WO2023273203A1 - 一种光mos固体继电器 - Google Patents

一种光mos固体继电器 Download PDF

Info

Publication number
WO2023273203A1
WO2023273203A1 PCT/CN2021/138303 CN2021138303W WO2023273203A1 WO 2023273203 A1 WO2023273203 A1 WO 2023273203A1 CN 2021138303 W CN2021138303 W CN 2021138303W WO 2023273203 A1 WO2023273203 A1 WO 2023273203A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
mosfet
npn transistor
relay
pnp transistor
Prior art date
Application number
PCT/CN2021/138303
Other languages
English (en)
French (fr)
Inventor
王亚萍
丁东民
Original Assignee
华润微集成电路(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华润微集成电路(无锡)有限公司 filed Critical 华润微集成电路(无锡)有限公司
Publication of WO2023273203A1 publication Critical patent/WO2023273203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled

Definitions

  • the invention relates to the technical field of relays, in particular to an optical MOS solid state relay.
  • Optical MOS solid state relay is a device that integrates light-emitting device, light-receiving device and output power device.
  • the input side and output side are electrically insulated.
  • the signal can be transmitted by optical signal. on and off.
  • the biggest difference between it and ordinary electromagnetic relays is that the contacts do not open and close mechanically, so it has excellent advantages in terms of contact reliability, life, action sound, action speed, and size. It is a more efficient, energy-saving and safer relay. .
  • the turn-off speed of the optical MOS solid-state relays currently on the market is on the order of hundreds of microseconds, and the turn-off speed is relatively slow, which limits its application in the high-frequency field.
  • the object of the present invention is to provide an optical MOS solid state relay, which solves the common problem of slow turn-off speed of the current optical MOS solid state relays.
  • the present invention adopts the following technical solutions:
  • the present invention provides an optical MOS solid relay, including a light-emitting device, a photo-generated voltage device and an output power device, and the photo-generated voltage device includes:
  • the photoelectric conversion circuit includes first to Nth photodiodes;
  • the anode of the first photodiode is connected to the first end of the control circuit
  • the cathode of the nth photodiode is connected to the anode of the n+1th photodiode;
  • the cathode of the Nth photodiode is connected to the second end of the control circuit
  • the control circuit includes:
  • PNP transistors PNP transistors, NPN transistors, optical switches, diodes and resistors;
  • connection of the PNP transistor, NPN transistor, optical switch, diode and resistor is configured such that when the light-emitting device generates light, the thyristor structure discharge circuit composed of the PNP transistor and the NPN transistor is closed, and the photoelectric conversion The photo-generated voltage provided by the circuit to the output power device is greater than the threshold of the output power device, so that the output power device is turned on, and when the light emitting device does not generate light, the thyristor structure composed of the PNP triode and the NPN triode The discharge circuit is opened, so that the output power device is cut off;
  • N is an integer greater than 1, 1 ⁇ n ⁇ N-1 and n is an integer.
  • the light emitting device is a light emitting diode.
  • the anode of the light emitting diode is connected to the first end of the relay; the cathode of the light emitting diode is connected to the second end of the relay.
  • the output power device includes a first metal oxide semiconductor field effect transistor and a second metal oxide semiconductor field effect transistor.
  • the first MOSFET and the second MOSFET are N-channel enhancement MOSFETs.
  • the drain of the first MOSFET is connected to the fourth terminal of the relay, and the drain of the second MOSFET is connected to the third terminal of the relay.
  • the collector of the PNP transistor is respectively connected to the cathode of the Nth photodiode, the base of the NPN transistor and the cathode of the diode;
  • the emitter of the NPN transistor is respectively connected to the anode of the diode and the second end of the resistor;
  • the gate of the first metal oxide semiconductor field effect transistor is respectively connected to the emitter of the PNP transistor and the gate of the second metal oxide semiconductor field effect transistor;
  • the source of the first MOSFET is respectively connected to the emitter of the NPN transistor and the source of the second MOSFET.
  • the optical switch is a photodiode
  • the emitters of the PNP triode are respectively connected to the anode of the first photodiode and the cathode of the optical switch; the bases of the PNP triode are respectively connected to the The collector of the NPN transistor, the anode of the optical switch and the first end of the resistor.
  • the optical switch is a phototransistor
  • the emitters of the PNP triode are respectively connected to the anode of the first photodiode and the collector of the optical switch; the bases of the PNP triode are respectively connected to The collector of the NPN transistor, the emitter of the optical switch and the first end of the resistor.
  • the first end of the resistor is respectively connected to the anode of the first photodiode, the anode of the diode, the base of the PNP transistor and the collector of the NPN transistor;
  • the cathode of the diode is connected to the emitter of the PNP transistor
  • the gate of the first MOSFET is respectively connected to the cathode of the diode and the gate of the second MOSFET;
  • the source of the first MOSFET is respectively connected to the emitter of the NPN transistor and the source of the second MOSFET.
  • the optical switch is a photodiode
  • the second end of the resistor is respectively connected to the cathode of the optical switch, the collector of the PNP transistor and the base of the NPN transistor; the NPN The emitter of the triode is respectively connected to the anode of the photoswitch and the cathode of the Nth photodiode.
  • the optical switch is a photoelectric transistor, and the second end of the resistor is respectively connected to the collector of the optical switch, the collector of the PNP transistor, and the base of the NPN transistor;
  • the emitter of the NPN transistor is respectively connected to the emitter of the optical switch and the cathode of the Nth photodiode.
  • the relay is configured to:
  • the photoelectric conversion circuit generates a first photogenerated voltage, and the photoswitch generates a second photogenerated voltage;
  • the second photo-generated voltage makes the voltage of the base of the PNP transistor higher than the voltage of the emitter, and the PNP transistor is cut off;
  • the first photo-generated voltage makes the diode conduct forward, and the voltage drop generated by the forward conduction of the diode makes the NPN transistor cut off;
  • the discharge loop formed by the PNP transistor and the NPN transistor is closed;
  • the first photogenerated voltage correspondingly generates the first photogenerated current to charge the parasitic capacitance of the gate of the first MOSFET and the parasitic capacitance of the gate of the second MOSFET, so that the Both the first metal oxide semiconductor field effect transistor and the second metal oxide semiconductor field effect transistor are turned on, and the relay is turned on;
  • the base potential of the PNP transistor is pulled down through the resistor, and when the base potential of the PNP transistor is lower than a PN junction conduction voltage drop of the emitter of the PNP transistor, the PNP transistor is turned on;
  • the collector of the PNP transistor provides current for the base of the NPN transistor, so that the NPN transistor is turned on;
  • the discharge circuit formed by the PNP transistor and the NPN transistor is opened;
  • the charge on the gate parasitic capacitance of the first metal oxide semiconductor field effect transistor and the charge on the gate parasitic capacitance of the second metal oxide semiconductor field effect transistor are discharged through the discharge circuit, so that the first Both the MOSFET and the second MOSFET are turned off, and the relay is closed.
  • the relay is configured to:
  • the photoelectric conversion circuit generates a first photogenerated voltage, and the photoswitch generates a second photogenerated voltage;
  • the second photo-generated voltage makes the voltage of the emitter of the NPN transistor higher than the voltage of the base, and the NPN transistor is cut off;
  • the first photo-generated voltage makes the diode conduct forward, and the voltage drop generated by the forward conduction of the diode makes the PNP transistor cut off;
  • the discharge loop formed by the NPN transistor and the PNP transistor is closed;
  • the first photogenerated voltage correspondingly generates the first photogenerated current to charge the parasitic capacitance of the gate of the first MOSFET and the parasitic capacitance of the gate of the second MOSFET, so that the Both the first metal oxide semiconductor field effect transistor and the second metal oxide semiconductor field effect transistor are turned on, and the relay is turned on;
  • the base potential of the NPN transistor is pulled up through the resistor, and when the base potential of the NPN transistor is higher than a PN junction conduction voltage drop of the emitter of the NPN transistor, the NPN transistor is turned on;
  • the collector of the NPN transistor provides current for the base of the PNP transistor, so that the PNP transistor is turned on;
  • the discharge circuit formed by the NPN transistor and the PNP transistor is opened;
  • the charge on the gate parasitic capacitance of the first metal oxide semiconductor field effect transistor and the charge on the gate parasitic capacitance of the second metal oxide semiconductor field effect transistor are discharged through the discharge circuit, so that the first Both the MOSFET and the second MOSFET are turned off, and the relay is closed.
  • the optical MOS solid state relay provided by the present invention adopts a thyristor structure, and uses its positive feedback principle to quickly discharge the charge on the parasitic capacitance of the output power device gate through the thyristor discharge circuit after the light source is turned off.
  • the turn-off speed of the photo-MOS solid-state relay is improved, and the problem that the turn-off speed of the current photo-MOS solid-state relay is relatively slow is solved; at the same time, the circuit structure adopted by the photo-MOS solid-state relay affects the performance of each device.
  • the requirements are relatively wide, and the requirements for the required process are relatively low. Even if the process fluctuates greatly, it will not affect the overall performance of the chip. It is easy to implement and low in cost.
  • FIG. 1 shows a schematic diagram of the composition and structure of a single-channel normally-open optical MOS solid state relay.
  • FIG. 2 shows a schematic circuit diagram of a control circuit of a photoMOS solid state relay.
  • FIG. 3 shows a schematic circuit diagram of another control circuit of the photoMOS solid state relay.
  • FIG. 4 shows a schematic circuit diagram of another control circuit of the photoMOS solid state relay.
  • Fig. 5 shows a circuit diagram of an optical MOS solid state relay according to an embodiment of the present invention.
  • Fig. 6 shows a circuit diagram of an optical MOS solid-state relay after replacing some devices according to an embodiment of the present invention.
  • Fig. 7 shows a circuit diagram of an optical MOS solid state relay according to another embodiment of the present invention.
  • Fig. 8 shows a circuit diagram of an optical MOS solid-state relay after replacing some devices according to another embodiment of the present invention.
  • Fig. 9 shows a schematic diagram of test results of an optical MOS solid state relay according to an embodiment of the present invention.
  • Fig. 10 shows a schematic diagram of test results of an optical MOS solid state relay according to another embodiment of the present invention.
  • Fig. 1 shows a kind of single-channel normally open optical MOS solid relay, said single channel normally open optical MOS solid relay is composed of a light-emitting diode LED, a photovoltaic generator (photovoltaic generator, PVG) and two MOSFET (Metal -Oxide-Semiconductor Field-Effect Transistor, Metal Oxide Semiconductor Field Effect Transistor) combined package.
  • a light-emitting diode LED a photovoltaic generator (photovoltaic generator, PVG) and two MOSFET (Metal -Oxide-Semiconductor Field-Effect Transistor, Metal Oxide Semiconductor Field Effect Transistor) combined package.
  • PVG photovoltaic generator
  • MOSFET Metal Oxide-Effect Transistor
  • the photo-generated voltage device is composed of multiple series-connected photodiodes and control circuits.
  • photons with energy greater than the forbidden band width will generate non-equilibrium electron-hole pairs on both sides of the photodiode junction due to intrinsic absorption.
  • the N-region moves, and the holes move to the P-region, thereby forming an electric field near the P-N junction, and its direction is opposite to that of the built-in electric field. Reduced, thereby generating a photo-generated voltage across the PN junction.
  • the photo-generated voltage of the series photodiode array becomes the gate voltage of the output MOSFET.
  • the control circuit has the following types:
  • the first type of control circuit is shown in Figure 2.
  • the control circuit only uses one resistor. Although the circuit structure is simple and easy to implement, the photo-generated voltage, trigger current, and switching speed have a strong correlation with the resistance value of the resistor. Fluctuations can easily affect the overall performance of the chip.
  • the second control circuit is shown in Figure 3, which is composed of a depletion-type NMOS transistor and a resistor connected in parallel between its gate and source.
  • the switch of the depletion-type NMOS tube is controlled by the voltage drop on the resistor. Due to the limited discharge current of the depletion-type NMOS transistor in this method, and due to the parasitic effect after the light source is turned off, the voltage drop of the gate-source of the depletion-type NMOS transistor changes slowly, resulting in a delay in the turn-on of the depletion-type NMOS transistor. Therefore, the turn-off speed of the photo-MOS relay is limited.
  • the third control circuit is shown in Figure 4, which is composed of a triode and diodes connected in parallel at both ends of its emitter junction.
  • a large number of photogenerated carriers generated in the space charge region of each PD (Photo Diode, photodiode) before the light source is turned off will still form a current from the N pole to the P pole under the action of the built-in electric field after the light source is turned off.
  • This current will neutralize the forward current of the PD array, and the forward voltage of each PD at the moment of turning off is only about 0.5V.
  • the forward current itself is very small, that is, the base current of the triode is very small, so the The bleeder current is also limited, and the turn-off speed is still slow.
  • This embodiment provides an optical MOS solid-state relay that can increase the turn-off speed, as shown in Figure 5, the relay includes:
  • the light emitting device 1 is a light emitting diode
  • the anode of the light-emitting diode is connected to the first terminal PIN1 of the relay;
  • the cathode of the LED is connected to the second terminal PIN2 of the relay.
  • the output power device includes a first metal oxide semiconductor field effect transistor 10 and a second metal oxide semiconductor field effect transistor 11;
  • the metal oxide semiconductor field effect transistor is an N-channel enhancement type metal oxide semiconductor field effect transistor.
  • the photovoltaic device 2 includes:
  • the area framed by dense dotted lines in Figure 5 is the photoelectric conversion circuit 3; the area framed by dotted lines is the control circuit 4, the same as in Figures 6-8.
  • the photoelectric conversion circuit 3 includes first to Nth photodiodes
  • the anode of the first photodiode is connected to the first end of the control circuit 4;
  • the cathode of the nth photodiode is connected to the anode of the n+1th photodiode;
  • the cathode of the Nth photodiode is connected to the second end of the control circuit 4;
  • N is an integer greater than 1, 1 ⁇ n ⁇ N-1 and n is an integer; the number N of series connection depends on the required photo-generated voltage value.
  • the function of the photoelectric conversion circuit 3 is mainly that when the light-emitting device at the input end emits light, the photoelectric conversion circuit 3, that is, the PD (Photodiode, photodiode) array receives light, converts the optical signal into an electrical signal, and the generated photoelectric voltage will drive the output stage
  • the PD Photodiode, photodiode
  • the two N-channel enhancement MOSFETs are turned on.
  • the control circuit 4 includes:
  • PNP transistor 5 NPN transistor 6, optical switch 7, diode 8 and resistor 9;
  • the diode 8 is an ordinary diode
  • connection of the PNP transistor 5, the NPN transistor 6, the optical switch 7, the diode 8 and the resistor 9 is configured such that when the light-emitting device generates light, the thyristor structure composed of the PNP transistor 5 and the NPN transistor 6 discharges The loop is closed, and the photoelectric voltage provided by the photoelectric conversion circuit 3 to the output power device is greater than the threshold value of the output power device, so that the output power device is turned on.
  • the PNP transistor 5 The silicon controlled rectifier structure discharge circuit composed of the NPN transistor 6 is turned on, so that the output power device is turned off.
  • the emitter of the PNP transistor 5 (i.e. the first end of the control circuit 4) is respectively connected to the anode of the first photodiode and the cathode of the optical switch 7;
  • the base of the PNP transistor 5 is respectively connected to the collector of the NPN transistor 6, the anode of the optical switch 7 and the first end of the resistor 9;
  • the collector of the PNP transistor 5 (i.e. the second end of the control circuit 4) is respectively connected to the cathode of the Nth photodiode, the base of the NPN transistor 6 and the cathode of the diode 8;
  • the emitter of the NPN transistor 6 is respectively connected to the anode of the diode 8 and the second end of the resistor 9;
  • the gate of the first MOSFET 10 is respectively connected to the emitter of the PNP transistor 5 and the gate of the second MOSFET 11;
  • the source of the first MOSFET 10 is respectively connected to the emitter of the NPN transistor 6 and the source of the second MOSFET 11;
  • the drain of the second MOSFET 11 is connected to the third terminal PIN3 of the relay;
  • the drain of the first MOSFET 10 is connected to the fourth terminal PIN4 of the relay;
  • the optical switch 7 is a photodiode.
  • the main function of the control circuit 4 is to close the discharge circuit of the photo-generated voltage when the light-emitting device 1 at the input end emits light, so as to ensure that the first metal oxide semiconductor field effect transistor 10 and the second metal oxide semiconductor field effect transistor 11
  • the gate has a stable voltage, so that the photo-MOS solid state relay is turned on; when the input light-emitting device 1 is turned off, the discharge circuit of the photo-generated voltage is opened, so that the first metal oxide semiconductor field effect transistor 10 and the second metal oxide semiconductor field effect transistor 10
  • the charge on the parasitic capacitance of the gate of the semiconductor field effect transistor 11 is quickly discharged, so that the photoMOS solid state relay is turned off.
  • the emitter of the PNP transistor 5 is respectively connected to the anode of the first photodiode and the collector of the photoelectric NPN transistor 7*;
  • the base of the PNP transistor 5 is respectively connected to the collector of the NPN transistor 6, the emitter of the photoelectric NPN transistor 7* and the first end of the resistor 9;
  • the optical MOS solid state relay is configured as:
  • the photoelectric conversion circuit 3 generates a first photo-generated voltage, and the optical switch 7 generates a second photo-generated voltage;
  • the anode of the photodiode in the photoelectric conversion circuit 3 is positive and the cathode is negative; in the second photogenerated voltage, the anode of the photoswitch 7 is positive and the cathode is negative;
  • the second photogenerated voltage is used as the voltage between the base of the PNP transistor 5 and the emitter, so that the voltage of the base of the PNP transistor 5 is higher than the voltage of the emitter, the emitter junction of the PNP transistor 5 is reverse-biased, and the PNP transistor 5 is cut off;
  • the first photo-generated voltage causes the diode 8 to be forward-conducted, and the voltage drop generated by the forward conduction of the diode causes the emitter junction of the NPN transistor 6 to be reverse-biased, and the NPN transistor 6 is turned off;
  • the discharge circuit formed by the PNP transistor 5 and the NPN transistor 6 is closed;
  • the first photogenerated voltage correspondingly generates the first photogenerated current to charge the gate parasitic capacitance of the first MOSFET 10 and the gate parasitic capacitance of the second MOSFET 11, so as to Make the first MOSFET 10 and the second MOSFET 11 both turn on, and turn on the relay;
  • Both the photoelectric conversion circuit 3 and the optical switch 7 do not generate photo-generated voltage
  • the base potential of the PNP transistor 5 is pulled down through the resistor, and when the base potential of the PNP transistor 5 is lower than a PN junction conduction voltage drop of the emitter of the PNP transistor 5, the PNP transistor 5 conducts Pass;
