WO2023273135A1 - 投影光机 - Google Patents

投影光机 Download PDF

Info

Publication number
WO2023273135A1
WO2023273135A1 PCT/CN2021/133845 CN2021133845W WO2023273135A1 WO 2023273135 A1 WO2023273135 A1 WO 2023273135A1 CN 2021133845 W CN2021133845 W CN 2021133845W WO 2023273135 A1 WO2023273135 A1 WO 2023273135A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection
lens group
reflector
light
Prior art date
Application number
PCT/CN2021/133845
Other languages
English (en)
French (fr)
Inventor
丁卫涛
赵云
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023273135A1 publication Critical patent/WO2023273135A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the present application relates to the technical field of projection equipment, in particular to a projection light machine.
  • the uses of home projectors mainly include two aspects: audio-visual entertainment and education and teaching.
  • the projectors used for audio-visual entertainment generally adopt the mode of wall projection, which needs to have a larger projection ratio; while the projectors used for education and teaching generally adopt the mode of desktop projection, which is placed on the desktop at a height of about 40 cm. A 20cm screen is projected on the top, and the projection required at this time is relatively small.
  • a projector used for audio-visual entertainment uses a telephoto lens group, which only has the function of wall projection, while a projector used for education and teaching The short-focus lens group is used, which only has the function of desktop projection. Since the focal length of the lens group is generally fixed, the function of the projector is also single and fixed.
  • users need to use the audio-visual entertainment function of the projector in some cases, and need to use the education and teaching function of the projector in other cases. For this reason, users can only purchase two projectors with different functions at the same time Projectors take up space and waste resources on the one hand, and are not convenient to use on the other. Therefore, it is increasingly difficult for a single-function projector to meet the needs of modern users.
  • the main purpose of the application is to propose a projection light machine, which aims at changing the position of the reflector so that the projection beam is emitted through the first lens group or through the second lens group, so as to realize the dual function of wall projection or desktop projection , to meet the different needs of users, and can ensure that the wall projection or desktop projection functions have high image quality.
  • the projection optical machine proposed by the present application includes: a projection imaging system, a first lens group, a second lens group and a reflector, the projection imaging system is used to emit projection light beams; the first lens group is set At the exit end of the projection imaging system; the second lens group is arranged at the exit end of the projection imaging system, and the optical axis of the second lens group crosses the optical axis of the first lens group;
  • the reflector is used to reflect the projected light beam, and the reflector can be movable, so that the projected light beam is emitted through the first lens group or through the second lens group; wherein , the focal length of the first lens group is f1, the focal length of the second lens group is f2, 7 ⁇ f1/f2 ⁇ 9.
  • the optical axis of the first lens group coincides with the optical axis of the projected light beam; wherein, when the reflector is in the first position, the projected light beam is emitted through the first lens group; when The reflector is at the second position, and the projection beam mirror is reflected by the reflector and then emitted through the second lens group.
  • the optical axis of the first lens group, the optical axis of the second lens group and the optical axis of the projected light beam intersect at the same point; wherein, when the reflector is in the third position, the The projection light beam is reflected by the reflector and emitted through the first lens group; when the reflector is in the fourth position, the projection beam mirror is reflected by the reflector and then emitted through the second lens group .
  • the projection light engine further includes a half mirror, and the half mirror can be movable; when the reflector is in the second position, the half mirror is in the The first position; when the half mirror is in the second position, the reflecting mirror is in the first position; or, both the reflecting mirror and the half mirror are in the first position position; wherein, when the half-mirror is in the second position, the projected light beam is reflected by the half-mirror and emitted through the second lens group, and the projected light beam passes through the After being transmitted by the half-mirror, it is emitted through the first lens group.
  • the projection light engine further includes: a field lens, the field lens is attached to the output end of the projection imaging system, and the field lens has positive optical power.
  • the optical projection machine further includes: a driving device connected to the reflector, and the drive device is used to drive the reflector to move.
  • the projection imaging system includes an illumination light source, a fly eye lens, a relay system, a turning prism, and an image source arranged in sequence; wherein, the illumination light source is used to emit an illumination beam, and the illumination beam passes through the The fly eye lens, the relay system and the steering prism enter the image source, and are modulated by the image source to generate the projection beam, which is redirected by the steering prism and emitted.
  • the illumination light source includes an RGB light source, a collimating lens, and a filter arranged in sequence; wherein, the RGB light source is used to emit independent red light, blue light, and green light, respectively, and the red light, the The blue light and the green light pass through the respective collimating lenses, are reflected or transmitted by the filter, and then combine to form the illumination beam.
  • the RGB light source is used to emit independent red light, blue light, and green light, respectively, and the red light, the The blue light and the green light pass through the respective collimating lenses, are reflected or transmitted by the filter, and then combine to form the illumination beam.
  • the central axis of the image source is offset from the optical axis of the projection imaging system.
  • the focal length of the first lens group is f1
  • the focal length of the second lens group is f2
  • the angle formed by the optical axis of the first lens group and the optical axis of the second lens group is between 70° and 100°.
  • the transmittance ratio of the half mirror is between 3:7 and 7:3.
  • the first lens group includes: a first lens, a second lens, a diaphragm, a third lens, a fourth lens and a fifth lens along the same optical axis from the object plane to the image plane, the first lens
  • the lens has a positive optical power;
  • the second lens has a negative optical power;
  • the third lens is a doublet lens and has a negative optical power;
  • the fourth lens has a positive optical power;
  • the fifth lens has positive optical power.
  • the first lens group includes: a first lens, a second lens, a third lens, a diaphragm, a fourth lens and a fifth lens along the same optical axis from the object plane to the image plane, and the first The lens has positive optical power; the second lens has positive optical power; the third lens has negative optical power; the fourth lens is a doublet lens and has positive optical power; The fifth lens has positive optical power.
  • the first lens group includes: a first lens, a second lens, a diaphragm, a third lens, a fourth lens and a fifth lens along the same optical axis from the object plane to the image plane, the first lens
  • the lens has a positive power
  • the second lens is a doublet lens and has a negative power
  • the third lens has a negative power
  • the fourth lens has a positive power
  • the fifth lens has positive optical power.
  • the first lens group includes: a stop, a first lens, a second lens, a third lens and a fourth lens along the same optical axis from the object plane to the image plane, and the first lens has a positive optical power; the second lens is a doublet lens and has positive optical power; the third lens has negative optical power; and the fourth lens has positive optical power.
  • the second lens group includes: a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens, and a sixth lens along the same optical axis from the object plane to the image plane,
  • the first lens has negative power; the second lens has negative power; the third lens is a doublet and has positive power; the fourth lens is a doublet and has negative optical power; the fifth lens has positive optical power; and the sixth lens has positive optical power.
  • the focal length of the first lens group is 7 to 9 times the focal length of the second lens group, that is, the first lens group is a telephoto lens group, and the second lens group is a short-focus lens group.
  • a movable reflector is set between the system and the first lens group/second lens group. Through the position change of the reflector, it is determined whether to reflect the projection beam or determine the reflection angle of the projection beam, so that the projection beam passes through the first lens When the projection beam is emitted through the first lens group, the effect of wall projection can be realized; when the projection beam is emitted through the second lens group, the effect of desktop projection can be realized.
  • the dual functions of wall projection or desktop projection can be realized on the same projection light machine, so that users can choose one of the functions to use according to their needs, which can meet the user's needs for audio-visual entertainment and education and teaching;
  • the projection beam of the projection imaging system is completely reflected, which can ensure that the projection beam is not scattered, so as to ensure that the wall projection or desktop projection function has a high imaging quality;
  • the first lens group and the second lens group share a set of projection imaging
  • the system can effectively reduce the overall volume of the projection light machine, has a simple and compact structure, and is flexible and convenient to use.
  • FIG. 1 is a schematic structural view of an embodiment of the projection light machine of the present application
  • Fig. 2 is the front view of Fig. 1 projection light machine
  • Fig. 3 is the top view of Fig. 1 projection optical machine
  • FIG. 4 is a schematic structural diagram of another embodiment of the optical projection machine of the present application.
  • Fourth collimating lens 10 projection imaging system 118 relay lens 111 Red LED light source 12 compound eye lens
  • the present application proposes a projection light machine 100 .
  • the optical projection machine 100 includes: a projection imaging system 10, a first lens group 20, a second lens group 30, and a mirror 40.
  • the projection imaging system 10 is used to Emit projection light beams; the first lens group 20 is arranged at the exit end of the projection imaging system 10; the second lens group 30 is arranged at the exit end of the projection imaging system 10, and the second lens group 30
  • the optical axis of the optical axis crosses the optical axis of the first lens group 20; the reflector 40 is used to reflect the projected light beam, and the reflector 40 can be moved so that the projected light beam can pass through
  • the first lens group 20 emits or passes through the second lens group 30; wherein, the focal length of the first lens group is f1, and the focal length of the second lens group is f2, 7 ⁇ f1/f2 ⁇ 9.
  • the optical projection machine 100 adopts two lens groups, including the first lens group 20 and the second lens group 30, wherein the focal length of the first lens group 20 is 7 to 9 times the focal length of the second lens group 30 .
  • the focal length of the lens group will affect the throw ratio of optical imaging.
  • the so-called throw ratio refers to the ratio of the projection distance to the width of the projected picture. The shorter the focal length of the lens group, the larger the image size of the projection beam projected on the projection surface through the lens group, on the contrary, the longer the focal length of the lens group, the larger the image size of the projection beam projected on the projection surface through the lens group smaller.
  • the focal length of the first lens group 20 is between 25mm-30mm
  • the focal length of the second lens group 30 is between 3.2mm-3.5mm, that is, the first lens group 20 is a telephoto lens group
  • the second lens group 30 is a short-focus lens group.
