WO2017050026A1 - 一种投影照明光路 - Google Patents

一种投影照明光路 Download PDF

Info

Publication number
WO2017050026A1
WO2017050026A1 PCT/CN2016/093399 CN2016093399W WO2017050026A1 WO 2017050026 A1 WO2017050026 A1 WO 2017050026A1 CN 2016093399 W CN2016093399 W CN 2016093399W WO 2017050026 A1 WO2017050026 A1 WO 2017050026A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
cylindrical lens
cylindrical
lens
uniform
Prior art date
Application number
PCT/CN2016/093399
Other languages
English (en)
French (fr)
Inventor
高志强
赵远
杨伟樑
林清云
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2017050026A1 publication Critical patent/WO2017050026A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of digital projection display technology, and more particularly to a uniform pupil lens and a projection illumination path thereof.
  • the function of the illumination module of the projection module is to convert the illumination light with large angle distribution, shape and brightness of the light source into a uniform spot that is irradiated to the effective area of the display chip as much as possible to achieve uniform and bright projection display.
  • Conventional conventional projectors usually combine three light sources and then homogenize them through a fly-eye lens or a light rod, which has a large optical path, which is disadvantageous for reducing the size of the projector and improving the performance of the projector.
  • the conditions in the electronic device which also become one of the technical problems to be solved by those skilled in the art.
  • an object of the present invention is to provide a shadow illumination path that is simple and reasonable in structure, ensures output power of each light source, and is advantageous in reducing the cost of processing and assembly.
  • the present invention provides a projection illumination optical path, comprising: a three primary color light source composed of a first light source, a second light source, and a third light source; and a first collimation disposed on the optical path of the first light source a lens group, a second collimating lens group disposed on the optical path of the second light source, and a third collimating lens group disposed on the optical path of the third light source;
  • the spectroscopic lens group comprising: a first dichroic mirror and a first a dichroic mirror; a homogenizing cylindrical lens group consisting of a uniform cylindrical lens having a cylindrical array structure and a light-emitting surface, comprising: a first uniform cylindrical lens, a second uniform cylindrical lens, and a third uniform a cylindrical lens combined to generate a uniform intensity distribution in two orthogonal directions; wherein a cylindrical axial direction of the first uniform cylindrical lens is orthogonal to a cylindrical axial direction of the third uniform cylindrical lens, and The cylindrical axial direction of the
  • the central optical axis of the second uniformized cylindrical lens is parallel to the central optical axis of the third uniformized cylindrical lens and is perpendicular to the central optical axis of the first uniformized cylindrical lens.
  • the first light homogenizing lens is configured to generate a uniform light intensity distribution in the same direction as the cylindrical axial direction of the first uniformizing cylindrical lens for the light beams from the first light source and the second light source, and the column of the first light homogenizing lens a third uniformizing cylindrical lens orthogonal to the surface is configured to generate a uniform light intensity distribution in the same direction as the cylindrical axial direction of the third uniformizing cylindrical lens for the light beams from the first light source and the second light source; the second uniformizing column
  • the surface lens is configured to generate a uniform light intensity distribution in the same direction as the cylinder axis of the second uniformizing cylindrical lens for the light beam from the third light source, and a third uniform light column orthogonal to the cylindrical surface of the second uniformizing lens
  • the face lens is used to generate a uniform light intensity distribution in the same direction as the cylinder axis of the third uniformized cylindrical lens for the light beam from the third source.
  • the cylindrical array surfaces of the first uniformizing cylindrical lens, the second uniformizing cylindrical lens and the third uniformizing cylindrical lens are periodic arrangements of the convex surface of the convex cylindrical lens and the concave joint therebetween
  • the first uniformizing cylindrical lens and/or the second uniformizing cylindrical lens and/or the third uniformizing cylindrical lens may be made of plastic or glass.
  • the central optical axis of the second collimating lens group and the central optical axis of the third collimating lens group are parallel, both perpendicular to the central optical axis of the first collimating lens group.
  • the light beam from the first light source is collimated by the first collimating lens group and transmitted through the first dichroic mirror
  • the light beam from the second light source is collimated by the second collimating lens group and then passed through the first sub-segment
  • the chromo-mirror reflection, the first uniformizing cylindrical lens is disposed in front of the first dichroic mirror light path, and the light beam transmitted and reflected through the first dichroic mirror converges in front of the light entering the first uniformizing cylindrical lens
  • the light beam of the cylindrical lens is reflected by the second dichroic mirror, the light beam from the second uniformized cylindrical lens is transmitted through the second dichroic mirror, and the third uniformized cylindrical lens is disposed in front of the second dichroic mirror optical path, and passes through the second sub- The transmitted and reflected beams of the color mirror converge in front of the third uniformized cylindrical lens.
  • the first dichroic mirror and the second dichroic mirror are arranged in parallel.
  • the three primary color light sources are LED light sources or laser light sources.
  • the three primary color light sources are composed of a red light source, a blue light source and a green light source.
  • the projection illumination optical path can be used for a projection module in which the display chip is a DMD or an LCOS or an LCD.
  • the angle between the first dichroic mirror and the central optical axis of the first collimating lens group is 45 degrees, and the angle between the first dichroic mirror and the central optical axis of the second collimating lens group is also 45.
  • Degree The angle between the color mirror and the central optical axis of the first collimating lens group is 45 degrees, and the angle between the second dichroic mirror and the central optical axis of the third collimating lens group is also 45 degrees.
  • the present invention has the following beneficial effects: providing a projection illumination optical path, comprising: a three primary color light source; three sets of collimating lens groups corresponding to the three primary color light sources; and a spectroscopic lens group, including: a dichroic mirror and a second dichroic mirror; a homogenizing cylindrical lens group consisting of a uniform cylindrical lens having a cylindrical array structure and a light-emitting surface, comprising: a first uniform cylindrical lens and a second uniform light column The face lens and the third uniform cylindrical lens are combined to produce a uniform light intensity distribution in two orthogonal directions.
  • the projection illumination optical path realizes that the three-way light source and the collimated optical path are independent of each other, and the uniformized cylindrical lens group is used to homogenize the light beam, and the structure is simple and reasonable, the output power of each light source is ensured, and the processing and assembly cost is reduced. .
  • FIG. 1 is a schematic structural view of a preferred embodiment of a projection illumination optical path of the present invention
  • FIG. 2 is a schematic perspective view showing the structure of a uniformizing cylindrical lens group of a preferred embodiment of the projection illumination optical path of the present invention.
  • a projection illumination optical path includes: a three primary color light source composed of a first light source 101, a second light source 102, and a third light source 103; respectively disposed on the first light source a first collimating lens group 104 on the 101 optical path, a second collimating lens group 105 disposed on the optical path of the second light source 102, and a third collimating lens group 106 disposed on the optical path of the third light source 103;
  • the spectroscopic lens group for changing the optical path includes: a first dichroic mirror 107 and a second dichroic mirror 108; a uniformizing cylindrical lens group composed of a uniform cylindrical lens having a cylindrical array structure of the light incident surface and the light exit surface, The first uniformizing
  • the cylindrical axial direction 109a of the first uniformized cylindrical lens 109 and the cylindrical axial direction 110a of the second uniformized cylindrical lens 110 cannot be completely seen due to the drawing angle. ); the cylindrical axial direction 109a of the first uniform cylindrical lens 109 and Three axially uniform cylindrical light beam orthogonal to the surface 111a of the lens 111 is provided, uniform light beam and the second cylindrical lens surface 110a and the axial direction of the cylindrical axis 110 of the third light beam uniform surface 111a of lens 111 disposed orthogonally.
  • the cylindrical axial direction 109a of the first uniformized cylindrical lens 109 and the cylindrical axial direction 111a of the third uniformized cylindrical lens 111 are orthogonally disposed for the first light source 101 and the second light source.
  • the light beam of 102 produces a uniform light intensity distribution in two orthogonal directions;
  • the cylindrical axial direction 110a of the second uniformized cylindrical lens 110 and the cylindrical axial direction 111a of the third uniformized cylindrical lens 111 are orthogonally arranged for pairing
  • the beam of the second dichroic mirror 108 produces a uniform intensity distribution in two orthogonal directions.
  • the cylindrical axial direction 109a of the first uniformized cylindrical lens 109 is set to the Y direction
  • the cylindrical axial direction 111a of the third uniformized cylindrical lens 111 is set to the X direction.
  • a third uniformizing cylindrical lens 111 axially orthogonal to the cylinder is used for A uniform light intensity distribution in the X direction is generated for the light beams from the first light source 101 and the second light source 102, and the first uniform light cylindrical lens 109 and the third uniform light cylindrical lens 111 combine to perform Y and the light beam from the first beam splitter 107.
  • the two orthogonal directions of X produce a uniform light intensity distribution, which is equivalent to the action of a fly-eye lens.
  • the cylindrical axial direction 110a of the second uniformized cylindrical lens 110 is set to the Y direction
  • the cylindrical axial direction 111a of the third uniformized cylindrical lens 111 is set to the X direction.
  • the second uniformizing cylindrical lens 110 generates a uniform light intensity distribution in the Y direction to the light beam from the third light source 103
  • the third uniformizing cylindrical lens 111 axially orthogonal to the cylindrical surface thereof is used to face the third light source from the third light source.
  • the beam of 103 produces a uniform intensity distribution in the X direction.
  • the light beam from the first light source 101 is collimated by the first collimating lens group 104 and transmitted through the first dichroic mirror 107, and the light beam from the second light source 102 is collimated by the second collimating lens group 105 and then passed through the first A dichroic mirror 107 is reflected, and the first uniformizing cylindrical lens 109 is disposed in front of the optical path of the first dichroic mirror 107, and the light beam transmitted and reflected through the first dichroic mirror 107 is incident on the first uniformizing cylindrical lens 109.
  • the light beams from the first light source 101 and the second light source 102 are collimated by the first collimating lens group 104 and the second collimating lens group 105, respectively, via the first dichroic mirror 107 at the first
  • the uniformized cylindrical lens 109 is concentrated in front of the incident light; the first uniformized cylindrical lens 109 generates a uniform light intensity distribution in the Y direction for the light beams from the first light source 101 and the second light source 102;
  • the second uniformizing cylindrical lens 110 is disposed directly in front of the optical path of the third collimating lens group 106, and the light beam collimated by the third collimating lens group 106 is homogenized, and the second uniformizing cylindrical lens 110 is from the pair.
  • the light beam of the third light source 103 generates a uniform light intensity distribution in the Y direction;
  • the light beam from the first uniformizing cylindrical lens 109 is reflected by the second dichroic mirror 108, the light beam from the second uniformizing cylindrical lens 110 is transmitted through the second dichroic mirror 108, and the third uniformizing cylindrical lens 111 is disposed in the second sub-division
  • the light beam transmitted and reflected by the second dichroic mirror 108 in front of the optical path of the color mirror 108 is concentrated in front of the light entering the third uniformizing cylindrical lens 111, and is incident on the third uniformizing cylindrical lens 111 for uniform lightning.
  • the three uniform light cylindrical lens 111 is used to generate a uniform light intensity distribution in the X direction for the light beams from the first light source 101 and the second light source 102, and to generate a uniform light intensity distribution in the X direction to the light beam from the third light source 103.
  • the cylindrical axial arrangement between the first uniformizing cylindrical lens 109, the second uniformizing cylindrical lens 110, and the third uniformizing cylindrical lens 111 is not necessarily set as described above, and may also be It is disposed in other forms as long as the cylindrical axial direction 109a of the first uniformizing cylindrical lens 109 and the cylindrical axial direction 111a of the third uniformizing cylindrical lens 111 are orthogonally disposed for pairing with the first light source 101 and
  • the light beam of the second light source 102 generates a uniform light intensity distribution in two orthogonal directions; the cylindrical axial direction 110a of the second uniformized cylindrical lens 110 and the cylindrical axial direction 111a of the third uniformized cylindrical lens 111 are orthogonally disposed.
