WO2023029718A1 - 光源及激光投影设备 - Google Patents

光源及激光投影设备 Download PDF

Info

Publication number
WO2023029718A1
WO2023029718A1 PCT/CN2022/103189 CN2022103189W WO2023029718A1 WO 2023029718 A1 WO2023029718 A1 WO 2023029718A1 CN 2022103189 W CN2022103189 W CN 2022103189W WO 2023029718 A1 WO2023029718 A1 WO 2023029718A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
lens
array
fly
Prior art date
Application number
PCT/CN2022/103189
Other languages
English (en)
French (fr)
Inventor
颜珂
田有良
李巍
刘显荣
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111037636.XA external-priority patent/CN113867088A/zh
Priority claimed from CN202111117186.5A external-priority patent/CN113777868A/zh
Priority claimed from CN202111136696.7A external-priority patent/CN113960868A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280059725.0A priority Critical patent/CN117882004A/zh
Publication of WO2023029718A1 publication Critical patent/WO2023029718A1/zh
Priority to US18/471,557 priority patent/US20240012318A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present disclosure relates to the field of projection technology, in particular to a light source and laser projection equipment.
  • lasers are usually used to provide illumination for laser projection equipment.
  • the laser beam emitted by the laser has the characteristics of good monochromaticity and high brightness, and is an ideal light source.
  • some embodiments of the present disclosure provide a light source.
  • the light source includes at least one laser array, a light combining component and a fly-eye lens.
  • the at least one laser array is configured to emit at least two colors of laser light.
  • the light combination component is arranged on the light output side of the at least one laser array, and is configured to guide the laser light emitted by the at least one laser array to the fly-eye lens.
  • the fly-eye lens is arranged on the light exit side of the light combination assembly, and is configured to homogenize the laser light emitted by the at least one laser array.
  • the fly-eye lens includes a substrate, a plurality of first microlenses and a plurality of second microlenses. The plurality of first microlenses are arranged on the light-incident surface of the substrate, and the plurality of second microlenses are arranged on the light-emitting surface of the substrate and correspond to the plurality of second microlenses .
  • the laser projection device includes the above-mentioned light source, light engine and lens.
  • the light source is configured to emit an illumination beam to the light machine.
  • the light machine includes a light valve configured to modulate an illumination beam emitted by the light source to obtain a projection beam.
  • the lens is configured to image the projection beam.
  • FIG. 1 is a structural diagram of a laser projection device according to some embodiments
  • FIG. 2 is a structural diagram of a light source, an optical machine, and a lens in a laser projection device according to some embodiments;
  • FIG. 3 is a timing diagram of a light source in a laser projection device according to some embodiments.
  • FIG. 4 is an optical path diagram of a light source, an optical machine, and a lens in a laser projection device according to some embodiments;
  • FIG. 5 is another optical path diagram of a light source, an optical machine, and a lens in a laser projection device according to some embodiments;
  • FIG. 6 is an arrangement diagram of tiny mirrors in a digital micromirror device according to some embodiments.
  • Fig. 7 is the position figure that a tiny mirror mirror swings in the digital micromirror device among Fig. 6;
  • Fig. 8 is a working schematic diagram of a tiny mirror according to some embodiments.
  • FIG. 9 is a structural diagram of a light source and an optical machine in a laser projection device according to some embodiments.
  • Fig. 10 is the front view of the fly eye lens shown in Fig. 9;
  • Fig. 11 is an optical path diagram of a fly-eye lens according to some embodiments.
  • Fig. 12 is a schematic diagram of the spot formed by the laser array shown in Fig. 9;
  • FIG. 13 is a structural diagram of another light source and light machine in a laser projection device according to some embodiments.
  • Fig. 14 is an effect diagram of the laser beam irradiating the surface of the light valve
  • 15 is a structural diagram of another light source and light machine in a laser projection device according to some embodiments.
  • Fig. 16 is a structural diagram of another light source and light machine in a laser projection device according to some embodiments.
  • Fig. 17 is an effect diagram of the light spot after the laser array shown in Fig. 16 is combined and incident on the fly-eye lens;
  • Fig. 18 is another optical path diagram of a fly-eye lens according to some embodiments.
  • Fig. 19 is a front view of the fly-eye lens shown in Fig. 16;
  • Fig. 20 is a structural diagram of another light source and light machine in a laser projection device according to some embodiments.
  • Fig. 21 is an effect diagram of the beam spot after the laser array shown in Fig. 20 is combined and incident on the fly-eye lens;
  • Fig. 22 is a structural diagram of another light source and light machine in a laser projection device according to some embodiments.
  • Fig. 23 is an effect diagram of the laser spot shown in Fig. 22 after the light combination of the laser array is incident on the fly-eye lens;
  • Fig. 24 is a structural diagram of another light source according to some embodiments.
  • FIG. 25 is a schematic diagram of the distribution of lasers in the laser array shown in FIG. 24;
  • Fig. 26 is a schematic diagram of the light spot after combining the laser beams emitted by the laser array shown in Fig. 24;
  • Fig. 27 is a structural diagram of another light source according to some embodiments.
  • Fig. 28 is a top view of the light source shown in Fig. 27;
  • Fig. 29 is an effect diagram of laser beam shaping by a shaping component according to some embodiments.
  • Figure 30 is a structural diagram of yet another light source according to some embodiments.
  • Figure 31 is a top view of the light source shown in Figure 30;
  • Figure 32 is a structural diagram of yet another light source according to some embodiments.
  • Figure 33 is a block diagram of another laser projection device according to some embodiments.
  • Fig. 34 is a structural diagram of yet another laser projection device according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the laser projection device 10 includes a housing 11 (only part of the housing is shown in FIG. 200, and lens 300.
  • the light source 100 is configured to provide an illumination beam (laser beam).
  • the optical machine 200 is configured to use an image signal to modulate the illumination beam provided by the light source 100 to obtain a projection beam.
  • the lens 300 is configured to project the projection beam onto a projection screen or a wall for imaging.
  • one end of the light engine 200 is connected to the light source 100 , and the other end is connected to the lens 300 .
  • the light source 100 and the optical machine 200 are arranged along the outgoing direction of the illumination beam of the laser projection device 10 (refer to the M direction shown in FIG. (Refer to the N direction shown in FIG. 2 ).
  • the M direction is substantially perpendicular to the N direction. That is, the light source 100, the optical machine 200 and the lens 300 are connected in an "L" shape.
  • this connection structure can adapt to the optical path characteristics of the reflective light valve in the optical machine 200, and on the other hand, it is also beneficial to shorten one dimension.
  • the length of the optical path in the direction is beneficial to the structural arrangement of the laser projection device 10 . Reflective light valves will be described later.
  • the light source 100 can sequentially provide the three primary colors of light (other colors can also be added on the basis of the three primary colors of light). white light formed.
  • the light source 100 can also output three primary colors of light at the same time, continuously emitting white light.
  • the light source 100 sequentially outputs blue, red and green laser beams.
  • the light source 100 outputs blue light beams during the time period T1, outputs red light beams during the time period T2, and outputs green light beams during the time period T3.
  • the time for the light source 100 to complete the sequential output of each primary color light beam once is the period for the light source 100 to output the primary color light beams.
  • the light source 100 performs a sequential output of each primary color light beam once. Therefore, the display period of one frame of target image is equal to the period of the light source 100 outputting primary color light beams, which is equal to the sum of T1, T2 and T3.
  • the illumination beam emitted by the light source 100 enters the light machine 200 . 4 and 5, the optical machine 200 includes: a light guide 210, a lens assembly 220, a mirror 230, a digital micromirror device (Digital Micromirror Device, DMD) 240 and a prism assembly 250.
  • the light guide 210 can receive the illumination beam provided by the light source 100 and homogenize the illumination beam.
  • the lens assembly 220 can amplify the illumination light beam first, then converge it and output it to the reflector 230 .
  • the mirror 230 can reflect the illumination beam to the prism assembly 250 .
  • the prism assembly 250 reflects the illumination beam to the digital micromirror device 240 , and the digital micromirror device 240 modulates the illumination beam to obtain a projection beam, and reflects the modulated projection beam to the lens 300 .
  • the digital micromirror device 240 is the core component, and its function is to use the image signal to modulate the illumination beam provided by the light source 100, that is, to control the illumination beam to display different colors and brightness for different pixels of the image to be displayed, so as to Finally, an optical image is formed, so the digital micromirror device 240 is also called a light modulation device or a light valve.
  • the optical machine 200 can be classified into a single-chip system, a two-chip system or a three-chip system. For example, only one digital micromirror device 240 is used in the optical machine 200 shown in FIG. 5 , so the optical machine 200 can be called a single-chip system. When three digital micromirror devices 240 are used, the optical machine 200 can be called a three-chip system.
  • the light source 100 When the optical machine 20 is a three-chip system, the light source 100 outputs three primary colors of light at the same time to continuously emit white light.
  • the digital micromirror device 240 includes thousands of tiny mirror mirrors 2401 that can be individually driven to rotate. These tiny mirror mirrors 2401 are arranged in an array, and each tiny mirror mirror 2401 corresponds to of a pixel. As shown in FIG. 7 , in the DLP projection architecture, each tiny mirror 2401 is equivalent to a digital switch, which can swing within the range of plus or minus 12 degrees or plus or minus 17 degrees under the action of an external electric field.
  • the light reflected by the tiny reflective mirror 2401 at a negative deflection angle is called OFF light, and the OFF light is invalid light, which usually hits the casing 11 of the laser projection device 10 and the casing of the optical machine 200. absorbed on the body or on the light absorbing unit 400 .
  • the light reflected by the tiny reflective lens 2401 at a positive deflection angle is called ON light.
  • the ON light is the effective light beam that the tiny reflective lens 2401 on the surface of the digital micromirror device 240 receives the illumination beam and is reflected to the lens 300. projection imaging.
  • the open state of the micro-reflector 2401 is the state where the micro-reflector 2401 is and can be maintained when the illumination light beam emitted by the light source 100 is reflected by the micro-reflector 2401 and can enter the lens 300, that is, the micro-reflector 2401 is in a positive deflection angle. state.
  • the closed state of the tiny reflective mirror 2401 is the state where the tiny reflective mirror 2401 is and can be maintained when the illumination light beam emitted by the light source 100 is reflected by the tiny reflective mirror 2401 and does not enter the lens 300, that is, the tiny reflective mirror 2401 is in a negative deflection angle. state.
  • the state at +12° is the on state
  • the state at -12° is the off state
  • the deflection between -12° and +12° The angle is not used in practice, and the actual working state of the tiny mirror 2401 is only on state and off state.
  • the state at +17° is the on state
  • the state at -17° is the off state.
  • part or all of the tiny mirrors 2401 will be switched once between the on state and the off state, so as to realize the display in one frame of image according to the duration time of the tiny mirrors 2401 respectively in the on state and the off state.
  • the gray scale of each pixel of For example, when a pixel has 256 gray scales from 0 to 255, the tiny mirrors corresponding to gray scale 0 are in the off state during the entire display period of one frame of image, and the tiny mirrors corresponding to gray scale 255 are in the off state during one frame.
  • the whole display period of the image is in the on state, and the tiny reflective mirror corresponding to the gray scale 127 is in the on state for half of the time in the display period of a frame of image, and the other half of the time is in the off state. Therefore, by controlling the state of each tiny mirror in the digital micromirror device 240 in the display period of a frame image and the maintenance time of each state through the image signal, the brightness (gray scale) of the pixel corresponding to the tiny mirror 2401 can be controlled. , to achieve the purpose of modulating the illumination beam projected to the digital micromirror device 240 .
  • the lens 300 includes a combination of multiple lenses, which are generally divided into groups, such as three-stage front group, middle group and rear group, or two-stage front group and rear group.
  • the front group is the lens group close to the light-emitting side of the laser projection device 10 (that is, along the N direction, the lens 300 is away from the side of the optical machine 200), and the rear group is close to the light-emitting side of the optical machine 200 (that is, along the N direction, the lens group is 300 near the side of the optical machine 200) lens group.
  • the lens 300 may be a zoom lens, or a fixed focus adjustable focus lens, or a fixed focus lens.
  • some embodiments of the present disclosure provide a light source. Please refer to FIG. 9 .
  • the first laser array 101 and the second laser array 102 are configured to emit laser light of at least one color, so that the light source 100 emits laser light of at least two colors.
  • Both the first laser array 101 and the second laser array 102 include a plurality of lasers arranged in an array, and each laser includes a light-emitting chip, that is, the first laser array 101 and the second laser array 102 include a plurality of light-emitting chips arranged in an array. chip.
  • the plurality of lasers can emit lasers of three colors, such as red laser, green laser and blue laser. At this time, the plurality of lasers includes a red laser for emitting red laser light, a green laser for emitting green laser light, and a blue laser for emitting blue laser light.
  • first laser array 101 and the second laser array 102 emitting lasers of three colors simultaneously, i.e. blue laser, green laser and red laser, as an example.
  • first laser array 101 and the second laser array 102 can also simultaneously emit lasers of two colors, such as blue laser and yellow laser.
  • the structures of the first laser array 101 and the second laser array 102 may be the same or different.
  • the first laser array 101 and the second laser array 102 have the same structure, and both include a plurality of lasers arranged in four rows.
  • the plurality of lasers includes two rows of red lasers emitting red lasers, one row of green lasers emitting green lasers, and one row of blue lasers emitting blue lasers.
  • the first laser array 101 and the second laser array 102 can simultaneously emit red laser, green laser and blue laser through the red laser, green laser and blue laser.
  • the structures of the first laser array 101 and the second laser array 102 are different.
  • the first laser array 101 includes a plurality of lasers arranged in four rows, the plurality of lasers including two rows of red lasers emitting red lasers, one row of green lasers emitting green lasers, and one row of blue lasers emitting Laser blue laser.
  • the second laser array 102 includes a plurality of lasers arranged in two rows, and the plurality of lasers are red lasers.
  • the multiple lasers can also be arranged in other arrangements.
  • the first laser array 101 includes a plurality of lasers arranged in two rows and seven columns.
  • the plurality of lasers includes a row of red lasers for emitting red lasers, a row of blue lasers for emitting blue lasers, and a row of green lasers for emitting green lasers.
  • the first laser array 101 and the second laser array 102 further include a plurality of collimating lenses 1011 .
  • Each laser in the first laser array 101 and the second laser array 102 corresponds to a collimating lens 1011 , that is, each light emitting chip corresponds to a collimating lens 1011 .
  • Each of the collimating lenses 1011 is configured to collimate the laser light emitted by the corresponding laser and guide it to the light combining assembly 103 .
  • the first laser array 101 is configured to emit a first laser beam to the light combining assembly 103
  • the second laser array 102 is configured to emit a second laser beam to the light combining assembly 103
  • the light combining component 103 is configured to guide the first laser beam and the second laser beam to the fly-eye lens 104
  • the fly-eye lens 104 is configured to guide the first laser beam and the second laser beam to the light engine 200
  • the optical machine 200 is configured to guide the first laser beam and the second laser beam to the lens 300 after being modulated.
  • the light emitting direction of the first laser array 101 (such as the Y axis direction in FIG. 9 ) is perpendicular to the light emitting direction of the second laser array 102 (such as the X axis direction in FIG. 9 ), and the light combination assembly 103
  • a first light-combining component 110 is included.
  • the first light-combining component 110 is located on the light-emitting side of the first laser array 101 and the second laser array 102
  • the fly-eye lens 104 is located on a side of the first light-combining component 110 away from the second laser array 102 .
  • the arrangement direction of the first laser array 101 and the first light-combining component 110 (like the Y-axis direction in FIG.
  • the arrangement direction of the second laser array 102 and the first light-combining component 110 (such as the X-axis direction in FIG. 9 ) is parallel to the arrangement direction of the first light-combining component 110 and the fly-eye lens 104 .
  • the first laser beam emitted by the first laser array 101 and the second laser beam emitted by the second laser array 102 shoot to the first light-combining component 110, and the first light-combining component 110 reflects the first laser beam to the fly-eye lens 104, and The second laser beam is transmitted to the fly-eye lens 104, and the fly-eye lens 104 homogenizes the received laser beam.
  • the first light-combining component 110 is an integral structure, including a first transflective portion 1101 and a second transflective portion 1102 . Both the first transflective part 1101 and the second transflective part 1102 are arranged obliquely, and are located at the intersection of the light beams of the first laser array 101 and the second laser array 102 . On the plane where the light incident surface of the fly-eye lens 104 is located, the orthographic projection of the first transflective portion 1101 and the orthographic projection of the second transflective portion 1102 are staggered, that is, there is no overlap.
  • the first laser array 101 emits a first laser beam to the first transflective portion 1101 and the second transflective portion 1102
  • the second laser array 102 emits a second laser beam to the first transflective portion 1101 and the second transflective portion 1102
  • both the first laser beam and the second laser beam include lasers of three colors, for example, blue laser, green laser and red laser.
  • the first laser array 101 emits blue laser light and green laser light to the first transflective part 1101 , and emits red laser light to the second transflective part 1102
  • the second laser array 102 emits red laser light to the first transflective part 1101 , and emits blue laser light and green laser light to the second transflective part 1102 .
  • the first transflective part 1101 is configured to reflect the blue laser light and the green laser light emitted by the first laser array 101 to the fly-eye lens 104 , and transmit the red laser light emitted by the second laser array 102 to the fly-eye lens 104 .
  • the second transflective part 1102 is configured to reflect the red laser light emitted by the first laser array 101 to the fly-eye lens 104 , and transmit the blue laser light and the green laser light emitted by the second laser array 102 to the fly-eye lens 104 .
  • the first transflective part 1101 and the second transflective part 1102 in the first light combining component 110 may be dichroic elements with different wavelength selection properties.
  • the first transflective part 1101 can be a dichroic film that reflects blue laser light and green laser light and transmits laser light of other colors
  • the second transflective part 1102 can be a dichroic film that reflects red laser light and transmits laser light of other colors. Chromatics. Therefore, the first laser array 101 and the second laser array 102 combine light through a first light combining component 110 with different wavelength selection characteristics, and the optical path is compact, which is beneficial to miniaturization.
  • the first transflective part 1101 and the second transflective part 1102 in the first light-combining component 110 may be polarizing elements with different polarization selection properties.
  • the first laser array 101 and the second laser array 102 respectively emit three-color laser beams with different polarization characteristics.
  • the first transflective part 1101 can be a polarizer that reflects S-polarized light, that is, reflects blue laser light and green laser light, and transmits P-polarized light, that is, transmits red laser light; while the second transflective part 1102 reflects P-polarized light, that is, reflects red laser light, and Transmit S polarized light, that is, a polarizer that transmits blue laser light and green laser light. Therefore, the first laser array 101 and the second laser array 102 combine light through a first light combining component 110 with different polarization selection characteristics, and the optical path is compact, which is beneficial to miniaturization.
  • the light output direction of the first laser array 101 is the same as the light output direction of the second laser array 102 (ie, the Y-axis direction in the figure).
  • the light combination component 103 includes a second light combination component 120 and a third light combination component 130 .
  • the second light-combining component 120 is arranged on the light-emitting side of the first laser array 101
  • the third light-combining component 130 is arranged on the light-emitting side of the second laser array 102
  • the fly-eye lens 104 is arranged on the third light-combining component 130 away from the second light-combining component.
  • One side of part 120 is arranged
  • the arrangement direction of the first laser array 101 and the second light combining component 120 is parallel to the arrangement direction of the second laser array 102 and the third light combining component 130 .
  • the arrangement direction of the fly-eye lens 104 and the third light combining component 130 is perpendicular to the arrangement direction of the third light combining component 130 and the second laser array 102 .
  • the first laser array 101 emits a first laser beam to the second light-combining component 120
  • the second laser array 102 emits a second laser beam to the third light-combining component 130
  • the second light-combining component 120 is configured to reflect the first laser beam to the fly-eye lens 104
  • the third light-combining component 130 is configured to reflect the second laser beam to the fly-eye lens 104
  • the fly-eye lens 104 homogenizes the received laser beam.
  • both the first laser beam and the second laser beam include lasers of three colors, for example, green laser, blue laser and red laser.
  • the second light combining component 120 and the third light combining component 130 have the same structure, and on the plane where the light incident surface of the fly-eye lens 104 is located, the second light combining component 120 and the third light combining component 130 are staggered.
  • the second light combining component 120 includes a first lens 121 , a second lens 122 and a third lens 123 .
  • the first mirror 121 , the second mirror 122 and the third mirror 123 are arranged in sequence along the direction of the X axis and are arranged obliquely.
  • the orthographic projection of the first lens 121 , the orthographic projection of the second lens 122 and the orthographic projection of the third lens 123 overlap at least partially.
  • the first laser array 101 emits green laser light to the first lens 121 , emits blue laser light to the second lens 122 , and emits red laser light to the third lens 123 .
  • the first mirror 121 is configured to reflect the green laser
  • the second mirror 122 is configured to reflect the blue laser and transmit the green laser
  • the third mirror 123 is configured to reflect the red laser and transmit the green laser and the blue laser.
  • the first lens 121 in the second light-combining component 120 can be a mirror for reflecting light of all colors, or can be a dichroic plate for reflecting green laser light and transmitting laser light of other colors
  • the second lens 122 can be a dichroic sheet for reflecting blue laser light and transmitting laser light of other colors
  • the third lens 123 can be a dichroic sheet for reflecting red laser light and transmitting laser light of other colors.
  • the third light combining component 130 includes a first lens 131 , a second lens 132 and a third lens 133 .
  • the first lens 131 , the second lens 132 and the third lens 133 are arranged in sequence along the direction of the X axis and are arranged obliquely.
  • the orthographic projection of the first lens 131 , the orthographic projection of the second lens 132 and the orthographic projection of the third lens 133 overlap at least partially.
  • the second laser array 102 emits green laser light to the first lens 131 , emits blue laser light to the second lens 132 , and emits red laser light to the third lens 133 .
  • the first mirror 131 is configured to reflect the green laser
  • the second mirror 132 is configured to reflect the blue laser and transmit the green laser
  • the third mirror 133 is configured to reflect the red laser and transmit the green laser and the blue laser.
  • the first lens 131 in the third light-combining component 130 can be a mirror for reflecting light of all colors, or can be a dichroic plate for reflecting green laser light and transmitting laser light of other colors
  • the second lens 132 can be a dichroic sheet for reflecting blue laser light and transmitting laser light of other colors; the third lens 133 can be a dichroic sheet for reflecting red laser light and transmitting laser light of other colors.
  • the light source 100 may further include a first polarization conversion component 105 and a second polarization conversion component 106 .
  • the first polarization conversion component 105 is configured to convert the green laser and the blue laser emitted by the first laser array 101 from S-polarized light to P-polarized light; the second polarization conversion component 106 is configured to convert the second laser
  • the green laser light and the blue laser light emitted by the array 102 are converted from S polarized light to P polarized light.
  • the polarization directions of the blue laser light and the green laser light entering the fly-eye lens 104 are the same as the polarization directions of the red laser light.
  • both the first polarization conversion component 105 and the second polarization conversion component 106 may be half-wave plates.
  • the first polarization conversion component 105 is located between the first laser array 101 and the first transflective part 1101 of the first light combining component 110, and the second polarization conversion component 106 is located between the second between the laser array 102 and the second transflective part 1102 of the first light-combining component 110; or, as shown in FIG. Between the lens 121 and the second lens 122 , the second polarization conversion component 106 is located between the second laser array 102 and the first lens 131 and the second lens 132 of the third light combining component 130 .
  • first polarization conversion component 105 and the second polarization conversion component 106 are only applicable to the case where the first light combination component 110 performs light combination through the wavelength selection characteristic.
  • the first laser beam includes lasers of three colors, for example, green laser, blue laser and red laser; the second laser beam includes lasers of one color, for example, red laser.
  • the second light combination component 120 includes the fourth lens 124 , the fifth lens 125 , the sixth lens 126 and the seventh lens 127 , and the third light combination component 130 includes the fourth lens 134 .
  • the orthographic projection of the fourth lens 124 and the orthographic projection of the fifth lens 125 overlap at least partially, and the orthographic projections of the sixth lens 126 and the seventh lens 127 are respectively located at the fourth lens 124 and the opposite sides of the orthographic projection of the fifth lens 125 .
  • the orthographic projection of the fourth mirror 134 at least partially overlaps the orthographic projections of the fourth mirror 124 and the fifth mirror 125 , and is offset from the orthographic projections of the sixth mirror 126 and the seventh mirror 127 .
  • the first laser array 101 emits green laser light to the fourth mirror 124 , blue laser light to the fifth mirror 125 , and red laser light to the sixth mirror 126 and the seventh mirror 127 .
  • the fourth mirror 124 is configured to reflect green laser light
  • the fifth mirror 125 is configured to reflect blue laser light and transmit green laser light
  • the sixth mirror 126 and seventh mirror 127 are configured to reflect red laser light.
  • the second laser array 102 emits red laser light to the fourth mirror 134
  • the green laser light and the blue laser light emitted by the first laser array 101 are respectively reflected by the fourth mirror 124 and the fifth mirror 125 to the fourth mirror 134 .
  • the fourth lens 134 is configured to reflect the red laser light emitted by the second laser array 102 and transmit the green laser light and the blue laser light emitted by the first laser array 101 .
  • the fourth lens 124 of the second light-combining component 120 may be a mirror for reflecting light of all colors, or a dichroic sheet for reflecting green laser light and transmitting laser light of other colors;
  • the fifth mirror 125 can be a dichroic sheet for reflecting blue laser light and transmitting laser light of other colors;
  • the sixth mirror 126 and the seventh mirror 127 can be reflectors for reflecting light of all colors, or they can be A dichroic sheet for reflecting red laser light and transmitting laser light of other colors;
  • the fourth lens 134 of the third light combining component 130 may be a dichroic sheet for reflecting red laser light and transmitting laser light of other colors.
  • light source 100 includes an array of lasers.
  • the light source 100 only includes a first laser array 101 , a light combining component 103 and a fly-eye lens 104 , but does not include a second laser array 102 .
  • the light combination assembly 103 includes a fourth light combination component 140, the fourth light combination component 140 is located on the light output side of the first laser array 101, and the arrangement direction of the first laser array 101 and the fourth light combination component 140 is perpendicular to the fourth light combination component 140.
  • the arrangement direction of the optical component 140 and the fly-eye lens 104 is schematically described by taking the light source 100 including two laser arrays as an example.
  • light source 100 includes an array of lasers. Referring to FIG. 15 , the light source 100 only includes a first laser array 101 , a light combining component 103 and a fly-eye lens 104 , but does not include a second laser array 102 .
  • the light combination assembly 103 includes a fourth light combination component 140, the fourth light combination component 140 is located on
  • the first laser array 101 emits the first laser beam to the fourth light-combining component 140, and the fourth light-combining component 140 reflects the first laser beam to the fly-eye lens 104, and the fly-eye lens 104 homogenizes the received laser beam.
  • the fourth light-combining component 140 includes lasers of three colors, for example, blue laser, green laser and red laser. The structure of 140 will be described.
  • the fourth light-combining component 140 has an integrated structure, including a first reflection part 1401 and a second reflection part 1402 .
  • the orthographic projection of the first reflection part 1401 and the orthographic projection of the second reflection part 1402 are staggered, that is, there is no overlap.
  • the first laser array 101 emits blue laser light and green laser light to the first reflective part 1401 , and emits red laser light to the second reflective part 1402 .
  • the first reflection part 1401 is configured to reflect the blue laser light and the green laser light to the fly-eye lens 104
  • the second reflection part 1402 is configured to reflect the red laser light to the fly-eye lens 104 .
  • the first reflective part 1401 in the fourth light-combining component 140 can be a mirror for reflecting lasers of all colors, or can be a mirror for reflecting green lasers and blue lasers and transmitting lasers of other colors dichroic sheet; the second reflecting part 1402 may be a reflector for reflecting laser light of all colors, or a dichroic sheet for reflecting red laser light and transmitting laser light of other colors. It can be understood that, when both the first reflection part 1401 and the second reflection part 1402 are dichroic sheets, the structure of the fourth light combination component 140 is the same as that of the first light combination component 110 .
  • the fourth light-combining component 140 includes a first lens 141 , a second lens 142 and a third lens 143 independently arranged, and the first lens 141 , the second lens 142 and the third lens 143 Arranged in sequence along the X-axis direction.
  • the orthographic projection of the first lens 141 , the orthographic projection of the second lens 142 and the orthographic projection of the third lens 143 are at least partially overlapped.
  • the first laser array 101 emits green laser light to the first lens 141 , emits blue laser light to the second lens 142 , and emits red laser light to the third lens 143 .
  • the first mirror 141 is configured to reflect green laser light
  • the second mirror 142 is configured to transmit green laser light and reflect blue laser light
  • the third mirror 143 is configured to transmit green laser light and blue laser light and reflect red laser light.
  • the first lens 141 in the fourth light-combining component 140 can be a mirror for reflecting light of all colors, or can be a dichroic plate for reflecting green laser light and transmitting laser light of other colors
  • the second lens 142 can be a dichroic sheet for reflecting blue laser light and transmitting laser light of other colors
  • the third lens 143 can be a dichroic sheet for reflecting red laser light and transmitting laser light of other colors.
  • the structure of the fourth light combining component 140 is the same as that of the second light combining component 120 and the third light combining component 130 .
  • the fourth light-combining component 140 includes a fourth lens 144 and a fifth lens 145 .
  • the fourth lens 144 and the fifth lens 145 are arranged in sequence along the X-axis direction, and on the plane where the light incident surface of the fly-eye lens 104 is located, the orthographic projection of the fourth lens 144 and the orthographic projection of the fifth lens 145 are at least partially overlapping.
  • the first laser array emits green laser light and blue laser light to the fourth mirror 144 and emits red laser light to the fifth mirror 145 .
  • the fourth mirror 144 is configured to reflect green laser light and blue laser light
  • the fifth mirror glass 145 is configured to transmit green laser light and blue laser light and reflect red laser light.
  • the fourth mirror 144 in the fourth light-combining component 140 can be a mirror for reflecting light of all colors, or can be a mirror for reflecting green laser and blue laser and transmitting laser of other colors.
  • Dichroic sheet; the fifth lens 145 may be a dichroic sheet for reflecting red laser light and transmitting laser light of other colors.
  • the light source 100 may further include a first polarization conversion component 105 .
  • the first polarization conversion component 105 is configured to convert the green laser light and the blue laser light emitted by the first laser array 101 from S-polarized light to P-polarized light, so that the polarization of the blue laser light and the green laser light entering the fly-eye lens 104
  • the direction is the same as the polarization direction of the red laser.
  • the first polarization conversion component 105 may be a half-wave plate.
  • the first polarization conversion component 105 is located between the first laser array 101 and the first reflection part 1401 of the fourth light combining component 140; or, as shown in FIG. 16 , the first The polarization conversion component 105 is located between the first laser array 101 and the first lens 141 and the second lens 142 of the fourth light combining component 140; or, as shown in FIG. 32 , the first polarization conversion component 105 is located in the first laser array 101 and the fourth lens 144 of the fourth light combining component 140; or, as shown in FIG. Between the lenses 125 .
  • the fly-eye lens 104 includes a glass substrate 1042, a plurality of first microlenses 1041 arranged in an array on the light incident surface of the glass substrate 1042, and an array row arranged on the light exit surface of the glass substrate 1402.
  • a plurality of second microlenses 1043 are formed.
  • the multiple first microlenses 1041 correspond to the multiple second microlenses 1043
  • the shape and size of each first microlens 1041 are the same as the shape and size of the corresponding second microlenses 1043 .
  • the plurality of first microlenses 1041 and the plurality of second microlenses 1043 may be spherical convex lenses or aspheric convex lenses, and the plurality of first microlenses 1041 corresponds to the plurality of second microlenses 1043 one-to-one.
  • a plurality of first microlenses 1041 can divide the light spots of the laser beams emitted by each laser, and then accumulate the divided light spots through a plurality of second microlenses 1043, so that the laser light emitted by each laser can be realized.
  • the beams are homogenized, so as to achieve homogenization of the laser beams emitted by the first laser array 101 and the second laser array 102 .
  • a fly-eye lens 104 is used to homogenize the laser beam, since the fly-eye lens 104 includes a glass substrate 1042 and a plurality of first microlenses located on the light incident surface of the glass substrate 1042 1041 and a plurality of second microlenses 1043 located on the light-emitting surface of the glass substrate 1042 , therefore, the volume of the fly-eye lens 104 is generally small, effectively reducing the volume of the light source 100 .
  • the light source 100 does not need to be provided with a narrowing mirror group and a converging lens, which further reduces the volume of the light source 100 . After the light source 100 is integrated into the laser projection device 10 , the volume of the laser projection device 10 can be effectively reduced.
  • the size of the first microlens 1041 of the fly-eye lens 104 can be based on the size of the light spot formed by the laser on the light incident surface of the fly-eye lens 104 and the size of the light valve 240 are determined. In this way, the first microlens 1041 determined by the spot size of the laser beam emitted by the laser and the size of the light valve 240 has a better homogenization effect on the laser beam emitted by each laser.
  • both the first laser array 101 and the second laser array 102 may use semiconductor lasers, and the laser light emitted by the semiconductor lasers has a fast axis and a slow axis.
  • the divergence angle of the laser light in the fast axis direction is about ⁇ 30 degrees, and the divergence angle of the laser light in the slow axis direction is about ⁇ 10 degrees.
  • the size of the light spot in the direction of the fast axis is larger than that in the direction of the slow axis, and the shape of the light spot can be rectangular or elliptical.
  • the direction of the long side of the light spot is the direction of the fast axis, and the direction of the short side of the light spot is the direction of the slow axis.
  • the size d of the first microlens 1041 in the target direction satisfies the following formula (1):
  • D is the size of the light valve 240 in the target direction
  • is the imaging angle of the lens 300
  • T is the size of the light spot formed by the laser on the light incident surface of the fly-eye lens 104 in the target direction
  • k is a ratio greater than 0 coefficient.
  • the parameter D in the above formula is a fixed value.
  • the imaging angle of the lens 300 is a fixed value, for example, the imaging angle can be 120° or 150°, etc. Therefore, the parameter ⁇ in the above formula is a fixed value.
  • the model of the lens 300 in the laser projection device 10 and the models of the light-emitting chip of the first laser array 101 and the model of the light-emitting chip of the second laser array 102 are determined, by the above calculation formula (1) , the size in the direction of the fast axis and the size in the direction of the slow axis of the first microlens 1041 disposed on the light incident surface of the fly-eye lens 104 can be calculated.
  • the light spot formed by the laser light emitted by each laser on the light incident surface of the fly-eye lens 104 overlaps with the area where at least one first microlens 1041 is located.
  • the laser light emitted by each laser can be homogenized by the fly-eye lens 104 .
  • the light spot formed by the laser light emitted by each laser on the light incident surface of the fly-eye lens 104 overlaps the area where at least two first microlenses 1041 are located. In this case, the effect of homogenizing the laser beams emitted by each laser through the fly-eye lens 104 is better.
  • the light spot formed by each laser on the light incident surface of the fly-eye lens 104 overlaps with the area where at least four first microlenses 1041 are located on the light incident surface of the fly-eye lens 104, and the at least The four first microlenses 1041 are at least arranged in two rows and two columns.
  • the four first microlenses 1041 may be arranged in two rows and two columns. In this way, the homogenization effect of the fly-eye lens 104 on the laser beams emitted by each laser can be further improved.
  • the size of each first microlens 1041 in the fly-eye lens 104 is the same.
  • the size of the first microlens 1041 in the direction of the fast axis and the direction of the slow axis are both in the range of 0.1 mm to 1 mm.
  • the number of red lasers is usually more than the number of blue lasers and green lasers. color lasers and a row of green lasers. After the laser beams of the three colors are combined by the light combining component 103 , the spot size formed by the red laser is larger, while the spot size formed by the blue laser and the green laser is smaller.
  • the areas of the spots formed by the blue laser and the green laser on the fly-eye lens 104 are both B, and the area of the spots formed by the red laser on the fly-eye lens 104 is A, that is, the blue laser and the green laser
  • the area of the light spot formed by the laser light on the fly-eye lens 104 is smaller than the area of the light spot formed by the red laser light on the fly-eye lens 104 .
  • the etendue of the laser is the product of the spot area of the laser beam and the divergence angle of the laser beam, the etendue of the red laser is greater than the etendue of the blue laser and the etendue of the green laser, resulting in three
  • the color boundary phenomenon appears in the light spots after combining the laser beams of different colors. For example, the phenomenon that the edge area of the light spot is more reddish than the middle area, when the combined light spot enters the lens 300 in the laser projection device 10 to form a projected picture, the color uniformity of the projected picture is poor, which in turn causes the laser projection device 10 has a poorer display.
  • the plurality of first microlenses 1041 includes a plurality of third microlenses 1045 and a plurality of fourth microlenses 1046, and the plurality of third microlenses 1045 are configured to receive blue laser light and green laser light. Laser light, and a part of the red laser light, a plurality of fourth microlenses 1046 are configured to receive another part of the red laser light, the size of the third microlens 1045 in the fast axis direction is greater than the size of the fourth microlens 1046 in the fast axis direction .
  • first microlens 1041 disposed on the light incident surface of the fly-eye lens 104 and one second microlens 1043 correspondingly disposed on the light exit surface of the fly-eye lens 104 are used for illustration.
  • the first microlens 1041 that is arranged on the light incident surface of the fly-eye lens 104 can converge the light to the central point of the second microlens 1043 that is set on the light exit surface, so that the light emitted from the second microlens 1043 can be in a certain The divergence angle ⁇ exits.
  • the size of the plurality of third microlenses 1045 for receiving blue laser light and green laser light in the direction of the fast axis is larger than that of the plurality of fourth microlenses for receiving red laser light
  • the size of the microlens 1046 in the direction of the fast axis is larger than that of the plurality of fourth microlenses for receiving red laser light
  • the divergence angle of the blue laser light and the green laser light increases, thereby increasing the etendue of the blue laser light and the green laser light.
  • the etendue of the blue laser and the green laser is approximately the same as that of the red laser. In this way, it is possible to avoid the phenomenon of color separation in the light spot after the combination of the laser beams of the three colors.
  • the combined light spot is incident on the lens 300 in the laser projection device 10 to form a projected picture, it can ensure that the color uniformity of the projected picture is better, thereby making the display effect of the laser projection device 10 better.
  • the size of the third microlens 1045 in the fly-eye lens 104 in the direction of the fast axis of the laser light is larger than the size of the fourth microlens 1046 in the direction of the fast axis
  • the size of the third microlens 1045 in the direction of the laser slow axis may be equal to the size of the fourth microlens 1046 in the direction of the slow axis.
  • the first ratio between the area of the light spot formed by the red laser on the fly-eye lens 104 and the areas of the light spots formed by the blue laser and the green laser on the fly-eye lens 104, and the third microlens 1045 in the fast is in direct proportion.
  • the ratio between the first ratio and the second ratio may range from 0.75 to 1.5.
  • the first ratio between the area of the light spot formed by the red laser on the fly-eye lens 104 and the areas of the light spots formed by the blue laser and the green laser on the fly-eye lens 104 is 2
  • the first ratio and the second The ratio between the ratios is 0.75
  • the second ratio between the size of the third microlens 1045 in the fast axis direction and the size of the fourth microlens 1046 in the fast axis direction is 1.5; if the first ratio and the first ratio
  • the ratio between the two ratios is 1, the second ratio between the size of the third microlens 1045 in the fast axis direction and the size of the fourth microlens 1046 in the fast axis direction is 2.
  • the speckle effect is more likely to occur when the laser projection device 10 performs projection display.
  • the speckle effect refers to the scattering of two laser beams emitted by a coherent light source after irradiating a rough object (such as the screen of the laser projection device 10), the two laser beams interfere in space, and finally appear granular light and dark on the screen The effect of alternating spots.
  • the speckle effect makes the display effect of the projected image poor, and these unfocused spots that alternate with light and dark appear to the human eye in a flickering state, which is prone to dizziness when viewed for a long time, and the viewing experience of the user is poor.
  • the size of the multiple third microlenses 1045 in the fly-eye lens 104 for receiving blue laser beams and green laser beams in the direction of the fast axis is larger than that for receiving red laser beams
  • the size of the fourth microlens 1046 in the direction of the fast axis is increased.
  • the laser beam becomes relatively uniform under the action of the fly-eye lens 104, and the interference generated by using these lasers for projection is relatively weak, which can weaken the speckle effect when the laser projection device 10 performs projection display, and avoid the projection image from being blurred. Improve the display effect of projected images and avoid dizziness caused by human eyes.
  • a plurality of lasers in the first laser array 101 emit laser beams to the light combination assembly 103, and the shape of the spot formed after the laser beams are combined by the light combination assembly 103 is generally rectangular, and the light spot is slow in the laser beam.
  • the size in the axial direction ie, the size of the long side of the rectangular spot
  • the size in the fast axis direction of the laser ie, the size of the short side of the rectangular spot.
  • the ratio between the size of the long side and the size of the short side of the spot formed by combining the laser beams is 3:1.
  • the calculation formula (2) of the laser of the laser projection device 10 is:
  • S is the area of the light-receiving surface of the light valve.
  • the light-receiving surface of the light valve is usually a rectangle. Therefore, the area S of the light-receiving surface of the light valve can be the size H1 of the long side of the light-receiving surface and the size H2 of the short side.
  • Q is the exit angle of the laser beam after passing through the lens. After the model of the lens is determined, the value of F# (the ratio of the focal length of the lens to the aperture) of the lens is determined. Therefore, the laser beam can be determined according to the F# of the lens.
  • the exit angle Q behind the lens where the relationship between F# and Q is as follows:
  • the formula (3) for calculating the amount of expansion of the laser light of the laser projection device is:
  • the amount of expansion of the laser light of the laser projection device is determined, and the corresponding Lagrange quantities of the long side and the short side are also determined.
  • the laser beam emitted by the first laser array 101 is combined by the light combining assembly 103, the size of the long side of the spot formed is larger than the size of the short side, therefore, the laser beam incident on the fly-eye lens 104 is in the direction of the long side of the spot.
  • the exit angle on is greater than the exit angle on the short side of the spot.
  • at least one of the long side and the short side of the light spot does not satisfy the Lagrangian invariant.
  • the expression of the Lagrangian quantity of the long side of the spot after passing through the lens can be expressed as:
  • the Lagrangian expression of the long side of the light spot when it hits the lens can be: n' ⁇ Sin(Q1') ⁇ d1.
  • the Lagrangian expression of the short side of the light spot after passing through the lens can be expressed as: ⁇ H2, the Lagrangian expression of the short side of the light spot when it hits the lens can be: n' ⁇ Sin(Q2') ⁇ d2.
  • d1 is the size of the long side of the spot formed after the combination of laser beams
  • d2 is the size of the short side of the spot formed after the combination of laser beams
  • Q1' is the direction of the long side of the spot of the laser beam directed at the fly eye lens
  • Q2' is the exit angle of the laser beam incident on the fly-eye lens in the direction of the short side of the spot.
  • k is a constant equal to n/n'.
  • D1 is the size of the long side of the first microlens in the fly-eye lens
  • D2 is the size of the short side of the first microlens in the fly-eye lens
  • F is the focal length of the first microlens in the fly-eye lens.
  • the light valve needs to correspond to the first microlens in the fly-eye lens. That is, the aspect ratio of the first microlens needs to be approximately the same as the aspect ratio of the light receiving surface of the light valve.
  • the ratio between Q1' and Q2' is approximately equal to H1:H2.
  • the light source 100 further includes a shaping component 108 , and the shaping component 108 is arranged between the light combining component 103 and the fly-eye lens 104 .
  • the laser beam emitted from the light-combining assembly 103 shoots toward the shaping member 108 along the X axis in FIG.
  • the shaping unit 108 is configured to shape the combined laser beam so that the size of the light spot of the shaped laser beam in the direction of the slow axis of the laser (that is, the size of the long side of the rectangular light spot) is smaller than that of the laser beam before shaping.
  • the size of the beam spot in the direction of the slow axis of the laser is smaller than that of the laser beam before shaping.
  • the shaping component 108 shapes the laser beam combined by the light combining component 103, so that the size of the spot of the shaped laser beam in the direction of the slow axis of the laser beam (that is, the rectangular spot The size of the long side of the laser beam) is smaller, so that the size of the light spot of the shaped laser beam in the direction of the slow axis of the laser is the same as the size of the light spot of the shaped laser beam in the direction of the fast axis of the laser (that is, the size of the rectangular light spot The difference between the dimensions of the short side) is smaller. In this way, the amount of expansion loss of the laser beam in the short side direction of the light spot can be effectively reduced, thereby improving the transmission efficiency of the light valve in the light machine 200 to the laser beam emitted by the light source 100 .
  • the speckle effect is more likely to occur when the laser projection device 10 performs projection display.
  • the speckle effect refers to the scattering of two laser beams emitted by a coherent light source after irradiating a rough object (for example, the screen of the laser projection device 10), the two laser beams interfere in space, and finally appear granular on the screen.
  • the effect of light and dark spots makes the display effect of the projected image poor, and these bright and dark unfocused spots appear to the human eye to be in a flickering state, which is prone to dizziness when viewed for a long time, and the viewing experience of the user is poor.
  • the shaping component 108 shapes the light beam combined by the light combination component 103, so that the size of the light spot of the shaped laser beam in the direction of the slow axis of the laser beam is smaller, thereby making the shaping
  • the difference between the size of the light spot of the laser beam shaped by the component 108 in the direction of the slow axis of the laser and the size of the light spot of the shaped laser beam in the direction of the fast axis of the laser is small. In this way, the amount of etendue loss of the laser beam in the short side direction of the light spot can be effectively reduced.
  • the interference generated by using these lasers for projection is relatively weak, which can weaken the speckle effect when the laser projection device 10 performs projection display, avoid blurring of the projected image, improve the display effect of the projected image, and avoid the feeling of dizziness caused by human eyes.
  • the shaping component 108 in the light source 100 has a first cylindrical arc surface A and a second cylindrical arc surface B.
  • the first cylindrical arc surface A is closer to the light combination assembly 103 than the second cylindrical arc surface B.
  • the shaping part 108 converges the combined laser beam in the direction of the slow axis of the laser through the first cylindrical arc surface A, and the shaping part 108 aligns the converged laser beam through the second cylindrical arc surface B. Straight, so as to obtain the laser beam shaped by the shaping component 108.
  • the shaping component 108 in the light source 100 includes two cylindrical lenses, namely a first cylindrical lens 1081 and a second cylindrical lens 1082, and the first cylindrical lens 1081 and the second cylindrical lens 1082 are arranged along the direction of the X axis in FIG. 27 .
  • the first cylindrical lens 1081 is closer to the light combination assembly 103 than the second cylindrical lens 1082 .
  • the first cylindrical lens 1081 has a first cylindrical arc surface A
  • the second cylindrical lens 1082 has a second cylindrical arc surface B.
  • the light incident surface of the first cylindrical lens 1081 that is, the first cylindrical arc surface A can be a cylindrical convex surface, and the light emitting surface of the first cylindrical lens 1081 can be a plane;
  • the light incident surface of the lens 1082 that is, the second cylindrical arc surface B can be a cylindrical concave surface, and the light exit surface of the second cylindrical lens 1082 can be a plane.
  • the first cylindrical lens 1081 can converge the laser beam in the direction of the slow axis of the laser beam, that is, the spot after the combination of the laser beams is in the direction of the slow axis of the laser beam.
  • the size of the laser beam is the same as the size of the spot in the direction of the fast axis of the laser after combining the laser beams.
  • the second cylindrical lens 1082 can collimate the laser beam emitted from the first cylindrical lens 1081 and guide it to the fly-eye lens 104 .
  • the shaping component 108 in the light source 100 includes a cylindrical lens.
  • the shaping component in the light source 100 includes a third cylindrical lens 1083 .
  • the third cylindrical lens 1083 has a first cylindrical arc surface A and a second cylindrical arc surface B.
  • the side of the third cylindrical lens 1083 close to the light-combining assembly 103 i.e. the incident surface of the third cylindrical lens 1083 is the first cylindrical arc surface A, and the third cylindrical lens 1083 is away from the side of the light-combining assembly 103 (i.e. The light emitting surface) of the third cylindrical lens 1083 is the second cylindrical arc surface B.
  • the incident surface of the third cylindrical lens 1083 that is, the first cylindrical arc surface A can be a cylindrical convex surface
  • the light-emitting surface of the third cylindrical lens 1083 that is, the second cylindrical arc surface B Can be a cylindrical concave surface.
  • the third cylindrical lens 1083 can converge the laser beam in the direction of the slow axis of the laser, that is, the spot after combining the laser beams is at
  • the dimension in the direction of the slow axis is the same as the dimension in the direction of the fast axis.
  • the laser beam can be collimated and guided to the fly-eye lens 104 .
  • the height direction of the cylindrical lens in the shaping component 108 may be parallel to the fast axis direction of the laser light.
  • the shaping unit 108 can shape the laser beam combined by the light combining assembly 103 in the direction of the slow axis of the laser, and the shaping unit 108 can not shape the laser beam combined by the light combining unit 103 in the direction of the fast axis of the laser. plastic surgery.
  • the difference between the size of the light spot of the laser beam shaped by the shaping component 108 in the direction of the slow axis of the laser beam and the size of the light spot of the shaped laser beam in the direction of the fast axis of the laser beam is small.
  • the shape of the spot of the laser beam before the shaping component 108 in the light source 100 shapes the laser beam and the shape of the spot of the laser beam after the shaping component 108 shapes the laser beam can both be rectangular.
  • the size of the spot of the laser beam after the shaping component 108 in the light source 100 shapes the laser beam in the direction of the slow axis of the laser beam is the same as the size of the spot of the laser beam after the shaping component 108 shapes the laser beam.
  • the ratio between the dimensions in the direction of the fast axis of the laser may range from 0.6 to 2.
  • the size of the light spot of the laser beam after the shaping part 108 shapes the laser beam in the direction of the slow axis of the laser can be equal to the size of the light spot of the laser beam after the shaping part 108 shapes the laser beam in the direction of the fast axis of the laser beam.
  • Dimensions in the axial direction That is, the size of the light spot of the laser beam after the laser beam is shaped by the shaping part 108 in the direction of the slow axis of the laser is different from the size of the light spot of the laser beam after the shaping part 108 shapes the laser beam in the direction of the fast axis of the laser.
  • the ratio between can be 1.
  • the light source 100 further includes a diffuser 107 .
  • the diffuser 107 is located between the light combining component 103 and the fly-eye lens 104 .
  • the laser beam emitted from the light-combining assembly 103 is directed toward the diffusion sheet 107 along the X-axis direction in FIG.
  • the lens assembly 220 in the optical machine 200 is located on the side of the fly-eye lens 104 away from the light combination assembly 103 , and the prism assembly 250 and the light valve 240 in the optical machine 200 are located in the lens assembly 220 is away from the side of the fly-eye lens 104 .
  • the prism assembly 250 includes a total internal reflection (Total Internal Reflection, TIR) prism.
  • TIR Total Internal Reflection
  • the laser beam emitted by 104 is guided to the prism assembly 250, and the prism assembly 250 guides the laser beam to the light valve 240.
  • the light valve 240 modulates the laser beam, it guides it to the lens 300, and the lens 300 projects the incident laser to form a projection image.
  • the center point of the light-emitting surface of the fly-eye lens 104 may coincide with the focal point of the lens assembly 220 .
  • the center point of the light-emitting surface of the fly-eye lens 104 may coincide with the focal point of the lens assembly 220 close to the light-combining assembly 103 . In this way, it can be ensured that the laser beam emitted from each point on the light emitting surface of the fly-eye lens 104 is incident on the surface of the light valve 240 as parallel light when guided to the light valve 240 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源(100),包括至少一个激光器阵列(101,102)、合光组件(103)和复眼透镜(104)。至少一个激光器阵列(101,102)被配置为发出至少两种颜色的激光。合光组件(103)设置在至少一个激光器阵列(101,102)的出光侧,被配置为将至少一个激光器阵列(101,102)发出的激光导向复眼透镜(104)。复眼透镜(104)设置在合光组件(103)的出光侧,被配置为对至少一个激光器阵列(101,102)发出的激光进行匀化。复眼透镜(104)包括衬底(1042)、多个第一微透镜(1041)和多个第二微透镜(1043)。多个第一微透镜(1041)设置在衬底(1042)的入光面上,多个第二微透镜(1043)设置在衬底(1042)的出光面上,且与多个第一微透镜(1041)对应。

Description

光源及激光投影设备
本申请要求申请号为202111117186.5、2021年9月23日提交的中国专利申请、申请号为202111038612.6、2021年9月6日提交的中国专利申请、申请号为202111037636.X、2021年9月6日提交的中国专利申请、申请号为202111136696.7、2021年9月27日提交的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及投影技术领域,尤其涉及一种光源及激光投影设备。
背景技术
随着光电技术的发展,对于激光投影设备的投影画面的要求越来越高。为了保证投影画面的显示亮度,通常采用激光器为激光投影设备提供照明,激光器发出的激光光束具有单色性好及亮度高的特点,是较为理想的光源。
发明内容
一方面,本公开一些实施例提供一种光源。所述光源包括至少一个激光器阵列、合光组件和复眼透镜。所述至少一个激光器阵列被配置为发出至少两种颜色的激光。所述合光组件设置在所述至少一个激光器阵列的出光侧,被配置为将所述至少一个激光器阵列发出的激光导向所述复眼透镜。所述复眼透镜设置在所述合光组件的出光侧,被配置为对所述至少一个激光器阵列发出的激光进行匀化。所述复眼透镜包括衬底、多个第一微透镜和多个第二微透镜。所述多个第一微透镜设置在所述衬底的入光面上,所述多个第二微透镜设置在所述衬底的出光面上,且与所述多个第二微透镜对应。
另一方面,本公开一些实施例提供一种激光投影设备。所述激光投影设备包括如上所述的光源、光机和镜头。所述光源被配置为向所述光机发出照明光束。所述光机包括光阀,所述光阀被配置为将所述光源发出的照明光束进行调制以获得投影光束。所述镜头被配置为将所述投影光束进行成像。
附图说明
图1为根据一些实施例的一种激光投影设备的结构图;
图2为根据一些实施例的一种激光投影设备中光源、光机和镜头的结构图;
图3为根据一些实施例的激光投影设备中光源的时序图;
图4为根据一些实施例的激光投影设备中光源、光机和镜头的光路图;
图5为根据一些实施例的激光投影设备中光源、光机和镜头的另一种光路图;
图6为根据一些实施例的一种数字微镜器件中微小反射镜片的排列图;
图7为图6中的数字微镜器件中一个微小反射镜片摆动的位置图;
图8为根据一些实施例的微小反射镜片的工作示意图;
图9为根据一些实施例的激光投影设备中一种光源与光机的结构图;
图10为图9中示出的复眼透镜的主视图;
图11为根据一些实施例的一种复眼透镜的光路图;
图12为图9中所示的激光器阵列形成的光斑示意图;
图13为根据一些实施例的激光投影设备中另一种光源与光机的结构图;
图14为激光光束照射到光阀表面的效果图;
图15为根据一些实施例的激光投影设备中又一种光源与光机的结构图;
图16为根据一些实施例的激光投影设备中又一种光源与光机的结构图;
图17为图16示出的激光器阵列合光后的光斑入射到复眼透镜上的效果图;
图18为根据一些实施例的一种复眼透镜的另一种光路图;
图19为图16中示出的复眼透镜的主视图;
图20为根据一些实施例的激光投影设备中又一种光源与光机的结构图;
图21为图20示出的激光器阵列合光后的光斑入射到复眼透镜上的效果图;
图22为根据一些实施例的激光投影设备中又一种光源与光机的结构图;
图23为图22示出的激光器阵列合光后的光斑入射到复眼透镜上的效果图;
图24为根据一些实施例的又一种光源的结构图;
图25为图24中示出的激光器阵列中的激光器的分布示意图;
图26为图24中示出的激光器阵列发出的激光光束合光后的光斑示意图;
图27为根据一些实施例的又一种光源的结构图;
图28为图27示出的光源的俯视图;
图29为根据一些实施例的整形部件对激光光束整形的效果图;
图30为根据一些实施例的又一种光源的结构图;
图31为图30示出的光源的俯视图;
图32为根据一些实施例的又一种光源的结构图;
图33为根据一些实施例的另一种激光投影设备的结构图;
图34为根据一些实施例的又一种激光投影设备的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本公开一些实施例提供一种激光投影设备,如图1所示,激光投影设备10包括壳体11(图1中仅示出部分壳体),装配于壳体11中的光源100,光机200,以及镜头300。该光源100被配置为提供照明光束(激光束)。该光机200被配置为利用图像信号对光源100提供的照明光束进行调制以获得投影光束。该镜头300被配置为将投影光束投射在投影屏幕或墙壁上成像。
在一些实施例中,光机200的一端与光源100连接,另一端与镜头300连接。光源100与光机200沿着激光投影设备10的照明光束的出射方向(参照图2中所示的M方向)设置,且光机200与镜头300沿着激光投影设备10的投影光束的出射方向(参照图2中所示的N方向)设置,M方向与N方向大致垂直。即,光源100、光机200和镜头300三者连接呈“L”型,这种连接结构一方面可以适应光机200中反射式光阀的光路特点,另一方面,还有利于缩短一个维度方向上光路的长度,利于激光投影设备10的结构排布。反射式光阀将在后文中描述。
在一些实施例中,光源100可以时序性地提供三基色光(也可以在三基色光的基础上增加其他色光),由于人眼的视觉暂留现象,人眼看到的是由三基色光混合形成的白光。光源100也可以同时输出三基色光,持续发出白光。
示例地,如图3所示,在一帧目标图像的投影过程中,光源100时序性地输出蓝色、红色和绿色激光光束。光源100在时间段T1内输出蓝色光束,在时间段T2内输出红色光 束,在时间段T3内输出绿色光束。光源100完成一次各基色光束的时序性输出的时间为光源100输出基色光束的周期。一帧目标图像的显示周期内,光源100进行一次各基色光束的时序性输出,因此,一帧目标图像的显示周期与光源100输出基色光束的周期相等,均等于T1、T2和T3的和。
光源100发出的照明光束进入光机200。参考图4和图5,光机200包括:光导管210,透镜组件220,反射镜230,数字微镜器件(Digital Micromirror Device,DMD)240以及棱镜组件250。该光导管210可以接收光源100提供的照明光束,并对该照明光束进行匀化。透镜组件220可以对照明光束先进行放大后进行会聚并出射至反射镜230。反射镜230可以将照明光束反射至棱镜组件250。棱镜组件250将照明光束反射至数字微镜器件240,数字微镜器件240对照明光束进行调制以得到投影光束,并将调制后得到的投影光束反射至镜头300中。
光机200中,数字微镜器件240是核心部件,其作用是利用图像信号对光源100提供的照明光束进行调制,即:控制照明光束针对待显示图像的不同像素显示不同的颜色和亮度,以最终形成光学图像,因此数字微镜器件240也被称为光调制器件或光阀。此外,根据光机200中使用的光调制器件(或光阀)的数量,可以将光机200分为单片系统、双片系统或三片系统。例如,图5所示的光机200中仅使用了一片数字微镜器件240,因此光机200可被称为单片系统。当使用三片数字微镜器件240时,则光机200可以被称为三片系统。
当光机20为三片系统时,光源100同时输出三基色光,以持续发出白光。
如图6所示,数字微镜器件240包含成千上万个可被单独驱动以旋转的微小反射镜片2401,这些微小反射镜片2401呈阵列排布,每个微小反射镜片2401对应待显示图像中的一个像素。如图7所示,在DLP投影架构中,每个微小反射镜片2401相当于一个数字开关,在外加电场作用下可以在正负12度或者正负17度的范围内摆动。
如图8所示,微小反射镜片2401在负的偏转角度反射出的光,称之为OFF光,OFF光为无效光,通常打到激光投影设备10的壳体11上、光机200的壳体上或者光吸收单元400上吸收掉。微小反射镜片2401在正的偏转角度反射出的光,称之为ON光,ON光是数字微镜器件240表面的微小反射镜片2401接收照明光束照射,并反射至镜头300的有效光束,用于投影成像。微小反射镜片2401的开状态为光源100发出的照明光束经微小反射镜片2401反射后可以进入镜头300时,微小反射镜片2401所处且可以保持的状态,即微小反射镜片2401处于正的偏转角度的状态。微小反射镜片2401的关状态为光源100发出的照明光束经微小反射镜片2401反射后未进入镜头300时,微小反射镜片2401所处且可以保持的状态,即微小反射镜片2401处于负的偏转角度的状态。
例如,对于偏转角度为±12°的微小反射镜片2401,位于+12°的状态即为开状态,位于-12°的状态即为关状态,而对于-12°和+12°之间的偏转角度,实际中未使用,微小反射镜片2401的实际工作状态仅开状态和关状态。而对于偏转角度为±17°的微小反射镜片2401,位于+17°的状态即为开状态,位于-17°的状态即为关状态。图像信号通过处理后被转换成0、1这样的数字代码,这些数字代码可以驱动所述微小反射镜片2401摆动。
在一帧图像的显示周期内,部分或全部微小反射镜片2401会在开状态和关状态之间切换一次,从而根据微小反射镜片2401在开状态和关状态分别持续的时间来实现一帧图像中的各个像素的灰阶。例如,当像素具有0~255这256个灰阶时,与灰阶0对应的微小反射镜片在一帧图像的整个显示周期内均处于关状态,与灰阶255对应的微小反射镜片在一帧图像的整个显示周期内均处于开状态,而与灰阶127对应的微小反射镜片在一帧图像的显示周期内一半时间处于开状态、另一半时间处于关状态。因此通过图像信号控制数字微镜器件240中每个微小反射镜片在一帧图像的显示周期内所处的状态以及各状态的维持时间,可以控制该微小反射镜片2401对应像素的亮度(灰阶),实现对投射至数字微镜器件240的照明光束进行调制的目的。
如图4所示,镜头300包括多片透镜组合,通常按照群组进行划分,分为前群、中群和后群三段式,或者前群和后群两段式。前群是靠近激光投影设备10的出光侧(即沿着N 方向,镜头300远离光机200的一侧)的镜片群组,后群是靠近光机200出光侧(即沿着N方向,镜头300靠近光机200的一侧)的镜片群组。镜头300可以为变焦镜头,或者为定焦可调焦镜头,或者为定焦镜头。
相关技术中,激光光束射入光导管时,为了对激光光束有良好的匀化效果,需要光导管的长度较长,通常在30毫米以上。这样,导致整个激光投影设备的体积较大。为此,本公开一些实施例提供一种光源,请参考图9,该光源100包括第一激光器阵列101、第二激光器阵列102、合光组件103和复眼透镜104。
在一些实施例中,第一激光器阵列101和第二激光器阵列102被配置为发出至少一种颜色的激光,从而使得光源100发出至少两种颜色的激光。第一激光器阵列101和第二激光器阵列102均包括阵列排布的多个激光器,每个激光器包括一个发光芯片,即第一激光器阵列101和第二激光器阵列102均包括阵列排布的多个发光芯片。示例地,该多个激光器可以发出三种颜色的激光,例如红色激光、绿色激光和蓝色激光。此时,该多个激光器包括用于发出红色激光的红色激光器,用于发出绿色激光的绿色激光器,以及用于发出蓝色激光的蓝色激光器。
需要说明的是,本公开一些实施例均是以第一激光器阵列101和第二激光器阵列102同时发出蓝色激光、绿色激光和红色激光的三种颜色的激光为例进行示意性说明的。当然,第一激光器阵列101和第二激光器阵列102还可以同时发出两种颜色的激光,例如蓝色激光和黄色激光。
在一些实施例中,第一激光器阵列101与第二激光器阵列102的结构可以相同,也可以不同。
示例地,如图9和图20所示,第一激光器阵列101与第二激光器阵列102的结构相同,均包括排布成四行的多个激光器。该多个激光器包括两行用于发出红色激光的红色激光器、一行用于发出绿色激光的绿色激光器和一行用于发出蓝色激光的蓝色激光器。这样,第一激光器阵列101和第二激光器阵列102能够通过红色激光器、绿色激光器和蓝色激光器同时发出红色激光、绿色激光和蓝色激光。
示例地,如图22所示,第一激光器阵列101和第二激光器阵列102的结构不同。例如,第一激光器阵列101包括排布成四行的多个激光器,该多个激光器包括两行用于发出红色激光的红色激光器、一行用于发出绿色激光的绿色激光器和一行用于发出蓝色激光的蓝色激光器。第二激光器阵列102包括排布成两行的多个激光器,该多个激光器为红色激光器。
当然,多个激光器还可以采用其他的排列方式进行排布。示例地,如图24和图25所示,第一激光器阵列101包括排布成两行七列的多个激光器。该多个激光器包括一行用于发出红色激光的红色激光器,一行用于发出蓝色激光的蓝色激光器和用于发出绿色激光的绿色激光器。
在一些实施例中,参考图30,第一激光器阵列101和第二激光器阵列102还包括多个准直透镜1011。第一激光器阵列101和第二激光器阵列102中的每个激光器与一个准直透镜1011相对应,即每个发光芯片与一个准直透镜1011对应。该每个准直透镜1011被配置为将对应的激光器发出的激光进行准直后,并导向合光组件103。
第一激光器阵列101被配置为向合光组件103发出第一激光光束,第二激光器阵列102被配置为向合光组件103发出第二激光光束。该合光组件103被配置为将第一激光光束和第二激光光束导向复眼透镜104,该复眼透镜104被配置为将第一激光光束和第二激光光束导向光机200。光机200被配置为对第一激光光束和第二激光光束进行调制后导向镜头300。
在一些实施例中,第一激光器阵列101的出光方向(如图9中的Y轴方向)与第二激光器阵列102的出光方向(如图9中的X轴方向)垂直,该合光组件103包括第一合光部件110。第一合光部件110位于第一激光器阵列101和第二激光器阵列102的出光侧,复眼透镜104位于第一合光部件110远离第二激光器阵列102的一侧。第一激光器阵列101与第一合光部件110的排布方向(如图9中的Y轴方向),垂直于第二激光器阵列102与 第一合光部件110的排布方向(如图9中X轴方向)。第二激光器阵列102与第一合光部件110的排布方向(如图9中X轴方向),平行于第一合光部件110与复眼透镜104的排布方向。
第一激光器阵列101发出的第一激光光束和第二激光器阵列102发出的第二激光光束射向第一合光部件110,第一合光部件110将第一激光光束反射向复眼透镜104,并将第二激光光束透射向复眼透镜104,该复眼透镜104对接收到的激光光束进行匀化处理。
在一些实施例中,请参考图13,第一合光部件110为一体结构,包括第一透射反射部1101和第二透射反射部1102。第一透射反射部1101与第二透射反射部1102均倾斜设置,且位于第一激光器阵列101和第二激光器阵列102的出光光束的交汇处。在复眼透镜104的入光面所在的平面上,第一透射反射部1101的正投影与第二透射反射部1102的正投影错开,即无交叠。
第一激光器阵列101向第一透射反射部1101和第二透射反射部1102发出第一激光光束,第二激光器阵列102向第一透射反射部1101和第二透射反射部1102发出第二激光光束。示例地,第一激光光束和第二激光光束均包括三种颜色的激光,例如,蓝色激光、绿色激光和红色激光。第一激光器阵列101向第一透射反射部1101发出蓝色激光和绿色激光,且向第二透射反射部1102发出红色激光。第二激光器阵列102向第一透射反射部1101发出红色激光,且向第二透射反射部1102发出蓝色激光和绿色激光。该第一透射反射部1101被配置为将第一激光器阵列101发出的蓝色激光和绿色激光反射至复眼透镜104,并将第二激光器阵列102发出的红色激光透射至复眼透镜104。该第二透射反射部1102被配置为将第一激光器阵列101发出的红色激光反射至复眼透镜104,并将第二激光器阵列102发出的蓝色激光和绿色激光透射至复眼透镜104。
在一些实施例中,第一合光部件110中的第一透射反射部1101和第二透射反射部1102可以为具有不同波长选择特性的二向色元件。例如,第一透射反射部1101可以为反射蓝色激光和绿色激光,且透射其他颜色的激光的二向色片;第二透射反射部1102可以为反射红色激光,且透射其他颜色的激光的二向色片。从而,第一激光器阵列101和第二激光器阵列102通过一个具有不同波长选择特性的第一合光部件110完成合光,光路紧凑,利于小型化。
在另一些实施例中,第一合光部件110中的第一透射反射部1101和第二透射反射部1102可以为具有不同偏振选择特性的偏振元件。例如,第一激光器阵列101和第二激光器阵列102分别发出具有不同偏振特性的三色激光光束,以红色激光为P偏振光,蓝色和绿色激光为S偏振光为例,第一透射反射部1101可以为反射S偏振光即反射蓝色激光、绿色激光,且透射P偏振光,即透射红色激光的偏振片;而第二透射反射部1102则为反射P偏振光,即反射红色激光,而透射S偏振光,即透射蓝色激光、绿色激光的偏振片。从而第一激光器阵列101和第二激光器阵列102通过一个具有不同偏振选择特性的第一合光部件110完成了合光,光路紧凑,利于小型化。
在另一些实施例中,如图20和图22所示,第一激光器阵列101的出光方向(即图中的Y轴方向)与第二激光器阵列102的出光方向(即图中的Y轴方向)平行。合光组件103包括第二合光部件120和第三合光部件130。第二合光部件120设置在第一激光器阵列101的出光侧,第三合光部件130设置在第二激光器阵列102的出光侧,复眼透镜104设置在第三合光部件130远离第二合光部件120的一侧。第一激光器阵列101与第二合光部件120的排布方向,平行于第二激光器阵列102与第三合光部件130的排布方向。复眼透镜104与第三合光部件130的排布方向,垂直于第三合光部件130与第二激光器阵列102的排布方向。
第一激光器阵列101向第二合光部件120发出第一激光光束,第二激光器阵列102向第三合光部件130发出第二激光光束。第二合光部件120被配置为将第一激光光束反射至复眼透镜104,第三合光部件130被配置为将第二激光光束反射后至复眼透镜104。复眼透镜104对接收到的激光光束进行匀化处理。
在一些实施例中,如图20所示,第一激光光束和第二激光光束均包括三种颜色的激 光,例如,绿色激光、蓝色激光和红色激光。此时,第二合光部件120和第三合光部件130的结构相同,且在复眼透镜104的入光面所在的平面上,第二合光部件120和第三合光部件130错开。
第二合光部件120包括第一镜片121、第二镜片122和第三镜片123。第一镜片121、第二镜片122和第三镜片123沿着X轴的方向依次排布,且倾斜设置。在复眼透镜104的入光面所在的平面上,第一镜片121的正投影、第二镜片122的正投影和第三镜片123的正投影至少部分重叠。
第一激光器阵列101向第一镜片121发出绿色激光,向第二镜片122发出蓝色激光,并向第三镜片123发出红色激光。第一镜片121被配置为反射绿色激光,第二镜片122被配置为反射蓝色激光且透射绿色激光,第三镜片123被配置为反射红色激光且透射绿色激光和蓝色激光。
在一些实施例中,第二合光部件120中的第一镜片121可以为用于反射所有颜色的光的反射镜,或者可以为用于反射绿色激光且透射其他颜色的激光的二向色片;第二镜片122可以为用于反射蓝色激光且透射其他颜色的激光的二向色片;第三镜片123可以为用于反射红色激光且透射其他颜色的激光的二向色片。
第三合光部件130包括第一镜片131、第二镜片132和第三镜片133。第一镜片131、第二镜片132和第三镜片133沿着X轴的方向依次排布,且倾斜设置。在复眼透镜104的入光面所在的平面上,第一镜片131的正投影、第二镜片132的正投影和第三镜片133的正投影至少部分重叠。
第二激光器阵列102向第一镜片131发出绿色激光,向第二镜片132发出蓝色激光,并向第三镜片133发出红色激光。第一镜片131被配置为反射绿色激光,第二镜片132被配置为反射蓝色激光且透射绿色激光,第三镜片133被配置为反射红色激光且透射绿色激光和蓝色激光。
在一些实施例中,第三合光部件130中的第一镜片131可以为用于反射所有颜色的光的反射镜,或者可以为用于反射绿色激光且透射其他颜色的激光的二向色片;第二镜片132可以为用于反射蓝色激光且透射其他颜色的激光的二向色片;第三镜片133可以为用于反射红色激光且透射其他颜色的激光的二向色片。
当第一激光器阵列101和第二激光器阵列102所发出的蓝色激光和绿色激光的偏振极性与红色激光的偏振极性相反,例如,蓝色激光和绿色激光为S偏振光,红色激光为P偏振光时,如图13和图20所示,光源100还可以包括第一偏振转换部件105和第二偏振转换部件106。其中,该第一偏振转换部件105被配置为将第一激光器阵列101出射的绿色激光和蓝色激光由S偏振光转换为P偏振光;该第二偏振转换部件106被配置为将第二激光器阵列102出射的绿色激光和蓝色激光由S偏振光转换为P偏振光。如此,射入复眼透镜104的蓝色激光和绿色激光的偏振方向均和红色激光的偏振方向相同。这样,采用统一偏振方向的激光形成投影画面,可以避免由于光学镜片对于不同偏振光的透射和反射效率不同,导致形成的投影画面存在色块的问题。示例地,该第一偏振转换部件105和第二偏振转换部件106均可以为半波片。
在一些实施例中,如图13所示,第一偏振转换部件105位于第一激光器阵列101和第一合光部件110的第一透射反射部1101之间,第二偏振转换部件106位于第二激光器阵列102和第一合光部件110的第二透射反射部1102之间;或者,如图20所示,第一偏振转换部件105位于第一激光器阵列101与第二合光部件120的第一镜片121和第二镜片122之间,第二偏振转换部件106位于第二激光器阵列102与第三合光部件130的第一镜片131和第二镜片132之间。
可以理解的是,第一偏振转换部件105和第二偏振转换部件106仅适用于第一合光部件110通过波长选择特性进行合光的情况。
在另一些实施例中,如图22所示,第一激光光束包括三种颜色的激光,例如,绿色激光、蓝色激光和红色激光;第二激光光束包括一种颜色的激光,例如,红色激光。此时,第二合光部件120包括第四镜片124、第五镜片125、第六镜片126和第七镜片127,第三 合光部件130包括第四镜片134。在复眼透镜104的入光面所在的平面上,第四镜片124的正投影和第五镜片125的正投影至少部分重叠,第六镜片126和第七镜片127的正投影分别位于第四镜片124和第五镜片125的正投影的相对两侧。第四镜片134的正投影与第四镜片124和第五镜片125的正投影至少部分重叠,且与第六镜片126和第七镜片127的正投影错开。
第一激光器阵列101向第四镜片124发出绿色激光,向第五镜片125发出蓝色激光,且向第六镜片126和第七镜片127发出红色激光。第四镜片124被配置为反射绿色激光,第五镜片125被配置为反射蓝色激光且透射绿色激光,且第六镜片126和第七镜片127被配置为反射红色激光。第二激光器阵列102向第四镜片134发出红色激光,且第一激光器阵列101发出的绿色激光和蓝色激光分别被第四镜片124和第五镜片125反射至第四镜片134。第四镜片134被配置为反射第二激光器阵列102发出的红色激光,且透射第一激光器阵列101发出的绿色激光和蓝色激光。
在一些实施例中,第二合光部件120的第四镜片124可以为用于反射所有颜色的光的反射镜,也可以为用于反射绿色激光且透射其他颜色的激光的二向色片;第五镜片125可以为用于反射蓝色激光且透射其他颜色的激光的二向色片;第六镜片126和第七镜片127可以为用于反射所有颜色的光的反射镜,也可以为用于反射红色激光且透射其他颜色的激光的二向色片;第三合光部件130的第四镜片134可以为用于反射红色激光且透射其他颜色的激光的二向色片。
需要说明的是,上述一些实施例均是以光源100包括两个激光器阵列为例进行示意性说明的。在另一些实施例中,光源100包括一个激光器阵列。参考图15,光源100仅包括第一激光器阵列101、合光组件103和复眼透镜104,而不包括第二激光器阵列102。合光组件103包括第四合光部件140,第四合光部件140位于第一激光器阵列101的出光侧,且第一激光器阵列101与第四合光部件140的排布方向垂直于第四合光部件140与复眼透镜104的排布方向。
第一激光器阵列101向第四合光部件140发出第一激光光束,第四合光部件140将第一激光光束反射至复眼透镜104,复眼透镜104对接收到的激光光束进行匀化处理。第四合光部件140的结构有多种,本公开一些实施例均以第一激光光束包括三种颜色的激光,例如,蓝色激光、绿色激光和红色激光为例,对第四合光部件140的结构进行说明。
第一种情况,如图15所示,第四合光部件140为一体结构,包括第一反射部1401和第二反射部1402。在复眼透镜104的入光面所在的平面上,第一反射部1401的正投影与第二反射部1402的正投影错开,即无交叠。
第一激光器阵列101向第一反射部1401发出蓝色激光和绿色激光,且向第二反射部1402发出红色激光。该第一反射部1401被配置为将蓝色激光和绿色激光反射至复眼透镜104,该第二反射部1402被配置为将红色激光反射至复眼透镜104。
在一些实施例中,第四合光部件140中的第一反射部1401可以为用于反射所有颜色的激光的反射镜,也可以为用于反射绿色激光和蓝色激光且透射其他颜色的激光的二向色片;第二反射部1402可以为用于反射所有颜色的激光的反射镜,也可以为用于反射红色激光且用于透射其他颜色的激光的二向色片。可以理解的是,当第一反射部1401和第二反射部1402均为二向色片时,第四合光部件140与第一合光部件110的结构相同。
第二种情况,请参考图16,第四合光部件140包括独立设置的第一镜片141、第二镜片142和第三镜片143,且第一镜片141、第二镜片142和第三镜片143沿X轴方向依次排布。在复眼透镜104的入光面所在的平面上,第一镜片141的正投影、第二镜片142的正投影和第三镜片143的正投影至少部分重合。
第一激光器阵列101向第一镜片141发出绿色激光,向第二镜片142发出蓝色激光,且向第三镜片143发出红色激光。第一镜片141被配置为反射绿色激光,第二镜片142被配置为透射绿色激光且反射蓝色激光,且第三镜片143被配置为透射绿色激光和蓝色激光且反射红色激光。
在一些实施例中,第四合光部件140中的第一镜片141可以为用于反射所有颜色的光 的反射镜,或者可以为用于反射绿色激光且透射其他颜色的激光的二向色片;第二镜片142可以为用于反射蓝色激光且透射其他颜色的激光的二向色片;第三镜片143可以为用于反射红色激光且透射其他颜色的激光的二向色片。此时,第四合光部件140与第二合光部件120和第三合光部件130的结构相同。
第三种情况,如图24所示,第四合光部件140包括第四镜片144和第五镜片145。第四镜片144和第五镜片145沿着X轴的方向依次排布,且在复眼透镜104的入光面所在的平面上,第四镜片144的正投影和第五镜片145的正投影至少部分重叠。
第一激光器阵列向第四镜片144发出绿色激光和蓝色激光,且向第五镜片145发出红色激光。第四镜片144被配置为反射绿色激光和蓝色激光,第五镜片145被配置为透射绿色激光和蓝色激光且反射红色激光。
在一些实施例中,第四合光部件140中的第四镜片144可以为用于反射所有颜色的光的反射镜,或者可以为用于反射绿色激光和蓝色激光且透射其他颜色的激光的二向色片;第五镜片145可以为用于反射红色激光且透射其他颜色的激光的二向色片。
当第一激光器阵列101所发出的蓝色激光和绿色激光的偏振极性与红色激光的偏振极性相反,例如,蓝色激光和绿色激光为S偏振光,红色激光为P偏振光时,如图15、图16、图22和图32所示,光源100还可以包括第一偏振转换部件105。该第一偏振转换部件105被配置为将第一激光器阵列101出射的绿色激光和蓝色激光由S偏振光转换为P偏振光,如此,射入复眼透镜104的蓝色激光和绿色激光的偏振方向均和红色激光的偏振方向相同。这样,采用统一偏振方向的激光形成投影画面,可以避免由于光学镜片对于不同偏振光的透射和反射效率不同,导致形成的投影画面存在色块的问题。示例地,该第一偏振转换部件105可以为半波片。
在一些实施例中,如图15所示,第一偏振转换部件105位于第一激光器阵列101与第四合光部件140的第一反射部1401之间;或者,如图16所示,第一偏振转换部件105位于第一激光器阵列101与第四合光部件140的第一镜片141和第二镜片142之间;或者,如图32所示,第一偏振转换部件105位于第一激光器阵列101与第四合光部件140的第四镜片144之间;或者,如图22所示,第一偏振转换部件105位于第一激光器阵列101与第二合光部件120的第四镜片124和第五镜片125之间。
请参考图11,复眼透镜104包括玻璃衬底1042,位于玻璃衬底1042的入光面上的阵列排布的多个第一微透镜1041,以及位于玻璃衬底1402的出光面上的阵列排布的多个第二微透镜1043。其中,多个第一微透镜1041和多个第二微透镜1043对应,每个第一微透镜1041的形状和大小与对应的第二微透镜1043的形状和大小均相同。示例地,多个第一微透镜1041和多个第二微透镜1043均可以为球面凸透镜或非球面凸透镜,且多个第一微透镜1041与多个第二微透镜1043一一对应。
这样,多个第一微透镜1041可以对各个激光器所发出的激光光束的光斑进行分割,再通过多个第二微透镜1043对分割后的光斑进行累加,从而可以实现对各个激光器所发出的激光光束进行匀化,以实现对第一激光器阵列101和第二激光器阵列102所发出的激光光束进行匀化。
在本公开一些实施例提供的光源100中,采用复眼透镜104对激光光束进行匀化,由于复眼透镜104包括玻璃衬底1042以及位于玻璃衬底1042的入光面上的多个第一微透镜1041和位于玻璃衬底1042的出光面上的多个第二微透镜1043,因此,复眼透镜104的体积通常较小,有效的减小了光源100的体积。此外,该光源100中无需设置缩束镜组和会聚透镜,进一步的减小了光源100的体积。在将光源100集成到激光投影设备10中后,能够有效的减小激光投影设备10的体积。
如图10所示,在目标方向上,即激光的快轴方向或慢轴方向,复眼透镜104的第一微透镜1041的尺寸可以根据激光器在复眼透镜104的入光面上形成的光斑的尺寸和光阀240的尺寸确定。如此,通过激光器发出的激光光束的光斑的尺寸和光阀240的尺寸确定的第一微透镜1041对各个激光器发出的激光光束的匀化效果较好。
需要说明的是,第一激光器阵列101和第二激光器阵列102均可以采用半导体激光器, 半导体激光器发出的激光具有快轴和慢轴。快轴方向激光的发散角度约为±30度,慢轴方向激光的发散角度约为±10度。第一激光器阵列101和第二激光器阵列102发出的激光光束经准直后,光斑在快轴方向上的尺寸大于在慢轴方向上的尺寸,光斑的形状可以呈矩形或椭圆形。光斑长边的方向为快轴方向,光斑短边的方向为慢轴方向。
在一些实施例中,该第一微透镜1041在目标方向上的尺寸d满足以下公式(1):
Figure PCTCN2022103189-appb-000001
其中,D为光阀240在目标方向上的尺寸;θ为镜头300的成像角度;T为激光器在复眼透镜104的入光面上形成的光斑在目标方向上的尺寸;k为大于0的比例系数。
需要说明的是,在光阀240的型号确定后,光阀240在目标方向上的尺寸是确定的,因此,上述公式中的参数D是固定值。在激光投影设备10中的镜头300的型号确定后,镜头300的成像角度是固定值,例如,该成像角度可以为120°或150°等,因此,上述公式中的参数θ是固定值。在第一激光器阵列101的发光芯片和第二激光器阵列102的发光芯片的型号确定后,第一激光器阵列101和第二激光器阵列102中的各个激光器在复眼透镜104的入光面上形成的光斑在目标方向上的尺寸是固定值。
为此,在光阀240的型号、激光投影设备10中的镜头300的型号和第一激光阵列101的发光芯片和第二激光器阵列102的发光芯片的型号确定后,通过上述计算公式(1),可以计算出复眼透镜104的入光面上设置的第一微透镜1041在快轴方向上的尺寸和慢轴方向上的尺寸。
请参考图12,每个激光器所发出的激光在复眼透镜104的入光面上形成的光斑,与至少一个第一微透镜1041所在的区域交叠。在这种情况下,通过复眼透镜104能够对各个激光器发出的激光进行匀化。
在一些实施例中,每个激光器所发出的激光在复眼透镜104的入光面上形成的光斑与至少两个第一微透镜1041所在的区域交叠。在这种情况下,通过该复眼透镜104对各个激光器发出的激光光束进行匀化的效果较好。
在一些实施例中,每个激光器在复眼透镜104的入光面上形成的光斑,与复眼透镜104的入光面上设置的至少四个第一微透镜1041所在的区域交叠,且该至少四个第一微透镜1041至少阵列排布为两行和两列。示例地,当激光器在复眼透镜104的入光面上形成的光斑与四个第一微透镜1041所在的区域交叠时,这四个第一微透镜1041可以排布为两行和两列。这样,可以进一步的提高复眼透镜104对各个激光器发出的激光光束进行匀化的效果。
在一些实施例中,复眼透镜104中的各个第一微透镜1041的尺寸是相同的。例如,第一微透镜1041在快轴方向上的尺寸和在慢轴方向上的尺寸均在0.1毫米至1毫米的范围内。
为了保证激光投影设备10投影画面的成像质量,红色激光器的数量通常比蓝色激光器和绿色激光器的数量多,例如,第一激光器阵列101和第二激光器阵列102均包括两行红色激光器、一行蓝色激光器和一行绿色激光器。三种颜色的激光光束被合光组件103合光后红色激光形成的光斑尺寸较大,而蓝色激光和绿色激光形成的光斑尺寸较小。示例地,如图17所示,蓝色激光和绿色激光在复眼透镜104上形成的光斑的面积均为B,红色激光在复眼透镜104上形成的光斑的面积为A,即蓝色激光和绿色激光在复眼透镜104上形成的光斑的面积,均小于红色激光在复眼透镜104上形成的光斑的面积。
由于激光的光学扩展量为激光光束的光斑的面积与该激光光束的发散角的乘积,如此,红色激光的光学扩展量大于蓝色激光的光学扩展量和绿色激光的光学扩展量,导致三种颜色的激光光束合光后的光斑出现颜色分界现象。例如,光斑边缘区域较中间区域偏红的现象,在合光后的光斑入射到激光投影设备10中的镜头300以形成投影画面时,导致投影画面的颜色均匀性较差,进而导致激光投影设备10的显示效果较差。
为此,本公开一些实施例中,多个第一微透镜1041包括多个第三微透镜1045和多个 第四微透镜1046,多个第三微透镜1045被配置为接收蓝色激光和绿色激光,以及红色激光的一部分,多个第四微透镜1046被配置为接收红色激光的另一部分,第三微透镜1045在快轴方向上的尺寸大于第四微透镜1046在快轴方向上的尺寸。
参考图18,在图18中仅是以复眼透镜104的入光面上设置的一个第一微透镜1041和出光面上对应设置的一个第二微透镜1043为例进行说明的。复眼透镜104的入光面上设置的第一微透镜1041能够将光线汇聚到出光面上对应设置的第二微透镜1043的中心点,如此,从第二微透镜1043出射的光线可以以一定的发散角度θ出射。根据图18可知,第一微透镜1041和第二微透镜1043在快轴方向上的尺寸d越大,光线从第二微透镜1043出射的发散角度θ越大。
由于在复眼透镜104的多个第一微透镜1041中,用于接收蓝色激光和绿色激光的多个第三微透镜1045在快轴方向上的尺寸大于用于接收红色激光的多个第四微透镜1046在快轴方向上的尺寸。因此,在蓝色激光和绿色激光导向复眼透镜104中的多个第三微透镜1045后,蓝色激光和绿色激光的发散角增加,进而能够使得蓝色激光和绿色激光的光学扩展量增加。如此,蓝色激光和绿色激光的光学扩展量与红色激光的光学扩展量近似相同。这样,能够避免三种颜色的激光光束合光后的光斑出现颜色分界现象。在合光后的光斑入射到激光投影设备10中的镜头300以形成投影画面时,能够保证投影画面的颜色均匀性较好,进而使得激光投影设备10的显示效果较好。
在一些实施例中,请参考图19、图21和图23,复眼透镜104中的第三微透镜1045在激光的快轴方向上的尺寸大于第四微透镜1046在快轴方向上的尺寸,该第三微透镜1045在激光慢轴方向上的尺寸可以等于第四微透镜1046在慢轴方向上的尺寸。
在一些实施例中,红色激光在复眼透镜104上形成的光斑的面积与蓝色激光和绿色激光在复眼透镜104上形成的光斑的面积之间的第一比值,和第三微透镜1045在快轴方向上的尺寸与第四微透镜1046在快轴方向上的尺寸之间的第二比值呈正比例关系。
在一些实施例中,该第一比值与第二比值之间的比值范围可以为0.75至1.5。例如,当红色激光在复眼透镜104上形成的光斑的面积与蓝色激光和绿色激光在复眼透镜104上形成的光斑的面积之间的第一比值为2时,若第一比值与该第二比值之间的比值为0.75,则第三微透镜1045在快轴方向上的尺寸与第四微透镜1046在快轴方向上的尺寸之间的第二比值为1.5;若第一比值与该第二比值之间的比值为1时,则第三微透镜1045在快轴方向上的尺寸与第四微透镜1046在快轴方向上的尺寸之间的第二比值为2。
需要说明的是,激光投影设备10进行投影显示时较容易产生散斑效应。散斑效应指的是相干光源发出的两束激光在照射粗糙的物体(如激光投影设备10的屏幕)后发生散射,该两束激光在空间中产生干涉,最终在屏幕上出现颗粒状的明暗相间的斑点的效应。散斑效应使得投影图像的显示效果较差,且明暗相间的这些未聚焦的斑点在人眼看来处于闪烁状态,长时间观看易产生眩晕感,用户的观看体验较差。
本公开一些实施例提供的光源100中,复眼透镜104中用于接收蓝色激光光束和绿色激光光束的多个第三微透镜1045在快轴方向上的尺寸大于用于接收红色激光光束的多个第四微透镜1046在快轴方向上的尺寸。这样,使得蓝色激光光束和绿色激光光束的光学扩展量增加。如此,激光光束在复眼透镜104的作用下变得较为均匀,进而将这些激光用于投影产生的干涉较弱,可以减弱激光投影设备10进行投影显示时的散斑效应,避免投影图像变花,提高投影图像的显示效果,避免人眼观看产生的眩晕感。
参考图26,第一激光器阵列101中的多个激光器向合光组件103发出激光光束,该激光光束被合光组件103合光后形成的光斑的形状通常为矩形,且该光斑在激光的慢轴方向上的尺寸(即,矩形光斑长边的尺寸),大于在激光的快轴方向上的尺寸(即,矩形光斑短边的尺寸)。例如,激光光束合光后形成的光斑的长边的尺寸与短边的尺寸之间的比值为3:1。
根据光学原理中的光学扩展量的计算公式可知,激光投影设备10的激光的扩展量计算公式(2)为:
π×S×(SinQ) 2  (2);
其中,S为光阀的受光面的面积,这里,光阀的受光面通常为矩形,因此,光阀的受光面的面积S可以用受光面的长边的尺寸H1与短边的尺寸H2的乘积表示;Q为激光光束经过镜头后的出射角度,在镜头的型号确定后,镜头的F#(镜头的焦距与孔径的比值)的值是确定的,因此,可以根据镜头的F#确定激光光束经过镜头后的出射角度Q,其中,F#与Q之间的关系如下:
Figure PCTCN2022103189-appb-000002
也即是,激光投影设备的激光的扩展量计算公式(3)为:
Figure PCTCN2022103189-appb-000003
根据上述公式可知,在光阀的型号和镜头的型号确定后,激光投影设备的激光的扩展量是确定的,对应的长边和短边的拉格朗日量是确定的。然而,由于第一激光器阵列101发出的激光光束经合光组件103合光后形成的光斑的长边的尺寸大于短边的尺寸,因此,射向复眼透镜104的激光光束在光斑的长边方向上的出射角大于在光斑在短边方向上的出射角。如此,光斑的长边和短边中的至少一个不满足拉格朗日不变量。
例如,拉格朗日不变量的公式(4)如下:
n×SinQ×Y=n’×SinQ’×Y’  (4);
其中,n为激光光束从镜头出射后传输介质的折射率;Q为激光光束从镜头出射的出射角度;Y为成像物体的像高;n’为激光光束从复眼透镜出射后传输介质的折射率;Q’为激光光束射向镜头的入射角度,由于激光光源中激光光束从复眼透镜出射后会经过多次反射后射向镜头,因此,Q’可以用激光光束从复眼透镜出射的出射角度来表示;Y’为成像物体的物高。在激光投影设备中,n与n’均可以为空气的折射率,因此,n=n’。
由于激光光束经过镜头后的成像画面的长宽比与光阀的受光面的长宽比相同。因此,根据拉格朗日不变量的公式可知,光斑的长边在经过镜头出射后的拉格朗日量表达式可以为:
Figure PCTCN2022103189-appb-000004
光斑的长边在射向镜头时的拉格朗日量表达式可以为:n’×Sin(Q1’)×d1。光斑的短边在经过镜头出射后的拉格朗日量表达式可以为:
Figure PCTCN2022103189-appb-000005
×H2,光斑的短边在射向镜头时的拉格朗日量表达式可以为:n’×Sin(Q2’)×d2。其中,d1为激光光束合光后形成的光斑的长边的尺寸,d2为激光光束合光后形成的光斑的短边的尺寸;Q1’为射向复眼透镜的激光光束在光斑的长边方向上的出射角,Q2’为射向复眼透镜的激光光束在光斑的短边方向上的出射角。
为了保证激光投影设备的出光效率较高,通常需要让光斑的长边满足拉格朗日不变量。也即,需要保证
Figure PCTCN2022103189-appb-000006
其中,k为常数,等于n/n’。
上述表达式中的Q1’与Q2’满足以下关系式:
Figure PCTCN2022103189-appb-000007
其中,D1为复眼透镜中的第一微透镜的长边的尺寸,D2为复眼透镜中的第一微透镜的短边的尺寸,F为复眼透镜中的第一微透镜的焦距。在激光光源中,光阀需要与复眼透镜中的第一微透镜对应。也即,第一微透镜的长宽比需要与光阀的受光面的长宽比近似相同。如此,根据上述公式(5)和公式(6)可以得出:Q1’与Q2’之间的比值近似等于H1:H2。
由上可知,由于激光光束合光后形成的光斑的长边的尺寸大于短边的尺寸,因此,当
Figure PCTCN2022103189-appb-000008
时,
Figure PCTCN2022103189-appb-000009
如此,激光光束在光斑的短边方向上的扩展量损失量较大,进而导致光阀对激光器阵列发出的激光光束的传输效率较低。
为此,请参考图27、图28和图29,该光源100还包括整形部件108,整形部件108设置在合光组件103与复眼透镜104之间。从合光组件103射出的激光光束沿图27中X轴的方向射向整形部件108,经整形部件108整形后射向复眼透镜104,复眼透镜104对射入的激光光束进行匀化处理。
整形部件108被配置为对合光后的激光光束进行整形,以使得整形后的激光光束的光斑在激光的慢轴方向上的尺寸(即,矩形光斑的长边的尺寸)小于整形前的激光光束的光斑在激光的慢轴方向上的尺寸。
本公开一些实施例提供的光源100中,整形部件108对合光组件103合光后的激光光束进行整形,使得整形后的激光光束的光斑在激光的慢轴方向上的尺寸(即,矩形光斑的长边的尺寸)较小,进而使得整形后的激光光束的光斑在激光的慢轴方向上的尺寸与整形后的激光光束的光斑在激光的快轴方向上的尺寸(即,矩形光斑的短边的尺寸)之间的差值较小。如此,可以有效的减小激光光束在光斑的短边方向上的扩展量损失量,进而提高了光机200中的光阀对光源100发出的激光光束的传输效率。
需要说明的是,激光投影设备10进行投影显示时较容易产生散斑效应。散斑效应指的是相干光源发出的两束激光在照射粗糙的物体(例如,激光投影设备10的屏幕)后发生散射,该两束激光在空间中产生干涉,最终在屏幕上出现颗粒状的明暗相间的斑点的效应。散斑效应使得投影图像的显示效果较差,且这些明暗相间的未聚焦的斑点在人眼看来处于闪烁状态,长时间观看易产生眩晕感,用户的观看体验较差。
本公开一些实施例提供的光源100中,整形部件108对合光组件103合光后的光束进行整形,使得整形后的激光光束的光斑在激光的慢轴方向上的尺寸较小,进而使得整形部件108整形后的激光光束的光斑在激光的慢轴方向上的尺寸与整形后的激光光束的光斑在激光的快轴方向上的尺寸之间的差值较小。如此,可以有效的减小激光光束在光斑的短边方向上的扩展量损失量。进而将这些激光用于投影产生的干涉较弱,可以减弱激光投影设备10进行投影显示时的散斑效应,避免投影图像变花,提高投影图像的显示效果,避免人眼观看产生的眩晕感。
在一些实施例中,光源100中的整形部件108具有第一柱形弧面A和第二柱形弧面B。该第一柱形弧面A相对于该第二柱形弧面B更靠近合光组件103。
该整形部件108通过第一柱形弧面A在激光的慢轴方向上将合光后的激光光束进行汇聚,且该整形部件108通过第二柱形弧面B将汇聚后的激光光束进行准直,以得到被整形部件108整形后的激光光束。
在一些实施例中,参考图27和图28,该光源100中的整形部件108包括两个柱形透镜,分别为第一柱形透镜1081和第二柱形透镜1082,第一柱形透镜1081与第二柱形透镜1082沿着图27中X轴的方向排布。其中,该第一柱形透镜1081比第二柱形透镜1082更靠近合光组件103。第一柱形透镜1081具有第一柱形弧面A,第二柱形透镜1082具有第二柱形弧面B。
其中,参考图28,第一柱形透镜1081的入光面,即第一柱形弧面A可以为柱形凸透面,第一柱形透镜1081的出光面可以为平面;第二柱形透镜1082的入光面,即第二柱形弧面B可以为柱形凹透面,第二柱形透镜1082的出光面可以为平面。这样,激光光束在经过第一柱形透镜1081时,第一柱形透镜1081可以对激光光束在激光的慢轴方向上进行汇聚,即使得激光光束合光后的光斑在激光的慢轴方向上的尺寸,与激光光束合光后的光斑在激光的快轴方向上的尺寸相同。第二柱形透镜1082可以对从第一柱形透镜1081射出的激光光束进行准直后导向复眼透镜104。
在另一些实施例中,光源100中的整形部件108包括一个柱形透镜。参考图30和图31,该光源100中的整形部件包括第三柱形透镜1083。第三柱形透镜1083具有第一柱形 弧面A和第二柱形弧面B。第三柱形透镜1083靠近合光组件103的一面(即第三柱形透镜1083的入光面)为第一柱形弧面A,第三柱形透镜1083远离合光组件103的一面(即第三柱形透镜1083的出光面)为第二柱形弧面B。
参考图31,该第三柱形透镜1083的入光面,即第一柱形弧面A可以为柱形凸透面;第三柱形透镜1083的出光面,即第二柱形弧面B可以为柱形凹透面。这样,激光光束在经过第三柱形透镜1083的柱形凸透面时,第三柱形透镜1083可以对激光光束在激光的慢轴方向上进行汇聚,即使得激光光束合光后的光斑在慢轴方向上的尺寸,与在快轴方向上的尺寸相同。激光光束在经过第三柱形透镜1083的柱形凹透面时,可以对激光光束进行准直后导向复眼透镜104。
在一些实施例中,整形部件108中的柱形透镜的高度方向可以平行于激光的快轴方向。这样,整形部件108可以对合光组件103合光后的激光光束在激光的慢轴方向上进行整形,整形部件108对合光组件103合光后的激光光束在激光的快轴方向上不进行整形。如此,可以使得整形部件108整形后的激光光束的光斑在激光的慢轴方向上的尺寸与整形后的激光光束的光斑在激光的快轴方向上的尺寸之间的差值较小。
在一些实施例中中,光源100中的整形部件108对激光光束进行整形前的激光光束的光斑的形状与整形部件108对激光光束进行整形后的激光光束的光斑的形状均可以为矩形。
在一些实施例中,光源100中的整形部件108对激光光束进行整形后的激光光束的光斑在激光的慢轴方向上的尺寸,与整形部件108对激光光束进行整形后的激光光束的光斑在激光的快轴方向上的尺寸之间的比值范围可以为0.6至2。
在一些实施例中,整形部件108对激光光束进行整形后的激光光束的光斑在激光的慢轴方向上的尺寸,可以等于整形部件108对激光光束进行整形后的激光光束的光斑在激光的快轴方向上的尺寸。即整形部件108对激光光束进行整形后的激光光束的光斑在激光的慢轴方向上的尺寸,与整形部件108对激光光束进行整形后的激光光束的光斑在激光的快轴方向上的尺寸之间的比值可以为1。示例地,当
Figure PCTCN2022103189-appb-000010
时,由于d1:d2的值为1,因此,可以满足
Figure PCTCN2022103189-appb-000011
如此,能够进一步有效的减小激光光束在光斑的短边方向上的扩展量损失量,进一步提高了光阀对激光器发出的激光光束的传输效率。
在一些实施例中,请参考图16,光源100还包括扩散片107。该扩散片107位于合光组件103和复眼透镜104之间。从合光组件103射出的激光光束沿图16中X轴方向射向扩散片107,扩散片107对射入的激光光束进行匀化后射向复眼透镜104。
在一些实施例中,请参考图33和图34,光机200中的透镜组件220位于复眼透镜104远离合光组件103的一侧,光机200中的棱镜组件250和光阀240均位于透镜组件220远离复眼透镜104的一侧。其中,该棱镜组件250包括全内反射(Total Internal Reflection,TIR)棱镜。激光器阵列发出的激光光束入射至合光组件103,合光组件103将该激光光束导向复眼透镜104,复眼透镜104将射入的激光匀化后射向透镜组件220,透镜组件220将从复眼透镜104出射的激光光束导向棱镜组件250,该棱镜组件250将激光光束导向光阀240,该光阀240激光光束进行调制后导向镜头300,该镜头300对射入的激光进行投射以形成投影画面。在一些实施例中,参考图13和图14,复眼透镜104的出光面的中心点可以与透镜组件220的焦点重合。示例地,复眼透镜104的出光面的中心点可以与透镜组件220靠近合光组件103的焦点重合。这样,能够保证从复眼透镜104的出光面的每个点出射的激光光束在导向光阀240时,呈平行光入射到光阀240表面。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种光源,包括:至少一个激光器阵列、合光组件和复眼透镜;
    所述至少一个激光器阵列被配置为发出至少两种颜色的激光;
    所述合光组件设置在所述至少一个激光器阵列的出光侧,被配置为将所述至少一个激光器阵列发出的激光导向所述复眼透镜;
    所述复眼透镜设置在所述合光组件的出光侧,被配置为对所述至少一个激光器阵列发出的激光进行匀化;其中,所述复眼透镜包括:
    衬底;
    多个第一微透镜,设置在所述衬底的入光面上;和
    多个第二微透镜,设置在所述衬底的出光面上,且与所述多个第二微透镜对应。
  2. 根据权利要求1所述的光源,其中,所述多个第一微透镜和所述多个第二微透镜均为凸透镜。
  3. 根据权利要求1所述的光源,其中,所述至少一个激光器阵列中的每个激光器阵列包括多个激光器,每个激光器发出的激光在所述复眼透镜上形成的光斑与至少一个第一微透镜交叠。
  4. 根据权利要求1所述的光源,其中,至少两种颜色的激光包括蓝色激光、绿色激光和红色激光,所述蓝色激光和所述绿色激光在所述复眼透镜上形成的光斑的面积均小于所述红色激光在所述复眼透镜上形成的光斑的面积;
    所述多个第一微透镜包括多个第三微透镜和多个第四微透镜;
    所述多个第三微透镜被配置为接收所述蓝色激光和所述绿色激光、以及所述红色激光的一部分;
    所述多个第四微透镜被配置为接收所述红色激光的另一部分;
    其中,第三微透镜在激光的快轴方向上的尺寸大于第四微透镜在所述快轴方向上的尺寸。
  5. 根据权利要求1所述的光源,还包括整形部件;
    所述整形部件设置在所述合光组件与所述复眼透镜之间,被配置为对来自所述合光组件的激光光束进行整形,以使得整形后的激光光束的光斑在激光的慢轴方向上的尺寸,小于整形前的激光光束的光斑在所述慢轴方向上的尺寸。
  6. 根据权利要求5所述的光源,其中,所述整形部件包括第一柱形弧面和第二柱形弧面,所述第一柱形弧面比所述第二柱形弧面更靠近所述合光组件;
    所述第一柱形弧面被配置为在所述慢轴方向上,对来自所述合光组件的激光光束进行汇聚;
    所述第二柱形弧面被配置为将汇聚后的激光光束进行准直。
  7. 根据权利要求6所述的光源,其中,所述第一柱形弧面为凸透面,所述第二柱形弧面为凹透面。
  8. 根据权利要求7所述的光源,其中,所述整形部件包括第一柱形透镜和第二柱形透镜,所述第一柱形透镜比所述第二柱形透镜更靠近所述合光组件;
    所述第一柱形透镜的入光面为第一柱形弧面,所述第二柱形透镜的入光面为第二柱形弧面。
  9. 根据权利要求7所述的光源,其中,所述整形部件包括第三柱形透镜,所述第三柱形透镜的入光面为所述第一柱形弧面,所述第三柱形透镜的出光面为所述第二柱形弧面。
  10. 根据权利要求1所述的光源,其中,所述至少一个激光器阵列包括第一激光器阵列和第二激光器阵列,且所述第一激光器阵列的出光方向与所述第二激光器阵列的出光方向垂直,所述第一激光器阵列发出第一激光光束,所述第二激光器阵列发出第二激光光束;
    合光组件包括第一合光部件,所述第一合光部件设置在所述第一激光光束和所述第二激光光束的交汇处,被配置为反射所述第一激光光束且透射所述第二激光光束。
  11. 根据权利要求10所述的光源,其中,所述第一激光光束和所述第二激光光束均包括蓝色激光、绿色激光和红色激光;
    所述第一合光部件包括第一透射反射部和第二透射反射部;
    所述第一透射反射部被配置为反射第一激光光束中的蓝色激光和绿色激光,且透射第二激光光束中的红色激光;
    第二透射反射部被配置为反射第一激光光束中的红色激光且透射第二激光光束中的蓝色激光和绿色激光。
  12. 根据权利要求11所述的光源,其中,所述第一透射反射部和所述第二透射反射部为两个具有不同波长选择特性的二向色元件;或者,
    所述第一透射反射部和所述第二透射反射部为两个具有不同偏振选择特征的偏振元件。
  13. 根据权利要求1所述的光源,其中,所述至少一个激光器阵列包括第一激光器阵列和第二激光器阵列,且所述第一激光器阵列的出光方向与所述第二激光器阵列的出光方向平行,所述第一激光器阵列发出第一激光光束,所述第二激光器阵列发出第二激光光束;
    所述合光组件包括第二合光部件和第三合光部件,所述第二合光部件设置在所述第一激光器阵列的出光侧,被配置为将所述第一激光光束反射至所述复眼透镜;
    所述第三合光部件设置在所述第二激光器阵列的出光侧,被配置为将所述第二激光光束反射至所述复眼透镜。
  14. 根据权利要求13所述的光源,其中,所述第一激光光束和所述第二激光光束均包括蓝色激光、红色激光和绿色激光;
    所述第二合光部件和所述第三合光部件均包括第一镜片、第二镜片和第三镜片,所述第一镜片被配置为反射所述绿色激光,所述第二镜片被配置为反射蓝色激光且透射所述绿色激光,所述第三镜片被配置为反射所述红色激光且透射所述绿色激光和所述蓝色激光。
  15. 根据权利要求1所述的光源,其中,所述至少一个激光器阵列包括第一激光器阵列,所述第一激光器阵列发出第一激光光束;
    所述合光组件包括第四合光部件,所述第四合光部件设置在所述第一激光器阵列的出光侧,被配置将所述第一激光光束反射至所述复眼透镜。
  16. 根据权利要求15所述的光源,其中,所述第一激光光束包括蓝色激光、绿色激光和红色激光;
    所述第四合光部件包括第一反射部和第二反射部,所述第一反射被配置为反射所述蓝色激光和所述绿色激光,所述第二反射部被配置为反射所述红色激光。
  17. 根据权利要求15所述的光源,其中,所述第一激光光束包括蓝色激光、绿色激光和红色激光;
    所述第四合光部件包括第一镜片、第二镜片和第三镜片,所述第一镜片被配置为反射所述绿色激光,所述第二镜片被配置为反射蓝色激光且透射所述绿色激光,所述第三镜片被配置为反射所述红色激光且透射所述绿色激光和所述蓝色激光。
  18. 根据权利要求15所述的光源,其中,所述第一激光光束包括蓝色激光、绿色激光和红色激光;
    所述第四合光部件包括第四镜片和第五镜片,所述第四镜片被配置为反射所述绿色激光和所述蓝色激光,第五镜片被配置为反射所述红色激光,且透射所述绿色激光和所述蓝色激光。
  19. 一种激光投影设备,包括:如权利要求1所述的光源,光机和镜头;
    所述光源被配置为向所述光机发出照明光束;
    所述光机包括光阀,所述光阀被配置为将所述光源发出的照明光束进行调制以获得投影光束;
    所述镜头被配置为将所述投影光束进行成像。
PCT/CN2022/103189 2021-09-06 2022-06-30 光源及激光投影设备 WO2023029718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280059725.0A CN117882004A (zh) 2021-09-06 2022-06-30 光源及激光投影设备
US18/471,557 US20240012318A1 (en) 2021-09-06 2023-09-21 Light source and laser projection apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111037636.XA CN113867088A (zh) 2021-09-06 2021-09-06 光学照明系统及激光投影设备
CN202111037636.X 2021-09-06
CN202111038612.6 2021-09-06
CN202111038612 2021-09-06
CN202111117186.5A CN113777868A (zh) 2021-09-06 2021-09-23 光学照明系统及激光投影设备
CN202111117186.5 2021-09-23
CN202111136696.7 2021-09-27
CN202111136696.7A CN113960868A (zh) 2021-09-27 2021-09-27 激光光源及激光投影设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,557 Continuation US20240012318A1 (en) 2021-09-06 2023-09-21 Light source and laser projection apparatus

Publications (1)

Publication Number Publication Date
WO2023029718A1 true WO2023029718A1 (zh) 2023-03-09

Family

ID=85411924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103189 WO2023029718A1 (zh) 2021-09-06 2022-06-30 光源及激光投影设备

Country Status (3)

Country Link
US (1) US20240012318A1 (zh)
CN (1) CN117882004A (zh)
WO (1) WO2023029718A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332684B1 (en) * 1998-09-17 2001-12-25 Sharp Kabushiki Kaisha Projection type color image display apparatus
CN201464788U (zh) * 2009-04-24 2010-05-12 红蝶科技(深圳)有限公司 一种高光效的微型投影光学引擎
CN107861178A (zh) * 2017-10-10 2018-03-30 青岛海信电器股份有限公司 复眼透镜组及应用其的投影装置
CN109975985A (zh) * 2017-12-27 2019-07-05 宁波舜宇车载光学技术有限公司 光束整形装置及整形方法
CN211698453U (zh) * 2020-02-28 2020-10-16 史晓庆 一种激光照明结构
CN112114480A (zh) * 2019-06-20 2020-12-22 青岛海信激光显示股份有限公司 激光投影设备
CN112987472A (zh) * 2021-02-22 2021-06-18 青岛海信激光显示股份有限公司 多色光源及投影设备
CN113777868A (zh) * 2021-09-06 2021-12-10 青岛海信激光显示股份有限公司 光学照明系统及激光投影设备
CN113867088A (zh) * 2021-09-06 2021-12-31 青岛海信激光显示股份有限公司 光学照明系统及激光投影设备
CN113960868A (zh) * 2021-09-27 2022-01-21 青岛海信激光显示股份有限公司 激光光源及激光投影设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332684B1 (en) * 1998-09-17 2001-12-25 Sharp Kabushiki Kaisha Projection type color image display apparatus
CN201464788U (zh) * 2009-04-24 2010-05-12 红蝶科技(深圳)有限公司 一种高光效的微型投影光学引擎
CN107861178A (zh) * 2017-10-10 2018-03-30 青岛海信电器股份有限公司 复眼透镜组及应用其的投影装置
CN109975985A (zh) * 2017-12-27 2019-07-05 宁波舜宇车载光学技术有限公司 光束整形装置及整形方法
CN112114480A (zh) * 2019-06-20 2020-12-22 青岛海信激光显示股份有限公司 激光投影设备
CN211698453U (zh) * 2020-02-28 2020-10-16 史晓庆 一种激光照明结构
CN112987472A (zh) * 2021-02-22 2021-06-18 青岛海信激光显示股份有限公司 多色光源及投影设备
CN113777868A (zh) * 2021-09-06 2021-12-10 青岛海信激光显示股份有限公司 光学照明系统及激光投影设备
CN113867088A (zh) * 2021-09-06 2021-12-31 青岛海信激光显示股份有限公司 光学照明系统及激光投影设备
CN113960868A (zh) * 2021-09-27 2022-01-21 青岛海信激光显示股份有限公司 激光光源及激光投影设备

Also Published As

Publication number Publication date
US20240012318A1 (en) 2024-01-11
CN117882004A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US8029144B2 (en) Color mixing rod integrator in a laser-based projector
US20130077283A1 (en) Apparatuses and methods for high-efficiency polarization conversion in a projection light engine
CN102608855A (zh) 3-lcos激光投影显示照明光学系统
CN113777868A (zh) 光学照明系统及激光投影设备
US20240085771A1 (en) Laser source assembly and projection apparatus
CN113867088A (zh) 光学照明系统及激光投影设备
CN113960868A (zh) 激光光源及激光投影设备
WO2023030016A1 (zh) 激光投影设备
US11630378B2 (en) Laser projection apparatus
US20230314921A1 (en) Laser source and laser projection apparatus
CN219016710U (zh) 微型光引擎及近眼显示设备
CN111781792A (zh) 一种投影照明系统及投影设备
US20100103380A1 (en) Critical abbe illumination configuration
WO2023124807A1 (zh) 投影设备
WO2023046197A1 (zh) 激光投影设备
WO2023029718A1 (zh) 光源及激光投影设备
WO2022078436A1 (zh) 投影光学系统
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
CN113359380A (zh) 光学引擎和激光投影设备
CN113960862A (zh) 投影设备
WO2023082666A1 (zh) 光源和激光投影设备
CN218957014U (zh) 激光光源及激光投影设备
WO2023005546A1 (zh) 激光投影设备
CN112738484B (zh) 激光投影设备
CN218630503U (zh) 激光光源及激光显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE