WO2023273226A1 - 一种液压凿岩机换向阀 - Google Patents
一种液压凿岩机换向阀 Download PDFInfo
- Publication number
- WO2023273226A1 WO2023273226A1 PCT/CN2021/140411 CN2021140411W WO2023273226A1 WO 2023273226 A1 WO2023273226 A1 WO 2023273226A1 CN 2021140411 W CN2021140411 W CN 2021140411W WO 2023273226 A1 WO2023273226 A1 WO 2023273226A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- cavity
- oil
- valve
- outlet
- Prior art date
Links
- 239000011435 rock Substances 0.000 title claims abstract description 27
- 210000000214 mouth Anatomy 0.000 claims 1
- 238000005192 partition Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 110
- 238000010586 diagram Methods 0.000 description 7
- 239000010720 hydraulic oil Substances 0.000 description 5
- 230000013011 mating Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000009527 percussion Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000010729 system oil Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B1/00—Percussion drilling
- E21B1/02—Surface drives for drop hammers or percussion drilling, e.g. with a cable
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
Definitions
- the invention relates to a reversing valve of a hydraulic rock drilling machine.
- the technical problem to be solved by the present invention is to provide a valve that can reduce the amount of internal leakage and simplify the internal structure in view of the lack of large internal leakage of hydraulic oil caused by the large number of partitions and matching surfaces in the reversing valve of the existing hydraulic rock drill. Hydraulic rock drill reversing valve.
- the present invention provides a reversing valve for a hydraulic rock drill, which includes a valve body and a valve core, and a control cavity, a high-pressure oil supply cavity, an outlet cavity, Oil return chamber and balance chamber, the control chamber is set at one end of the spool, the other end of the spool is set with a balance chamber, only one septum is set on the spool, and the septum is set at the high pressure
- the oil supply chamber and the oil return chamber during the process of the partition moving to the right with the valve core, the oil return chamber is gradually separated from the outlet chamber, and the outlet chamber is separated from the high pressure supply chamber.
- the oil chamber is gradually connected.
- the septum moves to the left along with the valve core, the oil return chamber is gradually connected with the outlet chamber, and the outlet chamber is gradually separated from the high-pressure oil supply chamber.
- a control chamber, a high-pressure oil supply chamber, an outlet chamber, an oil return chamber and a balance chamber are arranged between the valve body and the valve core, and the second oil return chamber of the reversing valve of the traditional hydraulic rock drill is used as the balance chamber, and no longer
- the balance chamber is set separately, so that the present invention can only set one partition on the valve core, so that the partition can separate the outlet cavity from the high-pressure oil supply chamber and the oil return chamber respectively when the valve body moves to different positions or Communicate, so as to realize the reversing of the impact piston.
- the balance chamber communicates with the high-pressure oil supply chamber, so as to avoid opening an oil inlet of the balance chamber on the valve body, thereby simplifying the structure of the valve body and facilitating the layout of other structures on the valve body.
- the valve body is provided with an oil inlet connected to the high-pressure oil supply chamber, an oil outlet connected to the outlet chamber, and an oil return port connected to the oil return chamber.
- the oil inlet and the piston front cavity of the impact cylinder are connected to the system oil supply port, the oil outlet is connected to the piston rear cavity of the impact cylinder, and the oil return port is connected to the piston cavity of the impact cylinder .
- a valve sleeve is provided on the outer periphery of the valve body, and a feedback oil passage communicating with the control cavity is provided on the valve body and the valve sleeve.
- the present invention can reduce the length and weight of the valve body and the valve core by reducing the setting of the internal cavity, and increase the reversing speed of the reversing valve.
- the present invention reduces the internal leakage of the reversing valve and improves the hydraulic energy efficiency by reducing the setting of the upper septum of the valve core.
- the present invention reduces the processing difficulty of the reversing valve and reduces the manufacturing cost by reducing the number of internal cavities and septums.
- the present invention reduces the chance of wear of the septum by reducing the setting of the septum on the spool, thereby prolonging the service life and maintenance interval of the valve body and the spool, and improving product quality.
- Fig. 1 is a structural schematic diagram of a reversing valve of a traditional hydraulic rock drill.
- Fig. 2 is a schematic diagram of the multi-signal oil port structure of the reversing valve of the traditional hydraulic rock drill.
- Fig. 3 is a structural schematic diagram of Embodiment 1 of the signal oil output structure of the percussion cylinder of the hydraulic rock drill of the present invention.
- Fig. 4 is a structural schematic diagram of the reversing valve of the hydraulic rock drill of the present invention when the spool is in the left position.
- Fig. 5 is a structural schematic view of the hydraulic rock drill reversing valve of the present invention when the spool is in the right position.
- Fig. 6 is a flow distribution control principle diagram of the reversing valve of the hydraulic rock drill of the present invention.
- Fig. 7 is a structural schematic diagram of Embodiment 2 of the signal oil output structure of the percussion cylinder of the hydraulic rock drill of the present invention.
- Fig. 8 is a structural schematic diagram of Embodiment 3 of the signal oil output structure of the percussion cylinder of the hydraulic rock drill of the present invention.
- Valve core 53 valve body; 311, second groove; 312, third groove; 511, oil inlet; 512, oil outlet; 513, oil return port; 521, septum; A, outlet port; B, Separator; C, balance chamber; D, first oil return chamber E, valve core; F, valve body; G, second oil return chamber; P, high pressure oil supply chamber; T, oil return chamber; S, control chamber ; Sc, return stroke control stroke; Sic, stroke control stroke.
- the first embodiment of the signal oil output structure of the impact cylinder of the hydraulic rock drill of the present invention includes an impact cylinder and a reversing valve 5 , and the impact cylinder includes an impact cylinder 4 and an impact piston 3 .
- One end of the impact piston 3 is installed in the impact cylinder 4, and the impact piston 3 is provided with a first annular boss 31 and a second annular boss 32 that are matched with the inner cavity of the impact cylinder 4 , so that the piston front chamber 7, the piston middle chamber 8 and the piston rear chamber 9 are formed between the impact piston 3 and the impact cylinder 4, and the hydraulic effective area of the piston rear chamber on the impact piston 3 is larger than the hydraulic pressure of the piston front chamber effective area.
- Only one signal oil port 41 is provided on the impact cylinder 4, and the signal oil port 41 communicates with the control chamber S of the reversing valve 5 through a pipeline.
- the signal oil port 41 communicates with the piston front chamber 7; the impact piston 3 During the stroke, the impact piston 3 starts from the right side of the signal oil port 41 and completes the stroke control stroke Sic, and the signal oil port 41 communicates with the piston cavity 8 .
- the reversing valve 5 includes a valve sleeve 51, a valve core 52 and a valve body 53, and between the valve body 53 and the valve core 52, a control chamber S, a high-pressure oil supply chamber P,
- the outlet cavity A, the oil return cavity T, and the balance cavity C, the control cavity S are set at one end of the valve core 52, and the other end of the valve core 52 is set with a balance cavity C, and the balance cavity C communicates with the high-pressure oil supply cavity P.
- the valve body 53 is provided with an oil inlet 511 communicated with the high pressure oil supply chamber P, an oil outlet 512 communicated with the outlet chamber A and an oil return port 513 communicated with the oil return chamber T, the oil inlet 511 and
- the piston front chamber 7 is connected to the system oil supply port, the oil outlet 512 is connected to the piston rear chamber 9 , and the oil return port 513 is connected to the piston middle chamber 8 .
- Fig. 6 when the return stroke of the impact piston 3 begins, the spool 52 is in the left position, and the oil outlet 512 is closed, and the high-pressure oil supplied to the hydraulic rock drilling machine system enters the high-pressure oil supply chamber P and the piston front chamber 7 through the pipeline.
- the oil supply chamber P communicates with the balance chamber C. Under the action of the balance chamber C, the spool 52 keeps the left position still.
- the piston middle chamber 8, the oil return chamber T and the piston rear chamber 9 return oil, that is, the piston rear chamber
- the hydraulic pressure in the cavity 9 is close to 0, and the impact piston 3 is accelerated in the return stroke under the action of the high-pressure oil in the piston front cavity 7 .
- the signal oil port 41 communicates with the piston front chamber 7, and the high-pressure oil in the piston front chamber 7 is fed back to the control chamber of the reversing valve 5 through the signal oil port 41 and the feedback oil circuit 6 S, so that the hydraulic force of the control chamber S plus the hydraulic force of the high-pressure oil supply chamber P is greater than the hydraulic force of the balance chamber C.
- the spool 52 moves to the right to start the return commutation until the valve
- the core 52 moves to the right limit position, during this process, the channel between the outlet cavity A and the oil return cavity T is gradually closed, and at the same time, the septum 521 gradually opens the channel between the outlet cavity A and the high-pressure oil supply cavity P,
- the outlet chamber A outputs high-pressure oil to the piston rear chamber 9 through the oil outlet 512, and when the spool 52 moves to the neutral position, the impact piston 3 starts backstroke braking.
- the outlet cavity A communicates with the high-pressure oil supply cavity P, so that both the piston front cavity 7 and the piston rear cavity 9 are connected with high-pressure oil, because the hydraulic effective area of the piston rear cavity is larger than the piston front cavity hydraulic pressure
- the effective area of action makes the differential connection between the piston front chamber 7 and the piston rear chamber 9, and the impact piston 3 continues the return braking.
- the valve The core 52 moves to the left, so that the channel between the outlet cavity A and the high-pressure oil supply chamber P is gradually closed, and the outlet cavity A and the oil return cavity T are gradually connected, and at the same time, the septum 521 gradually closes the outlet cavity A and the high-pressure oil supply cavity P , when the spool 52 moves to the neutral position, the impact piston 3 obtains the maximum speed and completes the strike, and the spool 52 continues to move to the left limit position to complete the stroke reversing. Then start the next return trip.
- the second embodiment of the signal oil output structure of the hydraulic rock drill impact cylinder of the present invention is roughly the same as the first embodiment, the only difference is that the signal oil port 41 is included on the impact cylinder 4 A first groove 42 is provided, and the signal oil port 41 communicates with the first groove 42 .
- the second embodiment of the signal oil output structure of the impact cylinder of the hydraulic rock drill of the present invention is roughly the same as the first embodiment, the only difference is that the left side of the first annular boss 31 is set to be the same as the first embodiment.
- the second groove 311 communicates with the piston front chamber 7
- the third groove 312 communicates with the piston middle chamber 8 is provided on the right side of the first annular boss 31 .
- the piston front chamber 7 communicates with the control chamber S of the reversing valve 5 through the second groove 311, the signal oil port 41, and the feedback oil passage 6; when the impact piston 3 strokes, when the third groove When the left side of 312 is flush with the right side of the signal oil port 41, the stroke control stroke Sic starts, and after the stroke control stroke Sic ends, the piston cavity 8 passes through the third groove 312, the signal oil port 41, the feedback The oil passage 6 communicates with the control chamber S of the reversing valve 5 .
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
Abstract
一种液压凿岩机换向阀(5),其包括阀体(53)和阀芯(52),阀体(53)与阀芯(52)之间依次设置控制腔(S)、高压供油腔(P)、出口腔(A)、回油腔(T)及平衡腔(C),控制腔(S)设置在阀芯(52)的一端,阀芯(52)的另一端设置平衡腔(C),阀芯(52)上仅设置一个中隔(521),且中隔(521)设置在高压供油腔(P)与回油腔(T)之间,在中隔(521)随着阀芯(52)向右移动过程中,回油腔(T)与出口腔(A)逐步隔开,出口腔(A)与高压供油腔(P)逐步连通,在中隔(521)随着阀芯(52)向左移动过程中,回油腔(T)与出口腔(A)逐步连通,出口腔(A)与高压供油腔(P)逐步隔开。本发明能减轻阀体(53)与阀芯(52)的长度与重量,减少换向阀(5)泄漏量,降低换向阀(5)的加工难度。
Description
本发明涉及液压凿岩机的换向阀。
如图1所示,传统液压凿岩机换向阀的阀芯E上都会有多个中隔B将控制腔S、平衡腔C、第一回油腔D、出口腔A、高压供油腔P及第二回油腔G分开,这样导致如下问题:
1)由于多个中隔B的限制,阀芯E的重量重,长度长,最后导致换向阀的换向速度慢。另外,由于换向阀动作时有高压供油腔P、第一回油腔D、第二回油腔G、出口腔A、控制腔S及平衡腔C中的多个腔相应动作,不同腔室之间事实上还有另外的油路相通,所以油液除了做功之外,还有内部流动,且内部油液流动速度与阀芯的换向速度相关联,工作时,内部油液流动速度非常高,进一步增加了阀芯E的换向阻力,降低了阀芯E的换向速度。
2)由于有多个中隔面,在工作时,液压油从一腔泄漏到另一腔的机会多,使得液压油的内泄量大。
3)多个中隔面及两端配合面的设计,成倍增加了换向阀的加工工作量,增加了阀体F与阀芯E的制造成本,导致换向阀加工困难,且对阀体F与阀芯E的同轴度要求高。
4)换向阀在使用过程中,中隔B及配合面难免出现磨损的情况,使得换向阀的使用寿命短。
5)由于传统换向阀的结构非常复杂,出于对尺寸及重量的限制,会将中隔和两端配合面的宽度尽量做小,导致进一步加大了液压油的内泄量,导致了液压油能量效率的降低。
发明内容
