WO2023273232A1 - 一种装配精度自矫正式压缩机 - Google Patents

一种装配精度自矫正式压缩机 Download PDF

Info

Publication number
WO2023273232A1
WO2023273232A1 PCT/CN2021/140647 CN2021140647W WO2023273232A1 WO 2023273232 A1 WO2023273232 A1 WO 2023273232A1 CN 2021140647 W CN2021140647 W CN 2021140647W WO 2023273232 A1 WO2023273232 A1 WO 2023273232A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
self
correcting
ring
sealing ring
Prior art date
Application number
PCT/CN2021/140647
Other languages
English (en)
French (fr)
Inventor
钟仁志
袁军
韩春江
Original Assignee
鑫磊压缩机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鑫磊压缩机股份有限公司 filed Critical 鑫磊压缩机股份有限公司
Publication of WO2023273232A1 publication Critical patent/WO2023273232A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations

Definitions

  • the invention relates to the technical field of compressor production and manufacturing, in particular to a self-correcting assembly precision compressor.
  • the rotor is the core component of the centrifugal compressor, which not only affects the aerodynamic performance of the compressor, but also is an important factor affecting the rotor dynamics of the compressor.
  • the first-stage impeller of the single-shaft cantilever centrifugal air compressor is in the form of a cantilever. The impeller is connected to the main shaft and is driven by the prime mover to perform work.
  • the existing connection between the impeller and the main shaft is a flange connection, and the impeller is tightened with the pinion shaft by bolts, so that the flange contact surface of the impeller and the pinion shaft generates friction during operation, and this force is used to avoid running
  • This connection method has the following disadvantages:
  • the present invention provides a self-correcting assembly precision compressor, by setting the hardness on the shell
  • the self-correcting ring smaller than the impeller forms a seal to the power core, and the self-correcting ring is cut by the impeller self-correcting ring to complete the automatic correction of assembly accuracy during operation.
  • the second object of the present invention is to solve the problem of unsatisfactory cooling effect of high-speed compressors with excellent assembly precision.
  • a self-correcting assembly precision compressor comprising a housing and an impeller shaft arranged in the center of the housing, an impeller is provided at the tail end of the impeller shaft, a volute is provided on the outer edge of the impeller, and the volute is connected to
  • the housing also includes: a self-correcting ring used to eliminate the assembly error of the compressor; the self-correcting ring is arranged on the volute and is located on the side of the impeller away from the housing; the self-correcting ring abuts the impeller ; The hardness of the self-correcting ring is less than that of the impeller.
  • the power core of the compressor includes an impeller shaft arranged in the casing, the impeller shaft drives the impeller to rotate at a high speed, and the front end of the casing is closed by a volute, and the self-correcting ring is used to fill the gap between the impeller and the volute
  • a self-correcting ring with better sealing effect is used as the shaft end seal.
  • the outer contour surface of the self-correcting ring slightly extends between the blades of the impeller, and the blades touch Connected to the self-straightening ring; the self-straightening ring is made of polymer material and has self-lubricating properties.
  • the self-straightening ring When the impeller is pre-started, the self-straightening ring will be scraped so that the self-straightening ring is scraped according to the "rotation profile" of the impeller Correction, so that the self-correcting ring is automatically corrected according to the working state of the impeller, eliminating the error generated during the assembly of the compressor, and ensuring the overall operation stability of the compressor.
  • a connecting plate is provided at the rear end of the impeller, the rotating shaft of the impeller is sleeved on the connecting plate, and the connecting plate is connected to the casing; wherein, a sealing portion is provided on a side of the connecting plate close to the impeller.
  • the connecting plate is arranged at the rear of the impeller, and is connected to the casing as the base plate of the impeller, and a sealing part is fixedly installed on the connecting plate, which is used to reduce the impact of vibration during the rotation of the impeller.
  • the sealing part includes a tooth-shaped sealing ring
  • the tooth-shaped sealing ring includes a contact part and a filling part.
  • the contact part is provided with teeth whose front end contacts the rear end of the impeller, and tooth grooves are provided between the teeth.
  • the filling part is arranged on the outer edge of the contact part.
  • the sealing part is a tooth-shaped sealing groove.
  • the tooth-shaped sealing ring supports the impeller to a certain extent through the teeth, and on the other hand, it prevents the outer end surface of the entire sealing ring from contacting the impeller to generate a large friction force that affects the operation of the high-speed impeller.
  • the existence of the tooth-shaped sealing ring can play a role of installation and positioning when the impeller is installed.
  • the tooth grooves are helically distributed along the radial direction of the toothed sealing ring, and a through groove is provided in the middle of the toothed sealing ring, and the through groove includes a main groove extending radially along the toothed sealing ring and a main groove along the radial direction of the toothed sealing ring.
  • a plurality of branch grooves extending in the axial direction of the tooth seal ring, the branch grooves extend from the tooth groove bottom of the tooth seal ring to the middle of the tooth seal ring and communicate with the main groove.
  • the tooth groove is different from the structure on the traditional toothed sealing ring, which is distributed in concentric circles, but distributed along the helical structure from the inside to the outside, while the branch groove is set according to the extension track of the tooth groove, so the branch connected to the main groove
  • the grooves are distributed along the helical structure on the surface of the toothed sealing ring.
  • the toothed sealing ring In the toothed sealing ring, and dissipate heat to the shell through the good thermal conductivity of the toothed sealing ring.
  • the branch grooves are also distributed on the tooth-shaped seal ring according to concentric circles, and the compressed gas generated during the stable rotation of the impeller is also distributed according to the concentric circles.
  • the branch groove channels regularly distributed in the toothed seal ring flow at high speed, and this process will continue to accompany the entire working process of the compressor.
  • the branch grooves distributed in a helical structure can avoid the resonance phenomenon caused by the regular flow of compressed gas along the distribution of concentric circles, eliminate the hidden danger of load caused by resonance, improve the service life of the power core of the compressor, and avoid hidden damage.
  • the branch grooves are distributed on the helical line where the tooth grooves are located, the helix is distributed from dense to sparse along the radial direction of the toothed sealing ring, and the branch grooves are distributed from dense to sparse along the radial direction of the toothed sealing ring distributed.
  • the helix where the tooth groove is located is different from the traditional equal-width helix, but a helix that gradually widens from the inside to the outside, that is, it is distributed from dense to sparse along the radial direction, which makes the inner side of the toothed seal ring
  • the grooves are denser than the branch grooves on the outer edge.
  • the narrow branch groove increases the flow velocity.
  • the airflow enters the main groove it flows radially from the inside to the outside, and leaves the toothed seal ring from the outer ring branch groove.
  • the increase in flow rate makes the vibration caused by the air flow leaving the branch groove greater than the vibration caused by the air flow entering the branch groove. Therefore, if the number of support grooves on the outer ring reaches a certain number, the vibration state of the inner and outer rings of the toothed seal ring will be uneven, which will greatly affect the stability of the seal ring, so the support grooves of the inner ring are denser than the support grooves of the outer ring.
  • the branch grooves are distributed from dense to sparse along the radial direction of the tooth-shaped sealing ring, that is, the branch grooves of the inner ring are further more than the branch grooves of the outer ring, which will further balance the vibration state on both sides and reduce the gap between the tooth-shaped sealing ring and the connecting seat.
  • the intensity of vibration caused by the above can eliminate vibration and reduce noise.
  • the filling part includes a polymerization tank with an opening facing the contact part, the polymerization tank communicates with the main tank, and the filling part and the contact part are integrated; wherein, an adsorption layer is arranged in the polymerization tank.