  • the focal length of the first lens group 20 and the focal length of the second lens group 30 are different, and the projection ratios of the first lens group 20 and the second lens group 30 when imaging the projected light beam are also different, and wall projection can be realized respectively. Different projection effects from desktop projection.
  • the specific focal lengths of the first lens group 20 and the second lens group 30 can be set according to actual needs, as long as the appropriate focal length ratio of the first lens group 20 and the second lens group 30 is ensured, the projection light engine 100 can realize two Different projection functions are enough to adapt to different usage environments.
  • the reflecting mirror 40 here is a total reflection mirror (100% reflection). It is easy to understand that the reflecting mirror 40 can completely reflect the projection beam emitted by the projection imaging system 10 , so as to change the propagation direction of the projection beam. At the same time, the reflector 40 can move relative to the projection imaging system 10 to determine whether to reflect the projection beam or determine the reflection angle of the projection beam, so as to select whether the projection beam passes through the first lens group 20 or passes through the second lens group 30 shoot out. Wherein, since the focal length of the first lens group 20 is relatively long, when the projection beam passes through the first lens group 20, the projection of the optical image is relatively large.
  • the optical image can be projected on the wall to realize wall projection function for audio-visual entertainment; and the focal length of the second lens group 30 is relatively short, when the projection light beam passes through the second lens group 30, the projection of optical imaging is relatively small, and at this time, the optical imaging can be projected on the desktop On the desktop, the function of desktop projection is realized for education and teaching.
  • the present application by setting a movable reflector 40 between the projection imaging system 10 and the first lens group 20/second lens group 30, and by changing the position of the reflector 40, it is determined whether The projection beam is reflected or the reflection angle of the projection beam is determined, so that the projection beam is emitted through the first lens group 20 or through the second lens group 30 . Because the focal length of the first lens group 20 is 7 to 9 times of the focal length of the second lens group 30, that is, the first lens group 20 is a telephoto lens group, and the second lens group 30 is a short-focus lens group. When the first lens group 20 shoots out, the function of wall projection can be realized.
  • the optical machine 100 realizes the dual functions of wall projection or desktop projection, so that users can choose one of the functions to use according to their needs, which can meet the user's needs for audio-visual entertainment and education and teaching; moreover, the reflector 40 pairs of projection
  • the projection beam of the imaging system 10 is completely reflected, which can ensure that the projection beam is not scattered, thereby ensuring high imaging quality for wall projection or desktop projection.
  • the first lens group 20 and the second lens group 30 share a set of projection imaging system 10 , which can effectively reduce the overall volume of the projection light machine 100 , has a simple and compact structure, and is flexible and convenient to use.
  • the optical axis of the first lens group 20 coincides with the optical axis of the projected light beam; wherein, when the reflector 40 is in the first position, The projection beam is emitted through the first lens group 20 ; when the reflector 40 is in the second position, the projection beam mirror is reflected by the reflector 40 and then emitted through the second lens group 30 .
  • the first position of the reflecting mirror 40 can be flexibly set, as long as the reflecting mirror 40 does not block the optical path passed by the projected beam when it is transmitted through the first lens group 20, the relevant positions can be included in the first position. Range; when the reflector 40 is at the first position, the projected light beam directly passes through the first lens group 20 without passing through the reflector 40 .
  • the second position of the reflector 40 is relatively fixed, and the second position is the position where the reflector 40 reflects the projected light beam to the second lens group 30.
  • the second position should be that the reflector 40 is located on the optical axis of the first lens group 20 and the intersection of the optical axis of the second lens group 30, and the plane where the reflecting mirror 40 is perpendicular to the symmetrical center line of the optical axis of the first lens group 20 and the optical axis of the second lens group 30; the reflecting mirror 40 is in the second position, the projected light beam is irradiated on the reflector 40 , and after being reflected by the reflector 40 , the propagating path of the projected light beam is bent, and then emitted through the second lens group 30 .
  • the intersection point of the first lens group 20 and the second lens group 30 should be located between the output end of the projection imaging system 10 and the first lens group 20 .
  • the optical axis of the first lens group 20, the optical axis of the second lens group 30 and the optical axis of the projected light beam intersect at the same point; wherein , when the reflector 40 is in the third position, the projection beam is reflected by the reflector 40 and then passes through the first lens group 20; when the reflector 40 is in the fourth position, the projection beam The mirror is reflected by the reflecting mirror 40 and then passes through the second lens group 30 to emit.
  • the third position of the reflector 40 should be that the reflector 40 is located at the intersection of the optical axis of the first lens group 20 and the optical axis of the second lens group 30, and the plane where the reflector 40 is located is perpendicular to the projection beam
  • the fourth position of the reflector 40 should be that the reflector 40 is located at the intersection of the optical axis of the first lens group 20 and the optical axis of the second lens group 30, and the plane where the reflector 40 is located is perpendicular to the optical axis of the projection beam and the first lens group.
  • the light projection machine 100 further includes a half-mirror, and the half-mirror can be movable; when the reflector 40 is in the second position, the half-mirror The half-mirror is in the first position; when the half-mirror is in the second position, the reflector 40 is in the first position; or, the reflector 40 and the half-mirror The half mirrors are all in the first position; wherein, when the half mirror is in the second position, the projection light beam is reflected by the half mirror and passes through the second lens group 30, and the projected light beam is transmitted through the half mirror and then emitted through the first lens group 20.
  • the projection optical machine 100 is provided with a movable mirror 40 (full reflection mirror, 100% reflection) and a half mirror (also known as a light splitter) between the projection imaging system 10 and the first lens group 20. mirror or beam splitter, X% transmission, 100-X reflection).
  • the light projector 100 has dual functions of wall projection and desktop projection, and the user can choose the wall projection function, the desktop projection function or the dual functions of wall projection and desktop projection simultaneously according to needs.
  • the reflector 40 is used in conjunction with the half-mirror, and includes three usage states in total. Specifically, when the user needs to perform audio-visual entertainment, both the reflector 40 and the half-mirror are positioned at the first position.
  • the projection beam directly passes through the first lens group 20, and the projection of the first lens group 20 It is relatively large, and the optical image can be projected on the wall to realize the function of wall projection;
  • the reflector 40 is positioned at the second position, and the half-transparent mirror is positioned at the first position , at this time, the projection light beam is emitted through the second lens group 30 under the reflection of the reflector 40, and the projection of the second lens group 30 is relatively small, so that the optical image can be projected on the desktop to realize the function of desktop projection;
  • the half-mirror is positioned at the second position, and the reflector 40 is positioned at the first position.
  • the projected light beam passes through the The second lens group 30 emits, and the projection of the second lens group 30 is relatively small, and the optical imaging can be projected on the desktop, and the projected light beam is emitted through the first lens group 20 under the transmission effect of the half-transparent mirror.
  • the projection of a lens group 20 is relatively large, and can project optical images on the wall. That is to say, the projection light machine 100 realizes the effects of wall projection and desktop projection at the same time.
  • the optical projection machine 100 further includes: a field lens 50 attached to the exit end of the projection imaging system 10 , and the field lens 50 Mirror 50 has positive optical power.
  • the lens group is close to the exit end of the projection imaging system 10 , and the air gap between them generally does not exceed 3 mm.
  • the position of the reflector 40 needs to be reserved, and the air gap here will reach more than 25mm. If the field lens 50 is not added, the apertures of the first lens group 20 and the second lens group 30 need to be made larger, which will undoubtedly increase the production cost and increase the volume of the product.
  • the field lens 50 is fixedly arranged close to the exit end of the projection system, and the field lens 50 is located behind the projection system and before the second position (or the third position and the fourth position) of the reflector 40, which can reach the curved position.
  • the function of the refraction line can effectively reduce the divergence angle of the light, thereby reducing the apertures of the first lens group 20 and the second lens group 30 .
  • specific parameters of the field lens 50 are shown in Table 1 below.
  • the optical projection machine 100 further includes: a driving device (not shown), the driving device is connected to the reflector 40, and the drive device is used to drive the reflector 40 to move .
  • a driving device is provided in the projection light machine 100, through which the automatic movement and positioning of the reflector 40 can be realized, thereby improving the user's convenience.
  • the driving device can be a motor or an air cylinder, etc., and the movement mode of the reflector 40 can be moving or rotating, etc.
  • the specific usage can refer to the above situation, and will not be repeated here.
  • the reflector 40 can also be manually adjusted in position.
  • a corresponding positioning bracket can be set in the housing of the optical projection machine 100, and the positioning bracket is set corresponding to the second position of the reflector 40: when the user needs to use the desktop projection function, the reflector 40 can be placed Place it on the positioning bracket, so that the projected light beam is irradiated on the reflector 40, and after being reflected, it is emitted through the second lens group 30; when the user needs to use the wall projection function, the reflector 40 is removed from the positioning bracket, so that The positioning bracket can be left empty. At this time, the projected light beam is directly emitted through the first lens group 20 .
  • the half mirror when the user needs to use the desktop projection function and the wall projection function at the same time, the half mirror can be placed on the positioning bracket. At this time, the projection beam passes through the half mirror. After being reflected by the mirror, it is emitted through the second lens group 30 , and the projected light beam is also transmitted through the half mirror and then emitted through the first lens group 20 .
  • the projection imaging system 10 includes an illumination light source, a fly eye lens 12, a relay system 13, a turning prism 14, and an image source 15 arranged in sequence; wherein, the The illuminating light source is used to emit illuminating beams, and the illuminating beams sequentially pass through the fly eye lens 12, the relay system 13 and the turning prism 14, enter the image source 15, and are modulated by the image source 15.
  • the projection light beam is generated, and the projection light beam is deflected by the turning prism 14 to exit.
  • the illuminating light source is used to emit illuminating light beams, and the illuminating light beams pass through the fly eye lens 12 , the relay system 13 and the turning prism 14 to reach the image source 15 after being emitted from the illuminating light source.
  • the fly eye lens 12 is formed by a series of small lenses, and the fly eye lens 12 is used to evenly light the illumination beam emitted by the illumination source, thereby improving the brightness uniformity of the spot;
  • the relay system 13 is usually composed of two lenses , the relay system 13 is used to shape the circular spot formed by the fly eye lens 12 into a rectangular spot;
  • the image source 15 can adopt a digital micromirror device (Digtial Micromirror Devices, DMD), and the image source 15 is used to convert the received illumination
  • the light beam is optically modulated to generate a projection beam to produce a specific picture;
  • the turning prism 14 can be a right-angle prism, wherein the slope of the right-angle prism faces the relay system 13, and the image source 15 is arranged on one side of the right-angle surface of the right-angle prism, and the turning prism 14 is used to transmit the illumination light beam passing through the relay system 13 to the image source 15, and redirect the projection light beam reflected by the image source 15 to be transmitted out.
  • the illumination light source includes an RGB light source, a collimating lens, and a filter arranged in sequence; wherein, the RGB light source is used to emit independent red light and blue light respectively and green light, the red light, the blue light and the green light pass through the corresponding collimating lenses, and are combined to form the illumination light beam after being reflected or transmitted by the filter.
  • the RGB light source is used to emit red light, blue light and green light
  • the collimating lens has positive refractive power
  • the collimating lens is used to collimate and adjust the red light, blue light and green light emitted by the RGB light source respectively
  • the optical filter has the function of filtering light of different wavelengths.
  • the optical filter is used to transmit or reflect red light, blue light and green light, so that the red light, blue light and green light are combined into an illumination beam and emitted.
  • the RGB light source includes a red LED light source 111, a blue LED light source 112, and a green LED light source 113.
  • it also includes a laser light source 114; the number of filters is two, including the first filter 115 and the second filter.
  • Light sheet 116 wherein, the red LED light source 111 and the blue LED light source 112 are arranged adjacently, and the red LED light source 111 and the blue LED light source 112 are vertically arranged, and the first filter 115 is arranged between the red LED light source 111 and the blue LED light source.
  • the first filter 115 is specifically a red-transparent anti-blue anti-green filter; the green LED light source 113 and the blue LED light source 112 are arranged in parallel and at intervals, and the green LED light source 113 faces the fly eye lens 12, the second The second filter 116 is arranged between the green LED light source 113 and the fly eye lens 12, and the second filter 116 is parallel to the first filter 115, and the second filter 116 is specifically a translucent green anti-red anti-blue filter.
  • Light sheet; the laser light source 114 is set opposite to the red LED light source 111 .
  • the red light of the red LED light source 111 is transmitted through the first filter 115 and then reflected by the second filter 116, and then directed to the fly eye lens 12; the blue light of the blue LED light source 112 passes through the first filter 115 After reflection, it is reflected by the second filter 116 and sent to the fly eye lens 12; the light of the laser light source 114 acts on the green LED light source 113 after being reflected by the second filter 116, so as to enhance the light intensity of the green LED light source 113 , the enhanced green light of the green LED light source 113 is transmitted through the second filter 116 and emitted to the fly eye lens 12 .
  • the purpose of setting up the laser light source 114 is mainly to consider that in terms of the ratio of red, green and blue lights, there is a lot of red and blue energy remaining, while the green light energy is insufficient, which will lower the overall brightness of the lighting source to a certain extent.
  • the light intensity of the green LED light source 113 is enhanced by the laser light source 114 to increase the overall brightness of the illumination light source.
  • the output end of the red LED light source 111 is provided with a first collimating lens 1171
  • the output end of the blue LED light source 112 is provided with a second collimating lens 1172
  • the output end of the green LED light source 113 is provided with a third collimating lens 1173
  • the output end of the laser light source 114 is provided with a fourth collimator lens 1174 , which can converge the divergent light emitted by the corresponding LED light source into parallel light, which is beneficial to improve the brightness of the projector 100 .
  • a relay lens 118 is also provided between the first filter 115 and the second filter 116 for converging light so as to further improve the overall brightness of the illumination source.
  • the central axis of the image source 15 is offset from the optical axis of the projection imaging system 10 .
  • the image source 15 is rectangular, including two long sides and two short sides.
  • the midpoint of the long side of the image source 15 is located on the optical axis of the projection imaging system 10, at this time, the image source 15 is located on one side of the optical axis of the projection imaging system 10, rather than the center of the optical axis of the projection imaging system 10 .
  • the offset of the projection screen can be realized, that is, the projection screen is located on one side of the optical axis of the projection system, and it is convenient for the user to use the projection light machine 100 .
  • the angle formed by the optical axis of the first lens group 20 and the optical axis of the second lens group 30 is between 70° and 100°.
  • the projection direction of the first lens group 20 and the projection direction of the second lens group 30 are set at an included angle.
  • the optical axis of the first lens group 20 and the optical axis of the second lens group 30 are perpendicular to each other. In this way, the setting of the reflector 40 is convenient, and it is also beneficial for the first lens group 20 and the second lens group 30 to project on the wall and the table respectively.
  • the transmittance ratio of the half mirror is between 3:7 and 7:3.
  • the half mirror means that a half mirror is coated on the surface of the lens near the projection imaging system 10 .
  • the semi-reflective and semi-permeable film is specifically coated with multiple layers of specific refractive index and specific thickness on the surface of the glass lens.
  • the specific refractive index is calculated according to the wavelength of light and the angle of incidence. The ratio is calculated, and the thickness is controlled by setting the evaporation time of the coating machine.
  • the specific refractive index and specific thickness 5:5, 6:4,
  • Various transmission/reflection ratios, such as 7:3, can be customized according to the specific needs of users.
  • the first lens group 20 includes: a first lens, a second lens, a diaphragm, a third lens, a fourth lens, and a fifth lens along the same optical axis from the object plane to the image plane,
  • the first lens has a positive optical power;
  • the second lens has a negative optical power;
  • the third lens is a doublet lens and has a negative optical power;
  • the fourth lens has a positive optical power power;
  • the fifth lens has a positive power.
  • the object plane refers to the side of the display screen during projection imaging, which is far away from the projection imaging system 10 ;
  • the image plane refers to the side receiving the projected light beam, which is close to the projection imaging system 10 .
  • specific parameters of the first lens group 20 are shown in Table 2 below.
  • the imaging quality of the first lens in this embodiment is good, the definition is good, and the aberration is small.
  • Lens serial number lens type optical power thickness Object surface the the the first lens glass sphere 0.022 5.2 second lens glass sphere -0.044 7 aperture the the the third lens double laminated glass spherical -0.038 6.5 fourth lens glass sphere 0.033 5 fifth lens glass sphere 0.026 5.5 Image surface the the the the
  • the first lens group 20 includes: a first lens, a second lens, a third lens, a diaphragm, a fourth lens, and a fifth lens along the same optical axis from the object plane to the image plane,
  • the first lens has a positive optical power;
  • the second lens has a positive optical power;
  • the third lens has a negative optical power;
  • the fourth lens is a doublet lens and has a positive optical power power;
  • the fifth lens has a positive power.
  • specific parameters of the first lens group 20 are shown in Table 3 below.
  • the imaging quality of the first lens in this embodiment is good, the definition is good, and the aberration is small.
  • Lens serial number lens type optical power thickness Object surface the the the first lens glass sphere 0.026 4.45 second lens glass sphere 0.036 4.21 third lens glass sphere -0.104 3.5 aperture the the the fourth lens double laminated glass spherical 0.012 8.75
  • the first lens group 20 includes: a first lens, a second lens, a diaphragm, a third lens, a fourth lens, and a fifth lens along the same optical axis from the object plane to the image plane,
  • the first lens has a positive optical power;
  • the second lens is a doublet lens and has a negative optical power;
  • the third lens has a negative optical power;
  • the fourth lens has a positive optical power power;
  • the fifth lens has a positive power.
  • specific parameters of the first lens group 20 are shown in Table 4 below.
  • the imaging quality of the first lens in this embodiment is good, the definition is good, and the aberration is small.
  • Lens serial number lens type optical power thickness Object surface the the the first lens glass sphere 0.036 3.39 second lens double laminated glass spherical -0.068 6.78 aperture the the the third lens glass sphere -0.079 1.20 fourth lens glass sphere 0.07 3.38 fifth lens glass sphere 0.051 3.40 Image surface the the the the first lens glass sphere 0.036 3.39 second lens double laminated glass spherical -0.068 6.78 aperture the the the third lens glass sphere -0.079 1.20 fourth lens glass sphere 0.07 3.38 fifth lens glass sphere 0.051 3.40 Image surface the the the the the the the first lens glass sphere 0.036 3.39 second lens double laminated glass spherical -0.068 6.78 aperture the the the third lens glass sphere -0.079 1.20 fourth lens glass sphere 0.07 3.38 fifth lens glass sphere 0.051 3.40 Image surface the the the the the first lens glass sphere 0.036 3.39 second lens double laminated glass spherical -0.068 6.78 aperture the the the third lens glass
  • the first lens group 20 includes: a diaphragm, a first lens, a second lens, a third lens, and a fourth lens along the same optical axis from the object plane to the image plane.
  • the lens has positive optical power; the second lens is a doublet lens and has positive optical power; the third lens has negative optical power; and the fourth lens has positive optical power.
  • specific parameters of the first lens group 20 are shown in Table 5 below.
  • the imaging quality of the first lens in this embodiment is good, the definition is good, and the aberration is small.
  • Lens serial number lens type optical power thickness Object surface the the the aperture the the the first lens glass sphere 0.026 3.57
  • the second lens group 30 includes: a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens and The sixth lens, the first lens has a negative power; the second lens has a negative power; the third lens is a doublet lens and has a positive power; the fourth lens The doublet lens has a negative power; the fifth lens has a positive power; and the sixth lens has a positive power.
  • the specific parameters of the first lens group 20 are shown in the following table.
  • the imaging quality of the second lens in this embodiment is good, the definition is good, and the aberration is small.
  • Lens serial number lens type optical power thickness Object surface the the the first lens Plastic Aspheric Surface -0.087 1.00 second lens glass sphere -0.092 2.95 third lens double laminated glass spherical 0.052 7.5 aperture the the the fourth lens double laminated glass spherical -0.063 4.3 fifth lens glass sphere 0.02 2.67 sixth lens glass aspheric 0.091 3.5 Image surface the the the the

Abstract

一种投影光机(100)包括:投影成像系统(10)、第一镜头组(20)、第二镜头组(30)以及反射镜(40),投影成像系统(10)用于发射投影光束;第一镜头组(20)设于投影成像系统(10)的出射端;第二镜头组(30)设于投影成像系统(10)的出射端,且第二镜头组(30)的光轴与第一镜头组(20)的光轴交叉设置;反射镜(40)用于对投影光束进行反射,且反射镜(40)可活动设置,以使投影光束透过第一镜头组(20)射出或透过第二镜头组(30)射出,其中,第一镜头组(20)的焦距为f1,第二镜头组(30)的焦距为f2,7≤f1/f2≤9。这一投影光机(100)能够实现墙面投影或桌面投影的双功能,满足用户不同的使用需求,且可保证墙面投影或桌面投影功能均具有较高的成像质量。

Description

投影光机
本申请要求于2021年6月30日提交中国专利局、申请号为202110742646.7、申请名称为“投影光机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影设备技术领域,特别涉及一种投影光机。
背景技术
随着微型投影仪技术的发展,家用投影机越来越多地进入了人们的视野,并朝着小型化和便携化的方向发展。目前,家用投影机的用途主要包括影音娱乐和教育教学两个方面。其中,用于影音娱乐的投影机一般采用墙面投影的模式,需要具有较大的投射比;而用于教育教学方面的投影机一般采用桌面投影的模式,在大约40㎝的高度上在桌面上投射出20㎝的画面,此时需要的投射比较小。
其中,对于一台投影机来说,其仅具备单一的功能,比如,用于影音娱乐的投影机采用长焦镜头组,其仅有墙面投影的功能,而用于教育教学方面的投影机采用短焦镜头组,其仅有桌面投影的功能,由于镜头组的焦距一般是固定的,因此,投影机的功能也就是单一且固定的。但是,随着用户需求的增加,用户在某些情况下需要使用投影机的影音娱乐功能,在另外情况下需要使用投影机的教育教学功能,为此,用户只能同时购买两种不同功能的投影机,一来占用空间、浪费资源,二来使用不够方便。因此,单一功能的投影机越来越难以满足现代用户的需求。
申请内容
申请的主要目的是提出一种投影光机,旨在通过反射镜的位置变化,使投影光束透过第一镜头组射出或透过第二镜头组射出,实现墙面投影或桌面投影的双功能,满足用户不同的使用需求,且可保证墙面投影或桌面投影功能均具有较高的成像质量。
为实现上述目的,本申请提出的投影光机,包括:投影成像系统、第一镜头组、第二镜头组以及反射镜,所述投影成像系统用于发射投影光束;所 述第一镜头组设于所述投影成像系统的出射端;所述第二镜头组设于所述投影成像系统的出射端,且所述第二镜头组的光轴与所述第一镜头组的光轴交叉设置;所述反射镜用于对所述投影光束进行反射,且所述反射镜可活动设置,以使所述投影光束透过所述第一镜头组射出或透过所述第二镜头组射出;其中,所述第一镜头组的焦距为f1,所述第二镜头组的焦距为f2,7≤f1/f2≤9。
可选地,所述第一镜头组的光轴与所述投影光束的光轴重合;其中,当所述反射镜处于第一位置,所述投影光束透过所述第一镜头组射出;当所述反射镜处于第二位置,所述投影光束镜经所述反射镜反射后透过所述第二镜头组射出。
可选地,所述第一镜头组的光轴、所述第二镜头组的光轴以及所述投影光束的光轴相交于同一点;其中,当所述反射镜处于第三位置,所述投影光束经所述反射镜反射后透过所述第一镜头组射出;当所述反射镜处于第四位置,所述投影光束镜经所述反射镜反射后透过所述第二镜头组射出。
可选地,所述投影光机还包括半透半反镜,所述半透半反镜可活动设置;当所述反射镜处于所述第二位置,所述半透半反镜处于所述第一位置;当所述半透半反镜处于所述第二位置,所述反射镜处于所述第一位置;或者,所述反射镜和所述半透半反镜均处于所述第一位置;其中,当所述半透半反镜处于所述第二位置,所述投影光束经所述半透半反镜反射后透过所述第二镜头组射出,且所述投影光束经所述半透半反镜透射后透过所述第一镜头组射出。
可选地,所述投影光机还包括:场镜,所述场镜贴设于所述投影成像系统的出射端,且所述场镜具有正的光焦度。
可选地,所述投影光机还包括:驱动装置,所述驱动装置与所述反射镜连接,所述驱动装置用于驱动所述反射镜活动。
可选地,所述投影成像系统包括依次设置的照明光源、复眼镜片、中继系统、转向棱镜以及图像源;其中,所述照明光源用于发射照明光束,所述照明光束依次透过所述复眼镜片、所述中继系统和所述转向棱镜后进入所述图像源、经所述图像源调制后生成所述投影光束,所述投影光束由所述转向棱镜转向射出。
可选地,所述照明光源包括依次设置的RGB光源、准直镜片和滤光片; 其中,所述RGB光源用于分别发射独立的红光、蓝光和绿光,所述红光、所述蓝光和所述绿光透过各自对应的所述准直镜片、并经所述滤光片反射或透射后组合形成所述照明光束。
可选地,所述图像源的中心轴与所述投影成像系统的光轴偏位设置。
可选地,所述第一镜头组的焦距为f1,所述第二镜头组的焦距为f2,7≤f1/f2≤9。
可选地,所述第一镜头组的光轴与所述第二镜头组的光轴形成的夹角在70°至100°之间。
可选地,所述半透半反镜的透反比在3:7至7:3之间。
可选地,所述第一镜头组由物面至像面,沿同一光轴包括:第一透镜、第二透镜、光阑、第三透镜、第四透镜以及第五透镜,所述第一透镜具有正的光焦度;所述第二透镜具有负的光焦度;所述第三透镜为双胶合透镜并具有负的光焦度;所述第四透镜具有正的光焦度;所述第五透镜具有正的光焦度。
可选地,所述第一镜头组由物面至像面,沿同一光轴包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜以及第五透镜,所述第一透镜具有正的光焦度;所述第二透镜具有正的光焦度;所述第三透镜具有负的光焦度;所述第四透镜为双胶合透镜并具有正的光焦度;所述第五透镜具有正的光焦度。
可选地,所述第一镜头组由物面至像面,沿同一光轴包括:第一透镜、第二透镜、光阑、第三透镜、第四透镜以及第五透镜,所述第一透镜具有正的光焦度;所述第二透镜为双胶合透镜并具有负的光焦度;所述第三透镜具有负的光焦度;所述第四透镜具有正的光焦度;所述第五透镜具有正的光焦度。
可选地,所述第一镜头组由物面至像面,沿同一光轴包括:光阑、第一透镜、第二透镜、第三透镜以及第四透镜,所述第一透镜具有正的光焦度;所述第二透镜为双胶合透镜并具有正的光焦度;所述第三透镜具有负的光焦度;所述第四透镜具有正的光焦度。
可选地,所述第二镜头组由物面至像面,沿同一光轴包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜以及第六透镜,所述第一 透镜具有负的光焦度;所述第二透镜具有负的光焦度;所述第三透镜为双胶合透镜并具有正的光焦度;所述第四透镜为双胶合透镜并具有负的光焦度;所述第五透镜具有正的光焦度;所述第六透镜具有正的光焦度。
本申请技术方案中,第一镜头组的焦距是第二镜头组的焦距的7至9倍,即第一镜头组为长焦镜头组,第二镜头组为短焦镜头组,通过在投影成像系统和第一镜头组/第二镜头组之间设置可活动的反射镜,通过反射镜的位置变化,决定是否对投影光束进行反射或决定投影光束的反射角度,使投影光束透过第一镜头组射出或透过第二镜头组射出,当投影光束透过第一镜头组射出时,可实现墙面投影的效果,当投影光束透过第二镜头组射出时,可实现桌面投影的效果,从而在同一投影光机上实现墙面投影或桌面投影的双功能,使用户可根据需要选择其中一个功能进行使用,能够满足用户对于影音娱乐和教育教学两个方面的使用需求;而且,反射镜对投影成像系统的投影光束进行完全反射,可保证投影光束没有分散,从而保证墙面投影或桌面投影功能均具有较高的成像质量;此外,第一镜头组和第二镜头组共用一套投影成像系统,能够有效缩小投影光机的整体体积,结构简单紧凑,使用灵活方便。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请投影光机一实施例的结构示意图;
图2为图1投影光机的前视图;
图3为图1投影光机的俯视图;
图4为本申请投影光机另一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 投影光机 1174 第四准直镜片
10 投影成像系统 118 中继镜片
111 红色LED光源 12 复眼镜片
112 蓝色LED光源 13 中继系统
113 绿色LED光源 14 转向棱镜
114 激光光源 15 图像源
115 第一滤光片 20 第一镜头组
116 第二滤光片 30 第二镜头组
1171 第一准直镜片 40 反射镜
1172 第二准直镜片 50 场镜
1173 第三准直镜片    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种投影光机100。
在本申请实施例中,如图1所示,该投影光机100,包括:投影成像系统10、第一镜头组20、第二镜头组30以及反射镜40,所述投影成像系统10用于发射投影光束;所述第一镜头组20设于所述投影成像系统10的出射端;所述第二镜头组30设于所述投影成像系统10的出射端,且所述第二镜头组30的光轴与所述第一镜头组20的光轴交叉设置;所述反射镜40用于对所述投影光束进行反射,且所述反射镜40可活动设置,以使所述投影光束透过所述第一镜头组20射出或透过所述第二镜头组30射出;其中,所述第一镜头组的焦距为f1,所述第二镜头组的焦距为f2,7≤f1/f2≤9。
本申请技术方案中,投影光机100采用两个镜头组,包括第一镜头组20和第二镜头组30,其中,第一镜头组20的焦距是第二镜头组30的焦距7至9倍。镜头组的焦距会影响光学成像的投射比,所谓投射比,指的是投影距离与投射画面的宽度之比。镜头组的焦距越短,则投影光束经过镜头组投射到投影面上的成像画面尺寸就越大,反之,镜头组的焦距越长,则投影光束经过镜头组投射到投影面上的成像画面尺寸就越小。具体地,第一镜头组20的焦距介于25㎜-30㎜之间,第二镜头组30的焦距介于3.2㎜-3.5㎜之间,也即第一镜头组20为长焦镜头组,第二镜头组30为短焦镜头组。此时,第一镜头组20的焦距和第二镜头组30的焦距不同,则第一镜头组20和第二镜头组30对投影光束进行成像时的投射比也不同,可分别实现墙面投影和桌面投影的不同的投影效果。当然,第一镜头组20和第二镜头组30的具体焦距可根据实际需要进行设置,只要保证第一镜头组20和第二镜头组30适合的焦距比,可使投影光机100实现两种不同的投影功能即可,以使之适应不同的使用环境。
需要说明的是,此处的反射镜40为全反型反射镜(100%反射)。容易理解的是,反射镜40可以对投影成像系统10射出的投影光束进行完全反射,从而改变投影光束的传播方向。同时,反射镜40可相对投影成像系统10活动,以此决定是否对投影光束进行反射或决定投影光束的反射角度,从而选择投影光束透过第一镜头组20射出或透过第二镜头组30射出。其中,由于第一镜头组20的焦距较长,当投影光束透过第一镜头组20射出时,光学成像的投射比较大,此时,可将光学成像投射于墙面上,实现墙面投影的功能, 以用于影音娱乐;而第二镜头组30的焦距较短,当投影光束透过第二镜头组30射出时,光学成像的投射比较小,此时,可将光学成像投射于桌面上,实现桌面投影的功能,以用于教育教学。
因此,可以理解地,本申请技术方案中,通过在投影成像系统10和第一镜头组20/第二镜头组30之间设置可活动的反射镜40,通过反射镜40的位置变化,决定是否对投影光束进行反射或决定投影光束的反射角度,使投影光束透过第一镜头组20射出或透过第二镜头组30射出。由于第一镜头组20的焦距是第二镜头组30的焦距的7至9倍,即第一镜头组20为长焦镜头组,第二镜头组30为短焦镜头组,当投影光束透过第一镜头组20射出时,可实现墙面投影的功能,当投影光束透过第二镜头组30射出时,可实现桌面投影的功能,从而达到墙面投影或桌面投影的效果,在同一投影光机100上实现墙面投影或桌面投影的双功能,使用户可根据需要选择其中一个功能进行使用,能够满足用户对于影音娱乐和教育教学两个方面的使用需求;而且,反射镜40对投影成像系统10的投影光束进行完全反射,可保证投影光束没有分散,从而保证墙面投影或桌面投影功能均具有较高的成像质量。此外,第一镜头组20和第二镜头组30共用一套投影成像系统10,能够有效缩小投影光机100的整体体积,结构简单紧凑,使用灵活方便。
在本申请的第一实施例中,请参阅图1至2,所述第一镜头组20的光轴与所述投影光束的光轴重合;其中,当所述反射镜40处于第一位置,所述投影光束透过所述第一镜头组20射出;当所述反射镜40处于第二位置,所述投影光束镜经所述反射镜40反射后透过所述第二镜头组30射出。
本技术方案中,反射镜40的第一位置可灵活设置,只要反射镜40没有阻挡在投影光束通过第一透镜组20进行透射时所经过的光路上,相关的位置都可纳入第一位置的范围;反射镜40处于第一位置时,投影光束未经过反射镜40而直接透过第一镜头组20射出。而反射镜40的第二位置则相对固定,第二位置是反射镜40将投影光束反射至第二镜头组30的位置,该第二位置应当是反射镜40位于第一镜头组20的光轴和第二镜头组30的光轴的相交处,且反射镜40所在的平面垂直于第一镜头组20的光轴和第二镜头组30的光轴的对称中心线;反射镜40处于第二位置时,投影光束照射在反射镜40上,经过反射镜40的反射作用,投影光束的传播路径发生转折,从而透过第 二镜头组30射出。可以理解地,第一镜头组20和第二镜头组30的相交点应当位于投影成像系统10的出射端和第一镜头组20之间。
在本申请的第二实施例中,请参阅图4,所述第一镜头组20的光轴、所述第二镜头组30的光轴以及所述投影光束的光轴相交于同一点;其中,当所述反射镜40处于第三位置,所述投影光束经所述反射镜40反射后透过所述第一镜头组20射出;当所述反射镜40处于第四位置,所述投影光束镜经所述反射镜40反射后透过所述第二镜头组30射出。
本技术方案中,反射镜40的第三位置应当是反射镜40位于第一镜头组20的光轴和第二镜头组30的光轴的相交处,且反射镜40所在的平面垂直于投影光束的光轴和第一镜头组20的光轴的对称中心线;反射镜40处于第三位置时,投影光束照射在反射镜40上,经过反射镜40的反射作用,投影光束的传播路径发生转折,从而透过第一镜头组20射出。反射镜40的第四位置应当是反射镜40位于第一镜头组20的光轴和第二镜头组30的光轴的相交处,且反射镜40所在的平面垂直于投影光束的光轴和第二镜头组30的光轴的对称中心线;反射镜40处于第四位置时,投影光束照射在反射镜40上,经过反射镜40的反射作用,投影光束的传播路径发生转折,从而透过第二镜头组30射出。
基于第一实施例,进一步地,所述投影光机100还包括半透半反镜,所述半透半反镜可活动设置;当所述反射镜40处于所述第二位置,所述半透半反镜处于所述第一位置;当所述半透半反镜处于所述第二位置,所述反射镜40处于所述第一位置;或者,所述反射镜40和所述半透半反镜均处于所述第一位置;其中,当所述半透半反镜处于所述第二位置,所述投影光束经所述半透半反镜反射后透过所述第二镜头组30射出,且所述投影光束经所述半透半反镜透射后透过所述第一镜头组20射出。
本技术方案中,投影光机100在投影成像系统10和第一镜头组20之间设置了可活动的反射镜40(全反反射镜,100%反射)和半透半反镜(又称分光镜或分束镜,X%透射、100-X反射)。此时,投影光机100具有墙面投影、桌面投影的双功能,并且,用户可根据需要选择其中墙面投影功能、桌面投影功能或同时使用墙面投影和桌面投影的双功能。其中,反射镜40和半透半反镜配合使用,总共包括三种使用状态。具体地,当用户需要进行影音娱乐 时,将反射镜40和半透半反镜均定位到第一位置,此时,投影光束直接透过第一镜头组20射出,第一镜头组20的投射比较大,可将光学成像投射于墙面上,实现墙面投影的功能;当用户需要进行教育教学时,将反射镜40定位到第二位置,并将半透半反镜定位到第一位置,此时,投影光束在反射镜40的反射作用下透过第二镜头组30射出,第二镜头组30的投射比较小,可将光学成像投射于桌面上,实现桌面投影的功能;当用户需要同时进行影音娱乐和教育教学时,将半透半反镜定位到第二位置,并将反射镜40定位到第一位置,此时,投影光束在半透半反镜的反射作用下透过第二镜头组30射出,第二镜头组30的投射比较小,可将光学成像投射于桌面上,并且,投影光束在半透半反镜的透射作用下透过第一镜头组20射出,第一镜头组20的投射比较大,可将光学成像投射于墙面上,也即是说,投影光机100同时实现了墙面投影和桌面投影的效果。
在本申请一实施例中,请参阅图1至2,所述投影光机100还包括:场镜50,所述场镜50贴设于所述投影成像系统10的出射端,且所述场镜50具有正的光焦度。
传统的投影光机100,镜头组紧靠投影成像系统10的出射端,二者之间的空气间隔一般不会超过3mm。本申请由于在投影成像系统10的出射端和第一镜头组20/第二镜头组30之间增加了反射镜40,需要预留反射镜40的位置,此处的空气间隔将达到25mm以上,若不增加场镜50,第一镜头组20和第二镜头组30的口径需要制作得很大,这无疑会增加制作成本,也会增大产品的体积。本技术方案中,紧靠投影系统的出射端固定设置场镜50,且场镜50位于投影系统之后、位于反射镜40的第二位置(或第三位置和第四位置)之前,可达到弯折光线的作用,能够有效减小光线的发散角,从而降低第一镜头组20和第二镜头组30的口径。其中,场镜50的具体参数如下表1所示。
表1
镜片序号 镜片类型 光焦度 厚度
场镜50 玻璃球面 0.018 4.00
在本申请一实施例中,所述投影光机100还包括:驱动装置(未图示), 所述驱动装置与所述反射镜40连接,所述驱动装置用于驱动所述反射镜40活动。
本技术方案中,为方便用户控制反射镜40,在投影光机100内设置有驱动装置,通过驱动装置,可实现反射镜40的自动活动和定位,从而提高用户的使用便捷性。驱动装置可以为电机或气缸等,反射镜40的活动方式可以为移动或转动等,具体的使用情形可参照上述情况,此处不再赘述。
当然,反射镜40也可以采用手动方式调整位置。以第一实施例为例,可在投影光机100的壳体内设置相应的定位支架,该定位支架对应反射镜40的第二位置设置:当用户需要使用桌面投影功能时,可将反射镜40放置在定位支架上,使投影光束照射在反射镜40上、经反射后透过第二镜头组30射出;当用户需要使用墙面投影功能时,将反射镜40从定位支架上取下,让定位支架空置即可,此时,投影光束直接透过第一镜头组20射出。在设置有半透半反镜的情况下,当用户需要同时使用桌面投影功能和墙面投影功能时,可将半透半反镜放置在定位支架上,此时,投影光束经半透半反镜反射后透过第二镜头组30射出,并且,投影光束还经半透半反镜透射后透过第一镜头组20射出。
在本申请一实施例中,请参阅图1和3,所述投影成像系统10包括依次设置的照明光源、复眼镜片12、中继系统13、转向棱镜14以及图像源15;其中,所述照明光源用于发射照明光束,所述照明光束依次透过所述复眼镜片12、所述中继系统13和所述转向棱镜14后进入所述图像源15、经所述图像源15调制后生成所述投影光束,所述投影光束由所述转向棱镜14转向射出。
本技术方案中,照明光源用于发射照明光束,照明光束从照明光源射出后,依次经过复眼镜片12、中继系统13和转向棱镜14到达图像源15。其中,复眼镜片12是由一系列小透镜组合形成,复眼镜片12用于对照明光源射出的照明光束进行匀光,从而提高光斑的亮度均匀性;中继系统13通常由两片镜片组成,中继系统13用于对透过复眼镜片12形成的圆形光斑整形成为矩形光斑;图像源15可采用数字微镜器件(Digtial Micromirror Devices,DMD),图像源15用于将接收的照明光束进行光学调制,生成投影光束,以产生特定的画面;转向棱镜14可选用直角棱镜,其中,直角棱镜的斜面朝向中继系统 13,图像源15设于直角棱镜的直角面一侧,转向棱镜14用于将透过中继系统13的照明光束传递至图像源15,并将图像源15反射回来的投影光束再转向传递出去。当然,投影成像系统10也可采用现有技术的其他结构设置,本申请对此并不进行限定。
在本申请一实施例中,请参阅图1和3,所述照明光源包括依次设置的RGB光源、准直镜片和滤光片;其中,所述RGB光源用于分别发射独立的红光、蓝光和绿光,所述红光、所述蓝光和所述绿光透过各自对应的所述准直镜片、并经所述滤光片反射或透射后组合形成所述照明光束。
具体地,RGB光源用于发出红光、蓝光和绿光;准直镜片具有正的光焦度,准直镜片用于将RGB光源射出的红光、蓝光和绿光分别进行准直调光;滤光片具有对不同波长的光过滤的作用,滤光片用于对红光、蓝光和绿光进行透过或反射,使红光、蓝光和绿光组合成照明光束射出。
进一步地,RGB光源包括红色LED光源111、蓝色LED光源112、绿色LED光源113,此外,还包括激光光源114;滤光片的数量为两片,包括第一滤光片115和第二滤光片116,其中,红色LED光源111和蓝色LED光源112相邻设置,且红色LED光源111、蓝色LED光源112垂直设置,第一滤光片115设于红色LED光源111和蓝色LED光源112之间,第一滤光片115具体为透红反蓝反绿滤光片;绿色LED光源113和和蓝色LED光源112平行且间隔设置,绿色LED光源113朝向复眼镜片12,第二滤光片116设于绿色LED光源113和复眼镜片12之间,且第二滤光片116和第一滤光片115平行,第二滤光片116具体为透绿反红反蓝滤光片;激光光源114与红色LED光源111相对设置。工作时,红色LED光源111的红光经第一滤光片115透射后经第二滤光片116反射发出,射向复眼镜片12;蓝色LED光源112的蓝光经第一滤光片115反射后经第二滤光片116反射发出,射向复眼镜片12;激光光源114的光线经第二滤光片116反射后作用到绿色LED光源113上,以增强绿色LED光源113的光强,增强后的绿色LED光源113的绿光经第二滤光片116透射发出,射向复眼镜片12。设置激光光源114的目的,主要是考虑到红绿蓝三色光在配比上,红蓝能量有较多剩余,而绿光能量不足,会在一定程度上拉低照明光源的整体亮度,本实施例通过激光光源114对绿色LED光源113的光强进行增强,可提高照明光源的整体亮度。此外,红色LED 光源111的出射端设有第一准直镜片1171,蓝色LED光源112的出射端设有第二准直镜片1172,绿色LED光源113的出射端设有第三准直镜片1173,激光光源114的出射端设有第四准直镜片1174,准直镜片可将对应的LED光源出射的发散光汇聚为平行光,有利于提高投影光机100的亮度。第一滤光片115和第二滤光片116之间还设有中继镜片118,用于汇聚光线,以进一步提高照明光源的整体亮度。
在本申请一实施例中,所述图像源15的中心轴与所述投影成像系统10的光轴偏位设置。
本技术方案中,图像源15呈矩形,包括两长边和两短边。优选地,图像源15的长边中点位于投影成像系统10的光轴上,此时,图像源15位于投影成像系统10的光轴的一侧,而非投影成像系统10的光轴的中心。如此设置,能够实现投影画面的偏置,即投影画面位于投影系统的光轴的一侧,能够方便用户使用投影光机100。
在本申请一实施例中,所述第一镜头组20的光轴与所述第二镜头组30的光轴形成的夹角在70°至100°之间。
本技术方案中,第一镜头组20的投射方向和第二镜头组30的投射方向呈夹角设置。作为一种优选的实施方式,第一镜头组20的光轴和第二镜头组30的光轴相互垂直。如此,可方便反射镜40的设置,也有利于第一镜头组20和第二镜头组30分别对应墙面和桌面投影。
在本申请一实施例中,所述半透半反镜的透反比在3:7至7:3之间。
本技术方案中,半透半反镜是指在透镜的靠近投影成像系统10的一侧表面上镀半反半透膜。该半反半透膜具体为在玻璃透镜表面上镀多层特定折射率、特定厚度的膜层,其特定折射率是根据光波长以及入射角度计算得出,其特定厚度由透射光与反射光的比值计算得出,并通过设定镀膜机的蒸镀时长来控制厚度。光线照射在半反半透膜上时,会有X%的光透射,(100-X)%即剩余的光反射,通过控制特定折射率与特定厚度,能够实现5:5、6:4、7:3等多种不同比例的透射/反射比,此处可以根据用户的具体需求来定制。
作为可选的实施方式,所述第一镜头组20由物面至像面,沿同一光轴包括:第一透镜、第二透镜、光阑、第三透镜、第四透镜以及第五透镜,所述第一透镜具有正的光焦度;所述第二透镜具有负的光焦度;所述第三透镜为 双胶合透镜并具有负的光焦度;所述第四透镜具有正的光焦度;所述第五透镜具有正的光焦度。需要说明的是,物面是指投影成像时显示画面的一方,远离投影成像系统10;像面是指接收投影光束的一方,靠近投影成像系统10。其中,第一镜头组20的具体参数如下表2所示。本实施例的第一镜头的成像质量良好,清晰度佳,像差小。
表2
镜片序号 镜片类型 光焦度 厚度
物面      
第一透镜 玻璃球面 0.022 5.2
第二透镜 玻璃球面 -0.044 7
光阑      
第三透镜 双胶合玻璃球面 -0.038 6.5
第四透镜 玻璃球面 0.033 5
第五透镜 玻璃球面 0.026 5.5
像面      
作为可选的实施方式,所述第一镜头组20由物面至像面,沿同一光轴包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜以及第五透镜,所述第一透镜具有正的光焦度;所述第二透镜具有正的光焦度;所述第三透镜具有负的光焦度;所述第四透镜为双胶合透镜并具有正的光焦度;所述第五透镜具有正的光焦度。其中,第一镜头组20的具体参数如下表3所示。本实施例的第一镜头的成像质量良好,清晰度佳,像差小。
表3
镜片序号 镜片类型 光焦度 厚度
物面      
第一透镜 玻璃球面 0.026 4.45
第二透镜 玻璃球面 0.036 4.21
第三透镜 玻璃球面 -0.104 3.5
光阑      
第四透镜 双胶合玻璃球面 0.012 8.75
第五透镜 玻璃球面 0.039 2.63
像面      
作为可选的实施方式,所述第一镜头组20由物面至像面,沿同一光轴包括:第一透镜、第二透镜、光阑、第三透镜、第四透镜以及第五透镜,所述第一透镜具有正的光焦度;所述第二透镜为双胶合透镜并具有负的光焦度;所述第三透镜具有负的光焦度;所述第四透镜具有正的光焦度;所述第五透镜具有正的光焦度。其中,第一镜头组20的具体参数如下表4所示。本实施例的第一镜头的成像质量良好,清晰度佳,像差小。
表4
镜片序号 镜片类型 光焦度 厚度
物面      
第一透镜 玻璃球面 0.036 3.39
第二透镜 双胶合玻璃球面 -0.068 6.78
光阑      
第三透镜 玻璃球面 -0.079 1.20
第四透镜 玻璃球面 0.07 3.38
第五透镜 玻璃球面 0.051 3.40
像面      
作为可选的实施方式,所述第一镜头组20由物面至像面,沿同一光轴包括:光阑、第一透镜、第二透镜、第三透镜以及第四透镜,所述第一透镜具有正的光焦度;所述第二透镜为双胶合透镜并具有正的光焦度;所述第三透镜具有负的光焦度;所述第四透镜具有正的光焦度。其中,第一镜头组20的具体参数如下表5所示。本实施例的第一镜头的成像质量良好,清晰度佳,像差小。
表5
镜片序号 镜片类型 光焦度 厚度
物面      
光阑      
第一透镜 玻璃球面 0.026 3.57
第二透镜 双胶合玻璃球面 0.023 7.41
第三透镜 玻璃非球面 -0.13 3.70
第四透镜 玻璃球面 0.107 3.71
像面      
       
其中,非球面系数如下表6所示(a面朝向物面,b面朝向像面)。
表6
面序号 K A1 A2 A3 A4
3a -1.124 0 -2.925E-5 9.108E-7 -2.161E-8
3b -0.716 0 2.259E-4 2.394E-6 -8.685E-8
作为可选的实施方式,所述第二镜头组30由物面至像面,沿同一光轴包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜以及第六透镜,所述第一透镜具有负的光焦度;所述第二透镜具有负的光焦度;所述第三透镜为双胶合透镜并具有正的光焦度;所述第四透镜为双胶合透镜并具有负的光焦度;所述第五透镜具有正的光焦度;所述第六透镜具有正的光焦度。其中,第一镜头组20的具体参数如下表所示。本实施例的第二镜头的成像质量良好,清晰度佳,像差小。
表7
镜片序号 镜片类型 光焦度 厚度
物面      
第一透镜 塑料非球面 -0.087 1.00
第二透镜 玻璃球面 -0.092 2.95
第三透镜 双胶合玻璃球面 0.052 7.5
光阑      
第四透镜 双胶合玻璃球面 -0.063 4.3
第五透镜 玻璃球面 0.02 2.67
第六透镜 玻璃非球面 0.091 3.5
像面      
镜片序号 镜片类型 光焦度 厚度
物面      
其中,非球面系数如表8所示(a面朝向物面,b面朝向像面)。
表8
面序号 K A1 A2 A3 A4 A5 A6
1a -0.220 0 -3.178E-5 -1.84E-7 -5.09E-10 -3.97E-12 9.65E-14
1b -0.69 0 -3.69E-5 1.9E-7 1.027E-9 -3.035E-10 -2.99E-11
6a -17.94 0 -1.07E-4 -2E-6 4.52E-8 3.51E-9 -5.5E-11
6b -1.846 0 -1.56E-4 -3.039E-6 3.4E-8 2.657E-9 -2.19E-11
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (16)

  1. 一种投影光机,其特征在于,包括:
    投影成像系统,所述投影成像系统用于发射投影光束;
    第一镜头组,所述第一镜头组设于所述投影成像系统的出射端;
    第二镜头组,所述第二镜头组设于所述投影成像系统的出射端,且所述第二镜头组的光轴与所述第一镜头组的光轴交叉设置;
    反射镜,所述反射镜用于对所述投影光束进行反射,且所述反射镜可活动设置,以使所述投影光束透过所述第一镜头组射出或透过所述第二镜头组射出;
    其中,所述第一镜头组的焦距为f1,所述第二镜头组的焦距为f2,7≤f1/f2≤9。
  2. 如权利要求1所述的投影光机,其特征在于,所述第一镜头组的光轴与所述投影光束的光轴重合;
    其中,当所述反射镜处于第一位置,所述投影光束透过所述第一镜头组射出;当所述反射镜处于第二位置,所述投影光束镜经所述反射镜反射后透过所述第二镜头组射出。
  3. 如权利要求1所述的投影光机,其特征在于,所述第一镜头组的光轴、所述第二镜头组的光轴以及所述投影光束的光轴相交于同一点;
    其中,当所述反射镜处于第三位置,所述投影光束经所述反射镜反射后透过所述第一镜头组射出;当所述反射镜处于第四位置,所述投影光束镜经所述反射镜反射后透过所述第二镜头组射出。
  4. 如权利要求2所述的投影光机,其特征在于,所述投影光机还包括半透半反镜,所述半透半反镜可活动设置;
    当所述反射镜处于所述第二位置,所述半透半反镜处于所述第一位置;当所述半透半反镜处于所述第二位置,所述反射镜处于所述第一位置;或者,所述反射镜和所述半透半反镜均处于所述第一位置;
    其中,当所述半透半反镜处于所述第二位置,所述投影光束经所述半透半反镜反射后透过所述第二镜头组射出,且所述投影光束经所述半透半反镜透射后透过所述第一镜头组射出。
  5. 如权利要求1所述的投影光机,其特征在于,所述投影光机还包括:
    场镜,所述场镜贴设于所述投影成像系统的出射端,且所述场镜具有正的光焦度。
  6. 如权利要求1所述的投影光机,其特征在于,所述投影光机还包括:
    驱动装置,所述驱动装置与所述反射镜连接,所述驱动装置用于驱动所述反射镜活动。
  7. 如权利要求1所述的投影光机,其特征在于,所述投影成像系统包括依次设置的照明光源、复眼镜片、中继系统、转向棱镜以及图像源;
    其中,所述照明光源用于发射照明光束,所述照明光束依次透过所述复眼镜片、所述中继系统和所述转向棱镜后进入所述图像源、经所述图像源调制后生成所述投影光束,所述投影光束由所述转向棱镜转向射出。
  8. 如权利要求7所述的投影光机,其特征在于,所述照明光源包括依次设置的RGB光源、准直镜片和滤光片;
    其中,所述RGB光源用于分别发射独立的红光、蓝光和绿光,所述红光、所述蓝光和所述绿光透过各自对应的所述准直镜片、并经所述滤光片反射或透射后组合形成所述照明光束。
  9. 如权利要求7所述的投影光机,其特征在于,所述图像源的中心轴与所述投影成像系统的光轴偏位设置。
  10. 如权利要求1至9中任一项所述的投影光机,其特征在于,所述第一镜头组的光轴与所述第二镜头组的光轴形成的夹角在70°至100°之间。
  11. 如权利要求4所述的投影光机,其特征在于,所述半透半反镜的透反比在3:7至7:3之间。
  12. 如权利要求1至9中任一项所述的投影光机,其特征在于,所述第一镜头组由物面至像面,沿同一光轴包括:
    第一透镜,所述第一透镜具有正的光焦度;
    第二透镜,所述第二透镜具有负的光焦度;
    光阑;
    第三透镜,所述第三透镜为双胶合透镜并具有负的光焦度;
    第四透镜,所述第四透镜具有正的光焦度;
    第五透镜,所述第五透镜具有正的光焦度。
  13. 如权利要求1至9中任一项所述的投影光机,其特征在于,所述第 一镜头组由物面至像面,沿同一光轴包括:
    第一透镜,所述第一透镜具有正的光焦度;
    第二透镜,所述第二透镜具有正的光焦度;
    第三透镜,所述第三透镜具有负的光焦度;
    光阑;
    第四透镜,所述第四透镜为双胶合透镜并具有正的光焦度;
    第五透镜,所述第五透镜具有正的光焦度。
  14. 如权利要求1至9中任一项所述的投影光机,其特征在于,所述第一镜头组由物面至像面,沿同一光轴包括:
    第一透镜,所述第一透镜具有正的光焦度;
    第二透镜,所述第二透镜为双胶合透镜并具有负的光焦度;
    光阑;
    第三透镜,所述第三透镜具有负的光焦度;
    第四透镜,所述第四透镜具有正的光焦度;
    第五透镜,所述第五透镜具有正的光焦度。
  15. 如权利要求1至9中任一项所述的投影光机,其特征在于,所述第一镜头组由物面至像面,沿同一光轴包括:
    光阑;
    第一透镜,所述第一透镜具有正的光焦度;
    第二透镜,所述第二透镜为双胶合透镜并具有正的光焦度;
    第三透镜,所述第三透镜具有负的光焦度;
    第四透镜,所述第四透镜具有正的光焦度。
  16. 如权利要求1至9中任一项所述的投影光机,其特征在于,所述第二镜头组由物面至像面,沿同一光轴包括:
    第一透镜,所述第一透镜具有负的光焦度;
    第二透镜,所述第二透镜具有负的光焦度;
    第三透镜,所述第三透镜为双胶合透镜并具有正的光焦度;
    光阑;
    第四透镜,所述第四透镜为双胶合透镜并具有负的光焦度;
    第五透镜,所述第五透镜具有正的光焦度;
    第六透镜,所述第六透镜具有正的光焦度。
PCT/CN2021/133845 2021-06-30 2021-11-29 投影光机 WO2023273135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110742646.7A CN113485061B (zh) 2021-06-30 2021-06-30 投影系统
CN202110742646.7 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273135A1 true WO2023273135A1 (zh) 2023-01-05

Family

ID=77937344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133845 WO2023273135A1 (zh) 2021-06-30 2021-11-29 投影光机

Country Status (2)

Country Link
CN (1) CN113485061B (zh)
WO (1) WO2023273135A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485061B (zh) * 2021-06-30 2022-07-22 歌尔光学科技有限公司 投影系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851060A (en) * 1995-09-13 1998-12-22 Nikon Corporation Projective display device
CN101089724A (zh) * 2006-06-15 2007-12-19 株式会社日立制作所 投影型图像显示装置
CN201556017U (zh) * 2009-10-29 2010-08-18 天津三星电子有限公司 双镜头投影机
CN102461177A (zh) * 2009-06-03 2012-05-16 传斯伯斯克影像有限公司 多源投影类型显示器
CN105319810A (zh) * 2014-06-27 2016-02-10 中强光电股份有限公司 镜头调整模块及投影机
CN107121883A (zh) * 2017-06-15 2017-09-01 北京数科技有限公司 一种投影及照明装置
CN107861310A (zh) * 2017-11-27 2018-03-30 深圳市华星光电技术有限公司 一种双镜头激光投影显示装置
CN113485061A (zh) * 2021-06-30 2021-10-08 歌尔光学科技有限公司 投影光机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071331B2 (ja) * 1985-12-12 1995-01-11 キヤノン株式会社 切換え式の変倍光学系
KR970002730U (ko) * 1995-06-26 1997-01-24 이인순 스라이드 투영 장치
JP2935214B2 (ja) * 1995-07-25 1999-08-16 カシオ計算機株式会社 液晶テレビ
CN106802534A (zh) * 2017-04-11 2017-06-06 河北农业大学 一种双向投影仪
CN110737069B (zh) * 2018-07-20 2021-12-28 上旸光学股份有限公司 投影系统
WO2020121814A1 (ja) * 2018-12-11 2020-06-18 株式会社Qdレーザ 画像表示装置および中継光学系
CN209728405U (zh) * 2019-06-03 2019-12-03 歌尔科技有限公司 投影光学系统及具有其的投影装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851060A (en) * 1995-09-13 1998-12-22 Nikon Corporation Projective display device
CN101089724A (zh) * 2006-06-15 2007-12-19 株式会社日立制作所 投影型图像显示装置
CN102461177A (zh) * 2009-06-03 2012-05-16 传斯伯斯克影像有限公司 多源投影类型显示器
CN201556017U (zh) * 2009-10-29 2010-08-18 天津三星电子有限公司 双镜头投影机
CN105319810A (zh) * 2014-06-27 2016-02-10 中强光电股份有限公司 镜头调整模块及投影机
CN107121883A (zh) * 2017-06-15 2017-09-01 北京数科技有限公司 一种投影及照明装置
CN107861310A (zh) * 2017-11-27 2018-03-30 深圳市华星光电技术有限公司 一种双镜头激光投影显示装置
CN113485061A (zh) * 2021-06-30 2021-10-08 歌尔光学科技有限公司 投影光机

Also Published As

Publication number Publication date
CN113485061A (zh) 2021-10-08
CN113485061B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US10459326B2 (en) Dual-color projector
WO2017049935A1 (zh) 一种投影照明光路及其投影模组
US10754162B2 (en) Projection apparatus and head-mounted display device
CN208384331U (zh) 一种投影照明光路及投影模组
WO2017012220A1 (zh) 一种紧凑型投影装置
WO2023273135A1 (zh) 投影光机
CN110543075A (zh) 一种消散斑装置及投影系统
WO2021098278A1 (zh) 激光投影设备
CN210428067U (zh) 一种蓝紫光led节能投影机及其投影膜
WO2022078436A1 (zh) 投影光学系统
CN113960862A (zh) 投影设备
CN113359380A (zh) 光学引擎和激光投影设备
JP2608945B2 (ja) 投写型表示装置
JPH0725777Y2 (ja) 液晶プロジェクタ
CN116794920B (zh) 基于透光单元阵列的背光光学系统及投影显示系统
CN215117147U (zh) 光学引擎和激光投影设备
CN214669890U (zh) 一种偏振分光棱镜和近眼显示系统
CN217932394U (zh) 一种光源装置
CN114167671B (zh) 一种折衍式投影照明系统
CN218824990U (zh) 一种光机系统及近眼显示设备
CN216696867U (zh) 一种数字光处理系统及装置
US11662599B2 (en) Illumination system and projection device
CN210294793U (zh) 投影光学系统及投影设备
CN218158706U (zh) 照明系统及投影装置
WO2023029718A1 (zh) 光源及激光投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE