WO2017012220A1 - 一种紧凑型投影装置 - Google Patents

一种紧凑型投影装置 Download PDF

Info

Publication number
WO2017012220A1
WO2017012220A1 PCT/CN2015/093895 CN2015093895W WO2017012220A1 WO 2017012220 A1 WO2017012220 A1 WO 2017012220A1 CN 2015093895 W CN2015093895 W CN 2015093895W WO 2017012220 A1 WO2017012220 A1 WO 2017012220A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly
eye lens
dichroic mirror
lens
light
Prior art date
Application number
PCT/CN2015/093895
Other languages
English (en)
French (fr)
Inventor
高志强
赵远
杨伟樑
林清云
Original Assignee
广景视睿科技 (深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技 (深圳)有限公司 filed Critical 广景视睿科技 (深圳)有限公司
Publication of WO2017012220A1 publication Critical patent/WO2017012220A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of digital projection display technology, and in particular to a compact projection device.
  • an object of the present invention is to provide a compact projection apparatus which is simple in structure, compact in layout, improved in projection performance, and greatly reduced in production cost.
  • the present invention provides a compact projection apparatus comprising: an illumination optical system, a display chip, and a projection lens group.
  • the illumination optical system comprises:
  • a three primary color light source composed of a first light source, a second light source, and a third light source
  • first collimating lens group disposed on the optical path of the first light source
  • second collimating lens group disposed on the optical path of the second light source
  • third collimating lens disposed on the optical path of the third light source Group
  • a first fly-eye lens respectively disposed on the corresponding optical path of the first collimating lens group, a second fly-eye lens corresponding to the optical path on the second collimating lens group, and a corresponding optical path of the third collimating lens group Triple compound eye lens;
  • the cross-type combining lens group combines light beams from the three primary color light sources, and includes: a first dichroic mirror and a second dichroic mirror; wherein the first dichroic mirror reflects the light beam from the first fly-eye lens, and transmits a light beam from the second fly-eye lens and the third fly-eye lens; the second dichroic mirror reflects the light beam from the third fly-eye lens, and transmits the light beams from the first fly-eye lens and the second fly-eye lens.
  • the angle between the first dichroic mirror and the second dichroic mirror is 90 degrees.
  • the angle between the light beam from the first fly-eye lens and the light beam from the third fly-eye lens and the first dichroic mirror and/or the second dichroic mirror is 45 degrees.
  • the first dichroic mirror and/or the second dichroic mirror may be bonded by two dichroic mirrors.
  • a central optical axis of the first fly-eye lens coincides with a central optical axis of the first collimating lens group, a central optical axis of the second fly-eye lens, and the second collimation
  • the central optical axes of the lens groups coincide
  • the central optical axis of the third fly-eye lens coincides with the central optical axis of the third collimating lens group.
  • a central optical axis of the first fly-eye lens and a central optical axis of the third fly-eye lens are coincident, a central optical axis of the second fly-eye lens and the first fly-eye lens and/ Or the central optical axis of the third fly-eye lens is perpendicular.
  • the three primary color light sources are composed of a red LED light source, a blue LED light source, and a green LED light source.
  • the compact projection apparatus further includes a beam guiding member that guides a beam direction, and the beam guiding member is composed of a free-form lens and a right-angle prism.
  • the compact projection apparatus further includes a beam guiding member that guides a beam direction, and the beam guiding member is composed of a relay lens and a right-angle prism group.
  • the free curved surface of the free-form surface lens is described by:
  • Z is the height of the surface
  • X and Y are the projection coordinates of the height of the surface on the optical axis
  • A1 to A9 are positional parameters
  • C and k are curvature parameters.
  • the display chip is a DMD or an LCOS or an LCD.
  • the first dichroic mirror includes a first working surface and a second working surface; the second dichroic mirror includes a third working surface and a fourth working surface; the first color separation The first working surface of the mirror and the third working surface of the second dichroic mirror are plated with a dichroic color separation film.
  • the second working surface of the first dichroic mirror and the fourth working surface of the second dichroic mirror are coated with an anti-reflection film.
  • a first relay lens is disposed directly in front of the first fly-eye lens and the first fly-eye lens
  • a second relay lens is disposed directly in front of the second fly-eye lens optical path
  • a third relay lens is disposed directly in front of the optical path of the third fly-eye lens.
  • the invention has the following beneficial effects: the compact projection device realizes that the three-way light source and the collimated optical path are independent of each other, and firstly adopts three fly-eye lenses to homogenize the corresponding optical paths, and then adopts volume comparison.
  • the small cross-type combination lens group combines the three paths of light; the technical solution is compact, simple and reasonable, shortens the optical path, and ensures the output power of each light source.
  • FIG. 1 is a schematic structural view of a first embodiment of a compact projection device of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a compact projection device of the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of the compact projection apparatus of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a block diagram showing the structure of a first embodiment of a compact projection apparatus of the present invention.
  • a specific structure of a compact projection apparatus according to an embodiment of the present invention includes an illumination optical system, a beam guiding member, a display chip, and a projection lens group.
  • the illumination optical system includes:
  • a three primary color light source composed of a first LED light source 101, a second LED light source 102, and a third LED light source 103;
  • the cross-type combining lens group combines the light beams from the three primary color light sources, and includes: a first dichroic mirror 110 and a second dichroic mirror 111, between the first dichroic mirror 110 and the second dichroic mirror 111 The angle is 90 degrees; wherein the first dichroic mirror 110 reflects the light beam from the first fly-eye lens 107, and transmits the light beams from the second fly-eye lens 108 and the third fly-eye lens 109; the second dichroic mirror 111 reflects from the The light beam of the triple fly-eye lens 109 transmits the light beams from the first fly-eye lens 107 and the second fly-eye lens 108; it is noted that the first dichroic mirror 110 and/or the second dichroic mirror 111 may be composed of two dichroic mirrors. Bonded.
  • the first collimating lens group 104 is disposed on the optical path of the first LED light source 101
  • the second collimating lens group 105 is disposed on the optical path of the second LED light source 102
  • the first a three collimating lens group 106 disposed on an optical path of the third LED light source 103 for receiving light from the first LED light source 101.
  • the optical axes coincide with the central optical axes of the first LED light source 101, the second LED light source 102, and the third LED light source 103, respectively.
  • the first fly-eye lens 107 coincides with a central optical axis of the first collimating lens group 104
  • the second fly-eye lens 108 coincides with a central optical axis of the second collimating lens group 105
  • the third The central optical axis of the fly-eye lens 109 coincides with the central optical axis of the third collimating lens group 106; the light beams from the first LED light source 101, the second LED light source 102, and the third LED light source 103 respectively pass through the first collimating lens
  • the second collimating lens group 105 and the third collimating lens group 106 are collimated, they enter the corresponding fly-eye lens, and the fly-eye lens homogenizes the corresponding beams to evenly guide the subsequent optics. .
  • the two sides of the first fly-eye lens 107, the second fly-eye lens 108, and the third fly-eye lens 109 are combined by a series of small lenses, which can homogenize the light beam.
  • the first fly-eye lens 107, the first The second fly-eye lens 108 and the third fly-eye lens 109 may have other structures, such as an optical integrator rod, as long as the beam is uniformized.
  • the angle between the first dichroic mirror 110 and the second dichroic mirror 111 is 90 degrees.
  • the first dichroic mirror 110 of the cross-type combining lens group includes a first working surface 110a and a second working surface 110b
  • the second dichroic mirror 111 includes a third working surface 111a and a fourth working surface 111b;
  • the first working surface 110a And the third working surface 111a is plated with a dichroic color separation film for reflecting the light beams from the first fly-eye lens 107 and the third fly-eye lens 109, respectively, and transmitting the other light beams;
  • the working surface 111b is coated with an anti-reflection film to enhance the light beam and reduce the optical energy loss of the light beam.
  • the beam guiding member is disposed on the optical path of the combined light beam from the cross-type combining lens group. Under the action of the cross-type combining lens group, the three optical paths from the three primary color light sources are combined and enter the beam guiding member, and the light combining optical path is perpendicular to the central optical axis of the first fly-eye lens 107 and/or the third fly-eye lens 109. It coincides with the central optical axis of the second fly-eye lens 108.
  • the angle between the light beam from the first fly-eye lens 107 and the light beam from the third fly-eye lens 109 and the first dichroic mirror 110 and/or the second dichroic mirror 111 is 45 degree.
  • the first dichroic mirror 110 and/or the second dichroic mirror 111 may be integrally formed, or may be adhered by two dichroic mirrors. Combination, connector and other connections.
  • the light beam from the first LED light source 101 is homogenized by the first collimating lens group 104, and then enters the corresponding first fly-eye lens 107.
  • the first fly-eye lens 107 homogenizes the light beam to uniformly parallelize the light beam.
  • the first dichroic mirror 110 and the second dichroic mirror 111 are guided, and the light is reflected by the first working surface 110a of the first dichroic mirror 110, so that the reflected outgoing light and the incident light are at an angle of 90 degrees, after being reflected.
  • the light beam is incident on the beam guiding member directly or through the fourth working surface 111b of the second dichroic mirror 111; or the light is incident on the first dichroic mirror 110 through the fourth working surface 111b of the second dichroic mirror 111.
  • the first working surface 110a is reflected such that the reflected outgoing light is at an angle of ninety degrees with the incident light, and the reflected light beam is directly incident on the beam guiding member.
  • the light beam from the third LED light source 103 is homogenized by the third collimating lens group 106, and then enters the corresponding third fly-eye lens 109.
  • the third fly-eye lens 109 homogenizes the light beam to uniformly or parallelly guide the light beam.
  • the dichroic mirror 111 and the first dichroic mirror 110 the light is reflected by the third working surface 111a of the second dichroic mirror 111, so that the reflected outgoing light and the incident light are at an angle of ninety degrees, and the reflected light beam Directly passing through the second working surface 110b of the first dichroic mirror 110 to the beam guiding member; or the light passing through the second working surface 110b of the first dichroic mirror 110 is incident on the third of the second dichroic mirror 111
  • the working surface 111a is reflected such that the reflected outgoing light is at an angle of ninety degrees with the incident light, and the reflected light beam is directly incident on the beam guiding member.
  • the light beam from the second LED light source 102 is homogenized by the second collimating lens group 105, and then enters the corresponding second fly-eye lens 108.
  • the second fly-eye lens 108 homogenizes the light beam and uniformly orients it to the second dichroic mirror.
  • 111 and the first dichroic mirror 110 the light is transmitted through the fourth working surface 111b of the second dichroic mirror 111 and the second working surface 110b of the first dichroic mirror 110, and is directly incident on the beam guiding member.
  • the three primary color light sources are composed of a red LED light source, a blue LED light source, and a green LED light source.
  • the three primary color light sources may also be other types of light sources; the second LED light source 102 is a green LED light source, which is crossed.
  • the type of light combining lens group transmits less light energy loss, and the output power of the light source is improved, and the brightness of the projection device is high.
  • the display chip 114 is a DMD or an LCOS or an LCD.
  • the beam guiding member is composed of a relay lens 112 and a right-angle prism group 113.
  • the combined light beams from the cross-type combining lens group are concentrated by the relay lens 112, and then guided by the right-angle prism group 113.
  • the projection beam from the display chip 114 is guided to the projection lens group 115 via the right-angle prism group 113; the projection beam is parallel to the optical axis direction of the projection lens group, which is the TIR operation mode of the projector.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic structural view of a second embodiment of the present invention.
  • the compact and compact projection device beam guiding member in the second embodiment is composed of a free-form surface lens and a right-angle prism, and the rest is the same as in the first embodiment.
  • the beam guiding member is composed of a free-form surface lens 212 and a right-angle prism 213, wherein the free-form surface of the self-curing curved lens 212 is 212a; and the combined light beam from the cross-type combining lens group has a curved surface.
  • the free curved surface of the lens 212 is converged, it is guided to the display chip 214 via the right angle prism 213, and the projected light beam from the display chip is guided to the projection lens group via the right angle prism 213.
  • the projection beam from the display chip is perpendicular to the optical axis direction of the projection lens group, which is the RTIR operation mode of the projector.
  • the free curved surface of the free-form surface lens 212 is described by 212a as follows:
  • Z is the height of the surface
  • X and Y are the projection coordinates of the height of the surface on the optical axis
  • A1 to A9 are positional parameters
  • C and k are curvature parameters.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 3 is a schematic structural view of Embodiment 2 of the present invention.
  • the first fly-eye lens, the second fly-eye lens, and the third fly-eye lens A first relay lens 301, a second relay lens 302, and a third relay lens 303 may be respectively disposed in front of the optical path for respectively concentrating the respective beams before the light combination, so that the loss of the light energy is reduced, and the light beam is further Concentration; this is extremely important in some projectors that require a high projection power.
  • the beam guiding component 30 portion may be in the TIR mode as shown in the figure, or may be the RTIR mode described in the second embodiment.
  • the compact projection device realizes that the three-way light source and its collimated optical path are independent of each other, first adopting three fly-eye lenses to homogenize the respective optical paths, and then adopting a smaller volume of the cross-type combining lens group to the three-way The optical path is combined; the technical solution is compact, simple and reasonable, shortens the optical path, and ensures the output power of each light source.
  • the lens material of the lens or lens group may be glass, plastic or other light transmissive material.

Abstract

一种紧凑型投影装置,包括:照明光学系统,显示芯片(114)以及投影透镜组(115)。其中,照明光学系统,其包括:三基色光源(101,102,103);与三基色光源(101,102,103)一一对应的三组准直透镜组(104,105,106)和三个复眼透镜(107,108,109);交叉型合光镜片组(110,111),对来自三基色光源(101,102,103)的光束进行合光,其包括:第一分色镜(110)和第二分色镜(111)。该紧凑型投影装置实现三路光源及其准直光路相互独立,先采用三个复眼透镜(107,108,109)对各自对应的光路进行匀光,再采用体积较小的交叉型合光镜片(110,111)组对三路光路进行合光;结构紧凑,简单合理,缩短了光程,且保证了每个光源的输出功率。

Description

一种紧凑型投影装置 【技术领域】
本发明涉及数字投影显示技术领域,特别涉及一种紧凑型投影装置。
【背景技术】
随着科学技术的发展,特别是半导体技术的推动,便携式的电子设备被不断的设计制造出来。便携式电子设备功能的提升,用户对人机界面的显示器件的要求越来越向着微型,大屏幕和高分辨率方向发展。在广大用户强烈需求的促使下,近年来微型投影机技术发展迅猛,DLP、LCOS等产品纷纷推出了便携式的手持微型投影机产品(PICO),或内置于手机等手持移动设备中的投影机模组。
现有常规的投影机,通常是先将三路光源进行合光后,再通过复眼透镜或者光棒进行匀光,光程较大,不利于减小投影机的体积和提高投影机的性能。投影机要更好地应用在手持式电子设备中,就要在保持具有高的光输出的前提下,要求投影光路设计简洁高效,使投影机满足尺寸小、光损耗低等适合应用于手持式电子设备中的条件。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
【发明内容】
针对上述技术问题,本发明的目的在于提供一种结构简单合理,布局紧凑,提高投影性能,且大大降低生产成本的紧凑型投影装置。
为实现上述目的,本发明提供了一种紧凑型投影装置,包括:照明光学系统,显示芯片以及投影透镜组。其中,照明光学系统,其包括:
由第一光源、第二光源和第三光源组成的三基色光源;
分别设置于所述第一光源光路上的第一准直透镜组、设置于所述第二光源光路上的第二准直透镜组和设置于所述第三光源光路上的第三准直透镜组;
分别设置于所述第一准直透镜组对应光路上的第一复眼透镜、所述第二准直透镜组对应光路上的第二复眼透镜和所述第三准直透镜组对应光路上的第三复眼透镜;
交叉型合光镜片组,对来自三基色光源的光束进行合光,其包括:第一分色镜和第二分色镜;其中,第一分色镜反射来自第一复眼透镜的光束,透射来自第二复眼透镜和第三复眼透镜的光束;第二分色镜反射来自第三复眼透镜的光束,透射来自第一复眼透镜和第二复眼透镜的光束。
优选地,上述技术方案中,第一分色镜和第二分色镜之间的夹角为90度。
优选地,上述技术方案中,所述来自第一复眼透镜的光束和所述来自第三复眼透镜的光束与第一分色镜和/或第二分色镜的夹角为45度。
优选地,上述技术方案中,所述第一分色镜和/或第二分色镜可以由两片分色镜粘合而成。
优选地,上述技术方案中,所述第一复眼透镜的中心光轴与所述第一准直透镜组的中心光轴重合、所述第二复眼透镜的中心光轴与所述第二准直透镜组的中心光轴重合、以及所述第三复眼透镜的中心光轴与所述所述第三准直透镜组的中心光轴重合。
优选地,上述技术方案中,所述第一复眼透镜的中心光轴和所述第三复眼透镜的中心光轴重合,所述第二复眼透镜的中心光轴和所述第一复眼透镜和/或所述第三复眼透镜的中心光轴垂直。
优选地,上述技术方案中,所述三基色光源由红色LED光源、蓝色LED光源和绿色LED光源组成。
优选地,上述技术方案中,所述紧凑型投影装置还包括对光束方向进行引导的光束导引部件,所述光束导引部件由自由曲面透镜和直角棱镜组成。
优选地,上述技术方案中,所述紧凑型投影装置还包括对光束方向进行引导的光束导引部件,所述光束导引部件由中继透镜和直角棱镜组组成。
优选地,上述技术方案中,所述自由曲面透镜的自由曲面由下式描述:
其中,Z为曲面高度,X、Y分别为曲面高度在光轴的投影坐标,A1到A9为位置参数,C和k为曲率参数。
优选地,上述技术方案中,所述显示芯片为DMD或者LCOS或者LCD。
优选地,上述技术方案中,所述第一分色镜包括第一工作面和第二工作面;所述第二分色镜包括第三工作面和第四工作面;所述第一分色镜的第一工作面和第二分色镜的第三工作面镀有二向色分色膜。
优选地,上述技术方案中,所述第一分色镜的第二工作面和第二分色镜的第四工作面镀有增透膜。
优选地,上述技术方案中,所述第一复眼透镜、所述第一复眼透镜光路正前方设置有第一中继透镜、所述第二复眼透镜光路正前方设置有第二中继透镜、以及所述第三复眼透镜光路正前方设置有第三中继透镜。
与现有技术相比,本发明具有如下有益效果:该紧凑型投影装置实现三路光源及其准直光路相互独立,先采用三个复眼透镜对各自对应的光路进行匀光,再采用体积较小的交叉型合光镜片组对三路光路进行合光;该技术方案结构紧凑,简单合理,缩短了光程,且保证了每个光源的输出功率。
【附图说明】
图1是本发明的紧凑型投影装置实施例一的结构示意图;
图2是本发明的紧凑型投影装置实施例二的结构示意图;
图3是本发明的紧凑型投影装置实施例三的结构示意图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施方式,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
实施例一:
图1是本发明的紧凑型投影装置实施例一的结构示意图。如图1所示,根据本发明具体实施方式的紧凑型投影装置的具体结构包括:照明光学系统,光束导引部件,显示芯片以及投影透镜组。
其中,照明光学系统,包括:
由第一LED光源101、第二LED光源102和第三LED光源103组成的三基色光源;
分别设置于所述第一LED光源101、所述第二LED光源102和所述第三LED光源103对应光路上的第一准直透镜组104、第二准直透镜组105和第三准直透镜组106;分别设置于所述第一准直透镜组104对应光路上的第一复眼透镜107、所述第二准直透镜组105对应光路上的第二复眼透镜108、和所述第三准直透镜组106对应光路上的第三复眼透镜109;所述第一复眼透镜107的中心光轴和所述第三复眼透镜109的中心光轴重合,所述第二复眼透镜108的中心光轴和所述第一复眼透镜107和/或所述第三复眼透镜109的中心光轴垂直;
交叉型合光镜片组,对来自三基色光源的光束进行合光,其包括:第一分色镜110和第二分色镜111,第一分色镜110和第二分色镜111之间的夹角为90度;其中,第一分色镜110反射来自第一复眼透镜107的光束,透射来自第二复眼透镜108和第三复眼透镜109的光束;第二分色镜111反射来自第三复眼透镜109的光束,透射来自第一复眼透镜107和第二复眼透镜108的光束;值得注意的是,第一分色镜110和/或第二分色镜111可以由两片分色镜粘合而成。
其中,所述第一准直透镜组104设置在所述第一LED光源101的光路上、所述第二准直透镜组105设置在所述第二LED光源102的光路上、和所述第三准直透镜组106设置在所述第三LED光源103的光路上,用来接收来自所述第一LED光源 101、所述第二LED光源102和所述第三LED光源103的自然光并将光线均匀化;第一准直透镜组104、第二准直透镜组105和第三准直透镜组106的中心光轴分别与第一LED光源101、第二LED光源102和第三LED光源103的中心光轴重合。
所述第一复眼透镜107与所述第一准直透镜组104的中心光轴重合、所述第二复眼透镜108与所述第二准直透镜组105的中心光轴重合、所述第三复眼透镜109的中心光轴与所述第三准直透镜组106的中心光轴重合;来自第一LED光源101、第二LED光源102和第三LED光源103的光束分别经第一准直透镜组104、所述第二准直透镜组105和所述第三准直透镜组106准直后,进入所对应的复眼透镜,复眼透镜将各自对应的光束进行匀光将其均匀导向后续光学部。
在本实施例中,第一复眼透镜107、第二复眼透镜108和第三复眼透镜109的两面为一系列小透镜组合而成,可对光束进行均匀化,所述第一复眼透镜107、第二复眼透镜108和第三复眼透镜109也可以为其他的结构,例如光学积分棒,只要能实现对光束进行均匀化即可。
在本实施例中,优选地,第一分色镜110和第二分色镜111之间的夹角为90度。交叉型合光镜片组的第一分色镜110包括第一工作面110a和第二工作面110b,第二分色镜111包括第三工作面111a和第四工作面111b;第一工作面110a和第三工作面111a上均镀有二向色分色膜,分别对来自第一复眼透镜107和第三复眼透镜109的光束进行反射,对其它光束进行透射;第二工作面110b和第四工作面111b上均镀有增透膜,对光束有增透作用,减少该光束的光能量损失;所述光束导引部件设置在交叉型合光镜片组出来的合光光束的光路上,在交叉型合光镜片组的作用下,来自三基色光源的三束光路合光后进入光束导引部件,合光光路与第一复眼透镜107和/或第三复眼透镜109的中心光轴垂直,与第二复眼透镜108的中心光轴重合。
在本实施例中,优选地,所述来自第一复眼透镜107的光束和所述来自第三复眼透镜109的光束与第一分色镜110和/或第二分色镜111的夹角为45度。所述第一分色镜110和/或第二分色镜111可以一体成型,也可以由两片分色镜通过粘 合,连接件等连接组成。
在本实施例中,来自第一LED光源101的光束,经第一准直透镜组104均匀化之后,进入对应的第一复眼透镜107,第一复眼透镜107对光束进行匀光将其均匀平行导向第一分色镜110和第二分色镜111,光线经第一分色镜110的第一工作面110a进行反射,使得经反射的出射光与入射光呈90度夹角,经反射后的光束直接或者透过第二分色镜111的第四工作面111b入射到光束导引部件;或者光线透过第二分色镜111的第四工作面111b入射到第一分色镜110的第一工作面110a进行反射,使得经反射的出射光与入射光呈九十度夹角,经反射后的光束直接入射到光束导引部件。
同理,来自第三LED光源103的光束,经第三准直透镜组106均匀化之后,进入对应的第三复眼透镜109,第三复眼透镜109对光束进行匀光将其均匀平行导向第二分色镜111和第一分色镜110,光线经第二分色镜111的第三工作面111a进行反射,使得经反射的出射光与入射光呈九十度夹角,经反射后的光束直接或者透过第一分色镜110的第二工作面110b入射到光束导引部件;或者光线透过第一分色镜110的第二工作面110b入射到第二分色镜111的第三工作面111a进行反射,使得经反射的出射光与入射光呈九十度夹角,经反射后的光束直接入射到光束导引部件。
来自第二LED光源102的光束,经第二准直透镜组105均匀化之后,进入对应的第二复眼透镜108,第二复眼透镜108对光束进行匀光将其均匀平行导向第二分色镜111和第一分色镜110,光线经第二分色镜111的第四工作面111b以及第一分色镜110的第二工作面110b进行透射,直接入射到光束导引部件。
在本实施例中,所述三基色光源由红色LED光源、蓝色LED光源和绿色LED光源组成,当然三基色光源也可以是其他类型的光源;第二LED光源102为绿色LED光源,经交叉型合光镜片组透射,光能量损失较少,提高了该光源的输出功率,投影装置的亮度较高。
在本实施例中,所述显示芯片114为DMD或者LCOS或者LCD。
在本实施例中,所述光束导引部件由中继透镜112和直角棱镜组113组成,从交叉型合光镜片组出来的合光光束经中继透镜112汇聚后,经直角棱镜组113导引至显示芯片114,从显示芯片114出来的投影光束再经直角棱镜组113导引至投影镜头组115;投影光束与投影镜头组光轴方向平行,此为投影机的TIR工作模式。
实施例二:
图2所示的为本发明的实施例二结构示意图。由图2所示,实施例二中的紧凑紧凑型投影装置光束导引部件由自由曲面透镜和直角棱镜组成,其余部分与实施例一相同。
在本实施例中,所述光束导引部件由自由曲面透镜212和直角棱镜213组成,其中自有曲面透镜212的自由曲面为212a;从交叉型合光镜片组出来的合光光束经有曲面透镜212的自由曲面为212a汇聚后,经直角棱镜213导引至显示芯片214,从显示芯片出来的投影光束再经直角棱镜213导引至投影镜头组。与实施例一不同的是,从显示芯片出来的投影光束与投影镜头组光轴方向垂直,此为投影机的RTIR工作模式。
其中,所述自由曲面透镜212的自由曲面由212a由下式描述:
Figure PCTCN2015093895-appb-000001
其中,Z为曲面高度,X、Y分别为曲面高度在光轴的投影坐标,A1到A9为位置参数,C和k为曲率参数。
实施例三:
图3所示的为本发明的实施例二结构示意图。由图3所示,在实施例一或实施例二的基础上,所述第一复眼透镜、所述第二复眼透镜和所述第三复眼透镜 光路正前方可分别设置有第一中继透镜301、第二中继透镜302和第三中继透镜303,用于合光前对各光束分别进行汇聚,使得光能量的损失减少,光束更为集中;这在一些对投影功率要求较高的投影机极其重要。其中,光束导引部件30部分可以是如图所示的TIR模式,也可以是实施例二所描述的RTIR模式。
综上,该紧凑型投影装置实现三路光源及其准直光路相互独立,先采用三个复眼透镜对各自对应的光路进行匀光,再采用体积较小的交叉型合光镜片组对三路光路进行合光;该技术方案结构紧凑,简单合理,缩短了光程,且保证了每个光源的输出功率。
上述实施例中,所述透镜或镜片组的镜片材质可以为玻璃、塑胶或其他的透光材料。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (10)

  1. 一种紧凑型微型投影机,其特征在于,包括:
    照明光学系统,其包括:
    由第一光源、第二光源和第三光源组成的三基色光源;
    分别设置于所述第一光源光路上的第一准直透镜组、设置于所述第二光源光路上的第二准直透镜组和设置于所述第三光源光路上的第三准直透镜组;
    分别设置于所述第一准直透镜组对应光路上的第一复眼透镜、所述第二准直透镜组对应光路上的第二复眼透镜和所述第三准直透镜组对应光路上的第三复眼透镜;
    交叉型合光镜片组,对来自三基色光源的光束进行合光,其包括:第一分色镜和第二分色镜;其中,第一分色镜反射来自第一复眼透镜的光束,透射来自第二复眼透镜和第三复眼透镜的光束;第二分色镜反射来自第三复眼透镜的光束,透射来自第一复眼透镜和第二复眼透镜的光束;
    显示芯片;以及
    投影透镜组。
  2. 根据权利要求1所述的紧凑型投影装置,其特征在于,所述第一复眼透镜的中心光轴与所述第一准直透镜组的中心光轴重合、所述第二复眼透镜的中心光轴与所述第二准直透镜组的中心光轴重合、以及所述第三复眼透镜的中心光轴与所述所述第三准直透镜组的中心光轴重合。
  3. 根据权利要求1所述的紧凑型投影装置,其特征在于,所述第一分色镜和第二分色镜之间的夹角为90度。
  4. 根据权利要求1所述的紧凑型投影装置,其特征在于,所述来自第一复眼透镜的光束和所述来自第三复眼透镜的光束与第一分色镜和/或第二分色镜的夹角为45度。
  5. 根据权利要求1所述的紧凑型投影装置,其特征在于,所述第一分色镜和/或第二分色镜可以由两片分色镜粘合而成。
  6. 根据权利要求1所述的紧凑型投影装置,其特征在于,该紧凑型投影装置还包括对光束方向进行引导的光束导引部件,所述光束导引部件由自由 曲面透镜和直角棱镜组成。
  7. 根据权利要求1所述的紧凑型投影装置,其特征在于,该紧凑型投影装置还包括对光束方向进行引导的光束导引部件,所述光束导引部件由中继透镜和直角棱镜组组成。
  8. 根据权利要求1所述的紧凑型投影装置,其特征在于,所述第一复眼透镜的中心光轴和所述第三复眼透镜的中心光轴重合,所述第二复眼透镜的中心光轴和所述第一复眼透镜和/或所述第三复眼透镜的中心光轴垂直。
  9. 根据权利要求1或5所述的紧凑型投影装置,其特征在于,所述第一分色镜包括第一工作面和第二工作面;所述第二分色镜包括第三工作面和第四工作面;所述第一分色镜的第一工作面和第二分色镜的第三工作面镀有二向色分色膜;所述第一分色镜的第二工作面和第二分色镜的第四工作面镀有增透膜。
  10. 根据权利要求1或6或7所述的紧凑型投影装置,其特征在于,所述第一复眼透镜光路正前方设置有第一中继透镜、所述第二复眼透镜光路正前方设置有第二中继透镜、以及所述第三复眼透镜光路正前方设置有第三中继透镜。
PCT/CN2015/093895 2015-07-22 2015-11-05 一种紧凑型投影装置 WO2017012220A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520533300.6 2015-07-22
CN201520533300.6U CN204856020U (zh) 2015-07-22 2015-07-22 一种紧凑型投影装置

Publications (1)

Publication Number Publication Date
WO2017012220A1 true WO2017012220A1 (zh) 2017-01-26

Family

ID=54746556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093895 WO2017012220A1 (zh) 2015-07-22 2015-11-05 一种紧凑型投影装置

Country Status (2)

Country Link
CN (1) CN204856020U (zh)
WO (1) WO2017012220A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110737097A (zh) * 2018-07-18 2020-01-31 精工爱普生株式会社 图像显示模块和图像显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205193364U (zh) * 2015-12-14 2016-04-27 广景视睿科技(深圳)有限公司 一种合光系统及其投影照明光路
CN205827039U (zh) * 2016-06-29 2016-12-21 广景视睿科技(深圳)有限公司 一种dlp投影模组
CN109270775A (zh) * 2018-11-23 2019-01-25 歌尔股份有限公司 应用于投影装置的光学系统及其投影装置
CN110837218A (zh) * 2019-10-25 2020-02-25 伟力驱动技术(深圳)有限公司 一种时钟电机
CN111812934A (zh) * 2020-08-31 2020-10-23 南阳南方智能光电有限公司 一种单直角棱镜led微型投影照明系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262851B1 (en) * 2000-01-18 2001-07-17 Hewlett-Packard Co. Double-pass projection displays with separate polarizers and analyzers
CN102012623A (zh) * 2010-11-02 2011-04-13 上海理工大学 采用无线信号连接的微型投影机系统
CN102305987A (zh) * 2010-09-19 2012-01-04 天津爱安特科技股份有限公司 采用三片led灯板的lcd投影机光源系统
CN103529629A (zh) * 2012-08-30 2014-01-22 广景科技有限公司 Dlp微型投影机
CN104516182A (zh) * 2014-12-17 2015-04-15 广东威创视讯科技股份有限公司 一种照明系统、投影机以及背投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262851B1 (en) * 2000-01-18 2001-07-17 Hewlett-Packard Co. Double-pass projection displays with separate polarizers and analyzers
CN102305987A (zh) * 2010-09-19 2012-01-04 天津爱安特科技股份有限公司 采用三片led灯板的lcd投影机光源系统
CN102012623A (zh) * 2010-11-02 2011-04-13 上海理工大学 采用无线信号连接的微型投影机系统
CN103529629A (zh) * 2012-08-30 2014-01-22 广景科技有限公司 Dlp微型投影机
CN104516182A (zh) * 2014-12-17 2015-04-15 广东威创视讯科技股份有限公司 一种照明系统、投影机以及背投影系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110737097A (zh) * 2018-07-18 2020-01-31 精工爱普生株式会社 图像显示模块和图像显示装置
CN110737097B (zh) * 2018-07-18 2022-06-28 精工爱普生株式会社 图像显示模块和图像显示装置
CN114994932A (zh) * 2018-07-18 2022-09-02 精工爱普生株式会社 图像显示模块和图像显示装置
CN114994932B (zh) * 2018-07-18 2024-01-02 精工爱普生株式会社 图像显示模块和图像显示装置

Also Published As

Publication number Publication date
CN204856020U (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017049935A1 (zh) 一种投影照明光路及其投影模组
WO2017012220A1 (zh) 一种紧凑型投影装置
WO2015172536A1 (zh) 直线型dlp微型投影机
US9756300B2 (en) Compact optical projection apparatus
US9482937B2 (en) Illumination system and projection apparatus
WO2016095619A1 (zh) 直线型dlp微型投影机
WO2015172537A1 (zh) Dlp微型投影机
WO2018000520A1 (zh) 一种dlp投影模组
US10754162B2 (en) Projection apparatus and head-mounted display device
WO2013053171A1 (zh) Dlp微型投影机及其投影方法
WO2016023281A1 (zh) Dlp微型投影机
WO2018176613A1 (zh) 一种红外投影系统
WO2019104915A1 (zh) 一种投影系统及tir棱镜组
WO2017020636A1 (zh) Dlp微型投影机
WO2018171042A1 (zh) 一种投影机
JP2019113842A (ja) 投影装置
CN104880898A (zh) 一种基于激光光源的dlp投影装置
WO2013063835A1 (zh) Dlp微型投影机
WO2017101460A1 (zh) 一种合光系统及其投影照明光路
WO2017084285A1 (zh) 一种光束合光系统及其投影装置
WO2017050026A1 (zh) 一种投影照明光路
WO2019128096A1 (zh) 一种基于混合光源的互动投影装置
TW201305712A (zh) 投影裝置及其光源裝置
US20120002174A1 (en) Light source system of pico projector
CN206352734U (zh) Rgb全激光光源模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898776

Country of ref document: EP

Kind code of ref document: A1