本发明所要解决的技术问题是,针对现有液压凿岩机的换向阀内的中隔和配合面较多导致的液压油内泄量大的不足,提供一种能减少内泄量,简化内部结构的液压凿岩机换向阀。
为解决上述技术问题,本发明提供了一种液压凿岩机换向阀,其包括阀体和阀芯,所述阀体与所述阀芯之间依次设置控制腔、高压供油腔、出口腔、回油腔及平衡腔,所述控制腔设置在所述阀芯的一端,所述阀芯的另一端设置平衡腔,所述阀芯上仅设置一个中隔,且所述中隔设置在高压供油腔与回油腔之 间,在所述中隔随着所述阀芯向右移动过程中,所述回油腔与所述出口腔逐步隔开,所述出口腔与所述高压供油腔逐步连通,在所述中隔随着所述阀芯向左移动过程中,所述回油腔与所述出口腔逐步连通,所述出口腔与所述高压供油腔逐步隔开。
本发明通过在阀体与阀芯之间仅设置控制腔、高压供油腔、出口腔、回油腔及平衡腔,将传统液压凿岩机换向阀的第二回油腔作为平衡腔,不再单独设置平衡腔,使得本发明可在阀芯上仅设置一个中隔,就可使中隔在随着阀体移动到不同位置时,将出口腔分别与高压供油腔及回油腔隔断或者相通,从而实现冲击活塞的换向。
优选地,所述平衡腔与所述高压供油腔连通,以避免在阀体上开设平衡腔的进油口,从而简化阀体的结构,方便阀体上其它结构的布局。
优选地,所述阀体上设置与高压供油腔连通的进油口、与出口腔连通的出油口、与回油腔连通的回油口。
优选地,所述进油口和冲击缸的活塞前腔并接在系统供油口,所述出油口与冲击缸的活塞后腔连通,所述回油口与冲击缸的活塞中腔连通。
优选地,所述阀体的外周设置阀套,且所述阀体及阀套上设置与所述控制腔连通的反馈油路。
与现有技术相比,本发明的有益效果是:
1、本发明通过减少内部腔体的设置,可减轻阀体与阀芯的长度与重量,提高换向阀的换向速度。
2、本发明通过减少阀芯上中隔的设置,减少了换向阀的内泄量,提高了液压的能量效率。
3、本发明通过减少内部腔体及中隔数量,使换向阀的加工难度降低,减少了制造成本。
4、本发明通过减少阀芯上中隔的设置,使中隔的磨损机会减少,进而延长了阀体与阀芯寿命及维护间隔,提高了产品质量。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为传统液压凿岩机换向阀的结构示意图。
图2为传统液压凿岩机换向阀的多信号油口结构示意图。
图3为本发明液压凿岩机冲击缸的信号油输出结构实施例一的结构示意图。
图4为本发明液压凿岩机换向阀的阀芯处于左位时的结构示意图。
图5为本发明液压凿岩机换向阀的阀芯处于右位时的结构示意图。
图6为本发明液压凿岩机换向阀的配流控制原理图。
图7为本发明液压凿岩机冲击缸的信号油输出结构实施例二的结构示意图。
图8为本发明液压凿岩机冲击缸的信号油输出结构实施例三的结构示意图。
图中:1、回程换向信号油口;2、冲程换向信号油口;3、冲击活塞;4、冲击缸体;5、换向阀;6、反馈油路;7、活塞前腔;8、活塞中腔;9、活塞后腔;31、第一环形凸台;32、第二环形凸台;41、信号油口;42、第一沟槽;51、阀套;52、阀芯;53、阀体;311、第二沟槽;312、第三沟槽;511、进油口;512、出油口;513、回油口;521、中隔;A、出口腔;B、中隔;C、平衡腔;D、第一回油腔E、阀芯;F、阀体;G、第二回油腔;P、高压供油腔;T、回油腔;S、控制腔;Sc、回程控制行程;Sic、冲程控制行程。
以下结合具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
为了便于描述,各部件的相对位置关系,如:上、下、左、右等的描述均是根据说明书附图的布图方向来进行描述的,并不对本专利的结构起限定作用。
如图3所示,本发明液压凿岩机冲击缸的信号油输出结构第一实施例包括冲击缸和换向阀5,所述冲击缸包括冲击缸体4和冲击活塞3。
所述冲击活塞3的一端安装在所述冲击缸体4内,所述冲击活塞3上设置与所述冲击缸体4的内腔配合连接的第一环形凸台31和第二环形凸台32,使所述冲击活塞3与所述冲击缸体4之间构成活塞前腔7、活塞中腔8及活塞后腔9,且冲击活塞3上的活塞后腔液压有效作用面积大于活塞前腔液压有效作用面积。
所述冲击缸体4上仅设置一个信号油口41,且信号油口41经管路连通所述换向阀5的控制腔S。所述冲击活塞3回程时,所述冲击活塞3在所述信号油口41的左侧边之前完成回程控制行程Sc后,所述信号油口41与所述活塞前腔7连通;冲击活塞3冲程时,冲击活塞3从所述信号油口41的右侧边开始并完成冲程控制行程Sic后,所述信号油口41与所述活塞中腔8连通。
如图4、图5所示,所述换向阀5包括阀套51、阀芯52及阀体53,且阀体53与阀芯52之间依次设置控制腔S、高压供油腔P、出口腔A、回油腔T、及平衡腔C,控制腔S设置在阀芯52的一端,阀芯52的另一端设置平衡腔C,且平衡腔C与高压供油腔P连通。
所述阀体53上设置与高压供油腔P连通的进油口511、与出口腔A连通的出油口512及与回油腔T连通的回油口513,所述进油口511和所述活塞前腔7与系统供油口连接,所述出油口512与所述活塞后腔9连通,所述回油口513与所述活塞中腔8连通。
所述阀芯52上仅设置一个中隔521,所述中隔521设置在高压供油腔P和回油腔T之间,中隔521在随着阀芯52移动到不同位置时,将出口腔A与高压供油腔P、回油腔T隔断或者相通。
请参图6,冲击活塞3回程开始时,阀芯52处于左位,将出油口512关闭,且供给液压凿岩机系统的高压油经管路进入高压供油腔P和活塞前腔7,由于高压供油腔P与平衡腔C连通,在平衡腔C的作用下,阀芯52保持左位静止不动,同时,活塞中腔8、回油腔T和活塞后腔9回油,即活塞后腔9的液压力接近0,冲击活塞3在活塞前腔7的高压油作用下回程加速。当冲击活塞3加速走过回程控制行程Sc后,信号油口41与活塞前腔7连通,活塞前腔7的高压油经信号油口41及反馈油路6反馈到换向阀5的控制腔S,使控制腔S的液压作用力加上高压供油腔P的液压作用力大于平衡腔C的液压作用力,阀芯52在液压力的作用下,向右移动开始回程换向,直至阀芯52移动到右极限位时,在此过程中,出口腔A与回油腔T之间的通道逐步关闭,同时中隔521将出口腔A与高压供油腔P之间的通道逐步打开,使出口腔A经出油口512输出高压油给活塞后腔9,当阀芯52移动到中位时,冲击活塞3开始回程制动。随着阀芯52的继续回程换向,出口腔A和高压供油腔P沟通,使活塞前腔7和活塞后腔9都通高压油,由于活塞后腔液压有效作用面积大于活塞前腔液压有效作用面积,使活塞前腔7和活塞后腔9之间差动连接,冲击活塞3继续回程制动。当阀芯52完成回程换向,处于右极限位静止时,冲击活塞3的回程速度降为零。
当阀芯52处于右极限位静止不动时,活塞前腔7和活塞后腔9仍差动连接,但是由于活塞后腔液压有效作用面积大于活塞前腔液压有效作用面积,活塞后腔9的液压力大于活腔前腔7的液压力,冲击活塞3开始冲程加速,当冲击活塞3的第一环形凸台31越过信号油口41的右侧边一个冲程控制行程Sic时, 信号油口41与活塞中腔8连通,活塞中腔8的低压油经反馈油路6进入换向阀5的控制腔S,由于高压供油腔P的液压作用力小于平衡腔C的液压作用力,,阀芯52向左移动,使出口腔A与高压供油腔P之间的通道逐步关闭,出口腔A与回油腔T逐步连通,同时中隔521将出口腔A与高压供油腔P逐步关闭,当阀芯52移动到中位时,冲击活塞3获得最大速度,完成打击,阀芯52继续移动到左极限位置,完成冲程换向。然后开启下一个回程。
如图7所示,本发明液压凿岩机冲击缸的信号油输出结构第二实施例大致与第一实施例相同,不同之处仅在于,所述信号油口41包括在所述冲击缸体4上设置的第一沟槽42,所述信号油口41与所述第一沟槽42连通。冲击活塞3回程时,当所述第一沟槽311的左侧边与所述第一环形凸台31的左侧边之间的距离等于液压凿岩机的回程控制行程Sc时,回程控制行程Sc开始,回程控制行程Sc结束后,活塞前腔7经信号油口41、反馈油路6与换向阀5的控制腔S连通;冲击活塞3冲程时,当所述第一环形凸台31的右侧边与所述信号油口41的右侧边平齐时,冲程控制行程Sic开始,冲程控制行程Sic结束后,活塞中腔8经信号油口41、反馈油路6与换向阀5的控制腔S连通。
如图8所示,本发明液压凿岩机冲击缸的信号油输出结构第二实施例大致与第一实施例相同,不同之处仅在于,所述第一环形凸台31的左侧设置与所述活塞前腔7连通的第二沟槽311,所述第一环形凸台31的右侧设置与所述活塞中腔8连通的第三沟槽312。冲击活塞3回程时,当所述第二沟槽311的右侧边与所述信号油口41的左侧边之间的距离等于液压凿岩机的回程控制行程Sc时,回程控制行程Sc开始,回程控制行程Sc结束后,活塞前腔7经第二沟槽311、信号油口41、反馈油路6与换向阀5的控制腔S连通;冲击活塞3冲程时,当所述第三沟槽312的左侧边与所述信号油口41的右侧边平齐时,冲程控制行程Sic开始,冲程控制行程Sic结束后,活塞中腔8经第三沟槽312、信号油口41、反馈油路6与换向阀5的控制腔S连通。
以上所述,仅为本发明的具体实施方案,但本发明的保护范围不限于此,任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。
Claims (5)
- 一种液压凿岩机换向阀,包括阀体(53)和阀芯(52),其特征在于,所述阀体与所述阀芯之间依次设置控制腔(S)、高压供油腔(P)、出口腔(A)、回油腔(T)及平衡腔(C),所述控制腔设置在所述阀芯的一端,所述阀芯的另一端设置所述平衡腔,所述阀芯上仅设置一个中隔(521),且所述中隔设置在高压供油腔与回油腔之间,在所述中隔随着所述阀芯向右移动过程中,所述回油腔与所述出口腔逐步隔开,所述出口腔与所述高压供油腔逐步连通,在所述中隔随着所述阀芯向左移动过程中,所述回油腔与所述出口腔逐步连通,所述出口腔与所述高压供油腔逐步隔开。
- 根据权利要求1所述的液压凿岩机换向阀,其特征在于,所述平衡腔与所述高压供油腔连通。
- 根据权利要求1所述的液压凿岩机换向阀,其特征在于,所述阀体上设置与高压供油腔连通的进油口(511)、与出口腔连通的出油口(512)、与回油腔连通的回油口(513)。
- 根据权利要求3所述的液压凿岩机换向阀,其特征在于,所述进油口和所述冲击缸的活塞前腔(7)并接在系统供油口,所述出油口与冲击缸的活塞后腔(9)连通,所述回油口与冲击缸的活塞中腔(8)连通。
- 根据权利要求1所述的液压凿岩机换向阀,其特征在于,所述阀体的外周设置阀套(53),且所述阀体及阀套上设置与所述控制腔连通的反馈油路(6)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE2350324A SE2350324A1 (en) | 2021-06-29 | 2021-12-22 | Reversing valve for hydraulic rock drill |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110727313.7 | 2021-06-29 | ||
CN202110727313.7A CN113338790B (zh) | 2021-06-29 | 2021-06-29 | 一种液压凿岩机换向阀 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023273226A1 true WO2023273226A1 (zh) | 2023-01-05 |
Family
ID=77481525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/140411 WO2023273226A1 (zh) | 2021-06-29 | 2021-12-22 | 一种液压凿岩机换向阀 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN113338790B (zh) |
SE (1) | SE2350324A1 (zh) |
WO (1) | WO2023273226A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113338790B (zh) * | 2021-06-29 | 2024-01-30 | 山河智能装备股份有限公司 | 一种液压凿岩机换向阀 |
CN113236112B (zh) * | 2021-06-29 | 2024-06-18 | 山河智能装备股份有限公司 | 一种液压凿岩机冲击缸的信号油输出结构 |
CN114000822B (zh) * | 2021-10-23 | 2023-03-14 | 江西沃斯德凿岩液压有限公司 | 凿岩机的冲击机构 |
CN116220540A (zh) * | 2023-03-06 | 2023-06-06 | 徐州徐工基础工程机械有限公司 | 一种冲击零件及冲击机构 |
CN116556824B (zh) * | 2023-07-07 | 2023-09-22 | 徐州徐工基础工程机械有限公司 | 冲击器工作机构以及冲击器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202370426U (zh) * | 2011-12-16 | 2012-08-08 | 浙江志高机械有限公司 | 液压凿岩机活塞冲程快速调节装置 |
CN105526207A (zh) * | 2016-01-28 | 2016-04-27 | 山河智能装备股份有限公司 | 一种液压凿岩机配流阀及其应用的配流控制系统 |
JP2017127917A (ja) * | 2016-01-19 | 2017-07-27 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
CN113236112A (zh) * | 2021-06-29 | 2021-08-10 | 山河智能装备股份有限公司 | 一种液压凿岩机冲击缸的信号油输出结构 |
CN113338790A (zh) * | 2021-06-29 | 2021-09-03 | 山河智能装备股份有限公司 | 一种液压凿岩机换向阀 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11304023A (ja) * | 1998-04-17 | 1999-11-05 | Komatsu Ltd | 三方弁 |
JP4222205B2 (ja) * | 2003-12-25 | 2009-02-12 | 株式会社デンソー | 電磁スプール弁 |
CN100441886C (zh) * | 2004-11-12 | 2008-12-10 | 宁波华液机器制造有限公司 | 三通比例减压控制阀 |
CN201090548Y (zh) * | 2007-09-21 | 2008-07-23 | 兰州理工大学 | 减振型液动比例控制主阀 |
DE102008059437B3 (de) * | 2008-11-27 | 2010-01-07 | Parker Hannifin Gmbh & Co. Kg | Hydraulisches Steuerventil mit zwei Steuerkolben für einen einseitig arbeitenden Differentialzylinder |
CN201786796U (zh) * | 2010-09-25 | 2011-04-06 | 许新跃 | 数控比例换向阀 |
CN202182076U (zh) * | 2011-07-22 | 2012-04-04 | 深圳市普隆重工有限公司 | 一种液压凿岩机及其配油滑阀 |
CN102865386B (zh) * | 2012-09-28 | 2014-03-12 | 张家港市普天机械制造有限公司 | 机械节流阀 |
CN103322239B (zh) * | 2013-06-26 | 2015-08-19 | 邱金成 | 一种三腔型三位四通气控换向液压阀 |
CN104154050B (zh) * | 2014-07-29 | 2016-04-27 | 李田生 | 高效液压凿岩机 |
CN204985126U (zh) * | 2015-07-24 | 2016-01-20 | 烟台艾迪液压科技有限公司 | 一种液压凿岩机的冲击换向装置 |
CN108019535B (zh) * | 2018-01-04 | 2023-11-24 | 中国石油大学(北京) | 阀芯采用密封锥面的两位三通换向阀 |
-
2021
- 2021-06-29 CN CN202110727313.7A patent/CN113338790B/zh active Active
- 2021-12-22 SE SE2350324A patent/SE2350324A1/en unknown
- 2021-12-22 WO PCT/CN2021/140411 patent/WO2023273226A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202370426U (zh) * | 2011-12-16 | 2012-08-08 | 浙江志高机械有限公司 | 液压凿岩机活塞冲程快速调节装置 |
JP2017127917A (ja) * | 2016-01-19 | 2017-07-27 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
CN105526207A (zh) * | 2016-01-28 | 2016-04-27 | 山河智能装备股份有限公司 | 一种液压凿岩机配流阀及其应用的配流控制系统 |
CN113236112A (zh) * | 2021-06-29 | 2021-08-10 | 山河智能装备股份有限公司 | 一种液压凿岩机冲击缸的信号油输出结构 |
CN113338790A (zh) * | 2021-06-29 | 2021-09-03 | 山河智能装备股份有限公司 | 一种液压凿岩机换向阀 |
Also Published As
Publication number | Publication date |
---|---|
SE2350324A1 (en) | 2023-03-23 |
CN113338790B (zh) | 2024-01-30 |
CN113338790A (zh) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023273226A1 (zh) | 一种液压凿岩机换向阀 | |
WO2023273225A1 (zh) | 一种液压凿岩机冲击缸的信号油输出结构 | |
CA1042312A (en) | Hydraulic percussive machines | |
CN105526207B (zh) | 一种液压凿岩机配流阀及其应用的配流控制系统 | |
CN208024662U (zh) | 平衡阀及升降液压系统和平地机 | |
CN103835910A (zh) | 一种用于高压清洗机的节能型大流量高压水泵及方法 | |
CN206592578U (zh) | 一种采用节流槽控制通流面积的主控阀阀杆 | |
CN110344754B (zh) | 一种液动冲击器 | |
CN212407662U (zh) | 一种破碎锤的换向阀 | |
CN104500466B (zh) | 同步注浆泵连续注浆液压控制系统 | |
CN208392066U (zh) | 一种双头中空机器人的末端快换盘 | |
CN207892906U (zh) | 一种全液压履带式反循环工程钻机专用集成阀组 | |
CN220747074U (zh) | 一种液压破碎锤的中缸体多油道油路结构 | |
CN100458184C (zh) | 多相多拍步进柱塞液压马达 | |
CN206592561U (zh) | 一种带有节流槽的主控阀阀杆 | |
CN102121467B (zh) | 一种流体动力机 | |
CN104343761B (zh) | 液压操控配量挡板的阀以及具有配量挡板和阀的液压系统 | |
CN115978218B (zh) | 一种高速流体滑阀 | |
CN217842206U (zh) | 一种多活塞液压缸 | |
CN85202026U (zh) | 一种压差式配油机构 | |
CN210371411U (zh) | 阀体再生片式多路阀 | |
CN203257767U (zh) | 清洗机及柱/活塞泵的出水装置 | |
CN111120427B (zh) | 一种双柱塞增压器 | |
CN211474559U (zh) | 一种凿岩机的冲击液压系统 | |
CN210461216U (zh) | 泵送液压系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21948151 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21948151 Country of ref document: EP Kind code of ref document: A1 |