  • the diode Since the photoelectric conversion circuit 3 has no light-generated current at this time, the diode is in a cut-off state, and the collector of the PNP transistor 5 provides current for the base of the NPN transistor 6, so that the NPN transistor 6 is turned on;
  • the collector current I C1 of the PNP transistor 5 is used as the base current I B2 of the NPN transistor 6,
  • the NPN transistor 6 is turned on and amplified, and the collector current I C2 of the NPN transistor 6 will be further amplified as the base current of the PNP transistor 5,
  • the discharge loop formed by the PNP transistor 5 and the NPN transistor 6 is turned on; with its very large conduction current, the charge on the gate parasitic capacitance of the first metal oxide semiconductor field effect transistor 10 and the second metal oxide
  • the charge on the gate parasitic capacitance of the semiconductor field effect transistor 11 is quickly discharged through the discharge circuit, so that the first metal oxide semiconductor field effect transistor 10 and the second metal oxide semiconductor field effect transistor 11 are both turned off, The relay is closed.
  • the cut-off principle of the PNP transistor 5 is different, and other principles are the same.
  • the optical switch 7 is a phototransistor, taking the circuit shown in Figure 6 as an example, the light-emitting device 1 generates light, and the photoelectric NPN transistor 7* is saturated and turned on, and there is a small conduction between the collector and the emitter. The conduction voltage drop makes the emitter junction voltage drop of the PNP transistor 5 close to zero bias, which is not enough to make the PNP transistor 5 conduct.
  • This embodiment provides another optical MOS solid-state relay, which is different from the relay provided in Embodiment 1 only in the control circuit, as shown in Figure 7, the relay includes:
  • the light emitting device 21 is a light emitting diode
  • the anode of the light-emitting diode is connected to the first terminal PIN1 of the relay;
  • the cathode of the LED is connected to the second terminal PIN2 of the relay.
  • the output power device includes a first metal oxide semiconductor field effect transistor 210 and a second metal oxide semiconductor field effect transistor 211;
  • the metal oxide semiconductor field effect transistor is an N-channel enhancement type metal oxide semiconductor field effect transistor.
  • the photovoltaic device includes:
  • the photoelectric conversion circuit 23 includes first to Nth photodiodes
  • the anode of the first photodiode is connected to the first end of the control circuit 24;
  • the cathode of the nth photodiode is connected to the anode of the n+1th photodiode;
  • the cathode of the Nth photodiode is connected to the second end of the control circuit 24;
  • N is an integer greater than 1, 1 ⁇ n ⁇ N-1 and n is an integer; the number N of series connection depends on the required photo-generated voltage value.
  • the function of the photoelectric conversion circuit 23 is mainly that when the light-emitting device at the input end emits light, the photoelectric conversion circuit 23, that is, the PD array, receives the light and converts the optical signal into an electrical signal, and the generated photoelectric voltage will drive the two N-channels of the output stage
  • the enhancement mode MOSFET is turned on.
  • the control circuit 24 includes:
  • PNP transistor 25 NPN transistor 26, optical switch 27, diode 28 and resistance 29;
  • the diode 28 is an ordinary diode
  • the connection of the PNP transistor 25, the NPN transistor 26, the optical switch 27, the diode 28 and the resistor 29 is configured such that when the light-emitting device 21 generates light, the thyristor structure composed of the PNP transistor 25 and the NPN transistor 26 leaks.
  • the discharge circuit is closed, and the photoelectric voltage provided by the photoelectric conversion circuit 23 to the output power device is greater than the threshold value of the output power device, so that the output power device is turned on.
  • the PNP The thyristor structure discharge circuit formed by the transistor 25 and the NPN transistor 26 is turned on, so that the output power device is turned off.
  • the first end of the resistor 29 (i.e. the first end of the control circuit 24) is respectively connected to the anode of the first photodiode, the anode of the diode 28, the base of the PNP transistor 25 and the NPN The collector of the triode 26;
  • the second end of the resistor 29 is respectively connected to the cathode of the optical switch 27, the collector of the PNP transistor 25 and the base of the NPN transistor 26;
  • the cathode of the diode is connected to the emitter of the PNP transistor
  • the emitter of the NPN transistor 26 (i.e. the second end of the control circuit 24) is respectively connected to the anode of the optical switch 27 and the cathode of the Nth photodiode;
  • the gate of the first MOSFET 210 is respectively connected to the cathode of the diode 28 and the gate of the second MOSFET 211;
  • the source of the first MOSFET 210 is respectively connected to the emitter of the NPN transistor 26 and the source of the second MOSFET 211;
  • the drain of the second MOSFET 211 is connected to the third terminal PIN3 of the relay;
  • the drain of the first MOSFET 210 is connected to the fourth terminal PIN4 of the relay;
  • the optical switch 27 is a photodiode.
  • the main function of the control circuit 24 is to close the discharge circuit of the photo-generated voltage when the light-emitting device 21 at the input end emits light, so as to ensure that the first MOSFET 210 and the second MOSFET 211
  • the gate has a stable voltage, so that the photo-MOS solid state relay is turned on; when the light-emitting device at the input end is turned off, the discharge circuit of the photo-generated voltage is opened, so that the first metal-oxide-semiconductor field-effect transistor 210 and the second metal-oxide-semiconductor field-effect transistor 210
  • the charge on the parasitic capacitance of the gate of the field effect transistor 211 is quickly discharged, so that the photoMOS solid state relay is turned off.
  • optical switch 27 can be used in the above circuit in addition to photodiodes according to actual needs, such as photoelectric NPN triodes, photoelectric PNP triodes, etc., for example, photoelectric NPN triodes 27 can be used. *The circuit diagram when replacing the optical switch 27 is shown in Figure 8;
  • the second end of the resistor 29 is respectively connected to the collector of the photoelectric NPN transistor 27 *, the collector of the PNP transistor 25 and the base of the NPN transistor 26;
  • the emitter of the NPN transistor 26 is respectively connected to the emitter of the photoelectric NPN transistor 27* and the cathode of the Nth photodiode;
  • the optical MOS solid state relay is configured as:
  • the photoelectric conversion circuit 23 generates a first photogenerated voltage, and the photoswitch 27 generates a second photogenerated voltage;
  • the first photogenerated voltage takes the anode of the photodiode in the photoelectric conversion circuit 23 as positive and the cathode as negative;
  • the second photogenerated voltage takes the anode of the photoswitch 27 as positive and the cathode as negative;
  • the second photogenerated voltage is used as the voltage between the base and the emitter of the NPN transistor 26, so that the voltage of the emitter of the NPN transistor 26 is higher than the voltage of the base, the emitter junction of the NPN transistor 26 is reverse-biased, and the NPN transistor 26 is cut off;
  • the first photo-generated voltage makes the diode 28 forward-conducting, and the voltage drop generated by the forward conducting of the diode 28 makes the emitter junction of the PNP transistor 25 reverse-biased, and the PNP transistor 25 is cut off;
  • the first photogenerated current corresponding to the first photogenerated voltage charges the parasitic capacitance of the gate of the first MOSFET 210 and the parasitic capacitance of the gate of the second MOSFET 211, so as to Make the first MOSFET 210 and the second MOSFET 211 both turn on, and turn on the relay;
  • Both the photoelectric conversion circuit 23 and the optical switch 27 do not generate photo-generated voltage
  • the base potential of the NPN transistor 26 is pulled up through the resistor 29, and when the base potential of the NPN transistor 26 is higher than a PN junction conduction voltage drop of the emitter of the NPN transistor 26, the NPN transistor 26 conduction;
  • the collector of the NPN transistor 26 provides current for the base of the PNP transistor 25, so that the PNP transistor 25 is turned on;
  • the discharge circuit formed by the NPN transistor 26 and the PNP transistor 25 is opened;
  • the charge on the gate parasitic capacitance of the first MOSFET 210 and the charge on the gate parasitic capacitance of the second MOSFET 211 are discharged through the discharge circuit, so that the Both the first MOSFET 210 and the second MOSFET 211 are turned off, and the relay is turned off.
  • the cut-off principle of the NPN triode 26 is different, and other principles are the same.
  • the optical switch 27 is a phototransistor, taking the circuit shown in Figure 8 as an example, the light-emitting device 21 generates light, and the photoelectric NPN transistor 27* is saturated and turned on, and there is a small conduction between the collector and the emitter. The conduction voltage drop makes the emitter junction voltage drop of the NPN transistor 26 close to zero bias, which is not enough to make the NPN transistor 26 conduct.
  • the optical MOS solid-state relays provided by the above two embodiments all adopt a thyristor structure, and use its positive feedback principle to make the charge on the gate parasitic capacitance of the metal oxide semiconductor field effect transistor drain through the thyristor after the light source is turned off.
  • the discharge circuit is quickly discharged, which improves the turn-off speed of the metal oxide semiconductor field effect transistor, and further improves the turn-off speed of the photo-MOS solid state relay.
  • optical MOS solid-state relays provided by the above two embodiments have all passed tape-out, bare die test verification and packaging test verification, as shown in Figure 9 and Figure 10, Figure 9 and Figure 10 are the first embodiment and the second embodiment respectively.
  • the test result of the optical MOS solid-state relay provided by the embodiment pouring 15mA current between PIN1-PIN2 the typical value of the turn-off time of the packaged finished product of the present invention is 20us, which is obviously better than the optical MOS solid-state relay of hundreds of us on the market, and solves the problem of The common problem of slow turn-off speed in traditional photo-MOS solid state relays.
  • the circuit structure adopted by the present invention has relatively wide requirements on the performance of each device, and relatively low requirements on the required process. Even if the process fluctuates greatly, it will not affect the overall performance of the chip. It is easy to implement and low in cost.

Landscapes

  • Electronic Switches (AREA)

Abstract

本发明提供了一种光MOS固体继电器,包括发光器件、光生电压器件和输出功率器件,光生电压器件包括:光电转换电路和控制电路;光电转换电路包括串联的第一到第N光电二极管;控制电路包括:PNP三极管、NPN三极管、光开关、二极管和电阻;所述PNP三极管、NPN三极管、光开关、二极管和电阻的连接被配置为在发光器件产生光照时,所述PNP三极管和NPN三极管组成的可控硅结构泄放回路关闭,所述光电转换电路提供给所述输出功率器件的光生电压大于所述输出功率器件的阈值,使得输出功率器件导通,在发光器件不产生光照时,所述PNP三极管和NPN三极管组成的可控硅结构泄放回路开启,使得所述输出功率器件截止。

Description

一种光MOS固体继电器
相关申请的交叉引用
本申请要求于2021年6月30日提交中国专利局、申请号为202110739540.1、发明名称为“一种光MOS固体继电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及继电器技术领域,具体涉及一种光MOS固体继电器。
背景技术
光MOS固体继电器是一种将发光器件、受光器件和输出功率器件一体化的器件,输入侧和输出侧电气性绝缘,信号可以通过光信号传输,通过控制光信号的开关来控制输出功率器件导通与关断。它与普通电磁继电器最大的区别是触点不进行机械性的开闭,因此在触点可靠性、寿命、动作声音、动作速度、以及尺寸大小方面具有卓越的优势,是更高效节能安全的继电器。当前市面上的光MOS固体继电器的关断速度均是几百微秒的量级,关断速度较慢,限制了其在高频领域的应用。
发明内容
本发明的目的在于提供一种光MOS固体继电器,所述光MOS固体继电器解决了当前光MOS固体继电器普遍存在的关断速度较慢的问题。
为达到上述目的,本发明采用下述技术方案:
本发明提供一种光MOS固体继电器,包括发光器件、光生电压器件和输出功率器件,所述光生电压器件包括:
光电转换电路和控制电路;
其中,
所述光电转换电路包括第一到第N光电二极管;
第一光电二极管的阳极连接所述控制电路的第一端;
第n光电二极管的阴极连接第n+1光电二极管的阳极;
第N光电二极管的阴极连接所述控制电路的第二端;
所述控制电路包括:
PNP三极管、NPN三极管、光开关、二极管和电阻;
所述PNP三极管、NPN三极管、光开关、二极管和电阻的连接被配置为在所述发光器件产生光照时,所述PNP三极管和NPN三极管组成的可控硅结构泄放回路关闭,所述光电转换电路提供给所述输出功率器件的光生电压大于所述输出功率器件的阈值,使得输出功率器件导通,在所述发光器件不产生光照时,所述PNP三极管和NPN三极管组成的可控硅结构泄放回路开启,使得所述输出功率器件截止;
其中,N为大于1的整数,1≤n≤N-1且n为整数。
在一个具体实施例中,所述发光器件为发光二极管。
在一个具体实施例中,所述发光二极管的阳极连接继电器的第一端;所述发光二极管的阴极连接继电器的第二端。
在一个具体实施例中,所述输出功率器件包括第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管。
在一个具体实施例中,所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管为N沟道增强型金属氧化物半导体场效应晶体管。
在一个具体实施例中,所述第一金属氧化物半导体场效应晶体管的漏极连接继电器的第四端,所述第二金属氧化物半导体场效应晶体管的漏极连接继电器的第三端。
在一个具体实施例中,所述PNP三极管的集电极分别连接所述第N光电二极管的阴极、所述NPN三极管的基极和所述二极管的阴极;
所述NPN三极管的发射极分别连接所述二极管的阳极和所述电阻的第二端;
所述第一金属氧化物半导体场效应晶体管的栅极分别连接所述PNP三极管的发射极和所述第二金属氧化物半导体场效应晶体管的栅极;
所述第一金属氧化物半导体场效应晶体管的源极分别连接所述NPN三极管的发射极和所述第二金属氧化物半导体场效应晶体管的源极。
在一个具体实施例中,所述光开关为光电二极管,所述PNP三极管的发射极分别连接所述第一光电二极管的阳极和所述光开关的阴极;所述PNP三极管的基极分别连接所述NPN三极管的集电极、所述光开关的阳极和所述电阻的第一端。
在一个具体实施例中,所述光开关为光电三极管,所述PNP三极管的发射极分别连接所述第一光电二极管的阳极和所述光开关的集电极;所述PNP三极管的基极分别连接所述NPN三极管的集电极、所述光开关的发射极和所述电阻的第一端。
在一个具体实施例中,
所述电阻的第一端分别连接所述第一光电二极管的阳极、所述二极管的阳极、所述PNP 三极管的基极和所述NPN三极管的集电极;
所述二极管的阴极连接所述PNP三极管的发射极;
所述第一金属氧化物半导体场效应晶体管的栅极分别连接所述二极管的阴极和所述第二金属氧化物半导体场效应晶体管的栅极;
所述第一金属氧化物半导体场效应晶体管的源极分别连接所述NPN三极管的发射极和第二金属氧化物半导体场效应晶体管的源极。
在一个具体实施例中,所述光开关为光电二极管,所述电阻的第二端分别连接所述光开关的阴极、所述PNP三极管的集电极和所述NPN三极管的基极;所述NPN三极管的发射极分别连接所述光开关的阳极和所述第N光电二极管的阴极。
在一个具体实施例中,所述光开关为光电三极管,所述电阻的第二端分别连接所述光开关的集电极、所述PNP三极管的集电极和所述NPN三极管的基极;所述NPN三极管的发射极分别连接所述光开关的发射极和所述第N光电二极管的阴极。
在一个具体实施例中,所述继电器被配置为:
当所述发光器件产生光照时:
所述光电转换电路产生第一光生电压,所述光开关产生第二光生电压;
所述第二光生电压使得PNP三极管的基极的电压高于发射极的电压,PNP三极管截止;
所述第一光生电压使所述二极管正向导通,所述二极管正向导通产生的压降使得NPN三极管截止;
所述PNP三极管和NPN三极管组成的泄放回路关闭;
所述第一光生电压对应生成的第一光生电流给所述第一金属氧化物半导体场效应晶体管的栅极寄生电容和第二金属氧化物半导体场效应晶体管的栅极寄生电容充电,以使得所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管均导通,所述继电器开启;
当所述发光器件不产生光照时:
所述PNP三极管的基极电位经所述电阻被拉低,当所述PNP三极管的基极电位低于所述PNP三极管发射极的一个PN结导通压降时,PNP三极管导通;
所述PNP三极管的集电极为NPN三极管的基极提供电流,使NPN三极管导通;
所述PNP三极管和NPN三极管组成的泄放回路开启;
所述第一金属氧化物半导体场效应晶体管栅极寄生电容上的电荷和第二金属氧化物半导体场效应晶体管栅极寄生电容上的电荷经所述泄放回路被泄放,使得所述第一金属氧 化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管均截止,所述继电器关闭。
在一个具体实施例中,所述继电器被配置为:
当所述发光器件产生光照时:
所述光电转换电路产生第一光生电压,所述光开关产生第二光生电压;
所述第二光生电压使得NPN三极管发射极的电压高于基极的电压,NPN三极管截止;
所述第一光生电压使所述二极管正向导通,所述二极管正向导通产生的压降使得PNP三极管截止;
所述NPN三极管和PNP三极管组成的泄放回路关闭;
所述第一光生电压对应生成的第一光生电流给所述第一金属氧化物半导体场效应晶体管的栅极寄生电容和第二金属氧化物半导体场效应晶体管的栅极寄生电容充电,以使得所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管均导通,所述继电器开启;
当所述发光器件不产生光照时:
所述NPN三极管的基极电位经所述电阻被拉高,当所述NPN三极管的基极电位高于所述NPN三极管发射极的一个PN结导通压降时,NPN三极管导通;
所述NPN三极管的集电极为PNP三极管的基极提供电流,使PNP三极管导通;
所述NPN三极管和PNP三极管组成的泄放回路开启;
所述第一金属氧化物半导体场效应晶体管栅极寄生电容上的电荷和第二金属氧化物半导体场效应晶体管栅极寄生电容上的电荷经所述泄放回路被泄放,使得所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管均截止,所述继电器关闭。
本发明的有益效果如下:
本发明所提供的一种光MOS固体继电器采用可控硅结构,利用其正反馈原理,使得在光源关闭后输出功率器件栅极寄生电容上的电荷经可控硅泄放回路被快速泄放,从而提高了光MOS固体继电器的关断速度,解决了当前光MOS固体继电器普遍存在的关断速度较慢的问题;与此同时,所述光MOS固体继电器采用的电路结构对其各个器件的性能要求相对较宽,对所需要的工艺制程要求相对较低,即使工艺波动较大也不影响芯片整体的性能,易于实现,且成本低。
附图说明
为了更清楚地说明本申请具体实施方式或现有的技术方案,下面将对具体实施方式或 现有的技术描述中所需要使用的附图作简单地介绍,显而易见的,下面描述中的附图是本申请的一种实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出一种单通道常开型光MOS固体继电器的组成结构示意图。
图2示出光MOS固体继电器的一种控制电路的电路示意图。
图3示出光MOS固体继电器的另一种控制电路的电路示意图。
图4示出光MOS固体继电器的另一种控制电路的电路示意图。
图5示出根据本发明一个实施例的一种光MOS固体继电器的电路图。
图6示出根据本发明一个实施例的一种光MOS固体继电器替换部分器件后的电路图。
图7示出根据本发明另一个实施例的一种光MOS固体继电器的电路图。
图8示出根据本发明另一个实施例的一种光MOS固体继电器替换部分器件后的电路图。
图9示出根据本发明一个实施例的一种光MOS固体继电器测试结果示意图。
图10示出根据本发明另一个实施例的一种光MOS固体继电器测试结果示意图。
具体实施方式
为了使本发明的技术方案更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。以下通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员做出的变形与改进,也应视为本发明的保护范围。
图1示出一种单通道常开型光MOS固体继电器,所述单通道常开型光MOS固体继电器是由一个发光二极管LED,一个光生电压器件(photovoltaic generator,PVG)和两个MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管)组合封装而成的。
光生电压器件作为光MOS固体继电器的核心器件,由多个串联的光电二极管及控制电路组成。当光照射在光电二极管表面时,能量大于禁带宽度的光子由于本征吸收在光电二极管结的两侧产生非平衡状态的电子-空穴对,在P-N结内建电场的作用下,电子向N区运动、空穴向P区运动,从而在P-N结附近形成电场,其方向与内建电场的方向相反,该电场可以抵消P-N结内建电场,从而使得P端电势升高,N端电势降低,从而在PN结两端产生光生电压。串联光电二极管阵列的光生电压就会成为输出MOSFET的栅电压。有光照时,光生电压大于MOSFET的阈值电压,则MOSFET导通,无光照时,通过光生电压芯片内部的控制电路泄放掉MOSFET栅寄生电容上的电荷,从而使得MOSFET关断。 所述控制电路有以下几种:
第一种控制电路如图2所示,其控制电路只采用一个电阻,虽然电路结构简单,易于实现,但是光生电压、触发电流和开关速度与电阻阻值的相关性很强,电阻阻值的波动很容易影响芯片整体性能。
第二种控制电路如图3所示,是由一个耗尽型NMOS管以及一个并联在其栅极与源极间的电阻组成。通过电阻上的压降控制耗尽型NMOS管的开关。由于该方法中耗尽型NMOS管的泄放电流有限,且光源关闭后由于寄生效应,耗尽型NMOS管栅极源极的压降变化较慢,导致耗尽型NMOS管的开启被延迟,因此限制了光MOS继电器的关断速度。
第三种控制电路如图4所示,是由一个三极管及并联在其发射结两端的二极管组成。光源关断瞬间前在各PD(Photo Diode,光电二极管)的空间电荷区产生的大量光生载流子,在光源关闭后仍然会在内建电场作用下形成从N极到P极的一个电流,该电流会中和PD阵列正向电流,并且关断瞬间每个PD的正向电压只有0.5V左右,正向电流本身就很小,即三极管的基极电流很小,因此其导通后的泄放电流也有限,关断速度仍然较慢。
本实施例提供一种能够提升关断速度的光MOS固体继电器,如图5所示,所述继电器包括:
发光器件1、光生电压器件2和输出功率器件;
其中,
在本实施例中,所述发光器件1为发光二极管;
所述发光二极管的阳极连接继电器的第一端PIN1;
所述发光二极管的阴极连接继电器的第二端PIN2。
所述输出功率器件包括第一金属氧化物半导体场效应晶体管10和第二金属氧化物半导体场效应晶体管11;
在本实施例中,所述金属氧化物半导体场效应晶体管为N沟道增强型金属氧化物半导体场效应晶体管。
所述光生电压器件2包括:
光电转换电路3和控制电路4;
如图5中密集虚线所框区域为光电转换电路3;点画线所框区域为控制电路4,图6-8同样。
其中,
所述光电转换电路3包括第一到第N光电二极管;
第一光电二极管的阳极连接所述控制电路4的第一端;
第n光电二极管的阴极连接第n+1光电二极管的阳极;
第N光电二极管的阴极连接所述控制电路4的第二端;
其中,N为大于1的整数,1≤n≤N-1且n为整数;串联数目N取决于所需的光生电压值。
所述光电转换电路3的作用主要是输入端发光器件发出光照时,光电转换电路3即PD(Photodiode,光电二极管)阵列接收光,将光信号转变为电信号,产生的光生电压将驱动输出级的两个N沟道增强型金属氧化物半导体场效应晶体管导通。
所述控制电路4包括:
PNP三极管5、NPN三极管6、光开关7、二极管8和电阻9;
所述二极管8为普通二极管;
所述PNP三极管5、NPN三极管6、光开关7、二极管8和电阻9的连接被配置为在所述发光器件产生光照时,所述PNP三极管5和NPN三极管6组成的可控硅结构泄放回路关闭,所述光电转换电路3提供给所述输出功率器件的光生电压大于所述输出功率器件的阈值,使得输出功率器件导通,在所述发光器件不产生光照时,所述PNP三极管5和NPN三极管6组成的可控硅结构泄放回路开启,使得所述输出功率器件截止。
其中,
所述PNP三极管5的发射极(即所述控制电路4的第一端)分别连接所述第一光电二极管的阳极和所述光开关7的阴极;
所述PNP三极管5的基极分别连接所述NPN三极管6的集电极、所述光开关7的阳极和所述电阻9的第一端;
所述PNP三极管5的集电极(即所述控制电路4的第二端)分别连接所述第N光电二极管的阴极、所述NPN三极管6的基极和所述二极管8的阴极;
所述NPN三极管6的发射极分别连接所述二极管8的阳极和所述电阻9的第二端;
所述第一金属氧化物半导体场效应晶体管10的栅极分别连接所述PNP三极管5的发射极和所述第二金属氧化物半导体场效应晶体管11的栅极;
所述第一金属氧化物半导体场效应晶体管10的源极分别连接所述NPN三极管6的发射极和所述第二金属氧化物半导体场效应晶体管11的源极;
所述第二金属氧化物半导体场效应晶体管11的漏极连接继电器的第三端PIN3;
所述第一金属氧化物半导体场效应晶体管10的漏极连接继电器的第四端PIN4;
其中,所述光开关7为光电二极管。
所述控制电路4主要作用是在输入端发光器件1发出光照时关闭光生电压的泄放回 路,以保证所述第一金属氧化物半导体场效应晶体管10和第二金属氧化物半导体场效应晶体管11栅极有稳定的电压,从而使得光MOS固体继电器开启;输入端发光器件1关闭时,打开光生电压的泄放回路,使得所述第一金属氧化物半导体场效应晶体管10和第二金属氧化物半导体场效应晶体管11栅极寄生电容上的电荷被迅速泄放掉,从而使得光MOS固体继电器关闭。
本领域技术人员能够理解,所述光开关7根据实际需要除了选用光电二极管,选用其他光开关器件应用在上述电路中也是可以的,例如光电NPN三极管、光电PNP三极管等,例如选用光电NPN三极管7*替换所述光开关7时的电路图如图6所示;
其中,
所述PNP三极管5的发射极分别连接所述第一光电二极管的阳极和所述光电NPN三极管7*的集电极;
所述PNP三极管5的基极分别连接所述NPN三极管6的集电极、所述光电NPN三极管7*的发射极和所述电阻9的第一端;
其他电路连接不变。
当所述光开关7为光电二极管时,所述光MOS固体继电器被配置为:
当所述发光器件产生光照时:
所述光电转换电路3产生第一光生电压,所述光开关7产生第二光生电压;
所述第一光生电压以光电转换电路3中光电二极管的阳极为正,阴极为负;所述第二光生电压以光开关7的阳极为正,阴极为负;
所述第二光生电压作为PNP三极管5基极与发射极之间的电压,使得PNP三极管5的基极的电压高于发射极的电压,PNP三极管5发射结反偏,PNP三极管5截止;
所述第一光生电压使所述二极管8正向导通,所述二极管正向导通产生的压降使NPN三极管6发射结反偏,NPN三极管6截止;
所述PNP三极管5和NPN三极管6组成的泄放回路关闭;
所述第一光生电压对应生成的第一光生电流给所述第一金属氧化物半导体场效应晶体管10的栅极寄生电容和第二金属氧化物半导体场效应晶体管11的栅极寄生电容充电,以使得所述第一金属氧化物半导体场效应晶体管10和第二金属氧化物半导体场效应晶体管11均导通,所述继电器开启;
当所述发光器件1不产生光照时:
所述光电转换电路3和光开关7均不产生光生电压;
所述PNP三极管5的基极电位经所述电阻被拉低,当所述PNP三极管5的基极电位 低于所述PNP三极管5发射极的一个PN结导通压降时,PNP三极管5导通;
由于光电转换电路3此时无光生电流,二极管处于截止状态,所述PNP三极管5的集电极为NPN三极管6的基极提供电流,使NPN三极管6导通;
PNP三极管5的集电极电流I C1作为NPN三极管6的基极电流I B2
I C1=β PNP*I B1,I B2=I C1
使得NPN三极管6导通并放大,NPN三极管6的集电极电流I C2又会作为PNP三极管5的基极电流被进一步放大,
I C2=β NPN*I B2=β NPNPNP*I B1
形成正反馈。
其中,I B1为PNP三极管5的基极电流;β PNP为PNP三极管5的电流放大系数;β NPN为NPN三极管6的电流放大系数。
所述PNP三极管5和NPN三极管6组成的泄放回路开启;以其非常大的导通电流使得所述第一金属氧化物半导体场效应晶体管10栅极寄生电容上的电荷和第二金属氧化物半导体场效应晶体管11栅极寄生电容上的电荷经所述泄放回路被迅速泄放,使得所述第一金属氧化物半导体场效应晶体管10和第二金属氧化物半导体场效应晶体管11均截止,所述继电器关闭。
所述光开关7为光电三极管时与所述光开关7为光电二极管时,两者PNP三极管5的截止原理有所不同,除此之外,其他原理相同。当所述光开关7为光电三极管时,以图6所示电路为例,所述发光器件1产生光照,光电NPN三极管7*饱和导通,其集电极与发射极之间有一很小的导通压降,该导通压降使得PNP三极管5的发射结压降接近零偏,不足以使PNP三极管5导通。
本实施例提供另一种光MOS固体继电器,该继电器与实施例一所提供的继电器仅控制电路不同,如图7所示,所述继电器包括:
发光器件21、光生电压器件22和输出功率器件;
其中,
在本实施例中,所述发光器件21为发光二极管;
所述发光二极管的阳极连接继电器的第一端PIN1;
所述发光二极管的阴极连接继电器的第二端PIN2。
所述输出功率器件包括第一金属氧化物半导体场效应晶体管210和第二金属氧化物半导体场效应晶体管211;
在本实施例中,所述金属氧化物半导体场效应晶体管为N沟道增强型金属氧化物半导体场效应晶体管。
所述光生电压器件包括:
光电转换电路23和控制电路24;
其中,
所述光电转换电路23包括第一到第N光电二极管;
第一光电二极管的阳极连接所述控制电路24的第一端;
第n光电二极管的阴极连接第n+1光电二极管的阳极;
第N光电二极管的阴极连接所述控制电路24的第二端;
其中,N为大于1的整数,1≤n≤N-1且n为整数;串联数目N取决于所需的光生电压值。
所述光电转换电路23的作用主要是输入端发光器件发出光照时,光电转换电路23即PD阵列接收光,将光信号转变为电信号,产生的光生电压将驱动输出级的两个N沟道增强型金属氧化物半导体场效应晶体管导通。
所述控制电路24包括:
PNP三极管25、NPN三极管26、光开关27、二极管28和电阻29;
所述二极管28为普通二极管;
所述PNP三极管25、NPN三极管26、光开关27、二极管28和电阻29的连接被配置为在所述发光器件21产生光照时,所述PNP三极管25和NPN三极管26组成的可控硅结构泄放回路关闭,所述光电转换电路23提供给所述输出功率器件的光生电压大于所述输出功率器件的阈值,使得输出功率器件导通,在所述发光器件21不产生光照时,所述PNP三极管25和NPN三极管26组成的可控硅结构泄放回路开启,使得所述输出功率器件截止。
其中,
所述电阻29的第一端(即所述控制电路24的第一端)分别连接所述第一光电二极管的阳极、所述二极管28的阳极、所述PNP三极管25的基极和所述NPN三极管26的集电极;
所述电阻29的第二端分别连接所述光开关27的阴极、所述PNP三极管25的集电极和所述NPN三极管26的基极;
所述二极管的阴极连接所述PNP三极管的发射极;
所述NPN三极管26的发射极(即所述控制电路24的第二端)分别连接所述光开关 27的阳极和所述第N光电二极管的阴极;
所述第一金属氧化物半导体场效应晶体管210的栅极分别连接所述二极管28的阴极和所述第二金属氧化物半导体场效应晶体管211的栅极;
所述第一金属氧化物半导体场效应晶体管210的源极分别连接所述NPN三极管26的发射极和第二金属氧化物半导体场效应晶体管211的源极;
所述第二金属氧化物半导体场效应晶体管211的漏极连接继电器的第三端PIN3;
所述第一金属氧化物半导体场效应晶体管210的漏极连接继电器的第四端PIN4;
其中,所述光开关27为光电二极管。
所述控制电路24主要作用是在输入端发光器件21发出光照时关闭光生电压的泄放回路,以保证所述第一金属氧化物半导体场效应晶体管210和第二金属氧化物半导体场效应晶体管211栅极有稳定的电压,从而使得光MOS固体继电器开启;输入端发光器件关闭时,打开光生电压的泄放回路,使得所述第一金属氧化物半导体场效应晶体管210和第二金属氧化物半导体场效应晶体管211栅极寄生电容上的电荷被迅速泄放掉,从而使得光MOS固体继电器关闭。
本领域技术人员能够理解,所述光开关27根据实际需要除了选用光电二极管,选用其他光开关器件应用在上述电路中也是可以的,例如光电NPN三极管、光电PNP三极管等,例如选用光电NPN三极管27*替换所述光开关27时的电路图如图8所示;
其中,
所述电阻29的第二端分别连接所述光电NPN三极管27*的集电极、所述PNP三极管25的集电极和所述NPN三极管26的基极;
所述NPN三极管26的发射极分别连接所述光电NPN三极管27*的发射极和所述第N光电二极管的阴极;
其他电路连接不变。
当所述光开关27为光电二极管时,所述光MOS固体继电器被配置为:
当所述发光器件产生光照时:
所述光电转换电路23产生第一光生电压,所述光开关27产生第二光生电压;
所述第一光生电压以光电转换电路23中光电二极管的阳极为正,阴极为负;所述第二光生电压以光开关27的阳极为正,阴极为负;
所述第二光生电压作为NPN三极管26基极与发射极之间的电压,使得NPN三极管26发射极的电压高于基极的电压,NPN三极管26发射结反偏,NPN三极管26截止;
所述第一光生电压使所述二极管28正向导通,所述二极管28正向导通产生的压降使 PNP三极管25发射结反偏,PNP三极管25截止;
所述NPN三极管26和PNP三极管25组成的泄放回路关闭;
所述第一光生电压对应生成的第一光生电流给所述第一金属氧化物半导体场效应晶体管210的栅极寄生电容和第二金属氧化物半导体场效应晶体管211的栅极寄生电容充电,以使得所述第一金属氧化物半导体场效应晶体管210和第二金属氧化物半导体场效应晶体管211均导通,所述继电器开启;
当所述发光器件不产生光照时:
所述光电转换电路23和光开关27均不产生光生电压;
所述NPN三极管26的基极电位经所述电阻29被拉高,当所述NPN三极管26的基极电位高于所述NPN三极管26发射极的一个PN结导通压降时,NPN三极管26导通;
所述NPN三极管26的集电极为PNP三极管25的基极提供电流,使PNP三极管25导通;
所述NPN三极管26和PNP三极管25组成的泄放回路开启;
所述第一金属氧化物半导体场效应晶体管210栅极寄生电容上的电荷和第二金属氧化物半导体场效应晶体管211栅极寄生电容上的电荷经所述泄放回路被泄放,使得所述第一金属氧化物半导体场效应晶体管210和第二金属氧化物半导体场效应晶体管211均截止,所述继电器关闭。
所述光开关27为光电三极管时与所述光开关27为光电二极管时,两者NPN三极管26的截止原理有所不同,除此之外,其他原理相同。当所述光开关27为光电三极管时,以图8所示电路为例,所述发光器件21产生光照,光电NPN三极管27*饱和导通,其集电极与发射极之间有一很小的导通压降,该导通压降使得NPN三极管26的发射结压降接近零偏,不足以使NPN三极管26导通。
上述两个实施例所提供的光MOS固体继电器均采用了可控硅结构,利用其正反馈原理,使得在光源关闭后金属氧化物半导体场效应晶体管栅极寄生电容上的电荷经可控硅泄放回路被快速泄放,提高了金属氧化物半导体场效应晶体管的关断速度,进而提高了光MOS固体继电器的关断速度。
上述两个实施例所提供的光MOS固体继电器均已经通过流片、裸晶测试验证及封装测试验证,如图9和图10所示,图9与图10分别是第一实施例和第二实施例所提供的光MOS固体继电器在PIN1-PIN2间灌15mA电流的测试结果,本发明的封装成品关断时间典型值是20us,明显优于市面上几百us的光MOS固体继电器,解决了传统光MOS固体继电器普遍存在的关断速度较慢的问题。同时本发明采用的电路结构对其各个器件的性能要 求相对较宽,对所需要的工艺制程要求相对较低,即使工艺波动较大也不影响芯片整体性能,易于实现,且成本低。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (14)

  1. 一种光MOS固体继电器,包括发光器件、光生电压器件和输出功率器件,其特征在于,所述光生电压器件包括:光电转换电路和控制电路;其中,
    所述光电转换电路包括第一到第N光电二极管,其中,
    第一光电二极管的阳极连接所述控制电路的第一端;
    第n光电二极管的阴极连接第n+1光电二极管的阳极;
    第N光电二极管的阴极连接所述控制电路的第二端;
    所述控制电路包括PNP三极管、NPN三极管、光开关、二极管和电阻,其中,
    所述PNP三极管、NPN三极管、光开关、二极管和电阻的连接被配置为在所述发光器件产生光照时,所述PNP三极管和NPN三极管组成的可控硅结构泄放回路关闭,所述光电转换电路提供给所述输出功率器件的光生电压大于所述输出功率器件的阈值,使得输出功率器件导通,在所述发光器件不产生光照时,所述PNP三极管和NPN三极管组成的可控硅结构泄放回路开启,使得所述输出功率器件截止;
    其中,N为大于1的整数,1≤n≤N-1且n为整数。
  2. 根据权利要求1所述的继电器,其特征在于,所述发光器件为发光二极管。
  3. 根据权利要求2所述的继电器,其特征在于,所述发光二极管的阳极连接继电器的第一端;所述发光二极管的阴极连接继电器的第二端。
  4. 根据权利要求1所述的继电器,其特征在于,所述输出功率器件包括第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管。
  5. 根据权利要求4所述的继电器,其特征在于,所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管为N沟道增强型金属氧化物半导体场效应晶体管。
  6. 根据权利要求4所述的继电器,其特征在于,所述第一金属氧化物半导体场效应晶体管的漏极连接继电器的第四端,所述第二金属氧化物半导体场效应晶体管的漏极连接继电器的第三端。
  7. 根据权利要求4所述的继电器,其特征在于,
    所述PNP三极管的集电极分别连接所述第N光电二极管的阴极、所述NPN三极管的基极和所述二极管的阴极;
    所述NPN三极管的发射极分别连接所述二极管的阳极和所述电阻的第二端;
    所述第一金属氧化物半导体场效应晶体管的栅极分别连接所述PNP三极管的发射极和所述第二金属氧化物半导体场效应晶体管的栅极;
    所述第一金属氧化物半导体场效应晶体管的源极分别连接所述NPN三极管的发射极和所述第二金属氧化物半导体场效应晶体管的源极。
  8. 根据权利要求7所述的继电器,其特征在于,所述光开关为光电二极管,
    所述PNP三极管的发射极分别连接所述第一光电二极管的阳极和所述光开关的阴极;
    所述PNP三极管的基极分别连接所述NPN三极管的集电极、所述光开关的阳极和所述电阻的第一端。
  9. 根据权利要求7所述的继电器,其特征在于,所述光开关为光电三极管,
    所述PNP三极管的发射极分别连接所述第一光电二极管的阳极和所述光开关的集电极;
    所述PNP三极管的基极分别连接所述NPN三极管的集电极、所述光开关的发射极和所述电阻的第一端。
  10. 根据权利要求4所述的继电器,其特征在于,
    所述电阻的第一端分别连接所述第一光电二极管的阳极、所述二极管的阳极、所述PNP三极管的基极和所述NPN三极管的集电极;
    所述二极管的阴极连接所述PNP三极管的发射极;
    所述第一金属氧化物半导体场效应晶体管的栅极分别连接所述二极管的阴极和所述第二金属氧化物半导体场效应晶体管的栅极;
    所述第一金属氧化物半导体场效应晶体管的源极分别连接所述NPN三极管的发射极和第二金属氧化物半导体场效应晶体管的源极。
  11. 根据权利要求10所述的继电器,其特征在于,所述光开关为光电二极管,
    所述电阻的第二端分别连接所述光开关的阴极、所述PNP三极管的集电极和所述NPN三极管的基极;
    所述NPN三极管的发射极分别连接所述光开关的阳极和所述第N光电二极管的阴极。
  12. 根据权利要求10所述的继电器,其特征在于,所述光开关为光电三极管,
    所述电阻的第二端分别连接所述光开关的集电极、所述PNP三极管的集电极和所述NPN三极管的基极;
    所述NPN三极管的发射极分别连接所述光开关的发射极和所述第N光电二极管的阴极。
  13. 根据权利要求7所述的继电器,其特征在于,所述继电器被配置为:
    当所述发光器件产生光照时:
    所述光电转换电路产生第一光生电压,所述光开关产生第二光生电压;
    所述第二光生电压使得PNP三极管的基极的电压高于发射极的电压,PNP三极管截止;
    所述第一光生电压使所述二极管正向导通,所述二极管正向导通产生的压降使得NPN三极管截止;
    所述PNP三极管和NPN三极管组成的泄放回路关闭;
    所述第一光生电压对应生成的第一光生电流给所述第一金属氧化物半导体场效应晶体管的栅极寄生电容和第二金属氧化物半导体场效应晶体管的栅极寄生电容充电,以使得所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管均导通,所述继电器开启;
    当所述发光器件不产生光照时:
    所述PNP三极管的基极电位经所述电阻被拉低,当所述PNP三极管的基极电位低于所述PNP三极管发射极的一个PN结导通压降时,PNP三极管导通;
    所述PNP三极管的集电极为NPN三极管的基极提供电流,使NPN三极管导通;
    所述PNP三极管和NPN三极管组成的泄放回路开启;
    所述第一金属氧化物半导体场效应晶体管栅极寄生电容上的电荷和第二金属氧化物半导体场效应晶体管栅极寄生电容上的电荷经所述泄放回路被泄放,使得所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管均截止,所述继电器关闭。
  14. 根据权利要求10所述的继电器,其特征在于,所述继电器被配置为:
    当所述发光器件产生光照时:
    所述光电转换电路产生第一光生电压,所述光开关产生第二光生电压;
    所述第二光生电压使得NPN三极管发射极的电压高于基极的电压,NPN三极管截止;
    所述第一光生电压使所述二极管正向导通,所述二极管正向导通产生的压降使得PNP三极管截止;
    所述NPN三极管和PNP三极管组成的泄放回路关闭;
    所述第一光生电压对应生成的第一光生电流给所述第一金属氧化物半导体场效应晶体管的栅极寄生电容和第二金属氧化物半导体场效应晶体管的栅极寄生电容充电,以使得所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管均导通,所述继电器开启;
    当所述发光器件不产生光照时:
    所述NPN三极管的基极电位经所述电阻被拉高,当所述NPN三极管的基极电位高于所述NPN三极管发射极的一个PN结导通压降时,NPN三极管导通;
    所述NPN三极管的集电极为PNP三极管的基极提供电流,使PNP三极管导通;
    所述NPN三极管和PNP三极管组成的泄放回路开启;
    所述第一金属氧化物半导体场效应晶体管栅极寄生电容上的电荷和第二金属氧化物半导体场效应晶体管栅极寄生电容上的电荷经所述泄放回路被泄放,使得所述第一金属氧化物半导体场效应晶体管和第二金属氧化物半导体场效应晶体管均截止,所述继电器关闭。
PCT/CN2021/138303 2021-06-30 2021-12-15 一种光mos固体继电器 WO2023273203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110739540.1 2021-06-30
CN202110739540.1A CN113644902A (zh) 2021-06-30 2021-06-30 一种光mos固体继电器

Publications (1)

Publication Number Publication Date
WO2023273203A1 true WO2023273203A1 (zh) 2023-01-05

Family

ID=78416521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138303 WO2023273203A1 (zh) 2021-06-30 2021-12-15 一种光mos固体继电器

Country Status (2)

Country Link
CN (1) CN113644902A (zh)
WO (1) WO2023273203A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760400A (zh) * 2023-08-16 2023-09-15 青岛嘉展力芯半导体有限责任公司 串叠结构及电子装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644902A (zh) * 2021-06-30 2021-11-12 华润微集成电路(无锡)有限公司 一种光mos固体继电器
CN114362547B (zh) * 2021-12-31 2023-12-29 珠海雷特科技股份有限公司 继电器供电电路、微波传感器电路及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181431A (ja) * 1992-12-14 1994-06-28 Nec Corp ソリッドステートリレー
JPH1154784A (ja) * 1997-07-29 1999-02-26 Matsushita Electric Works Ltd 半導体リレー
US20090115490A1 (en) * 2007-11-05 2009-05-07 Nec Electronics Corporation Optical semiconductor relay device
CN102394614A (zh) * 2011-10-28 2012-03-28 电子科技大学 固体继电器
CN103036550A (zh) * 2012-12-11 2013-04-10 电子科技大学 一种快速放电的光电继电器
CN103312310A (zh) * 2013-05-14 2013-09-18 电子科技大学 一种高速光电继电器
CN113644902A (zh) * 2021-06-30 2021-11-12 华润微集成电路(无锡)有限公司 一种光mos固体继电器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181431A (ja) * 1992-12-14 1994-06-28 Nec Corp ソリッドステートリレー
JPH1154784A (ja) * 1997-07-29 1999-02-26 Matsushita Electric Works Ltd 半導体リレー
US20090115490A1 (en) * 2007-11-05 2009-05-07 Nec Electronics Corporation Optical semiconductor relay device
CN102394614A (zh) * 2011-10-28 2012-03-28 电子科技大学 固体继电器
CN103036550A (zh) * 2012-12-11 2013-04-10 电子科技大学 一种快速放电的光电继电器
CN103312310A (zh) * 2013-05-14 2013-09-18 电子科技大学 一种高速光电继电器
CN113644902A (zh) * 2021-06-30 2021-11-12 华润微集成电路(无锡)有限公司 一种光mos固体继电器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760400A (zh) * 2023-08-16 2023-09-15 青岛嘉展力芯半导体有限责任公司 串叠结构及电子装置
CN116760400B (zh) * 2023-08-16 2023-11-07 青岛嘉展力芯半导体有限责任公司 串叠结构及电子装置

Also Published As

Publication number Publication date
CN113644902A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2023273203A1 (zh) 一种光mos固体继电器
US5910738A (en) Driving circuit for driving a semiconductor device at high speed and method of operating the same
US4329625A (en) Light-responsive light-emitting diode display
CN103036550B (zh) 一种快速放电的光电继电器
US4902901A (en) High-power solid state relay employing photosensitive current augmenting means for faster turn-on time
EP0226395B1 (en) Solid state relay having a thyristor discharge circuit
CN110444589B (zh) 一种具有过流保护功能的igbt
JP2020507203A (ja) 光絶縁システム及び回路、及び拡張された横方向pn接合を備える光子検出器
US20120098029A1 (en) Photonically-activated single-biasfast-switching integrated thyristor
WO1983002039A1 (en) Photocoupler
WO2023116035A1 (zh) 感光电路结构和光学器件
WO2020134177A1 (zh) 一种具有反向通流功能的器件
CN103312310A (zh) 一种高速光电继电器
CN105827236A (zh) 一种用于驱动硅基雪崩光电二极管的电路结构
JP2009117528A (ja) 光半導体リレー装置
CN208538885U (zh) 一种波导型光伏场效应晶体管结构的光敏器件
CN106935639B (zh) 光触发可控硅器件
KR830000498B1 (ko) 게이트 다이오드 스위치를 사용하는 고출력 증폭기/스위치
CN110504311B (zh) 一种具有短路自保护能力的igbt
US11885674B2 (en) Phototransistor apparatus and method of operating the phototransistor apparatus
CN216053837U (zh) 一种高频驱动电压的微显示电路结构
CN210723026U (zh) 一种晶体管结构
CN208835084U (zh) 一种新型光耦
JP2004112463A (ja) 半導体リレー
JP2002026710A (ja) スイッチ回路、リレー回路及びその駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948128

Country of ref document: EP

Kind code of ref document: A1