, the anode of the third diode D3 is connected to the second end of the fifth switch K5, and the cathode of the first diode D1 is connected to the anode of the battery 200 , the anode of the first diode D1 is connected to the first end 301 of the current limiting circuit 3, the anode of the second diode D2 is connected to the second end 302 of the current limiting circuit 3, and the cathode of the second diode D2 is connected to The output end of the control unit 2 is connected to the control end of the fifth switching transistor K5 at the positive pole of the bus bar 300 .
  • the fifth switching tube K5 adjusts the current output to the positive electrode of the battery 200 only by controlling the second switching tube K2 to be turned on or off, and the control unit 2 will also turn on the first switching tube K1 when the battery 200 is in a discharging state. Turn off the second switch tube K2, and only control the fifth switch tube K5 to turn on or off, so as to adjust the current output to the positive electrode of the bus bar 300.
  • the control unit 2 turns off the first switch tube K1 and the fifth switch tube K5, and when the control unit 2 controls the second switch tube K2 to be turned on, the current flows out from the positive pole of the bus bar 300 , through the second switching tube K2, the second inductance L2 and the first diode D1 in turn, and flow to the positive pole of the battery 200. At this time, the second inductance L2 starts to be charged, so that the positive pole current of the battery 200 gradually increases.
  • the control unit 2 will control the second switching tube K2 to turn off.
  • the second inductor L2, the first diode D1, and the battery 200 and the third diode D3 will form a conduction loop, and only the second inductor L2 will discharge in the conduction loop until the current of the positive electrode of the battery 200 is less than the preset value, and the control unit 2 controls the second switch tube K2 turn on to increase the current of the positive pole of the battery 200, such circulation can make the current of the positive pole of the battery 200 change up and down around a preset value smaller than the positive pole current of the busbar 300, and the technician controls the current of the second switch tube K2
  • the conduction time can limit the current of the positive electrode of the battery 200 .
  • the control unit 2 When the battery 200 is in the discharge state, the control unit 2 turns on the first switch tube K1 and turns off the second switch tube K2. When the control unit 2 controls the fifth switch tube K5 to be turned on, the current flows out from the positive pole of the battery 200, followed by Through the first switching tube K1, the second inductor L2 and the fifth switching tube K5, it flows to the negative pole of the battery 200. At this time, the second inductor L2 starts to be charged.
  • the control unit 2 When the second inductor L2 is charged to a certain amount of electricity, the control unit 2 It will control the fifth switching tube K5 to turn off, and at this time, the electric energy on the second inductor L2 and the electric energy output by the positive pole of the battery 200 will be output to the positive pole of the busbar 300 through the second diode D2, so that the electric energy of the busbar 300
  • the positive current is greater than or equal to the preset value (greater than the positive current of the battery 200).
  • the control unit 2 When the current of the positive pole of the busbar 300 is less than the preset value, the control unit 2 will control the fifth switch tube K5 to turn on, and continue to be supplied by the battery 200.
  • the second inductance L2 is charged, and this cycle can make the current of the positive pole of the busbar 300 change up and down around the preset value greater than the positive pole current of the battery 200.
  • the technician can limit the current by controlling the conduction time of the fifth switch tube K5. The current of the positive pole of the bus bar 300 .
  • the application sets the second inductance, the fifth switching tube and the third diode, and the first switching tube, the second switching tube, the first diode and the second Diodes together form a bidirectional DC conversion circuit.
  • the bidirectional DC conversion circuit is specifically used to control the second switching tube to be turned on or off when the battery is in a charging state, so as to reduce the current on the busbar side and output it to the battery.
  • the current on the battery side can be increased and output to the busbar side by controlling the fifth switch tube to be turned on or off, and the control unit can control the current transmitted from the busbar to the battery size, or control the size of the current that the battery transmits to the busbar, and this application directly uses the first switch tube, the second switch tube, the first diode and the second diode to prevent backflow to form a
  • the bidirectional DC conversion circuit simplifies the topology of the circuit to a certain extent and reduces the cost.
  • the switch tube K6 may be a MOS tube.
  • the circuit connection structure is as follows:
  • the first end of the third inductance L3 is used as the first end 301 of the current limiting circuit 3
  • the second end of the third inductance L3 is used as the second end 302 of the current limiting circuit 3
  • the first end of the sixth switch tube K6 is connected to the first end of the current limiting circuit 3.
  • the first end of the third inductance L3, the second end of the sixth switching tube K6 serve as the third end 303 of the current limiting circuit 3
  • the cathode of the fourth diode D4 is connected to the first end of the third inductance L3, the fourth and second
  • the anode of the diode D4 is used as the fourth end 304 of the current limiting circuit 3
  • the second end of the sixth switch K6 is connected to the anode of the fourth diode D4, and the output end of the control unit 2 is connected to the end of the sixth switch K6. Control terminal.
  • the first diode D1 and the second diode D2 can only be connected in the following form:
  • the negative pole of the first diode D1 is connected to the positive pole of the battery 200
  • the positive pole of the first diode D1 is connected to the first terminal 301 of the current limiting circuit 3
  • the positive pole of the second diode D2 is connected to the terminal of the current limiting circuit 3
  • the cathode of the second diode D2 is connected to the anode of the bus bar 300 .
  • FIG. 7 Please refer to the control flow chart of the control unit 2 in FIG. 7 .
  • the direction of D1 and D2 in FIG. Turn on the second switch tube K2, only by controlling the sixth switch tube K6 to turn on or off, adjust the current output to the positive pole of the battery 200; when the battery 200 is in the discharge state, turn off the second switch tube K2 and the sixth switch
  • the tube K6 adjusts the current output to the positive pole of the bus bar 300 only by controlling the first switching tube K1 to be turned on or off.
  • the control unit 2 turns off the first switch tube K1 and turns on the second switch tube K2.
  • the control unit 2 controls the sixth switch tube K6 to turn on, the current from the busbar 300
  • the positive pole flows out, and flows to the negative pole of the busbar 300 through the second switch tube K2, the third inductor L3 and the sixth switch tube K6 in turn, and at this time the third inductor L3 starts to be charged.
  • control unit 2 When the third inductor L3 is charged to a certain amount Finally, the control unit 2 will control the sixth switching tube K6 to turn off, and at this time, the electric energy on the third inductor L3 and the electric energy output from the positive pole of the busbar 300 will be output to the positive pole of the battery 200 through the first diode D1.
  • the control unit 2 will control the sixth switch tube K6 to turn on, continue
  • the third inductance L3 is charged by the busbar 300, and this cycle can make the current of the positive pole of the battery 200 change up and down around the preset value greater than the positive pole current of the busbar 300.
  • the technician controls the conduction of the sixth switch tube K6 Time, that is, limit the current of the positive electrode of the battery 200 .
  • the control unit 2 When the battery 200 is in the discharging state, the control unit 2 turns off the second switch tube K2 and the sixth switch tube K6.
  • a switch tube K1, a third inductor L3 and a second diode D2 flow to the anode of the busbar 300, at this time the third inductor L3 starts to be charged, so that the anode current of the busbar 300 gradually increases, when the busbar 300
  • the control unit 2 will control the first switching tube K1 to be turned off.
  • the third inductor L3, the second diode D2, the busbar 300 and the The fourth diode D4 will form a conduction loop, and only the third inductor L3 will discharge in the conduction loop until the current of the positive pole of the busbar 300 is less than a preset value, and then the control unit 2 controls the first switching tube K1 turn on to increase the current of the positive pole of the busbar 300, such a cycle can make the current of the positive pole of the busbar 300 change up and down around a preset value smaller than the positive pole current of the battery 200, and the technician controls the first switch tube K1
  • the conduction time of the busbar 300 can limit the current of the positive pole of the busbar 300 .
  • the application sets the third inductance, the sixth switch tube and the fourth diode, and the first switch tube, the second switch tube, the first diode and the second switch tube set for anti-backflow Diodes together form a bidirectional DC conversion circuit.
  • the bidirectional DC conversion circuit is specifically used to control the sixth switching tube to be turned on or off when the battery is in a charging state, so as to increase the current on the busbar side and output it to the On the battery side, when the battery is in the discharge state, the current on the battery side can be reduced and output to the busbar side by controlling the first switch tube to be turned on or off, and the control unit can control the current transmitted from the busbar to the battery.
  • the bidirectional DC conversion circuit simplifies the topology of the circuit to a certain extent and reduces the cost.
  • the current limiting circuit 3 includes a first inductor L1 and a full-bridge DC conversion circuit.
  • the circuit connection structure is as follows:
  • the first end of the full-bridge DC conversion circuit is used as the first end 301 of the current limiting circuit 3
  • the second end of the full-bridge DC conversion circuit is connected to the first end of the first inductor L1, and the first end of the first inductor L1
  • the second terminal is used as the second terminal 302 of the current limiting circuit 3
  • the third terminal of the full-bridge DC conversion circuit is used as the third terminal 303 of the current limiting circuit 3
  • the fourth terminal of the full-bridge DC conversion circuit is used as the first terminal of the current limiting circuit 3.
  • the four terminals 304 are connected to each switching tube of the full-bridge DC conversion circuit by the control unit 2 .
  • the first end of the first inductance L1 is used as the first end 301 of the current limiting circuit 3
  • the second end of the first inductance L1 is connected to the first end of the full-bridge DC conversion circuit
  • the full-bridge DC conversion The second end of the circuit is the second end 302 of the current limiting circuit 3
  • the third end of the full bridge DC conversion circuit is used as the third end 303 of the current limiting circuit 3
  • the fourth end of the full bridge DC conversion circuit is used as the current limiting circuit 3
  • the fourth terminal 304 of the control unit 2 is connected to each switch tube of the full-bridge DC conversion circuit, each switch tube may be a MOS tube, and the control unit 2 is specifically connected to the gate of each MOS tube.
  • FIG. 8 and FIG. 9 lies in the connection position between the full-bridge DC conversion circuit and the first inductor L1.
  • the control unit 2 will control the full bridge with a fixed duty cycle when the current of the positive pole of the battery 200 is less than or equal to the preset threshold, or after the duration of the current of the positive pole of the battery 200 is greater than the preset threshold and is shorter than the preset time.
  • Each switch tube of the DC conversion circuit is turned on or off; after the current of the positive pole of the battery 200 is greater than a preset threshold and lasts for a preset time, each switch of the full-bridge DC conversion circuit is controlled with a preset conduction duty ratio The tube is turned on or off, and the preset conduction duty cycle is smaller than the fixed conduction duty cycle.
  • the full-bridge DC conversion circuit specifically includes: please refer to FIG. 8 or FIG. 9, a transformer 31, eight switch tubes K7 to K14 and eight diodes D5 to D12, and the negative pole of D5 serves as the first end of the full-bridge DC conversion circuit , the negative pole of D5 is connected to the second terminal of K7, the second terminal of K8 and the negative pole of D6, the positive pole of D5 is connected to the first terminal of K7, the positive pole of D6 is connected to the first terminal of K8, and the positive pole of D7 is used as the whole
  • the fourth terminal of the bridge DC conversion circuit the positive pole of D7 is connected to the first terminal of K9, the first terminal of K10 and the positive pole of D8 respectively, the negative pole of D7 is connected to the second terminal of K9, and the second terminal of K9 is connected to K7
  • the first end of D8, the negative pole of D8 is connected to the second end of K10, the second end of K10 is connected to the first end of K8, the negative pole of D10 is used
  • the control unit 2 simultaneously controls K7, K10, K12 and K13 to be turned on or off , the control unit 2 simultaneously controls K8, K9, K11 and K14 to conduct complementary conduction with K7, K10, K12 and K13, when the control unit 2 simultaneously controls K7, K10, K12 and K13 to conduct, the first coil and the second coil
  • the transmission direction is that the busbar 300 transmits electric energy to the battery 200 at this time
  • the control unit 2 controls K8, K9, K11 and K14 to be turned on at the same time the first coil and the second coil can also transmit energy
  • the transmission direction is that the battery 200 transmits electric energy to the busbar 300.
  • the battery 200 When the battery 200 is in the charging state, it can be reduced by reducing the conduction time of K7, K10, K12 and K13, that is, by reducing the conduction duty cycle , reducing the time for the busbar 300 to transmit electric energy to the battery 200 to limit the current of the positive pole of the battery 200 , and similarly, the current of the positive pole of the busbar 300 can also be limited.
  • the current limiting circuit may specifically include a full-bridge DC conversion circuit, and the control unit may limit the magnitude of the transmitted current by reducing the conduction duty cycle of each switch in the full-bridge DC conversion circuit.
  • the control circuit 100 is provided with the first switch tube K1, the second switch tube K2, the first diode D1, and the second diode D2, mutual charging between different energy storage states can be effectively avoided. Therefore, the battery parallel system can be provided with different types of batteries 200 , such as lithium batteries and lead-acid batteries, and can also be provided with different current limiting circuits 3 .
  • An embodiment of the present application relates to a circuit board assembly, including the control circuit of any embodiment.
  • An embodiment of the present application relates to a battery parallel system, please refer to FIG. 1 , including each battery 200 for parallel operation, the circuit board assembly in the above embodiment, a bus bar connected to each battery 200 through the circuit board assembly, and The host computer 400 connected to the circuit board assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供了一种控制电路(100)、电路板组件及电池(200)并联系统。控制电路(100)设置在电池(200)和母排(300)之间,控制电路(100)包括采集单元(1)、控制单元(2)和限流电路(3),控制单元(2)用于在电池(200)正极的电流大于预设阈值时开始计时,在电池(200)正极电压大于第一预设阈值的持续时长大于预设时间后,通过控制限流电路(3)减小电池(200)正极的电流,直至电池(200)正极的电流小于或等于预设阈值。

Description

控制电路、电路板组件及电池并联系统
交叉引用
本申请基于申请号为“202110738427.1”、申请日为2021年06月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及电路设计领域,特别涉及一种控制电路、电路板组件及电池并联系统。
背景技术
随着用户对用电量日益增加的需求,市场对高续航能力、大容量储能电池的需求也日益增加,采用多电池并联运行的方法增大储能电池的总储电量,逐渐成为储能电池研发的一个主力方向。
目前,多电池并联运行时,不论是在并联的多个电池共同向负载放电的过程中,还是在并联的多个电池被外部电源充电的过程中,各电池和用于连接负载或外部电源的母排之间的连接线路上的电流通常会过大,电池会时常工作在过流运行的状态下,电池的使用寿命短,可靠性低。
发明内容
为解决上述问题,本申请的实施例提供了一种控制电路,设置在电池和母排之间,控制电路包括采集单元、控制单元和限流电路;电池的正极连接于限流电路的第一端,限流电路的第二端连接于母排的正极,母排的负极连接于限流电路的第三端,限流电路的第四端连接于电池的负极,采集单元的输入端连接于电池的正极,采集单元的输出端连接于控制单元的输入端,控制单元的输 出端连接于限流电路;采集单元用于采集电池正极的电流;控制单元用于在电池正极的电流大于预设阈值时开始计时,在电池正极电流大于预设阈值的持续时长大于预设时间后,通过控制限流电路减小电池正极的电流,直至电池正极的电流小于或等于预设阈值。
本申请实施例还提供了一种电路板组件,包括上述控制电路。
本申请实施例还提供了一种电池并联系统,包括用于并联运行的各电池、上述电路板组件、通过各电路板组件连接于各电池的母排和连接于各电路板组件的上位机。
附图说明
图1是根据本申请一个实施例的电池并联系统的方框示意图;
图2是根据本申请一个实施例的控制电路的电路图一;
图3是根据本申请一个实施例的控制电路中控制单元的控制流程图一;
图4是根据本申请一个实施例的控制电路的电路图二;
图5是根据本申请一个实施例的控制电路中控制单元的控制流程图二;
图6是根据本申请一个实施例的控制电路的电路图三;
图7是根据本申请一个实施例的控制电路中控制单元的控制流程图三;
图8是根据本申请一个实施例的设置有全桥直流变换电路的控制电路的电路图一;
图9是根据本申请一个实施例的设置有全桥直流变换电路的控制电路的电路图二;
图10是根据本申请一个实施例的控制电路中控制单元的控制流程图四。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。 但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的一个实施例涉及一种控制电路,请参考图1,控制电路100设置在电池并联系统中,具体设置在用于并联运行的各电池200,和连接于各电池200的母排300之间,控制电路100用于控制并联运行的电池200的电流处于正常范围内,控制电路100具体包括采集单元1、控制单元2和限流电路3。
电池200的正极连接于限流电路3的第一端301,限流电路3的第二端302连接于母排300的正极,母排300的负极连接于限流电路3的第三端303,限流电路3的第四端304连接于电池200的负极,采集单元1的输入端11连接于电池200的正极,采集单元1的输出端12连接于控制单元2的输入端21,控制单元2的输出端22连接于限流电路3。
采集单元1会采集电池200的正极的电流,控制单元2会在电池200的正极的电流大于预设阈值时开始计时,在电池200的正极电流大于预设阈值的持续时长大于预设时间后,通过控制限流电路3减小电池200的正极的电流,直至电池200的正极的电流小于或等于预设阈值。
本实施例中,提供一种控制电路、电路板组件及电池并联系统,可以控制并联运行的电池的电流处于正常范围内,增加了电池的使用寿命,提高了电路可靠性。本申请在电池和母排之间,设置了控制电路,控制电路可以采集电池正极的电流,控制单元会在电池正极的电流大于预设阈值时开始计时,并在电池正极的电流大于预设阈值的持续时长大于预设时间后,控制限流电路减小电池正极的电流,直至电池正极的电流小于或等于预设阈值。本申请通过设置控制电路,可以有效监控并调整电池正极的电流,并且,由于电池正极的电流并不是始终稳定的,例如在外部电源通过母排与电池连接的过程中,电池正极的电流可能会短时大于预设阈值,但当电池正极的电流稳定下来,可能并不会大于预设阈值,为避免在这种情况下依旧减小电池正极的电流,而出现电池与母排之间传输电能的效率降低的问题,本申请通过调整预设时间,并在电池正极的电流大于预设阈值且持续了预设时间后,再由控制单元控制限流电路来减小 电池正极的电流,以实现在确定电池的确稳定运行在过压或过流运行状态后,再调整电池正极的电流,在一定程度上保证了电池与母排之间传输电能的效率。
本实施方式通过设置控制电路,可以有效监控并调整电池正极的电流处于正常范围内,增加了电池的使用寿命,提高了电路可靠性,同时提高了电池的输出效率。
在一个实施例中,请参考图2,控制电路100还包括稳压电容C,稳压电容C的第一端连接于母排300的正极,稳压电容C的第二端连接于母排300的负极,或者,稳压电容C的第一端连接于电池200的正极,稳压电容C的第二端连接于电池200的负极,也可以在母排300的正负极之间和电池200的正负极之间均设置稳压电容C,用以稳定电压,图2中以稳压电容C设置在母排300的正负极之间为例示出。本实施例中,通过在母排的两端设置稳压电容,可以有效稳定母排两端的电压,通过在电池的两端设置稳压电容,可以有效稳定电池两端的电压,进一步地提高了电路的可靠性。
在一个实施例中,请参考图2,控制电路100还包括:第一开关管K1、第二开关管K2、第一二极管D1和第二二极管D2,第一开关管K1和第二开关管K2可以为MOS管。
电池200的正极通过第一开关管K1连接于限流电路3的第一端301,限流电路3的第二端302通过第二开关管K2连接于母排300的正极,第一二极管D1的正极/负极连接于电池200的正极,第一二极管D1的负极/正极连接于限流电路3的第一端301,第二二极管D2的负极/正极连接于限流电路3的第二端302,第二二极管D2的正极/负极连接于母排300的正极,控制单元2的输出端还分别连接于第一开关管K1的控制端和第二开关管K2的控制端。
控制单元2会在确定电池200处于充电状态时,导通/断开第一开关管K1,并断开/导通第二开关管K2;在确定电池200处于放电状态时,断开/导通第一开关管K1,并导通/断开第二开关管K2,请参考图3中控制单元2的控制流程图,图3中以图2中D1和D2的方向为例示出,此时,控制单元2会在确定电池200处于充电状态时,导通第一开关管K1,并断开第二开关管K2;在确定电池200处于放电状态时,断开第一开关管K1,并导通第二开关管K2。
具体地,本实施例还提供了控制单元确定电池处于充电/放电状态的一种具 体实现方式,请参考图2,控制单元2的输入端还连接于用于输出充电指令或放电指令的上位机400,具体是通过通讯线连接于上位机,通讯线可以为CAN/485/SCI等。控制单元2会在接收到上位机400输出的充电指令后,确定各电池200当前处于充电状态;在接收到上位机400输出的放电指令后,确定各电池200当前处于放电状态。
本实施例中,不同电池的储能状态可能存在差异,这会导致在各电池处于充电或放电状态时,出现储能多的电池通过母排给储能少的电池充电的情况,造成内耗,进而影响整个电池并联系统充电和放电的效率。本申请在电池和母排之间的传输路线上,设置了并联连接的第一开关管和第一二极管,以及并联连接的第二开关管和第二二极管,其中,第一二极管和第二二极管可导通的电流方向是相反的,控制单元会在电池处于充电状态时,通过控制第一开关管和第二开关管的开关状态,仅形成从母排到电池的导通路径,电池处于放电状态时同理,仅形成了从电池到母排的导通路径,从而有效减小了各电池之间相互充电而产生的内耗,提高了整个电池并联系统充电和放电的效率。
在一个实施例中,提供了限流电路3的一种具体实现方式,请参考图2的具体电路图,限流电路3包括:第一电感L1、第三开关管K3和第四开关管K4,第三开关管K3和第四开关管K4可以为MOS管。
电路连接结构如下:
第一电感L1的第一端作为限流电路3的第一端301,第一电感L1的第二端作为限流电路3的第二端302,第三开关管K3的第一端连接于第一电感L1的第一端,第三开关管K3的第二端作为限流电路3的第四端304,第四开关管K4的第一端连接于所述第一电感L1的第二端,第四开关管K4的第二端作为限流电路3的第三端303,第三开关管K3的第二端连接于第四开关管K4的第二端,控制单元2的输出端分别连接于第三开关管K3的控制端和第四开关管K4的控制端。
请参考图3的控制单元2的控制流程图,控制单元2会在电池200处于充电状态,且电池200的正极的电流大于预设阈值时开始计时,在电池200的正极电流大于预设阈值的持续时长大于预设时间后,断开第三开关管K3,导通第四开关管K4;在电池200的正极的电流小于或等于预设阈值,或者,计时得到 的电池200的正极电流大于预设阈值的持续时长小于或等于预设时间后,保持第三开关管K3和第四开关管K4的开关状态不做改变。控制单元2会在电池200处于放电状态,且电池200的正极的电流大于预设阈值时开始计时,在电池200的正极电流大于预设阈值的持续时长大于预设时间后,导通第三开关管K3,断开第四开关管K4;在电池200的正极的电流小于或等于预设阈值,或者,计时得到的电池200的正极电流大于预设阈值的持续时长小于或等于预设时间后,保持第三开关管K3和第四开关管K4的开关状态不做改变。
具体地,在电池200的正极的电流小于或等于预设阈值,或者,计时得到的电池200的正极电流大于预设阈值的持续时长小于或等于预设时间后,即,在电池200的正极的电流没有持续处于过大状态时,控制第三开关管K3和第四开关管K4均处于断开状态,此时不论电池200是充电状态还是放电状态,电池200与母排300之间都能直接进行传输,仅由第一电感L1来控制连接线路上的电流逐步增大或减小,避免电流突增和突减对电池寿命的影响,此时限流电路3不工作。
若电池200的正极的电流持续大于预设阈值,在电池200处于充电状态时,电能由母排300向电池200进行传输,此时控制单元2则会控制仅第四开关管K4导通,从母排300的正极流出的电流,会有一部分从第四开关管K4直接流回母排300的负极,因此可以限制由母排300传输给电池200的电流大小;在电池200处于放电状态时,电能由电池200向母排300进行传输,此时控制单元2则会控制仅第三开关管K3导通,从电池200的正极流出的电流,会有一部分从第三开关管K3直接流回电池200的负极,因此可以限制由电池200传输给母排300的电流大小。
本实施例中,提供了限制电池正极的电流的一种控制电路,限流电路具体包括第一电感,用于限制电池与母排之间的连接线路上的电流逐步增大或减小,避免电流突增和突减对电池寿命的影响,若电池正极的电流在预设阈值内,或计时得到的电池正极电流大于预设阈值的持续时长在预设时间内,即,若电池未持续处于过流状态,则控制单元会断开第三开关管和第四开关管,电池仅通过第一电感连接于母排。在电池处于充电状态时,若电池正极的电流大于预设阈值且持续了预设时间,则控制单元会控制仅第四开关管导通,此时母排输出 的电流会通过第四开关管流回到母排,不会流向电池,有效保证了电池不会持续处于过流状态。在电池处于放电状态时,若电池正极的电流大于预设阈值且持续了预设时间,则控制单元会控制仅第三开关管导通,此时电池输出的电流会通过第三开关管流回到电池,不会流向外界的负载,有效保证了负载不会持续处于过流状态,提高了电路的可靠性。
在一个实施例中,提供了限流电路3的一种具体实现方式,请参考图4,限流电路3包括:第二电感L2、第五开关管K5和第三二极管D3,第五开关管K5可以为MOS管。
电路连接结构如下:
第二电感L2的第一端作为限流电路3的第一端301,第二电感L2的第二端作为限流电路3的第二端302,第五开关管K5的第一端连接于第二电感L2的第二端,第五开关管K5的第二端作为限流电路3的第四端304,第三二极管D3的负极连接于第二电感L2的第二端,第三二极管D3的正极作为限流电路3的第三端303,第三二极管D3的正极连接于第五开关管K5的第二端,第一二极管D1的负极连接于电池200的正极,第一二极管D1的正极连接于限流电路3的第一端301,第二二极管D2的正极连接于限流电路3的第二端302,第二二极管D2的负极连接于母排300的正极,控制单元2的输出端连接于第五开关管K5的控制端。
请参考图5的控制单元2的控制流程图,图5中以图4中D1和D2的方向为例示出,控制单元2会在电池200处于充电状态时,断开第一开关管K1和第五开关管K5,仅通过控制第二开关管K2导通或断开,调整输出到电池200的正极的电流,控制单元2还会在电池200处于放电状态时,导通第一开关管K1,断开第二开关管K2,仅通过控制第五开关管K5导通或断开,调整输出到母排300的正极的电流。
具体地,在电池200处于充电状态时,控制单元2断开第一开关管K1和第五开关管K5,当控制单元2控制第二开关管K2导通时,电流从母排300的正极流出,依次经由第二开关管K2、第二电感L2和第一二极管D1,流到电池200的正极,此时第二电感L2开始被充电,使得电池200的正极电流逐渐增大,当电池200的正极电流大于或等于预设值(小于母排300的正极电流)时,控 制单元2会控制第二开关管K2断开,此时第二电感L2、第一二极管D1、电池200和第三二极管D3会形成一个导通回路,仅由第二电感L2在该导通回路中放电,直到电池200的正极的电流小于预设值,控制单元2再控制第二开关管K2导通,以增大电池200的正极的电流,如此循环,可以使电池200的正极的电流在小于母排300的正极电流的预设值周围上下变化,技术人员通过控制第二开关管K2的导通时间,即可限制电池200的正极的电流。
在电池200处于放电状态时,控制单元2导通第一开关管K1,断开第二开关管K2,当控制单元2控制第五开关管K5导通时,电流从电池200的正极流出,依次经由第一开关管K1、第二电感L2和第五开关管K5,流到电池200的负极,此时第二电感L2开始被充电,当第二电感L2被充到一定电量后,控制单元2会控制第五开关管K5断开,此时第二电感L2上的电能会与电池200的正极输出的电能,共同通过第二二极管D2输出到母排300的正极,使得母排300的正极的电流大于或等于预设值(大于电池200的正极电流),当母排300的正极的电流小于预设值时,控制单元2会控制第五开关管K5导通,继续由电池200给第二电感L2充电,如此循环,可以使母排300的正极的电流在大于电池200的正极电流的预设值周围上下变化,技术人员通过控制第五开关管K5的导通时间,即可限制母排300的正极的电流。
本实施例中,本申请通过设置第二电感、第五开关管和第三二极管,与设置的用来防倒灌的第一开关管、第二开关管、第一二极管和第二二极管,共同形成了双向直流变换电路,双向直流变换电路具体用于在电池处于充电状态时,可以通过控制第二开关管导通或断开,将母排侧的电流降低后输出到电池侧,在电池处于放电状态时,可以通过控制第五开关管导通或断开,将电池侧的电流升高后输出到母排侧,通过控制单元就能控制母排传输给电池的电流的大小,或者控制电池传输给母排的电流的大小,并且,本申请直接利用了用来防倒灌的第一开关管、第二开关管、第一二极管和第二二极管一起形成了双向直流变换电路,在一定程度上简化了电路的拓扑结构,降低了成本。
在一个实施例中,提供了限流电路3的一种具体实现方式,请参考图6,限流电路3包括:第三电感L3、第六开关管K6和第四二极管D4,第六开关管K6可以为MOS管。
电路连接结构如下:
第三电感L3的第一端作为限流电路3的第一端301,第三电感L3的第二端作为限流电路3的第二端302,第六开关管K6的第一端连接于第三电感L3的第一端,第六开关管K6的第二端作为限流电路3的第三端303,第四二极管D4的负极连接于第三电感L3的第一端,第四二极管D4的正极作为限流电路3的第四端304,第六开关管K6的第二端连接于第四二极管D4的正极,控制单元2的输出端连接于第六开关管K6的控制端。
为了能够同时利用第一二极管D1和第二二极管D2使得电路可以正常运行,对于第一二极管D1和第二二极管D2来说,仅能为如下的一种连接形式:第一二极管D1的负极连接于电池200的正极,第一二极管D1的正极连接于限流电路3的第一端301,第二二极管D2的正极连接于限流电路3的第二端302,第二二极管D2的负极连接于母排300的正极。
请参考图7的控制单元2的控制流程图,图7中以图6中D1和D2的方向为例示出,控制单元2会在电池200处于充电状态时,断开第一开关管K1,导通第二开关管K2,仅通过控制第六开关管K6导通或断开,调整输出到电池200的正极的电流;在电池200处于放电状态时,断开第二开关管K2和第六开关管K6,仅通过控制第一开关管K1导通或断开,调整输出到母排300的正极的电流。
具体地,在电池200处于充电状态时,控制单元2断开第一开关管K1,导通第二开关管K2,当控制单元2控制第六开关管K6导通时,电流从母排300的正极流出,依次经由第二开关管K2、第三电感L3和第六开关管K6,流到母排300的负极,此时第三电感L3开始被充电,当第三电感L3被充到一定电量后,控制单元2会控制第六开关管K6断开,此时第三电感L3上的电能会与母排300的正极输出的电能,共同通过第一二极管D1输出到电池200的正极,使得电池200的正极的电流大于或等于预设值(大于母排300的正极电流),当电池200的正极的电流小于预设值时,控制单元2会控制第六开关管K6导通,继续由母排300给第三电感L3充电,如此循环,可以使电池200的正极的电流在大于母排300的正极电流的预设值周围上下变化,技术人员通过控制第六开关管K6的导通时间,即可限制电池200的正极的电流。
在电池200处于放电状态时,控制单元2断开第二开关管K2和第六开关管K6,当控制单元2控制第一开关管K1导通时,电流从电池200的正极流出,依次经由第一开关管K1、第三电感L3和第二二极管D2,流到母排300的正极,此时第三电感L3开始被充电,使得母排300的正极电流逐渐增大,当母排300的正极电流大于或等于预设值(小于电池200的正极电流)时,控制单元2会控制第一开关管K1断开,此时第三电感L3、第二二极管D2、母排300和第四二极管D4会形成一个导通回路,仅由第三电感L3在该导通回路中放电,直到母排300的正极的电流小于预设值,控制单元2再控制第一开关管K1导通,以增大母排300的正极的电流,如此循环,可以使母排300的正极的电流在小于电池200的正极电流的预设值周围上下变化,技术人员通过控制第一开关管K1的导通时间,即可限制母排300的正极的电流。
本实施例中,本申请通过设置第三电感、第六开关管和第四二极管,与设置的用来防倒灌的第一开关管、第二开关管、第一二极管和第二二极管,共同形成了双向直流变换电路,双向直流变换电路具体用于在电池处于充电状态时,可以通过控制第六开关管导通或断开,将母排侧的电流升高后输出到电池侧,在电池处于放电状态时,可以通过控制第一开关管导通或断开,将电池侧的电流降低后输出到母排侧,通过控制单元就能控制母排传输给电池的电流的大小,或者控制电池传输给母排的电流的大小,并且,本申请直接利用了用来防倒灌的第一开关管、第二开关管、第一二极管和第二二极管一起形成了双向直流变换电路,在一定程度上简化了电路的拓扑结构,降低了成本。
在一个实施例中,提供了限流电路3的一种具体实现方式,请参考图8,限流电路3包括第一电感L1和全桥直流变换电路。
电路连接结构如下:
请参考图8,全桥直流变换电路的第一端作为限流电路3的第一端301,全桥直流变换电路的第二端连接于第一电感L1的第一端,第一电感L1的第二端作为限流电路3的第二端302,全桥直流变换电路的第三端作为限流电路3的第三端303,全桥直流变换电路的第四端作为限流电路3的第四端304,控制单元2连接于全桥直流变换电路的各开关管。
或者,请参考图9,第一电感L1的第一端作为限流电路3的第一端301, 第一电感L1的第二端连接于全桥直流变换电路的第一端,全桥直流变换电路的第二端为限流电路3的第二端302,全桥直流变换电路的第三端作为限流电路3的第三端303,全桥直流变换电路的第四端作为限流电路3的第四端304,控制单元2连接于全桥直流变换电路的各开关管,各开关管可以为MOS管,控制单元2具体连接于各MOS管的栅极。
显然,图8和图9的区别仅在于全桥直流变换电路与第一电感L1的连接位置不同。
控制单元2会在电池200的正极的电流小于或等于预设阈值,或者,电池200的正极的电流大于预设阈值的持续时长小于预设时间后,以固定导通占空比,控制全桥直流变换电路的各开关管导通或断开;在电池200的正极的电流大于预设阈值,且持续预设时间后,以预设导通占空比,控制全桥直流变换电路的各开关管导通或断开,预设导通占空比小于固定导通占空比。
具体地,全桥直流变换电路具体包括:请参考图8或图9,变压器31、八个开关管K7至K14和八个二极管D5至D12,D5的负极作为全桥直流变换电路的第一端,D5的负极分别连接于K7的第二端、K8的第二端和D6的负极,D5的正极连接于K7的第一端,D6的正极连接于K8的第一端,D7的正极作为全桥直流变换电路的第四端,D7的正极分别连接于K9的第一端、K10的第一端和D8的正极,D7的负极连接于K9的第二端,K9的第二端连接于K7的第一端,D8的负极连接于K10的第二端,K10的第二端连接于K8的第一端,D10的负极作为全桥直流变换电路的第二端,D10的负极分别连接于K12的第二端、K11的第二端和D9的负极,D10的正极连接于K12的第一端,D9的正极连接于K11的第一端,D12的正极作为全桥直流变换电路的第三端,D12的正极分别连接于K14的第一端、K13的第一端和D11的正极,D12的负极连接于K14的第二端,K14的第二端连接于K12的第一端,D11的负极连接于K13的第二端,K13的第二端连接于K11的第一端,变压器31的第一线圈的两端分别连接于K7的第一端和K8的第一端,变压器31的第二线圈的两端分别连接于K12的第一端和K11的第一端,控制单元2分别连接于K7至K14的控制端。
请参考图10的控制单元2的控制流程图,图10中以图2中D1和D2的方 向为例示出,控制策略如下:控制单元2同时控制K7、K10、K12和K13导通或断开,控制单元2同时控制K8、K9、K11和K14与K7、K10、K12和K13互补导通,当控制单元2同时控制K7、K10、K12和K13导通时,第一线圈和第二线圈之间可以传输能量,假设此时传输方向为母排300向电池200传输电能,则当控制单元2同时控制K8、K9、K11和K14导通时,第一线圈和第二线圈之间也可以传输能量,此时传输方向为电池200向母排300传输电能,当电池200处于充电状态时,可以通过减小K7、K10、K12和K13的导通时间,即,通过减小导通占空比,减小母排300向电池200传输电能的时间,以限制电池200的正极的电流,同理也可以限制母排300的正极的电流。
本实施例中,限流电路具体可以包括全桥直流变换电路,控制单元可以通过降低全桥直流变换电路中的各开关管的导通占空比,来限制传输的电流的大小。
在一个例子中,由于控制电路100中设置有第一开关管K1、第二开关管K2、第一二极管D1和第二二极管D2,可以有效避免处于不同储能状态之间相互充电,因此,电池并联系统可以设置不同类型的电池200,例如为锂电池和铅酸电池等,也可以设置不同的限流电路3。
本申请的一个实施例涉及一种电路板组件,包括任一实施例的控制电路。
本申请的一个实施例涉及一种电池并联系统,请参考图1,包括用于并联运行的各电池200、上述实施例中的电路板组件、通过电路板组件连接于各电池200的母排和连接于电路板组件的上位机400。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种控制电路,设置在电池和母排之间,所述控制电路包括采集单元、控制单元和限流电路;
    所述电池的正极连接于所述限流电路的第一端,所述限流电路的第二端连接于所述母排的正极,所述母排的负极连接于所述限流电路的第三端,所述限流电路的第四端连接于所述电池的负极,所述采集单元的输入端连接于所述电池的正极,所述采集单元的输出端连接于所述控制单元的输入端,所述控制单元的输出端连接于所述限流电路;
    所述采集单元用于采集所述电池正极的电流;
    所述控制单元用于在所述电池正极的电流大于预设阈值时开始计时,在所述电池正极电流大于所述预设阈值的持续时长大于所述预设时间后,通过控制所述限流电路减小所述电池正极的电流,直至所述电池正极的电流小于或等于所述预设阈值。
  2. 根据权利要求1所述的控制电路,其中,所述控制电路还包括:第一开关管、第二开关管、第一二极管和第二二极管;
    所述电池的正极通过所述第一开关管连接于所述限流电路的第一端,所述限流电路的第二端通过所述第二开关管连接于所述母排的正极,所述第一二极管的正极/负极连接于所述电池的正极,所述第一二极管的负极/正极连接于所述限流电路的第一端,所述第二二极管的负极/正极连接于所述限流电路的第二端,所述第二二极管的正极/负极连接于所述母排的正极,所述控制单元的输出端还分别连接于所述第一开关管的控制端和所述第二开关管的控制端;
    所述控制单元用于在所述电池处于充电状态时,导通/断开所述第一开关管,并断开/导通所述第二开关管;在所述电池处于放电状态时,断开/导通所述第一开关管,并导通/断开所述第二开关管。
  3. 根据权利要求1或2所述的控制电路,其中,所述限流电路包括:第一电感、第三开关管和第四开关管;
    所述第一电感的第一端作为所述限流电路的第一端,所述第一电感的第二 端作为所述限流电路的第二端,所述第三开关管的第一端连接于所述第一电感的第一端,所述第三开关管的第二端作为所述限流电路的第四端,所述第四开关管的第一端连接于所述第一电感的第二端,所述第四开关管的第二端作为所述限流电路的第三端,所述第三开关管的第二端连接于所述第四开关管的第二端,所述控制单元的输出端分别连接于所述第三开关管的控制端和所述第四开关管的控制端;
    所述控制单元具体用于在所述电池处于充电状态,且所述电池正极的电流大于所述预设阈值时开始计时,在所述电池正极电流大于所述预设阈值的持续时长大于所述预设时间后,断开所述第三开关管,导通所述第四开关管;在所述电池处于放电状态,且所述电池正极的电流大于所述预设阈值时开始计时,在所述电池正极电流大于所述预设阈值的持续时长大于所述预设时间后,导通所述第三开关管,断开所述第四开关管;在所述电池正极的电流小于或等于所述预设阈值,或者,计时得到的所述电池正极电流大于所述预设阈值的持续时长小于或等于所述预设时间后,保持所述第三开关管和所述第四开关管的开关状态。
  4. 根据权利要求2所述的控制电路,其中,所述限流电路包括:第二电感、第五开关管和第三二极管;
    所述第二电感的第一端作为所述限流电路的第一端,所述第二电感的第二端作为所述限流电路的第二端,所述第五开关管的第一端连接于所述第二电感的第二端,所述第五开关管的第二端作为所述限流电路的第四端,所述第三二极管的负极连接于所述第二电感的第二端,所述第三二极管的正极作为所述限流电路的第三端,所述第三二极管的正极连接于所述第五开关管的第二端,所述第一二极管的负极连接于所述电池的正极,所述第一二极管的正极连接于所述限流电路的第一端,所述第二二极管的正极连接于所述限流电路的第二端,所述第二二极管的负极连接于所述母排的正极,所述控制单元的输出端连接于所述第五开关管的控制端;
    所述控制单元用于在所述电池处于充电状态时,断开所述第一开关管和所述第五开关管,仅通过控制所述第二开关管导通或断开,调整输出到所述电池 的正极的电流;在所述电池处于放电状态时,导通所述第一开关管,断开所述第二开关管,仅通过控制所述第五开关管导通或断开,调整输出到所述母排的正极的电流。
  5. 根据权利要求2所述的控制电路,其中,所述限流电路包括:第三电感、第六开关管和第四二极管;
    所述第三电感的第一端作为所述限流电路的第一端,所述第三电感的第二端作为所述限流电路的第二端,所述第六开关管的第一端连接于所述第三电感的第一端,所述第六开关管的第二端作为所述限流电路的第三端,所述第四二极管的负极连接于所述第三电感的第一端,所述第四二极管的正极作为所述限流电路的第四端,所述第六开关管的第二端连接于所述第四二极管的正极,所述第一二极管的负极连接于所述电池的正极,所述第一二极管的正极连接于所述限流电路的第一端,所述第二二极管的正极连接于所述限流电路的第二端,所述第二二极管的负极连接于所述母排的正极,所述控制单元的输出端连接于所述第六开关管的控制端;
    所述控制单元用于在所述电池处于充电状态时,断开所述第一开关管,导通所述第二开关管,仅通过控制所述第六开关管导通或断开,调整输出到所述电池的正极的电流;在所述电池处于放电状态时,断开所述第二开关管和所述第六开关管,仅通过控制所述第一开关管导通或断开,调整输出到所述母排的正极的电流。
  6. 根据权利要求1或2所述的控制电路,其中,所述限流电路包括第一电感和全桥直流变换电路;
    所述全桥直流变换电路的第一端作为所述限流电路的第一端,所述全桥直流变换电路的第二端连接于所述第一电感的第一端,所述第一电感的第二端作为所述限流电路的第二端,所述全桥直流变换电路的第三端作为所述限流电路的第三端,所述全桥直流变换电路的第四端作为所述限流电路的第四端;
    或者,所述第一电感的第一端作为所述限流电路的第一端,所述第一电感的第二端连接于所述全桥直流变换电路的第一端,所述全桥直流变换电路的第 二端为所述限流电路的第二端,所述全桥直流变换电路的第三端作为所述限流电路的第三端,所述全桥直流变换电路的第四端作为所述限流电路的第四端,所述控制单元连接于所述全桥直流变换电路的各开关管;
    所述控制单元具体用于在所述电池正极的电流小于或等于所述预设阈值,或者,所述电池正极的电流大于预设阈值的持续时长小于所述预设时间后,以固定导通占空比,控制所述全桥直流变换电路的各开关管导通或断开;在所述电池正极的电流大于所述预设阈值时开始计时,在所述电池正极电流大于所述预设阈值的持续时长大于所述预设时间后,以预设导通占空比,控制所述全桥直流变换电路的各开关管导通或断开,所述预设导通占空比小于所述固定导通占空比。
  7. 根据权利要求2至6中任一项所述的控制电路,其中,所述控制单元的输入端还连接于用于输出充电指令或放电指令的上位机;
    所述控制单元用于在接收到所述充电指令后,确定所述电池处于充电状态;在接收到所述放电指令后,确定所述电池处于放电状态。
  8. 根据权利要求1至7中任一项所述的控制电路,其中,所述控制电路还包括稳压电容;
    所述稳压电容的第一端连接于所述母排的正极,所述稳压电容的第二端连接于所述母排的负极,或者,所述稳压电容的第一端连接于所述电池的正极,所述稳压电容的第二端连接于所述电池的负极。
  9. 一种电路板组件,包括如权利要求1至8中任一项所述的控制电路。
  10. 一种电池并联系统,包括用于并联运行的各电池、如权利要求9所述的电路板组件、通过各所述电路板组件连接于各所述电池的母排和连接于各所述电路板组件的上位机。
PCT/CN2022/085165 2021-06-30 2022-04-02 控制电路、电路板组件及电池并联系统 WO2023273490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22831321.9A EP4366124A1 (en) 2021-06-30 2022-04-02 Control circuit, circuit board assembly, and battery parallel system
US18/564,065 US20240266846A1 (en) 2021-06-30 2022-04-02 Control circuit, circuit board assembly, and battery parallel system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110738427.1A CN115549227A (zh) 2021-06-30 2021-06-30 控制电路、电路板组件及电池并联系统
CN202110738427.1 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273490A1 true WO2023273490A1 (zh) 2023-01-05

Family

ID=84692443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085165 WO2023273490A1 (zh) 2021-06-30 2022-04-02 控制电路、电路板组件及电池并联系统

Country Status (4)

Country Link
US (1) US20240266846A1 (zh)
EP (1) EP4366124A1 (zh)
CN (1) CN115549227A (zh)
WO (1) WO2023273490A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833330A (zh) * 2023-01-09 2023-03-21 北京宏光星宇科技发展有限公司 一种适用于通信基站的电池管理系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117748690B (zh) * 2024-02-19 2024-05-24 西安图为电气技术有限公司 电池的充放电电路和电池的充放电方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025182A (zh) * 2010-11-30 2011-04-20 梁一桥 多功能电动汽车动力电池组模块化充放电系统
CN102437628A (zh) * 2011-10-22 2012-05-02 华北电力大学(保定) 蓄电池化成充放电变流电路
CN102751772A (zh) * 2012-07-05 2012-10-24 西安交通大学 一种蓄电池充放电电路拓扑
US20130057200A1 (en) * 2011-06-22 2013-03-07 Eetrex, Incorporated Bidirectional inverter-charger
CN103023351A (zh) * 2012-12-04 2013-04-03 上海交通大学 电动汽车充放储一体化电站功率流动三级变流装置
CN104614674A (zh) * 2014-10-14 2015-05-13 蓝方文 高效节电型的环保电池检测设备
CN207426995U (zh) * 2017-12-04 2018-05-29 黑龙江大学 小功率高频双向ac-dc双管变换器
CN111546939A (zh) * 2020-05-22 2020-08-18 广东维可特科技有限公司 电动汽车车载动力电池智能检测系统
CN112769153A (zh) * 2020-12-28 2021-05-07 山东鲁能软件技术有限公司智能电气分公司 一种高功率密度双向充放电电路、控制方法及电源

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025182A (zh) * 2010-11-30 2011-04-20 梁一桥 多功能电动汽车动力电池组模块化充放电系统
US20130057200A1 (en) * 2011-06-22 2013-03-07 Eetrex, Incorporated Bidirectional inverter-charger
CN102437628A (zh) * 2011-10-22 2012-05-02 华北电力大学(保定) 蓄电池化成充放电变流电路
CN102751772A (zh) * 2012-07-05 2012-10-24 西安交通大学 一种蓄电池充放电电路拓扑
CN103023351A (zh) * 2012-12-04 2013-04-03 上海交通大学 电动汽车充放储一体化电站功率流动三级变流装置
CN104614674A (zh) * 2014-10-14 2015-05-13 蓝方文 高效节电型的环保电池检测设备
CN207426995U (zh) * 2017-12-04 2018-05-29 黑龙江大学 小功率高频双向ac-dc双管变换器
CN111546939A (zh) * 2020-05-22 2020-08-18 广东维可特科技有限公司 电动汽车车载动力电池智能检测系统
CN112769153A (zh) * 2020-12-28 2021-05-07 山东鲁能软件技术有限公司智能电气分公司 一种高功率密度双向充放电电路、控制方法及电源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833330A (zh) * 2023-01-09 2023-03-21 北京宏光星宇科技发展有限公司 一种适用于通信基站的电池管理系统

Also Published As

Publication number Publication date
EP4366124A1 (en) 2024-05-08
US20240266846A1 (en) 2024-08-08
CN115549227A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
WO2023273490A1 (zh) 控制电路、电路板组件及电池并联系统
US10270282B2 (en) Solar charger comprising a charging unit for charging a power battery to a high voltage, a photo-sensitive unit for detecting light intensity, a switch unit for regulating connection between the charging unit and the power battery, and a control unit for regulating the charging of the power battery based on a saturation level and the light intensity
CN101552479B (zh) 一种直流降压电路
CN109245220B (zh) 一种最少开关的充放电限流电池组并联控制装置及控制方法
CN101651355B (zh) 一种不间断电源
US11368087B1 (en) Bidirectional DC/DC converter and energy storage system
WO2021232749A1 (zh) 三桥臂拓扑装置及不间断电源系统
CN116111648B (zh) 一种景区用电智能供电装置
CN110138217B (zh) 一种三端口dc-dc变换器及其控制方法
JP2024524623A (ja) 車載充電器動作モード切り替え制御方法、装置及び車載充電器
CN213717647U (zh) 一种蓄电池组充放电控制模块
CN113629854A (zh) 带线性动态充电限流功能的通信设备用锂电池电源系统
CN113315220A (zh) 一种不间断直流供电装置及控制方法
CN211579680U (zh) 一种锂电池直流电源系统
CN117595449A (zh) 一种充放电控制装置、充电控制方法及放电控制方法
WO2006136100A1 (en) Power supplying device and power supplying method
CN217159352U (zh) 一种输出电流可调的锂电池充电器
CN116231802A (zh) 一种带有充放电管理功能的锂离子储能电池系统及电池堆
WO2021104373A1 (zh) 一种多电池切换控制电路、装置、系统及控制方法
CN109802572B (zh) 一种功率路由器及其控制方法
CN113285608A (zh) 一种ups用双向dc-dc变换器拓扑结构
CN108988445B (zh) 一种串联开关的多路不同种类电池组并联控制装置及方法
CN110752661A (zh) 一种双向全桥高频隔离的单相串并补偿式ups
CN216794695U (zh) 一种充电电路、充电器和充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18564065

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022831321

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022831321

Country of ref document: EP

Effective date: 20240130