  • a number of positioning grooves are uniformly arranged on the contact part, and a fixing part for the tail part to be fixedly connected with the connection seat is arranged in the positioning grooves, and the positioning grooves communicate with the main groove, and serve as the main cooling holes of the sealing ring for high-speed air flow.
  • the pressure on the outer edge of the impeller is lower than the pressure on the inner edge of the impeller.
  • the self-correcting ring debris collects into the polymerization tank, and is collected by the adsorption layer set in the polymerization tank to prevent the self-correcting ring debris from providing the agglomeration core for the lubricant in the shell, causing the lubricant to agglomerate and affecting its lubrication Effect.
  • the rear end of the impeller shaft is provided with a vibration-damping gasket
  • the vibration-damping gasket is a composite structure
  • the vibration-damping gasket includes an upper layer, a middle layer and a lower layer
  • the upper layer and the lower layer are corrugated gaskets
  • the middle layer is a graphite layer.
  • the middle layer is provided with micropores.
  • the damping gasket is different from the traditional composite graphite metal corrugated gasket.
  • the traditional composite graphite metal corrugated gasket is made of graphite paper soft layer and metal corrugated gasket, which is mainly used to obtain better elastic properties.
  • the vibration damping gasket in this application is made of a graphite layer sandwiched in the middle of two wave gaskets.
  • the vibration damping gasket can also use the graphite layer in the middle.
  • the middle part of the impeller is provided with an assembly cylinder
  • the assembly cylinder includes a front part and a rear part with an inner diameter larger than the front part
  • the end of the impeller shaft is in interference connection with the rear part
  • the assembly cylinder is inserted through a
  • the fixing nail, the tail of the fixing nail is fixedly connected with the end of the impeller shaft
  • the head of the fixing nail is provided with a fairing
  • the fairing abuts against the front end of the impeller.
  • the impeller shaft is connected to the impeller with interference to ensure that the impeller shaft can drive the impeller to rotate synchronously
  • the fixing nail cooperates with the fairing to press and fix the impeller on the impeller shaft stably.
  • a gap layer is formed between the fixing nail and the front part of the assembly cylinder to avoid the "cold welding" phenomenon of the fixing nail and the impeller after long-term use of the compressor and the connection as a whole, resulting in the situation that it cannot be disassembled.
  • the present application also discloses an assembly method of the above-mentioned assembly precision self-correcting type compressor, including the following steps:
  • the front-end bearing and the rear-end bearing ensure the smooth rotation of the impeller shaft after being assembled in the casing, and the vibration damping gasket is installed at the rear end of the impeller shaft to reduce the vibration intensity of the impeller shaft and obtain a certain noise reduction performance; the connecting seat and the toothed sealing ring are installed At the front of the impeller shaft, it supports the impeller while reducing the contact area between the impeller and the impeller assembly assembly, avoiding friction that affects the high-speed rotation of the impeller.
  • the tooth-shaped sealing ring with a special structure and the polymer self-correcting ring are used to automatically correct the compression
  • the accuracy error generated during the machine assembly process improves the heat dissipation performance of the high-speed impeller, eliminates the possibility of resonance between the impeller and the assembly structure, and obtains a compressor power core with excellent performance.
  • the self-correcting ring is made of a polymer material and has self-lubricating properties. When the impeller pre-starts the test, the self-correcting ring will be scraped, so that the self-correcting ring can The "rotation profile" is corrected by scraping, so that the self-correcting ring is automatically corrected according to the working state of the impeller, eliminating the error generated during the assembly of the compressor, and ensuring the overall operation stability of the compressor; (2)
  • the spiral line follows the diameter of the toothed sealing ring The direction of distribution is from dense to sparse, and the branch grooves are distributed from dense to sparse along the radial direction of the tooth-shaped sealing ring, so as to balance the vibration state on both sides of the tooth-shaped sealing ring, reduce the vibration intensity of the tooth-shaped sealing ring on the connecting seat, and achieve Eliminate vibration and reduce noise; (3)
  • the branch grooves distributed in a helical structure can avoid the resonance phenomenon caused by the regular flow of compressed gas along the
  • Fig. 1 is a sectional view of the present invention.
  • Fig. 2 is a schematic structural view of the toothed sealing ring in Fig. 1 .
  • FIG. 3 is a partial enlarged view of A in FIG. 2 .
  • Fig. 4 is a front view of the toothed sealing ring in Fig. 1 .
  • a compressor of self-correcting assembly precision includes a housing 100 and an impeller shaft 1 arranged in the center of the housing, an impeller 2 is provided at the tail end of the impeller shaft, and The volute 10, the volute 10 is connected to the casing 100, and also includes a self-correcting ring 3 for eliminating the assembly error of the compressor; the self-correcting ring is arranged on the volute 10 and is located away from the impeller 2 from the casing One side of the body 100; the self-correcting ring 3 abuts the impeller 2; the hardness of the self-correcting ring 3 is less than that of the impeller 2.
  • the power core of the compressor includes the impeller shaft 1 set in the casing, the impeller shaft 1 drives the impeller 2 to rotate at high speed, and the front end of the casing is closed by the volute 10, and the self-correcting ring is used to fill the gap between the impeller 2 and the volute 10
  • a self-correcting ring with a better sealing effect is used as the shaft end seal.
  • the self-correcting ring is made of polymer material and has self-lubricating properties.
  • the self-correcting ring will be scraped, so that the self-correcting ring is scraped and corrected according to the "rotation profile" of the impeller 2, so that the self-correcting ring is automatically corrected according to the working state of the impeller 2, and the error generated during the assembly of the compressor is eliminated , to ensure the overall operation stability of the compressor.
  • the rotational speed of the impeller 2 is 25000r/min
  • the material of the self-correcting ring is acetal copolymer, which has low density, crystallinity, melting point and strength, but has good thermal stability and is not easy to decompose.
  • the impeller 2 is made of 7075 aluminum alloy, which is a cold-treated forging alloy with light weight, high strength, compact structure and strong corrosion resistance. The impeller 2 can scrape the self-correcting ring to complete the correction of assembly accuracy.
  • the rear end of the impeller 2 is provided with a connecting plate 9, the impeller shaft 1 is socketed with the connecting plate 9, and the connecting plate 9 is connected with the housing; wherein, the side of the connecting plate 9 close to the impeller 2 is provided with a seal department.
  • the sealing part includes a toothed sealing ring 6, and the toothed sealing ring 6 includes a contact part 61 and a filling part 62.
  • the contact part 61 is provided with teeth whose front end contacts the rear end of the impeller 2, and teeth are provided between the teeth.
  • the groove 63 and the filling portion 62 are disposed on the outer edge of the contact portion 61 .
  • the tooth groove 63 is helically distributed along the radial direction of the toothed sealing ring 6, and the middle part of the toothed sealing ring 6 is provided with a through groove, which includes the main groove 12 extending radially along the toothed sealing ring 6 and the main groove along the toothed sealing ring. 6.
  • Several branch grooves 13 extending axially. The branch grooves 13 extend from the bottom of the tooth groove 63 of the toothed sealing ring 6 to the middle of the toothed sealing ring 6 and communicate with the main groove 12.
  • connection plate 9 is arranged at the rear of the impeller 2 and is connected to the housing as the base plate of the impeller 2 .
  • a sealing portion is fixedly installed on the connection plate 9 to reduce the impact of vibration during the rotation of the blades.
  • the sealing part is a tooth-shaped sealing groove.
  • the tooth-shaped sealing ring 6 supports the impeller 2 to a certain extent through the teeth, and on the other hand, it prevents the outer end surface of the entire sealing ring from contacting the impeller 2 to generate a large friction force that affects the operation of the high-speed impeller 2.
  • the presence of the toothed sealing ring 6 can play a role in installation and positioning of the impeller 2 when it is installed.
  • the tooth groove 63 is different from the structure on the traditional toothed sealing ring 6 which is distributed in concentric circles, but is distributed along the spiral structure from the inside to the outside, and the branch groove 13 is set according to the extension track of the tooth groove 63, so it is consistent with the main groove 12
  • the connected branch grooves 13 are distributed along the helical structure on the surface of the toothed sealing ring 6 .
  • the branch grooves 13 are distributed on the helical line where the tooth groove 63 is located.
  • the helix is distributed from dense to sparse along the radial direction of the toothed sealing ring 6
  • the branch grooves 13 are distributed from dense to sparse along the radial direction of the toothed sealing ring 6 .
  • the helix where the tooth groove 63 is located is different from the traditional equal-width helix, but a helix that gradually widens from the inside to the outside, that is, it is distributed from dense to sparse along the radial direction, which makes the inner side of the toothed sealing ring 6
  • the grooves 13 are denser than the branch grooves 13 on the outer edge.
  • the tooth-shaped sealing ring 6 is made of 6061 aluminum alloy, which has good formability, weldability, and machinability, and is convenient for forming the main groove 12 and the branch groove 13 .
  • the impeller 2 When the impeller 2 rotates, the compressed gas flows at a high speed along the axial direction of the impeller shaft 1, and the blades of the impeller 2 control the flow of the air flow and generate a lift away from the impeller shaft 1, while the air flows through the branch groove 13 to the main groove 12, which can move the impeller 2
  • the heat generated by the rotation is quickly transferred to the toothed sealing ring 6 , and dissipates heat to the housing through the good thermal conductivity of the toothed sealing ring 6 .
  • the branch grooves 13 are also distributed on the toothed seal ring 6 according to the concentric circles, and the impeller 2 is stably rotating.
  • the generated compressed gas is also regularly distributed in the channel of the branch groove 13 in the toothed sealing ring 6 and flows at a high speed.
  • the vibration frequency generated is consistent with the vibration frequency of the impeller shaft 1, that is, resonance will occur, which will cause great hidden dangers to the motion stability of the impeller shaft 1 and the impeller in the housing, and the resonance will continue to act until the compressor stops During the operation, the impeller shaft 1 will bear a large resonant radial load, which will seriously affect the service life of the compressor.
  • the branch grooves 13 distributed in a helical structure can avoid the resonance phenomenon caused by the regular flow of the compressed gas along the distribution of concentric circles, eliminate the potential load caused by resonance, improve the service life of the compressor power core, and avoid hidden damage.
  • the narrow branch groove 13 increases the flow velocity.
  • the air flow flows radially from the inside to the outside, and leaves the tooth seal from the outer ring branch groove 13.
  • Ring 6 the vibration caused when the airflow leaves the branch groove 13 is greater than the vibration caused when the airflow enters the branch groove 13 due to the increase of the flow velocity. Therefore, if the number of branch grooves 13 on the outer ring reaches a certain number, the vibration state of the inner and outer rings of the toothed seal ring 6 will be uneven, which will greatly affect the stability of the sealing ring, so the inner ring branch grooves 13 are denser than the outer ring.
  • the branch grooves 13 are distributed from dense to sparse along the radial direction of the tooth-shaped sealing ring 6, that is, the inner ring branch grooves 13 are further more than the outer ring branch grooves 13, which will further balance the vibration state on both sides and reduce the tooth-shaped sealing ring 6.
  • the vibration intensity caused on the connecting seat can eliminate vibration and reduce noise.
  • the filling part 62 includes a polymerization tank 14 with an opening facing the contact part 61 , the polymerization tank 14 communicates with the main tank 12 , and the filling part 62 and the contact part 61 are integrated; wherein, the polymerization tank 14 is provided with an adsorption layer 15 .
  • the contact part 61 is evenly provided with a number of positioning grooves, the positioning grooves are provided with a fixed part 7 whose tail is fixedly connected with the connecting seat, the positioning grooves communicate with the main groove 12, and serve as the main cooling holes of the sealing ring for high-speed air flow.
  • the pressure on the outer edge of the impeller is lower than the pressure on the inner edge of the impeller, so when the airflow flows outward in the main groove 12, the impeller scrapes the polymer material self-correcting ring to realize the automatic correction of assembly accuracy and the undischarged compressor
  • the self-correcting ring debris collected in the polymerization tank 14, and the adsorption layer 15 set in the polymerization tank 14 is used for adhesion and collection, so as to prevent the self-correcting ring debris from providing the agglomeration core for the lubricant in the shell, resulting in lubricant agglomeration Affect its lubricating effect.
  • the polymerization groove 14 is a trumpet-shaped structure, and the opening width is smaller than the width of the bottom surface, so as to ensure that the grinding debris will not come out after entering the polymerization groove 14 .
  • Adsorption layer 15 adopts self-adhesive layer.
  • the rear end of the impeller shaft 1 is provided with a vibration-damping gasket 11, which is a composite structure.
  • the vibration-damping gasket 11 includes an upper layer, a middle layer and a lower layer.
  • the upper layer and the lower layer are corrugated gaskets, and the middle layer is a graphite layer. Further, the middle layer is provided with micropores.
  • the damping gasket 11 is different from the traditional composite graphite metal corrugated gasket.
  • the traditional composite graphite metal corrugated gasket is made of graphite paper soft layer and metal corrugated gasket. It is mainly used to obtain better elastic properties, wear resistance and high temperature resistance, and the vibration damping gasket 11 in this application is made of a graphite layer sandwiched in the middle of two wave gaskets.
  • the vibration damping gasket 11 can also use the middle graphite layer
  • the microporous structure on the top reduces the noise generated during the operation of the impeller shaft 1, and uses the micropores on the graphite layer to quickly transmit the sound to the interior of the low-density graphite to achieve sound-absorbing effects.
  • the present application also discloses an assembly method of the above-mentioned assembly precision self-correcting type compressor, including the following steps:
  • the assembly cylinder includes a front part and a rear part whose inner diameter is larger than that of the front part.
  • the end of the impeller shaft 1 is connected to the rear part in an interference fit.
  • a fixing nail 5 is inserted through the assembly cylinder, and the tail of the fixing nail is connected to the impeller shaft. 1.
  • the ends are fixedly connected, and the head of the fixing nail is provided with a fairing 4, and the fairing 4 abuts against the front end of the impeller.
  • the impeller shaft 1 is connected with the impeller by interference to ensure that the impeller shaft 1 can drive the impeller to rotate synchronously, and the fixing nail cooperates with the fairing 4 to press and fix the impeller on the impeller shaft 1 stably.
  • the second is to create a gap layer between the fixing nail 5 and the front of the assembly cylinder, so as to avoid the "cold welding" phenomenon of the fixing nail 5 and the impeller after long-term use of the compressor and the connection as a whole, resulting in the situation that it cannot be disassembled.
  • the front end bearing and the rear end bearing ensure the smooth rotation of the impeller shaft 1 after being assembled in the housing, and the vibration damping gasket 11 is installed at the rear end of the impeller shaft 1 to reduce the vibration intensity of the impeller shaft 1 while obtaining a certain noise reduction performance; the connecting seat and gear
  • the toothed seal ring 6 is installed at the front of the impeller shaft 1.
  • the self-correcting ring automatically corrects the precision error generated during the compressor assembly process, improves the heat dissipation performance of the high-speed impeller, eliminates the possibility of resonance between the impeller and the assembly structure, and obtains a compressor power core with excellent performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种装配精度自矫正式压缩机,壳体(100)和设置于壳体中心的叶轮转轴(1),叶轮转轴的尾端设置有叶轮(2),叶轮外缘设置有蜗壳(10),蜗壳(10)连接于壳体(100),还包括用于消除压缩机装配误差的自矫正型环(3);自矫正型环(3)设置于蜗壳(10)上,且位于叶轮(2)远离壳体(100)的一侧;自矫正型环(3)抵接叶轮(2);自矫正型环(3)的硬度小于叶轮(2)的硬度。自矫正型环(3)采用高分子材料,具备自润滑特性,当叶轮(2)预启动试验时,会对自矫正型环(3)进行刮削,使得自矫正型环(3)根据叶轮(2)的"转动轮廓"被刮削矫正,使得自矫正型环(3)根据叶轮(2)的工作状态自动矫正,消除压缩机装配时产生的误差,确保压缩机整体的运行稳定性。

Description

一种装配精度自矫正式压缩机 技术领域
本发明涉及压缩机生产制造技术领域,尤其是涉及一种装配精度自矫正式压缩机。
背景技术
转子是离心压缩机的核心部件,其不仅影响压缩机的气动性能,同时也是影响压缩机的转子动力学特性的重要因素。单轴悬臂式离心空压机的首级叶轮为悬臂形式,叶轮与主轴连接,通过原动机驱动进行作功。
现有的叶轮与主轴连接方式为法兰盘连接,叶轮通过螺栓与小齿轮轴把紧,使叶轮和小齿轮轴的法兰接触面在运转的过程中产生摩擦力,以此力来避免运转过程中两法兰可能发生的相对位移。这种连接方式存在以下不足:
(1)安装难度大,装配精度较低。
(2)安装过程中易研磨法兰端面,对转子造成损伤。
(3)安装后,在运行过程中,叶轮与法兰易发生相对位移,增加转子不平量,不利于稳定运行。
以上三点是影响转子稳定运行的重要因素。
尤其值得注意的是,当压缩机转速达到20000转以上时,压缩机动力核心的装配精度要求极高,一旦出现装配缺陷,当叶轮启动后产生微振动即可能与壳体产生干涉,这会造成叶片崩坏甚至整机报废,后果极为严重。
发明内容
针对背景技术中提到的高速压缩机装配要求极高,且在运转过程中的振动可能导致叶片损伤的问题,本发明提供了一种装配精度自矫正式压缩机,通过在壳体上设置硬度小于叶轮的自矫正型环形成对动力核心的封闭,在运行过程中通过叶轮自矫正型环切削自矫正型环完成装配精度的自动矫正。
本发明的第二发明目的是解决装配精度较出色的高速压缩机散热效果不理想的问题。
为了实现上述目的,本发明采用以下技术方案:
一种装配精度自矫正式压缩机,包括壳体和设置于壳体中心的叶轮转轴,所述叶轮转轴的尾端设置有叶轮,所述叶轮外缘设置有蜗壳,所述蜗壳连接于壳体,还包括:用于消除压缩机装配误差的自矫正型环;所述自矫正型环设置于蜗壳上,且位于叶轮远离壳体的一侧;所述自矫正型环抵接叶轮;所述自矫正型环的硬度小于叶轮的硬度。所述压缩机的动力核心包括设置于壳体内的叶轮转轴,所述叶轮转轴带动叶轮高速转动,而壳体前端通过蜗壳封闭,所 述自矫正型环用于填充叶轮与蜗壳之间的间隙,防止压缩介质向腔体外泄漏,采用密封效果较好的自矫正型环作为轴端密封件,本申请中,自矫正型环的外轮廓面略微伸入叶轮的叶片之间,且叶片抵接自矫正型环;自矫正型环采用高分子材料,具备自润滑特性,当叶轮预启动试验时,会对自矫正型环进行刮削,使得自矫正型环根据叶轮的“转动轮廓”被刮削矫正,使得自矫正型环根据叶轮的工作状态自动矫正,消除压缩机装配时产生的误差,确保压缩机整体的运行稳定性。
作为优选,所述叶轮后端设置有连接盘,所述叶轮转轴与连接盘套接,所述连接盘与壳体连接;其中,所述连接盘靠近叶轮的一侧设置有密封部。所述连接盘设置于叶轮后部,作为叶轮的基盘部连接于壳体,连接盘上固定安装有密封部,用于削减叶转动过程中的振动影响。
进一步的,所述密封部包括有齿形密封圈,所述齿形密封圈包括接触部和填充部,接触部上设置有前端接触于叶轮后端的齿牙,齿牙之间设置有齿槽,所述填充部设置于接触部外缘。所述密封部为齿形密封槽,齿形密封圈一方面通过齿牙对叶轮进行一定程度的支撑,另一方面避免整个密封圈外端面接触叶轮产生较大摩擦力影响高速叶轮的运行,同时齿形密封圈的存在可以在叶轮安装时起到安装定位作用。
作为优选,所述齿槽沿齿形密封圈径向方向呈螺旋线分布,所述齿形密封圈中部设置有通槽,所述通槽包括沿齿形密封圈径向延伸的主槽和沿齿形密封圈轴向延伸的若干支槽,支槽自齿形密封圈的齿槽底部延伸至齿形密封圈中部并连通于主槽。所述齿槽不同于传统齿形密封圈上的结构按照同心圆分布,而是沿螺旋线结构由内向外分布,而支槽是按照齿槽延伸轨迹进行设置的,因此与主槽连通的支槽在齿形密封圈表面沿螺旋线结构分布。当叶轮转动时,压缩气体沿叶轮转轴的轴向方向高速流动,叶轮叶片控制气流流动并产生远离叶轮转轴的升力,而气流经支槽向主槽流动,能够将叶轮转动产生的热量快速传递至齿形密封圈内,并通过齿形密封圈良好的导热性向壳体散热。另外,若齿形密封圈的齿槽为传统齿形密封圈的结构按照同心圆分布,故而支槽亦按照同心圆分布在齿形密封圈上,且叶轮稳定转动过程中产生的压缩气体亦按照规律分布在齿形密封圈中的支槽通路高速流动,这一过程会持续伴随于压缩机整个工作进程,由于气流流通路线是规律的,导致一旦齿形密封圈产生的振动频率与叶轮转轴的振动频率一致,即会发生共振现象,这对叶轮转轴及叶轮在壳体中的运动稳定性造成极大隐患,且该共振会持续作用直至压缩机停止工作,期间叶轮转轴会承受极大地共振径向载荷,这对压缩机的使用寿命造成严重影响。而呈螺旋线结构分布的支槽能避免压缩气体沿同心圆分布方式进行规律流动而产生共振现象,消除共振导致的载荷隐患,提高压 缩机动力核心的使用寿命,避免暗伤产生。
作为优选,所述支槽分布于齿槽所在螺旋线上,所述螺旋线沿齿形密封圈径向方向由密至疏分布,所述支槽沿齿形密封圈径向方向由密至疏分布。所述齿槽所在螺旋线不同于传统等宽式螺旋线,而是由内向外逐渐变宽的螺旋线,即沿径向方向由密至疏分布,这使得齿形密封圈上靠内侧的支槽较靠外沿的支槽更为密集。这是由于气流自齿形密封圈上内圈支槽进入后,狭窄的支槽使得流速增加,气流进入主槽后沿径向由内向外流动,从外圈支槽离开齿形密封圈,由于流速的提升使得气流离开支槽时造成的振动大于气流进入支槽时造成的振动。因此若靠外圈的支槽达到一定数目,会导致齿形密封圈内、外圈振动状态不均,这对密封圈的稳定性造成极大影响,故内圈支槽密集于外圈支槽才能平衡两侧的振动稳定性。进一步的,所述支槽沿齿形密封圈径向方向由密至疏分布,即内圈支槽进一步多于外圈支槽,会进一步平衡两侧振动状态,削减齿形密封圈在连接座上造成的振动强度,达到消除振动,降低噪音的作用。
进一步的,所述填充部包括开口朝向接触部的聚合槽,所述聚合槽与主槽连通,所述填充部与接触部为一体式结构;其中,所述聚合槽内设置有吸附层。所述接触部上均匀设置有若干定位槽,所述定位槽内设置有尾部与连接座固定连接的固定件,所述定位槽与主槽连通,作为密封圈的主散热孔供高速气流流通。根据伯努利原理,叶轮外缘压强小于叶轮内缘压强,因此气流在主槽内向外侧流动时,会将叶轮刮削高分子材料自矫正型环实现装配精度自动矫正而产生的未排出压缩机的自矫正型环碎屑向聚合槽汇集,并利用聚合槽内设置的吸附层进行黏附收集,避免自矫正型环碎屑为壳体内润滑剂提供结块核心,造成润滑剂结块影响其润滑效果。
作为优选,所述叶轮转轴后端设置有减振垫片,所述减振垫片为复合结构,所述减振垫片包括上层、中层和下层,所述上层和下层为波形垫片,所述中层为石墨层。进一步的,所述中层上设置有微孔。所述减振垫片不同于传统的复合式石墨金属波形垫片,传统复合式石墨金属波形垫片由石墨纸软层与金属波形垫片压合制成,主要用于获得较好的弹性性能、耐磨性能和耐高温性能,而本申请中减振垫片由两波形垫片中部夹合一石墨层制成,本减振垫片除上述优良性能外,还可利用其中部石墨层上的微孔结构对叶轮转轴运转过程产生的噪声进行降噪处理,利用石墨层上的微孔将声音快速传递至低密度石墨内部实现吸音效果。
作为优选,所述叶轮中部设置有装配筒,所述装配筒包括前部和内径大于前部的后部,所述叶轮转轴端部与后部过盈连接,所述装配筒内贯穿插接有固定钉,所述固定钉尾部与叶轮转轴端部固定连接,所述固定钉头部设置有整流罩,所述整流罩抵接叶轮前端。叶轮转轴 与叶轮过盈连接,保证叶轮转轴能够带动叶轮同步转动,而固定钉配合整流罩将叶轮稳定压合固定在叶轮转轴上,一是确保装配筒后部不会脱出叶轮转轴,二是在固定钉与装配筒前部之间产生间隙层,避免随着压缩机长期使用后固定钉与叶轮产生“冷焊”现象而连接一体,造成无法拆卸的情况。
本申请还公开了一种上述装配精度自矫正式压缩机的装配方法,包括以下步骤:
S1:将叶轮转轴安装于壳体中部,并在叶轮转轴两端分别安装前端轴承和后端轴承;
S2:将减振垫片安装于后端轴承外侧,将连接座安装于前端轴承外侧;
S3:自齿形密封圈内缘沿径向方向切割形成主槽,接着自齿槽槽底沿轴向方向钻孔形成支槽;
S4:将叶轮中部的装配筒过盈插接叶轮转轴前端,并将固定钉贯穿整流罩与装配筒后固定连接叶轮转轴;
S5:将蜗壳套接安装在连接座外沿,接着将自矫正型环装入叶轮与蜗壳之间,最后将法兰固定在蜗壳外端,并将法兰与自矫正型环固定。
前端轴承和后端轴承确保叶轮转轴装配在壳体内后流畅转动,减振垫片安装在叶轮转轴后端,降低叶轮转轴振动强度的同时获得一定的降噪性能;连接座及齿形密封圈安装于叶轮转轴前部,在支撑叶轮的同时降低叶轮与叶轮装配总成的接触面积,避免摩擦现象影响叶轮高速转动,另外,利用特殊结构的齿形密封圈配合高分子自矫正型环自动矫正压缩机装配过程产生的精度误差,提高高速叶轮的散热性能,消除叶轮与装配结构的共振可能,获得性能优良的压缩机动力核心。
因此,本发明具有如下有益效果:(1)自矫正型环采用高分子材料,具备自润滑特性,当叶轮预启动试验时,会对自矫正型环进行刮削,使得自矫正型环根据叶轮的“转动轮廓”被刮削矫正,使得自矫正型环根据叶轮的工作状态自动矫正,消除压缩机装配时产生的误差,确保压缩机整体的运行稳定性;(2)螺旋线沿齿形密封圈径向方向由密至疏分布,所述支槽沿齿形密封圈径向方向由密至疏分布,平衡齿形密封圈两侧振动状态,削减齿形密封圈在连接座上的振动强度,达到消除振动,降低噪音的作用;(3)呈螺旋线结构分布的支槽能避免压缩气体沿同心圆分布方式进行规律流动而产生共振现象,消除共振导致的载荷隐患,提高压缩机动力核心的使用寿命,避免暗伤产生;(4)固定钉配合整流罩将叶轮稳定压合固定在叶轮转轴上,一是确保装配筒后部不会脱出叶轮转轴,二是在固定钉与装配筒前部之间产生间隙层,避免随着压缩机长期使用后固定钉与叶轮产生“冷焊”现象而连接一体,造成无法拆卸的情况。
附图说明
图1为本发明的剖视图。
图2为图1中齿形密封圈的结构示意图。
图3为图2中A处的局部放大图。
图4为图1中齿形密封圈的主视图。
图中:100、壳体,1、叶轮转轴,11、减振垫片,2、叶轮,3、自矫正型环,4、整流罩,5、固定钉,6、齿形密封圈,61、接触部,62、填充部,63、齿槽,7、固定件,8、法兰,9、连接盘,10、蜗壳,12、主槽,13、支槽,14、聚合槽,15、吸附层。
具体实施方式
下面结合附图与具体实施方式对本发明做进一步的描述。所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1所示,一种装配精度自矫正式压缩机,包括壳体100和设置于壳体中心的叶轮转轴1,所述叶轮转轴的尾端设置有叶轮2,所述叶轮外缘设置有蜗壳10,所述蜗壳10连接于壳体100,还包括用于消除压缩机装配误差的自矫正型环3;所述自矫正型环设置于蜗壳10上,且位于叶轮2远离壳体100的一侧;所述自矫正型环3抵接叶轮2;所述自矫正型环3的硬度小于叶轮2的硬度。压缩机的动力核心包括设置于壳体内的叶轮转轴1,叶轮转轴1带动叶轮2高速转动,而壳体前端通过蜗壳10封闭,自矫正型环用于填充叶轮2与蜗壳10之间的间隙,防止压缩介质向腔体外泄漏,采用密封效果较好的自矫正型环作为轴端密封件,本 申请中,自矫正型环采用高分子材料,具备自润滑特性,当叶轮2预启动试验时,会对自矫正型环进行刮削,使得自矫正型环根据叶轮2的“转动轮廓”被刮削矫正,使得自矫正型环根据叶轮2的工作状态自动矫正,消除压缩机装配时产生的误差,确保压缩机整体的运行稳定性。本实施例中,叶轮2转速为25000r/min,自矫正型环材料采用共聚甲醛,密度、结晶度、熔点、强度都较低,但热稳定性好,不易分解。叶轮2采用7075铝合金,是一种冷处理锻压合金,质轻强度高,结构紧密,耐腐蚀效果强。叶轮2可对自矫正型环进行刮削处理,完成装配精度矫正。
如图2,3所示,叶轮2后端设置有连接盘9,叶轮转轴1与连接盘9套接,连接盘9与壳体连接;其中,连接盘9靠近叶轮2的一侧设置有密封部。进一步的,密封部包括有齿形密封圈6,齿形密封圈6包括接触部61和填充部62,接触部61上设置有前端接触于叶轮2后端的齿牙,齿牙之间设置有齿槽63,填充部62设置于接触部61外缘。齿槽63沿齿形密封圈6径向方向呈螺旋线分布,齿形密封圈6中部设置有通槽,通槽包括沿齿形密封圈6径向延伸的主槽12和沿齿形密封圈6轴向延伸的若干支槽13,支槽13自齿形密封圈6的齿槽63底部延伸至齿形密封圈6中部并连通于主槽12。
如图4所示,连接盘9设置于叶轮2后部,作为叶轮2的基盘部连接于壳体,连接盘9上固定安装有密封部,用于削减叶转动过程中的振动影响。密封部为齿形密封槽,齿形密封圈6一方面通过齿牙对叶轮2进行一定程度的支撑,另一方面避免整个密封圈外端面接触叶轮2产生较大摩擦力影响高速叶轮2的运行,同时齿形密封圈6的存在可以在叶轮2安装时起到安装定位作用。齿槽63不同于传统齿形密封圈6上的结构按照同心圆分布,而是沿螺旋线结构由内向外分布,而支槽13是按照齿槽63延伸轨迹进行设置的,因此与主槽12连通的支槽13在齿形密封圈6表面沿螺旋线结构分布。支槽13分布于齿槽63所在螺旋线上,螺旋线沿齿形密封圈6径向方向由密至疏分布,支槽13沿齿形密封圈6径向方向由密至疏分布。齿槽63所在螺旋线不同于传统等宽式螺旋线,而是由内向外逐渐变宽的螺旋线,即沿径向方向由密至疏分布,这使得齿形密封圈6上靠内侧的支槽13较靠外沿的支槽13更为密集。本实施例中,齿形密封圈6采用6061铝合金,具有良好的可成型性、可焊接性、可机加工性能,便于主槽12及支槽13的加工成型。
当叶轮2转动时,压缩气体沿叶轮转轴1的轴向方向高速流动,叶轮2叶片控制气流流动并产生远离叶轮转轴1的升力,而气流经支槽13向主槽12流动,能够将叶轮2转动产生的热量快速传递至齿形密封圈6内,并通过齿形密封圈6良好的导热性向壳体散热。另外,若齿形密封圈6的齿槽63为传统齿形密封圈6的结构按照同心圆分布,故而支槽13亦按照 同心圆分布在齿形密封圈6上,且叶轮2稳定转动过程中产生的压缩气体亦按照规律分布在齿形密封圈6中的支槽13通路高速流动,这一过程会持续伴随于压缩机整个工作进程,由于气流流通路线是规律的,导致一旦齿形密封圈6产生的振动频率与叶轮转轴1的振动频率一致,即会发生共振现象,这对叶轮转轴1及叶轮在壳体中的运动稳定性造成极大隐患,且该共振会持续作用直至压缩机停止工作,期间叶轮转轴1会承受极大地共振径向载荷,这对压缩机的使用寿命造成严重影响。而呈螺旋线结构分布的支槽13能避免压缩气体沿同心圆分布方式进行规律流动而产生共振现象,消除共振导致的载荷隐患,提高压缩机动力核心的使用寿命,避免暗伤产生。
由于气流自齿形密封圈6上内圈支槽13进入后,狭窄的支槽13使得流速增加,气流进入主槽12后沿径向由内向外流动,从外圈支槽13离开齿形密封圈6,由于流速的提升使得气流离开支槽13时造成的振动大于气流进入支槽13时造成的振动。因此若靠外圈的支槽13达到一定数目,会导致齿形密封圈6内、外圈振动状态不均,这对密封圈的稳定性造成极大影响,故内圈支槽13密集于外圈支槽13才能平衡两侧的振动稳定性。进一步的,支槽13沿齿形密封圈6径向方向由密至疏分布,即内圈支槽13进一步多于外圈支槽13,会进一步平衡两侧振动状态,削减齿形密封圈6在连接座上造成的振动强度,达到消除振动,降低噪音的作用。
另外,填充部62包括开口朝向接触部61的聚合槽14,聚合槽14与主槽12连通,填充部62与接触部61为一体式结构;其中,聚合槽14内设置有吸附层15。接触部61上均匀设置有若干定位槽,定位槽内设置有尾部与连接座固定连接的固定件7,定位槽与主槽12连通,作为密封圈的主散热孔供高速气流流通。根据伯努利原理,叶轮外缘压强小于叶轮内缘压强,因此气流在主槽12内向外侧流动时,会将叶轮刮削高分子材料自矫正型环实现装配精度自动矫正而产生的未排出压缩机的自矫正型环碎屑向聚合槽14汇集,并利用聚合槽14内设置的吸附层15进行黏附收集,避免自矫正型环碎屑为壳体内润滑剂提供结块核心,造成润滑剂结块影响其润滑效果。本实施例中,聚合槽14为喇叭型结构,开口宽度小于底面宽度,保证磨屑进入聚合槽14后不会脱出。吸附层15采用不干胶层。
叶轮转轴1后端设置有减振垫片11,减振垫片11为复合结构,减振垫片11包括上层、中层和下层,上层和下层为波形垫片,中层为石墨层。进一步的,中层上设置有微孔。减振垫片11不同于传统的复合式石墨金属波形垫片,传统复合式石墨金属波形垫片由石墨纸软层与金属波形垫片压合制成,主要用于获得较好的弹性性能、耐磨性能和耐高温性能,而本申请中减振垫片11由两波形垫片中部夹合一石墨层制成,本减振垫片11除上述优良性能外, 还可利用其中部石墨层上的微孔结构对叶轮转轴1运转过程产生的噪声进行降噪处理,利用石墨层上的微孔将声音快速传递至低密度石墨内部实现吸音效果。
本申请还公开了一种上述装配精度自矫正式压缩机的装配方法,包括以下步骤:
S1:将叶轮转轴1安装于壳体中部,并在叶轮转轴1两端分别安装前端轴承和后端轴承;
S2:将减振垫片11安装于后端轴承外侧,将连接座安装于前端轴承外侧;
S3:自齿形密封圈6内缘沿径向方向切割形成主槽12,接着自齿槽63槽底沿轴向方向钻孔形成支槽13;
S4:将叶轮中部的装配筒过盈插接叶轮转轴1前端,并将固定钉5贯穿整流罩4与装配筒后固定连接叶轮转轴1;
S5:将蜗壳10套接安装在连接座外沿,接着将自矫正型环装入叶轮与蜗壳10之间,最后将法兰8固定在蜗壳10外端,并将法兰8与自矫正型环固定。
叶轮中部设置有装配筒,装配筒包括前部和内径大于前部的后部,叶轮转轴1端部与后部过盈连接,装配筒内贯穿插接有固定钉5,固定钉尾部与叶轮转轴1端部固定连接,固定钉头部设置有整流罩4,整流罩4抵接叶轮前端。叶轮转轴1与叶轮过盈连接,保证叶轮转轴1能够带动叶轮同步转动,而固定钉配合整流罩4将叶轮稳定压合固定在叶轮转轴1上,一是确保装配筒后部不会脱出叶轮转轴1,二是在固定钉5与装配筒前部之间产生间隙层,避免随着压缩机长期使用后固定钉5与叶轮产生“冷焊”现象而连接一体,造成无法拆卸的情况。前端轴承和后端轴承确保叶轮转轴1装配在壳体内后流畅转动,减振垫片11安装在叶轮转轴1后端,降低叶轮转轴1振动强度的同时获得一定的降噪性能;连接座及齿形密封圈6安装于叶轮转轴1前部,在支撑叶轮的同时降低叶轮与叶轮装配总成的接触面积,避免摩擦现象影响叶轮高速转动,另外,利用特殊结构的齿形密封圈6配合高分子自矫正型环自动矫正压缩机装配过程产生的精度误差,提高高速叶轮的散热性能,消除叶轮与装配结构的共振可能,获得性能优良的压缩机动力核心。
除上述实施例外,在本发明的权利要求书及说明书所公开的范围内,本发明的技术特征可以进行重新选择及组合,从而构成新的实施例,这些都是本领域技术人员无需进行创造性劳动即可实现的,因此这些本发明没有详细描述的实施例也应视为本发明的具体实施例而在本发明的保护范围之内。

Claims (10)

  1. 一种装配精度自矫正式压缩机,包括壳体和设置于壳体中心的叶轮转轴,所述叶轮转轴的尾端设置有叶轮,所述叶轮外缘设置有蜗壳,所述蜗壳连接于壳体,其特征在于,还包括:
    自矫正型环,用于消除压缩机装配误差的密封件;
    其中,所述自矫正型环设置于蜗壳上,且位于叶轮远离壳体的一侧;
    其中,所述自矫正型环抵接叶轮;
    其中,所述自矫正型环的硬度小于叶轮的硬度。
  2. 根据权利要求1所述的一种装配精度自矫正式压缩机,其特征在于,所述叶轮远离自矫正型环的一侧设置有连接盘,所述叶轮转轴与连接盘套接,所述连接盘与壳体连接;其中,所述连接盘靠近叶轮的一侧设置有密封部。
  3. 根据权利要求2所述的一种装配精度自矫正式压缩机,其特征在于,所述密封部包括有齿形密封圈,所述齿形密封圈包括接触部和填充部,接触部上设置有前端接触于叶轮后端的齿牙,齿牙之间设置有齿槽;所述填充部设置于接触部外缘。
  4. 根据权利要求3所述的一种装配精度自矫正式压缩机,其特征在于,所述齿槽沿齿形密封圈径向方向呈螺旋线分布,所述齿形密封圈中部设置有通槽,所述通槽包括沿齿形密封圈径向延伸的主槽和沿齿形密封圈轴向延伸的若干支槽,支槽自齿形密封圈的齿槽底部延伸至齿形密封圈中部并连通于主槽。
  5. 根据权利要求4所述的一种装配精度自矫正式压缩机,其特征在于,所述支槽分布于齿槽所在螺旋线上,螺旋线沿齿形密封圈径向方向由密至疏分布,所述支槽沿齿形密封圈径向方向由密至疏分布。
  6. 根据权利要求3所述的一种装配精度自矫正式压缩机,其特征在于,所述填充部包括开口朝向接触部的聚合槽,所述聚合槽与主槽连通,所述填充部与接触部为一体式结构;其中,所述聚合槽内设置有吸附层。
  7. 根据权利要求1-6任意一项所述的一种装配精度自矫正式压缩机,其特征在于,所述叶轮转轴后端设置有减振垫片,所述减振垫片为复合结构,所述减振垫片包括上层、中层和下层,所述上层和下层为波形垫片,所述中层为石墨层。
  8. 根据权利要求7所述的一种装配精度自矫正式压缩机,其特征在于,所述中层上设置有微孔。
  9. 根据权利要求1-6任意一项所述的一种装配精度自矫正式压缩机,其特征在于,所述叶轮中部设置有装配筒,所述装配筒包括前部和内径大于前部的后部,所述叶轮转轴端部与 后部过盈连接,所述装配筒内贯穿插接有固定钉,所述固定螺钉尾部与叶轮转轴端部固定连接,所述固定螺钉头部设置有整流罩,所述整流罩抵接叶轮前端。
  10. 一种根据权利要求1-9任意一项所述的装配精度自矫正式压缩机的装配方法,包括以下步骤:
    S1:将叶轮转轴安装于壳体中部,并在叶轮转轴两端分别安装前端轴承和后端轴承;
    S2:将减振垫片安装于后端轴承外侧,将连接座安装于前端轴承外侧;
    S3:自齿形密封圈内缘沿径向方向切割形成主槽,接着自齿槽槽底沿轴向方向钻孔形成支槽;
    S4:将叶轮中部的装配筒过盈插接叶轮转轴前端,并将固定钉贯穿整流罩与装配筒后固定连接叶轮转轴;
    S5:将蜗壳套接安装在连接座外沿,接着将型环装入叶轮与蜗壳之间,最后将法兰固定在蜗壳外端,并将法兰与型环固定。
PCT/CN2021/140647 2021-07-02 2021-12-23 一种装配精度自矫正式压缩机 WO2023273232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110749670.3 2021-07-02
CN202110749670.3A CN113513499B (zh) 2021-07-02 2021-07-02 一种装配精度自矫正式压缩机

Publications (1)

Publication Number Publication Date
WO2023273232A1 true WO2023273232A1 (zh) 2023-01-05

Family

ID=78066281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140647 WO2023273232A1 (zh) 2021-07-02 2021-12-23 一种装配精度自矫正式压缩机

Country Status (2)

Country Link
CN (1) CN113513499B (zh)
WO (1) WO2023273232A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513499B (zh) * 2021-07-02 2022-04-26 鑫磊压缩机股份有限公司 一种装配精度自矫正式压缩机

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518027A1 (en) * 1991-06-14 1992-12-16 Mitsubishi Jukogyo Kabushiki Kaisha Centrifugal compressor
JP2000120557A (ja) * 1998-10-15 2000-04-25 Hitachi Ltd 流体機械のシール装置
CN106014501A (zh) * 2016-07-08 2016-10-12 张运波 一种涡轮增压器轴承套筒及涡轮增压器
CN205779869U (zh) * 2016-05-06 2016-12-07 亿昇(天津)科技有限公司 一种密封结构及具有该密封结构的磁悬浮风机
CN106609771A (zh) * 2015-10-27 2017-05-03 欧德克斯有限公司 增压器用的压缩机壳体及其制造方法
CN208177687U (zh) * 2018-01-30 2018-12-04 珠海格力节能环保制冷技术研究中心有限公司 叶轮组件及包括其的离心机
CN109281864A (zh) * 2018-11-01 2019-01-29 南通大通宝富风机有限公司 一种磁悬浮鼓风机的密封结构
CN208966638U (zh) * 2018-08-13 2019-06-11 南通大通宝富风机有限公司 蒸汽压缩机
CN211950903U (zh) * 2020-04-23 2020-11-17 智腾机械设备(上海)有限公司 一种悬臂式甲醇蒸汽离心压缩机
CN112253493A (zh) * 2020-10-15 2021-01-22 上海发电设备成套设计研究院有限责任公司 一种氢燃料电池用空压机
CN212407063U (zh) * 2020-07-03 2021-01-26 上海优社动力科技有限公司 一种离心压缩机
CN214118558U (zh) * 2020-12-21 2021-09-03 上海汉钟精机股份有限公司 一种高速电动机离心式空气压缩机
CN113513490A (zh) * 2021-07-02 2021-10-19 鑫磊压缩机股份有限公司 一种直连式高转速空压机
CN113513499A (zh) * 2021-07-02 2021-10-19 鑫磊压缩机股份有限公司 一种装配精度自矫正式压缩机
CN113565772A (zh) * 2021-07-02 2021-10-29 鑫磊压缩机股份有限公司 一种具有小间隙型环配合结构的空压机及型环加工方法
CN215409271U (zh) * 2021-07-02 2022-01-04 鑫磊压缩机股份有限公司 磁悬浮高速离心真空泵
CN215817790U (zh) * 2021-07-02 2022-02-11 鑫磊压缩机股份有限公司 一种空压机用电机转轴安装结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205663653U (zh) * 2015-11-16 2016-10-26 苏州欧拉工程技术有限公司 带有密封结构的压缩机叶轮
CN111365256A (zh) * 2018-12-25 2020-07-03 珠海格力电器股份有限公司 离心压缩机及空调设备

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518027A1 (en) * 1991-06-14 1992-12-16 Mitsubishi Jukogyo Kabushiki Kaisha Centrifugal compressor
JP2000120557A (ja) * 1998-10-15 2000-04-25 Hitachi Ltd 流体機械のシール装置
CN106609771A (zh) * 2015-10-27 2017-05-03 欧德克斯有限公司 增压器用的压缩机壳体及其制造方法
CN205779869U (zh) * 2016-05-06 2016-12-07 亿昇(天津)科技有限公司 一种密封结构及具有该密封结构的磁悬浮风机
CN106014501A (zh) * 2016-07-08 2016-10-12 张运波 一种涡轮增压器轴承套筒及涡轮增压器
CN208177687U (zh) * 2018-01-30 2018-12-04 珠海格力节能环保制冷技术研究中心有限公司 叶轮组件及包括其的离心机
CN208966638U (zh) * 2018-08-13 2019-06-11 南通大通宝富风机有限公司 蒸汽压缩机
CN109281864A (zh) * 2018-11-01 2019-01-29 南通大通宝富风机有限公司 一种磁悬浮鼓风机的密封结构
CN211950903U (zh) * 2020-04-23 2020-11-17 智腾机械设备(上海)有限公司 一种悬臂式甲醇蒸汽离心压缩机
CN212407063U (zh) * 2020-07-03 2021-01-26 上海优社动力科技有限公司 一种离心压缩机
CN112253493A (zh) * 2020-10-15 2021-01-22 上海发电设备成套设计研究院有限责任公司 一种氢燃料电池用空压机
CN214118558U (zh) * 2020-12-21 2021-09-03 上海汉钟精机股份有限公司 一种高速电动机离心式空气压缩机
CN113513490A (zh) * 2021-07-02 2021-10-19 鑫磊压缩机股份有限公司 一种直连式高转速空压机
CN113513499A (zh) * 2021-07-02 2021-10-19 鑫磊压缩机股份有限公司 一种装配精度自矫正式压缩机
CN113565772A (zh) * 2021-07-02 2021-10-29 鑫磊压缩机股份有限公司 一种具有小间隙型环配合结构的空压机及型环加工方法
CN215409271U (zh) * 2021-07-02 2022-01-04 鑫磊压缩机股份有限公司 磁悬浮高速离心真空泵
CN215817790U (zh) * 2021-07-02 2022-02-11 鑫磊压缩机股份有限公司 一种空压机用电机转轴安装结构

Also Published As

Publication number Publication date
CN113513499A (zh) 2021-10-19
CN113513499B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
JPH09170442A (ja) 内燃機関の過給機
WO2023273232A1 (zh) 一种装配精度自矫正式压缩机
JP5598433B2 (ja) ターボチャージャ
KR20050035119A (ko) 라디에이터 팬 및 이것을 이용한 엔진 냉각장치
JP5689607B2 (ja) 軸流圧縮機
CN209494877U (zh) 一种凸台式挤压油膜阻尼器
CN215817790U (zh) 一种空压机用电机转轴安装结构
CN114321317A (zh) 一种快速高效的液力变矩器设计方法
CN114162337B (zh) 一种降低高速弧齿锥齿轮喷油润滑风阻损失的挡风罩系统
US11402022B2 (en) Mechanical seal having auxiliary lubricating device
CN213981244U (zh) 一种空气悬浮离心鼓风机
WO2022111294A1 (zh) 气体轴承和具有其的离心压缩机
CN209990636U (zh) 一种燃料电池用无齿轮螺杆无油空气压缩机
US20210381522A1 (en) Compressor driveshaft assembly and compressor including same
CN207500480U (zh) 一种带辅助冷却润滑装置的机械密封
CN112128124A (zh) 电子设备风冷散热轴流冷却风机
CN112517956A (zh) 一种散热型钛合金钢板加工设备
JP2002256878A (ja) 内燃機関の過給機に用いる壁面部材
CN113586451B (zh) 涡旋压缩机用主轴及具有其的涡旋压缩机
CN218216997U (zh) 一种大扭矩低速电机
CN219865385U (zh) 一种曲轴曲柄结构、往复式压缩机以及制冷设备
CN220956041U (zh) 一种分段式罗茨风机转子结构
CN114718890B (zh) 风机和清洁设备
CN210484405U (zh) 增压器油膜轴承
CN114790996B (zh) 风机和清洁设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948157

Country of ref document: EP

Kind code of ref document: A1