WO2016023281A1 - Dlp微型投影机 - Google Patents

Dlp微型投影机 Download PDF

Info

Publication number
WO2016023281A1
WO2016023281A1 PCT/CN2014/090574 CN2014090574W WO2016023281A1 WO 2016023281 A1 WO2016023281 A1 WO 2016023281A1 CN 2014090574 W CN2014090574 W CN 2014090574W WO 2016023281 A1 WO2016023281 A1 WO 2016023281A1
Authority
WO
WIPO (PCT)
Prior art keywords
working surface
dlp
led light
light
emitting chip
Prior art date
Application number
PCT/CN2014/090574
Other languages
English (en)
French (fr)
Inventor
高志强
赵远
杨伟樑
林清云
Original Assignee
广景科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景科技有限公司 filed Critical 广景科技有限公司
Priority to US15/037,922 priority Critical patent/US20160295181A1/en
Publication of WO2016023281A1 publication Critical patent/WO2016023281A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/008Systems specially adapted to form image relays or chained systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0852Catadioptric systems having a field corrector only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3173Constructional details thereof wherein the projection device is specially adapted for enhanced portability
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the field of digital projection display technology, and in particular to a DLP pico projector.
  • DLP digital handheld micro-projector products
  • PICO portable handheld micro-projector products
  • projector models built into handheld mobile devices such as mobile phones. group. DLP projection products are more popular among consumers because of their superior brightness, video image display and contrast ratio than traditional LCD and LCOS projectors.
  • the projection optical path design is simple and efficient, so that the projector can meet the small size and weight. Light, low optical loss, etc. are suitable for use in handheld electronic devices.
  • the conventional micro DLP projector is as shown in FIG. 1 , and the light-transmitting device portion adopts a spectroscopic lens group 500 (which includes two spectroscopic lenses 501 and 502), so that the three-color LED light is arranged in parallel to be incident on the subsequent optical device, but the two-beam light
  • the lenses 501 and 502 are arranged at an angle, and the production process is complicated and takes up a large space, so that the optical path is not compact enough to increase the volume of the projector; in addition, the transmitted beam needs to pass through two split lenses 501 and 502 (two pieces of dichroism)
  • the transmission of the color filter, and each transmission has a loss of light intensity.
  • the above two points are not suitable for the simple and efficient design of the projection optical path of the miniature DLP projector in the existing handheld electronic device, and the requirements of small size, light weight and low optical loss.
  • the object of the present invention is to provide a DLP pico projector with a simple and reasonable structure, which can replace the mirror in the illumination optical system of the existing micro DLP projector by adopting wedge-shaped optical components, so that the light supply device can adopt
  • the single-chip spectroscopic lens replaces the two dichroic beam splitting lenses in the angled fan-shaped arrangement of the existing DLP projector, which makes the projector compact, simplifies the optical components, reduces the optical loss, and reduces the DLP miniature.
  • the size and weight of the projector are easy to carry or suitable for embedded in handheld electronic devices.
  • the present invention provides a DLP micro projector, comprising: a light supply device comprising: an LED light emitting unit 1 formed by packaging a first LED light emitting chip and a second LED light emitting chip, corresponding to the LED light emitting unit a first collimating lens group, a third LED light emitting chip, and a second collimating lens group corresponding to the third LED light emitting chip, and a spectroscopic lens; the spectroscopic lens includes a first working surface and a second working surface, The first working surface is plated with a dichroic color separation film, and the second working surface is correspondingly coated with an anti-reflection film, or the first working surface is coated with an anti-reflection film, and the second working surface is plated.
  • a light supply device comprising: an LED light emitting unit 1 formed by packaging a first LED light emitting chip and a second LED light emitting chip, corresponding to the LED light emitting unit a first collimating lens group, a third LED light emitting chip, and
  • an illumination optical system comprising: a beam shaping member, a wedge-shaped optical member and a beam guiding member; the wedge-shaped optical member comprising a third working surface and a fourth working surface that are not parallel to each other, The third working surface is plated with a dichroic color separation film, and the fourth working surface is a reflective film or a dichroic color separation film; a DLP light modulator; and a projection lens device.
  • the first LED light emitting chip, the second LED light emitting chip and the third LED light emitting chip respectively emit a first light beam, a second light beam and a third light beam, and the first light beam or the second light beam and the first light beam
  • the central optical axes of the direct lens groups coincide, and the third beam coincides with the central optical axis of the second collimating lens group.
  • the beam shaping component is composed of a compound eye array lens or a light bar and a first relay lens.
  • the beam shaping member is disposed between the light supplying device and the wedge optical member, or between the wedge optical member and the beam guiding member.
  • the dihedral angle formed by the third working surface and the fourth working surface is greater than 1° and less than 45°.
  • the setting angle of the wedge-shaped optical component and the beam shaping component are
  • the central optical axis has an angle greater than 15° and less than 80°.
  • the beam guiding component comprises: a relay lens and a right angle prism group.
  • the beam guiding component comprises: a free-form surface lens and a right-angle prism.
  • the beam guiding component comprises: a mirror and a mirror.
  • the DLP pico projector can replace the mirror in the illumination optical system of the existing micro DLP projector by adopting a wedge-shaped optical component, so that the light-providing device can adopt single-chip spectrometry
  • the lens replaces two dichroic beam splitting lenses in an angled sector of the existing DLP projector, which makes the projector compact, simplifies the optical components, reduces optical loss, and reduces the DLP pico projector. Volume and weight, easy to carry or suitable for embedded in handheld electronic devices.
  • FIG. 1 is a schematic structural view of a conventional micro DLP projector.
  • Embodiment 1 of the micro DLP projector of the present invention is a schematic structural view of Embodiment 1 of the micro DLP projector of the present invention.
  • FIG. 2A is a first schematic structural view of a beam guiding member of the first embodiment of the micro DLP projector of the present invention.
  • 2B is a second schematic structural view of a beam guiding member of the first embodiment of the micro DLP projector of the present invention.
  • 2C is a schematic view showing the arrangement of the beam shaping member of the first embodiment of the micro DLP projector of the present invention.
  • FIG 3 is a schematic structural view of a second embodiment of the micro DLP projector of the present invention.
  • FIG. 4 is a schematic structural view of a third embodiment of the micro DLP projector of the present invention.
  • Fig. 5 is a schematic structural view of a fourth embodiment of the micro DLP projector of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a specific structure of a micro DLP projector includes sequentially disposed along an optical path: a light supply device, an illumination optical system, a DLP light modulator, and a projection lens device.
  • the light-providing device includes: an LED light-emitting unit 100 integrally formed by the first LED light-emitting chip 101 and the second LED light-emitting chip 102, and a first collimating lens group 104 corresponding to the LED light-emitting unit 100.
  • the three LED light emitting chip 103 and the second collimating lens group 105 disposed corresponding to the third LED light emitting chip 103, and the spectroscopic lens 110.
  • the first LED light emitting chip 101, the second LED light emitting chip 102, and the third LED light emitting chip 103 respectively emit a first light beam 101a, a second light beam 102a, and a third light beam 103a, and the first light beam 101a, the second light beam 102a, and the third light beam
  • the color of the 103a is different, but the composite can form a white light beam.
  • the color combination of the first light beam 101a, the second light beam 102a, and the third light beam 103a may be red, blue, green (RBG) three primary colors, or may be cyan, yellow, and magenta ( CYM); wherein one of the first beam 101a or the second beam 102a coincides with a central optical axis of the first collimating lens group 104, and the third beam 103a coincides with a central optical axis of the second collimating lens group 105.
  • RBG red, blue, green
  • CYM magenta
  • the spectroscopic lens 110 is optically coupled to the first collimating lens group 104 and the second collimating lens group 105 for processing a three-color LED beam (101a) aligned by the first collimating lens group 104 and the second collimating lens group.
  • the beam splitting lens 110 includes a first working surface 111 and a second working surface 112, wherein the first working surface 111 is plated with a dichroic color separation film, and the first light beam 101a and the second light beam can be made 102a is transmitted through the third light beam 103a, and the second working surface 112 is correspondingly coated with an anti-reflection film.
  • the second light beam 102a and the third light beam 103a are applied by the dichroic color separation film on the first working surface 111.
  • the combined light forms the fourth light beam 104a and the first light beam 101a is incident on the subsequent optical component.
  • the illumination optical system includes a beam shaping component 120, a wedge-shaped optical component 130, and a beam guiding component 140.
  • the beam shaping component 120 is composed of a compound eye array lens 121 or a light bar and a first relay lens 122 for receiving by the beam splitting lens 110.
  • the emitted first light beam 101a and fourth light beam 104a are uniformly guided to the subsequent optical components, and may be disposed between the light supply device and the wedge optical member, or may be disposed between the wedge optical member 130 and the light beam guiding member 140 ( Figure 2C);
  • the wedge-shaped optical component 130 includes a third working surface 131 and a fourth working surface 132.
  • the third working surface 131 and the fourth working surface 132 are not parallel to each other, and the dihedral angle formed by the two is greater than 1° and less than 45°;
  • the working surface 131 is plated with a dichroic color separation film, and the fourth working surface 132 is a reflective film or a dichroic color separation film; when the third working surface 131 is plated with a corresponding dichroic color separation film, the first light beam is reflected.
  • the fourth working surface 132 is a reflective film or is plated with a corresponding dichroic color separation film to reflect the fourth light beam 104a, and conversely, when the third working surface 131 is plated with a corresponding dichroic color separation film reflection
  • the fourth working surface 132 is a reflective film or is plated with a corresponding dichroic color separation film to reflect the first light beam 101a; the first light beam 101a and the fourth light beam 104a from the beam shaping member 120 are wedge-shaped optical components.
  • the combined light forms a white light beam 105a;
  • the angle between the set angle of the wedge-shaped optical component 130 and the central optical axis of the beam shaping component is greater than 15° and less than 80°, so that the reflected working surface (131 or 132) corresponding to the beam from the beam shaping component 120 and the beam is greater than 30°.
  • An incident angle of 60°, preferably, the incident angle of the light beam from the beam shaping member 120 and the reflective working surface (131 or 132) corresponding to the light beam is 45°;
  • the beam guiding member 140 may be a relay lens 141 and a right-angle prism group (142 and 143) or a free-form surface lens 141B and a right-angle prism 142B (as shown in FIG. 2B) or a mirror 141A and a mirror 142A. (As shown in Fig. 2A) an optical component set.
  • the white light beam 105a is transmitted to the DLP light modulator via the subsequent beam guiding member 140.
  • the illumination beam is converted into an image beam which is totally reflected by the oblique side of the right angle prism 143 and then projected to the projection lens device 160 in the horizontal direction. .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of the present invention.
  • the projection module of the second embodiment is similar to the first embodiment, and the difference from the first embodiment is that the second embodiment of the light supply device is A light beam 201a and a third light beam 203a are combined, and the wedge-shaped optical component is adjusted accordingly.
  • the installation angle of the spectroscopic lens 210 or the position of the LED illumination unit 200 or the third LED illumination chip unit 203 is adjusted, and the dichroic separation film is applied to the first working surface 211 of the spectroscopic lens 210.
  • a light beam 201a and a third light beam 203a are combined to form a fourth light beam 204a and a second light beam 202a incident on a subsequent optical component.
  • the illumination optics portion also undergoes a corresponding change
  • the wedge-shaped optical component 230 includes a third working surface 231 and a fourth working surface 232.
  • the fourth working surface 232 is a reflective film or is plated with a corresponding dichroic color separation film to reflect the fourth light beam 204a.
  • the fourth working surface 232 is a reflective film or is plated with a corresponding dichroic color separation film to reflect the second light beam 202a.
  • the second light beam 202a and the fourth light beam 204a from the beam shaping member 120 and the first relay lens 121 are combined by the wedge-shaped optical member 230 to form a white light beam 205a.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 4 is a schematic structural diagram of Embodiment 3 of the present invention.
  • the projection module of the third embodiment is similar to the first embodiment.
  • the difference from the first embodiment is that the first working surface 311 of the spectroscopic lens 310 is coated with an anti-reflection film, and the second working is performed.
  • the surface 312 is plated with a corresponding dichroic color separation film, and the second light beam 302a and the third light beam 303a are combined on the second working surface 312 to be combined.
  • the spectroscopic lens 310 includes a first working surface 311 and a second working surface 312.
  • the first working surface 311 is coated with an anti-reflection film
  • the second working surface 312 is plated with a corresponding dichroic color separation film.
  • the third light beam 303a is reflected by the dichroic color separation film on the second working surface 312 of the spectroscopic lens and combined with the second light beam 302a to form the fourth light beam 304a, and then incident on the subsequent optical component with the first light beam 301a.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 5 is a schematic structural diagram of Embodiment 4 of the present invention.
  • the projection module of the fourth embodiment is similar to the second embodiment.
  • the difference from the second embodiment is that the first working surface 411 of the spectroscopic lens 410 is coated with an anti-reflection film, and the second working is performed.
  • the surface 412 is plated with a corresponding dichroic color separation film to combine the partial beams.
  • the spectroscopic lens 410 includes a first working surface 411 and a second working surface 412.
  • the first working surface 411 is coated with an anti-reflection film
  • the second working surface 412 is plated with a corresponding dichroic color separation film.
  • the third light beam 403a is reflected by the dichroic color separation film on the first working surface 411 of the spectroscopic lens, combined with the first light beam 401a to form the fourth light beam 404a, and then incident on the subsequent optical component with the second light beam 402a.
  • the present invention does not limit that the first LED light emitting chip and the second LED light emitting chip are packaged together to form the unit one, and the third LED light emitting chip is the unit two, but the first, second and third LED light emitting chips At least two of them are packaged together to form a unit 1; the color order of the first beam, the second beam, and the third beam is not limited, for example, when the combined color of the three-color beam is red, blue, and green, the first beam, The two beams and the third beam may be red, blue, and green, respectively, or the first beam, the second beam, and the third beam may be blue, red, and green, respectively.
  • the DLP pico projector replaces the existing DLP projector light supply device by using a wedge-shaped optical component instead of the mirror in the illumination optical system of the existing micro DLP projector.
  • Two dichroic beamsplitters with a certain angular fan shape which makes the projector compact, simplifying optical components, reducing optical loss, reducing the size and weight of the DLP pico projector, easy to carry or suitable for embedded handheld Electronic equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Eyeglasses (AREA)

Abstract

一种DLP微型投影机,包括:供光装置、照明光学系统、DLP光调制器(150)以及投影镜头装置(160)。供光装置包括:由第一LED发光芯片(101)和第二LED发光芯片(102)封装在一起构成的LED发光单元一(100)、与LED发光单元一(100)对应设置的第一准直透镜组(104)、第三LED发光芯片(103)、与第三LED发光芯片(103)对应设置的第二准直透镜组(105)、以及分光镜片(110)。照明光学系统包括:光束整形部件(120)、楔形光学部件(130)以及光束引导部件(140)。楔形光学部件(130)包括相互不平行的第三工作面(131)和第四工作面(132),第三工作面(131)镀有二向色分色膜,第四工作面(132)为反射膜或镀有二向色分色膜。该DLP微型投影机布局紧凑,简化了光学元件,光损耗低,减小了DLP微型投影机的体积和重量,方便携带或者适合嵌入手持式电子设备。

Description

DLP微型投影机 技术领域
本发明涉及数字投影显示技术领域,特别涉及一种DLP微型投影机。
背景技术
随着科学技术的发展,特别是半导体技术的推动,便携式的电子设备被不断的设计制造出来。便携式电子设备功能的提升,用户对人机界面的显示器件的要求越来越向着微型,大屏幕和高分辨率方向发展。在广大用户强烈需求的促使下,近年来微型投影机技术发展迅猛,DLP、LCOS等产品纷纷推出了便携式的手持微型投影机产品(PICO),或内置于手机等手持移动设备中的投影机模组。DLP投影产品因比传统的LCD和LCOS投影机在流明亮度、视频影像显示及对比度方面都显示出更大的优越性,而深受消费者喜爱。
针对现有常规的微型DLP投影机,要更好地应用在手持式电子设备中,就要在保持具有高的光输出的前提下,要求投影光路设计简洁高效,使投影机满足尺寸小、重量轻、低的光损耗等适合应用于手持式电子设备中的条件。
目前常规的微型DLP投影机如图1所示,其供光装置部分采用分光镜片组500(其包括两分光镜片501、502),使三色LED光平行排列入射到后续光学装置,但两分光镜片501、502呈夹角设置,生产工艺较为复杂且占用空间较大,使光路不够紧凑,增大了投影机的体积;此外,透射光束需经过两分光镜片501、502(两片二向色滤色镜)的透射,而每一次透射都会有光强损失。上述两点均不适应现有手持式电子设备对微型DLP投影机的投影光路设计简洁高效,尺寸小、重量轻、低的光损耗的要求。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种结构简单合理的DLP微型投影机,该DLP微型投影机通过采用楔形光学部件替代现有微型DLP投影机的照明光学系统中的反射镜,使得其供光装置能够采用单片分光镜片来取代现有DLP投影机供光装置中呈一定夹角扇形设置的两片二向色分光镜片,进而使得投影机布局紧凑,简化了光学元件,光损耗低,减小DLP微型投影机的体积和重量,方便携带或者适合嵌入手持式电子设备。
为实现上述目的,本发明提供了DLP微型投影机,包括:供光装置,包括:由第一LED发光芯片和第二LED发光芯片封装在一起构成的LED发光单元一、与LED发光单元一对应设置的第一准直透镜组、第三LED发光芯片和与第三LED发光芯片对应设置的第二准直透镜组、以及分光镜片;所述分光镜片包括第一工作面和第二工作面,所述第一工作面上镀有二向色分色膜、第二工作面相应地镀有增透膜,或者,所述第一工作面上镀有增透膜、第二工作面上则镀有相对应的二向色分色膜;照明光学系统,包括:光束整形部件、楔形光学部件和光束导引部件;所述楔形光学部件包括相互不平行的第三工作面和第四工作面,所述第三工作面镀有二向色分色膜,第四工作面为反射膜或镀有二向色分色膜;DLP光调制器;以及投影镜头装置。
优选地,上述技术方案中,第一LED发光芯片、第二LED发光芯片及第三LED发光芯片分别发出第一光束、第二光束及第三光束,第一光束或第二光束与第一准直透镜组的中心光轴重合,第三光束与第二准直透镜组的中心光轴重合。
优选地,上述技术方案中,光束整形部件由复眼阵列透镜或光棒与第一中继透镜组成。
优选地,上述技术方案中,光束整形部件设置于供光装置和楔形光学部件之间,或者设置在楔形光学部件和光束导引部件之间。
优选地,上述技术方案中,第三工作面与第四工作面所构成的二面角大于1°小于45°。
优选地,上述技术方案中,楔形光学部件的设置角度与光束整形部件的 中心光轴夹角大于15°小于80°。
优选地,上述技术方案中,光束导引部件包括:一中继透镜和一直角棱镜组。
优选地,上述技术方案中,光束导引部件包括:一自由曲面透镜和一直角棱镜。
优选地,上述技术方案中,光束导引部件包括:一场镜和一反射镜。
与现有技术相比,本发明具有如下有益效果:该DLP微型投影机通过采用楔形光学部件替代现有微型DLP投影机的照明光学系统中的反射镜,使得其供光装置能够采用单片分光镜片来取代现有DLP投影机供光装置中呈一定夹角扇形设置的两片二向色分光镜片,进而使得投影机布局紧凑,简化了光学元件,光损耗低,减小DLP微型投影机的体积和重量,方便携带或者适合嵌入手持式电子设备。
附图说明
图1是现有微型DLP投影机的结构示意图。
图2是本发明的微型DLP投影机实施例一的结构示意图。
图2A是本发明的微型DLP投影机实施例一的光束导引部件第一结构示意图。
图2B是本发明的微型DLP投影机实施例一的光束导引部件第二结构示意图。
图2C是本发明的微型DLP投影机实施例一的光束整形部件设置结构示意图。
图3是本发明的微型DLP投影机实施例二的结构示意图。
图4是本发明的微型DLP投影机实施例三的结构示意图。
图5是本发明的微型DLP投影机实施例四的结构示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
实施例一:
如图2所示,根据本发明具体实施方式的微型DLP投影机的具体结构包括沿光路顺次设置的:供光装置、照明光学系统、DLP光调制器和投影镜头装置。
其中,供光装置包括:由第一LED发光芯片101和第二LED发光芯片102封装在一起构成的LED发光单元一100、与LED发光单元一100对应设置的第一准直透镜组104、第三LED发光芯片103和与第三LED发光芯片103对应设置的第二准直透镜组105、以及分光镜片110。
第一LED发光芯片101、第二LED发光芯片102及第三LED发光芯片103分别发出第一光束101a、第二光束102a及第三光束103a,第一光束101a、第二光束102a及第三光束103a颜色各不相同,但复合可形成白光光束,例如第一光束101a、第二光束102a以及第三光束103a颜色组合可以是红蓝绿(RBG)三原色光,亦可以是青色、黄色以及洋红(CYM);其中,第一光束101a或第二光束102a之一与第一准直透镜组104的中心光轴重合,第三光束103a与第二准直透镜组105的中心光轴重合。
分光镜片110与第一准直透镜组104以及第二准直透镜组105光学连接,用以处理经由第一准直透镜组104以及第二准直透镜组准直后的三色LED光束(101a、102a及103a);分光镜片110包括第一工作面111和第二工作面112,其中,在第一工作面111上镀有二向色分色膜,可以使第一光束101a和第二光束102a透过而第三光束103a反射,第二工作面112则相应地镀有增透膜,在第一工作面111上的二向色分色膜的作用下第二光束102a和第三光束103a合光形成第四光束104a与第一光束101a入射到后续光学部件。
该照明光学系统包括:光束整形部件120、楔形光学部件130和光束导引部件140;光束整形部件120由复眼阵列透镜121或光棒与第一中继透镜122组成,用于接收由分光镜片110出射的第一光束101a和第四光束104a并将其均匀导向后续光学部件,可设置于供光装置和楔形光学部件之间,也可设置在楔形光学部件130和光束导引部件140之间(如图2C);
楔形光学部件130包括第三工作面131和第四工作面132,第三工作面131与第四工作面132相互不平行,二者所构成的二面角大于1°小于45°;其中第三工作面131镀有二向色分色膜,第四工作面132为反射膜或镀有二向色分色膜;当第三工作面131镀有相应的二向色分色膜反射第一光束101a时,则第四工作面132为反射膜或镀有相应的二向色分色膜反射第四光束104a,相反地,当第三工作面131镀有相应的二向色分色膜反射第四光束104a时,则第四工作面132为反射膜或镀有相应的二向色分色膜反射第一光束101a;来自光束整形部件120的第一光束101a和第四光束104a经楔形光学部件130的第三工作面131和第四工作面132作用后,合光形成一束白光光束105a;
楔形光学部件130的设置角度与光束整形部件的中心光轴夹角大于15°小于80°,可使来自光束整形部件120的光束与光束对应的反射工作面(131或132)呈大于30°小于60°的入射角,优选的,来自光束整形部件120的光束与光束对应的反射工作面(131或132)的入射角度为45°;
光束导引部件140可以是一中继透镜141和一直角棱镜组(142和143)或者是一自由曲面透镜141B和一直角棱镜142B(如图2B)或者是一场镜141A和一反射镜142A(如图2A)组成的光学部件组。
白光光束105a经后续光束导引部件140透射至DLP光调制器,当DMD芯片150为开时,照明光束转换成影像光束在直角棱镜143的斜边全反射后沿水平方向投射到投影镜头装置160。
实施例二:
如图3所示为本发明实施例二的结构示意图。参照附图3,实施例二的投影模组与实施例一类似,与实施例一差异在于,实施例二供光装置部分使第 一光束201a和第三光束203a合光,楔形光学部件随之作相应的调整。
具体实施如下,调整分光镜片210的设置角度或者LED发光单元一200或第三LED发光芯片单元二203的位置,在分光镜片210的第一工作面211上二向色分色膜的作用下第一光束201a和第三光束203a合光形成第四光束204a与第二光束202a入射到后续光学部件。
照明光学系统部分也做相应的改变,楔形光学部件230包括第三工作面231和第四工作面232。当第三工作面231镀有相应的二向色分色膜反射第二光束202a时,则第四工作面232为反射膜或镀有相应的二向色分色膜反射第四光束204a,相反地,当第三工作面231镀有相应的二向色分色膜反射第四光束204a时,则第四工作面232为反射膜或镀有相应的二向色分色膜反射第二光束202a;来自光束整形部件120和第一中继透镜121的第二光束202a和第四光束204a经楔形光学部件230后合光形成一白光光束205a。
实施例三:
如图4所示为本发明实施例三的结构示意图。参照附图4,实施例三的投影模组与实施例一类似,与实施例一差异在于,实施例三在分光镜片310的第一工作面311上镀有增透膜,而在第二工作面312上则镀有相对应的二向色分色膜,使第二光束302a和第三光束303a合光在第二工作面312上进行合光。具体实施如下,分光镜片310包括第一工作面311和第二工作面312,在第一工作面311上镀有增透膜,第二工作面312则镀有相应地二向色分色膜,第三光束303a经分光镜片第二工作面312上的二向色分色膜的反射与第二光束302a合光形成第四光束304a后与第一光束301a入射到后续光学部件。
实施例四:
如图5所示为本发明实施例四的结构示意图。参照附图5,实施例四的投影模组与实施例二类似,与实施例二差异在于,实施例四在分光镜片410的第一工作面411上镀有增透膜,而在第二工作面412上则镀有相对应的二向色分色膜,使部分光束进行合光。具体实施如下,分光镜片410包括第一工作面411和第二工作面412,在第一工作面411上镀有增透膜,第二工作面412则镀有相应地二向色分色膜。调整分光镜片410的设置角度或相应LED 发光芯片的位置,第三光束403a经分光镜片第一工作面411上二向色分色膜的反射与第一光束401a合光形成第四光束404a后与第二光束402a入射到后续光学部件。
值得注意的是,本发明并不限定第一LED发光芯片和第二LED发光芯片封装在一起组成单元一,而第三LED发光芯片为单元二,但第一、第二及第三LED发光芯片的至少其中二者被封装在一起形成单元一;也不限定第一光束、第二光束以及第三光束的颜色顺序,例如当三色光束的组合颜色是红蓝绿时,第一光束、第二光束以及第三光束可分别为红色、蓝色及绿色,亦可以是第一光束、第二光束以及第三光束分别为蓝色、红色及绿色等等情况。
综上,该DLP微型投影机通过采用楔形光学部件替代现有微型DLP投影机的照明光学系统中的反射镜,使得其供光装置能够采用单片分光镜片来取代现有DLP投影机供光装置中呈一定夹角扇形设置的两片二向色分光镜片,进而使得投影机布局紧凑,简化了光学元件,光损耗低,减小DLP微型投影机的体积和重量,方便携带或者适合嵌入手持式电子设备。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (9)

  1. 一种DLP微型投影机,其特征在于,包括:
    供光装置,包括:由第一LED发光芯片和第二LED发光芯片封装在一起构成的LED发光单元一、与LED发光单元一对应设置的第一准直透镜组、第三LED发光芯片和与第三LED发光芯片对应设置的第二准直透镜组、以及分光镜片;所述分光镜片包括第一工作面和第二工作面,所述第一工作面上镀有二向色分色膜、第二工作面相应地镀有增透膜,或者,所述第一工作面上镀有增透膜、第二工作面上则镀有相对应的二向色分色膜;
    照明光学系统,包括:光束整形部件、楔形光学部件和光束导引部件;所述楔形光学部件包括相互不平行的第三工作面和第四工作面,所述第三工作面镀有二向色分色膜,第四工作面为反射膜或镀有二向色分色膜;
    DLP光调制器;以及
    投影镜头装置。
  2. 根据权利要求1所述的DLP微型投影机,其特征在于,所述第一LED发光芯片、第二LED发光芯片及第三LED发光芯片分别发出第一光束、第二光束及第三光束,所述第一光束或第二光束与第一准直透镜组的中心光轴重合,所述第三光束与第二准直透镜组的中心光轴重合。
  3. 根据权利要求1所述的DLP微型投影机,其特征在于,所述光束整形部件由复眼阵列透镜或光棒与第一中继透镜组成。
  4. 根据权利要求3所述的DLP微型投影机,其特征在于,所述光束整形部件设置于供光装置和楔形光学部件之间,或者设置在楔形光学部件和光束导引部件之间。
  5. 根据权利要求1至4中任一项所述的DLP微型投影机,其特征在于,所述第三工作面与第四工作面所构成的二面角大于1°小于45°。
  6. 根据权利要求5所述的DLP微型投影机,其特征在于,所述楔形光学部件的设置角度与所述光束整形部件的中心光轴夹角大于15°小于80°。
  7. 根据权利要求6所述的DLP微型投影机,其特征在于,所述光束导引部件包括:一中继透镜和一直角棱镜组,
  8. 根据权利要求6所述的DLP微型投影机,其特征在于,所述光束导引部件包括:一自由曲面透镜和一直角棱镜,
  9. 根据权利要求6所述的DLP微型投影机,其特征在于,所述光束导引部件包括:一场镜和一反射镜。
PCT/CN2014/090574 2014-08-15 2014-11-07 Dlp微型投影机 WO2016023281A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/037,922 US20160295181A1 (en) 2014-08-15 2014-11-07 Dlp pico-projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410404599.5A CN104155835B (zh) 2014-08-15 2014-08-15 Dlp微型投影机
CN201410404599.5 2014-08-15

Publications (1)

Publication Number Publication Date
WO2016023281A1 true WO2016023281A1 (zh) 2016-02-18

Family

ID=51881372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090574 WO2016023281A1 (zh) 2014-08-15 2014-11-07 Dlp微型投影机

Country Status (4)

Country Link
US (1) US20160295181A1 (zh)
CN (1) CN104155835B (zh)
HK (1) HK1199501A1 (zh)
WO (1) WO2016023281A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656360A (zh) * 2015-02-28 2015-05-27 胡开标 一种微型数字投影仪
CN204883152U (zh) * 2015-08-03 2015-12-16 广景视睿科技(深圳)有限公司 Dlp微型投影机
CN105527696B (zh) * 2016-01-26 2018-05-01 深圳市谛源光科有限公司 一种用于3d打印机的光学引擎
CN106597782A (zh) * 2016-12-23 2017-04-26 广东威创视讯科技股份有限公司 一种dlp背投拼接投影系统
CN110530297B (zh) * 2018-05-23 2020-11-03 中国科学院长春光学精密机械与物理研究所 一种激光光束准直的判断方法及采用该方法的剪切干涉仪
CN113075847B (zh) * 2020-12-23 2022-07-12 深圳市安华光电技术有限公司 数字光处理光机
CN113671776B (zh) * 2021-08-31 2023-03-07 青岛海信激光显示股份有限公司 发光单元、光源系统和激光投影设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193294A (zh) * 2010-03-15 2011-09-21 华新丽华股份有限公司 照明系统
CN103034034A (zh) * 2011-10-09 2013-04-10 红蝶科技(深圳)有限公司 一种具有偏轴led光源的数字光处理投影装置
CN103713456A (zh) * 2012-10-09 2014-04-09 日立视听媒体股份有限公司 光源装置和使用它的投影型显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819428B2 (ja) * 2005-07-19 2011-11-24 Necディスプレイソリューションズ株式会社 投写型表示装置および全反射プリズム
US7508590B2 (en) * 2005-12-09 2009-03-24 Scram Technologies, Inc. Optical system for a digital light projection system including 3-channel and 4-channel LED array light engines
TWI375855B (en) * 2008-11-21 2012-11-01 Young Optics Inc Illumination system and projection apparatus
TWI403821B (zh) * 2009-10-28 2013-08-01 Young Optics Inc 照明系統及投影裝置
CN102298253A (zh) * 2010-06-25 2011-12-28 鸿富锦精密工业(深圳)有限公司 微型硅晶投影机
US20130169893A1 (en) * 2010-09-22 2013-07-04 3M Innovative Properties Company Tilted dichroic color combiner ii
JP5494678B2 (ja) * 2011-02-17 2014-05-21 株式会社ニコン 照明光学系およびプロジェクタ装置
TW201250365A (en) * 2011-06-03 2012-12-16 Zhi Cheng Optoelectronics Co Ltd Micro-projection system
KR20130019191A (ko) * 2011-08-16 2013-02-26 삼성전자주식회사 투사 광학계와 표시 소자 사이에 오프셋을 갖는 프로젝터
CN103048862A (zh) * 2011-10-14 2013-04-17 广景科技有限公司 Dlp微型摄影机及其投影方法
KR20130043975A (ko) * 2011-10-21 2013-05-02 삼성전자주식회사 등화 렌즈를 구비한 빔 프로젝터
CN202837791U (zh) * 2012-08-30 2013-03-27 广景科技有限公司 Dlp微型投影机
CN103713454B (zh) * 2012-09-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN203982065U (zh) * 2014-08-15 2014-12-03 广景科技有限公司 Dlp 微型投影机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193294A (zh) * 2010-03-15 2011-09-21 华新丽华股份有限公司 照明系统
CN103034034A (zh) * 2011-10-09 2013-04-10 红蝶科技(深圳)有限公司 一种具有偏轴led光源的数字光处理投影装置
CN103713456A (zh) * 2012-10-09 2014-04-09 日立视听媒体股份有限公司 光源装置和使用它的投影型显示装置

Also Published As

Publication number Publication date
CN104155835B (zh) 2015-12-30
HK1199501A1 (zh) 2015-07-03
CN104155835A (zh) 2014-11-19
US20160295181A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
WO2016023281A1 (zh) Dlp微型投影机
US9645480B2 (en) Light source module and projection apparatus having the same
WO2015172536A1 (zh) 直线型dlp微型投影机
WO2017049935A1 (zh) 一种投影照明光路及其投影模组
WO2015172537A1 (zh) Dlp微型投影机
WO2016095619A1 (zh) 直线型dlp微型投影机
US10754162B2 (en) Projection apparatus and head-mounted display device
WO2018176613A1 (zh) 一种红外投影系统
US20150338061A1 (en) Illumination system and projection apparatus with same
WO2017012220A1 (zh) 一种紧凑型投影装置
CN106873295B (zh) 一种投影机
WO2013053171A1 (zh) Dlp微型投影机及其投影方法
WO2013063835A1 (zh) Dlp微型投影机
TW201833653A (zh) 投影系統
WO2017101460A1 (zh) 一种合光系统及其投影照明光路
US20240027884A1 (en) Illumination system and projection apparatus
TW201333619A (zh) 立體投影光源系統
WO2017050026A1 (zh) 一种投影照明光路
JPWO2004068197A1 (ja) 複合プリズム、光源ユニット、および表示装置
CN101976011B (zh) Md短焦距投影显示装置
CN213069457U (zh) 四通道无反射镜tir结构及dlp微投影机
CN111837073B (zh) 图像显示设备
WO2020199670A1 (zh) 光源系统及投影设备
TWI786470B (zh) 顯示單元以及投影裝置
TWI480666B (zh) 投影機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037922

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899592

Country of ref document: EP

Kind code of ref document: A1