  • a uniform light intensity distribution in two orthogonal directions is generated for the light beam from the second dichroic mirror 108.
  • the central optical axis of the first collimating lens group 104 and the central optical axis of the second collimating lens group 105 are perpendicular, or the central optical axis of the first collimating lens group 104 and the third standard
  • the central optical axis of the direct lens group 106 is perpendicular; the light beam from the first light source 101 is collimated by the first collimating lens group 104, and the light beam from the second light source 102 is collimated by the second collimating lens group 105;
  • the dichroic mirror 107 can transmit the incident light with respect to the light incident surface of the first light source 101, and the first dichroic mirror 107 can reflect the incident light with respect to the light incident surface of the second light source 102, the first fraction
  • the color mirror 107 transmits the light beam from the first light source 101, and reflects the light beam from the second light source 102 to converge in front of the light entering the first uniformizing cylindrical lens 109; the second uniformizing cylinder
  • the lens 110 is
  • the first dichroic mirror 107 and the second dichroic mirror 108 are arranged in parallel.
  • the central optical axis of the second uniformizing cylindrical lens 110 is parallel to the central optical axis of the third uniformizing cylindrical lens 111, and is perpendicular to the central optical axis of the first uniformizing cylindrical lens 109.
  • the angle between the first dichroic mirror 107 and the central optical axis of the first collimating lens group 104 is 45 degrees, and the first dichroic mirror 107 and the second collimating lens group
  • the angle of the central optical axis of the 105 is also 45 degrees; the angle between the second dichroic mirror 108 and the central optical axis of the first collimating lens group 104 is 45 degrees, and the second dichroic mirror 108 and the third standard
  • the central optical axis of the straight lens group 106 is also at an angle of 45 degrees.
  • the first collimating lens group 104, the second collimating lens group 105, and the third collimating lens group 106 may be provided as a planar lens or a curved lens or other type of lens.
  • the first dichroic mirror 107 and the second dichroic mirror 108 may be disposed as a planar lens; the first dichroic mirror 107 may be coated with an anti-reflection coating on the incident surface of the first light source 101.
  • the dichroic mirror 107 may be coated with an anti-reflection film on the light incident surface of the second light source 102; the second dichroic mirror 108 may be coated with an anti-reflection film on the light incident surface of the first uniformized cylindrical lens 109.
  • the second dichroic mirror 108 may be coated with an anti-reflection film on the light incident surface of the second uniformizing cylindrical lens 110.
  • the first uniformizing cylindrical lens 109 and the second uniformizing cylindrical lens 110 or the third uniformizing cylindrical lens 111 may be disposed at different angles with each other, and at the same time, the first dichroic mirror 107 and the second
  • the angle between the dichroic mirror 108 and the uniform lens may also be set to other angles as long as it can satisfy: the first dichroic mirror 107 converges the light beam of the first light source 101 and the light beam from the second light source 102;
  • the dichroic mirror 108 converges the light condensed from the first dichroic mirror 107 and the light beam of the third light source 103.
  • the cylindrical array surfaces of the first uniformizing cylindrical lens 109, the second uniformizing cylindrical lens 110, and the third uniformizing cylindrical lens 111 are both convex cylindrical lenses and concave joints therebetween.
  • the periodic arrangement structure of the smooth connection, the light incident surface and the light exit surface are completely covered by the cylindrical array; the surface structure of the convex cylindrical lens on the light incident surface and the surface shape of the convex cylindrical lens on the light exit surface
  • the structure is mirror-symmetrical; the first uniformized cylindrical lens 109 and/or the second uniformized cylindrical lens 110 and/or the third uniformized cylindrical lens 111 may be of plastic or glass.
  • the three primary color light sources may be LED light sources or laser light sources; preferably, the three primary color light sources are composed of a red LED light source, a blue LED light source, and a green LED light source.
  • the projection illumination optical path can be used for a projection module in which the display chip is a DMD or an LCOS or an LCD.
  • the projection illumination optical path realizes that the three-way light source and the collimated optical path are independent of each other, and the uniformized cylindrical lens group is used to homogenize the light beam, and the structure is simple and reasonable, the output power of each light source is ensured, and the reduction is favorable. The cost of processing and assembly.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影照明光路,包括:由第一光源(101)、第二光源(102)和第三光源(103)组成的三基色光源;与三基色光源一一对应的三组准直透镜组(104,105,106);分光镜片组,包括:第一分色镜(107)和第二分色镜(108);由入光面和出光面均为柱面阵列结构的匀光柱面透镜组成的匀光柱面透镜组,包括:第一匀光柱面透镜(109)、第二匀光柱面透镜(110)和第三匀光柱面透镜(111),组合用于产生两个正交方向的均匀光强分布。该投影照明光路实现三路光源及其准直光路相互独立,采用匀光柱面透镜组对光束进行均匀化,结构简单合理,保证了每个光源的输出功率,且有利于降低加工和装配的成本。

Description

一种投影照明光路 技术领域
本发明涉及数字投影显示技术领域,更具体地说,涉及一种匀光柱面透镜及其投影照明光路。
背景技术
随着科学技术的发展,特别是半导体技术的推动,便携式的电子设备被不断的设计制造出来。便携式电子设备功能的提升,用户对人机界面的显示器件的要求越来越向着微型,大屏幕和高分辨率方向发展。在广大用户强烈需求的促使下,近年来微型投影机技术发展迅猛,DLP、LCOS等产品纷纷推出了便携式的手持微型投影机产品(PICO),或内置于手机等手持移动设备中的投影机模组。
投影模组照明光路的功能在于尽可能多地将光源发出的大角度分布、形状不一、亮度不等的照明光线,转换为照射到显示芯片有效区域的均匀光斑,实现均匀、明亮的投影显示画面。现有常规的投影机,通常是先将三路光源进行合光后,再通过复眼透镜或者光棒进行匀光,光程较大,不利于减小投影机的体积和提高投影机的性能。投影模组要更好地应用在手持式电子设备中,就要在保持具有高的光输出的前提下,要求投影光路设计简洁高效,使投影机满足尺寸小、光损耗低等适合应用于手持式电子设备中的条件,这也成为本领域技术人员有待解决的技术问题之一。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技 术人员所公知的现有技术。
发明内容
针对上述技术问题,本发明的目的在于提供一种结构简单合理,保证了每个光源的输出功率,且有利于降低加工和装配的成本的影照明光路。
为实现上述目的,本发明提供了一种投影照明光路,包括:由第一光源、第二光源和第三光源组成的三基色光源;分别设置于所述第一光源光路上的第一准直透镜组、设置于所述第二光源光路上的第二准直透镜组和设置于所述第三光源光路上的第三准直透镜组;分光镜片组,包括:第一分色镜和第二分色镜;由入光面和出光面均为柱面阵列结构的匀光柱面透镜组成的匀光柱面透镜组,包括:第一匀光柱面透镜、第二匀光柱面透镜和第三匀光柱面透镜,组合用于产生两个正交方向的均匀光强分布;其中,第一匀光柱面透镜的柱面轴向与第三匀光柱面透镜的柱面轴向正交设置,且第二匀光柱面透镜的柱面轴向与第三匀光柱面透镜的柱面轴向正交设置。
优选地,所述第二匀光柱面透镜的中心光轴和第三匀光柱面透镜的中心光轴平行,且均与第一匀光柱面透镜的中心光轴垂直。
优选地,第一匀光透镜用于对来自第一光源和第二光源的光束产生与第一匀光柱面透镜的柱面轴向相同方向的均匀光强分布,与第一匀光透镜的柱面轴向正交的第三匀光柱面透镜用于对来自第一光源和第二光源的光束产生与第三匀光柱面透镜的柱面轴向相同方向的均匀光强分布;第二匀光柱面透镜用于对来自第三光源的光束产生与第二匀光柱面透镜的柱面轴向相同方向的均匀光强分布,与第二匀光透镜的柱面轴向正交的第三匀光柱面透镜用于对来自第三光源的光束产生与第三匀光柱面透镜的柱面轴向相同方向的均匀光强分布。
优选地,所述第一匀光柱面透镜、第二匀光柱面透镜和第三匀光柱面透镜的柱面阵列表面均为凸柱面透镜及其之间的凹形接缝平滑连接的周期排列结构,入光面和出光面均完全被所述的柱面阵列所覆盖;入光面上的凸柱面透镜的面形结构和出光面上的凸柱面透镜的面形结构成镜面对称。
优选地,所述第一匀光柱面透镜和/或第二匀光柱面透镜和/或第三匀光柱面透镜可为塑料或者玻璃材质。
优选地,所述第二准直透镜组的中心光轴和第三准直透镜组的中心光轴平行,均与第一准直透镜组的中心光轴垂直。
优选地,所述来自第一光源的光束经第一准直透镜组准直后经由第一分色镜透射,来自第二光源的光束经第二准直透镜组准直后再经由第一分色镜反射,第一匀光柱面透镜设置在第一分色镜光路前方,经由第一分色镜透射和反射的光束在所述第一匀光柱面透镜的入光面前汇聚;来自第一匀光柱面透镜的光束经由第二分色镜反射,来自第二匀光柱面透镜的光束经由第二分色镜透射,第三匀光柱面透镜设置在第二分色镜光路前方,经由第二分色镜透射和反射的光束在所述第三匀光柱面透镜入光面前汇聚。
优选地,所述第一分色镜和第二分色镜平行设置。
优选地,所述三基色光源为LED光源或者激光光源。
优选地,上述技术方案中,所述三基色光源由红色光源、蓝色光源和绿色光源组成。
优选地,上述技术方案中,所述投影照明光路可用于显示芯片为DMD或者LCOS或者LCD的投影模组。
优选地,所述第一分色镜与第一准直透镜组的中心光轴夹角为45度,所述第一分色镜与第二准直透镜组的中心光轴夹角也为45度;所述第二分 色镜与第一准直透镜组的中心光轴夹角为45度,所述第二分色镜与第三准直透镜组的中心光轴夹角也为45度。
与现有技术相比,本发明具有如下有益效果:提供了一种投影照明光路,包括:三基色光源;与三基色光源一一对应的三组准直透镜组;分光镜片组,包括:第一分色镜和第二分色镜;由入光面和出光面均为柱面阵列结构的匀光柱面透镜组成的匀光柱面透镜组,包括:第一匀光柱面透镜、第二匀光柱面透镜和第三匀光柱面透镜,组合用于产生两个正交方向的均匀光强分布。该投影照明光路实现三路光源及其准直光路相互独立,采用匀光柱面透镜组对光束进行均匀化,结构简单合理,保证了每个光源的输出功率,且有利于降低加工和装配的成本。
附图说明
图1是本发明的投影照明光路最优实施例的结构示意图;
图2是本发明的的投影照明光路最优实施例的匀光柱面透镜组立体结构示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
图1是本发明的投影照明光路最优实施例的结构示意图;图2是本发明的的投影照明光路最优实施例的匀光柱面透镜组立体结构示意图;如图1 和图2所示,根据本发明具体实施方式的一种投影照明光路,包括:由第一光源101、第二光源102和第三光源103组成的三基色光源;分别设置于所述第一光源101光路上的第一准直透镜组104、设置于所述第二光源102光路上的第二准直透镜组105和设置于所述第三光源103光路上的第三准直透镜组106;用于改变光路的分光镜片组包括:第一分色镜107和第二分色镜108;由入光面和出光面均为柱面阵列结构的匀光柱面透镜组成的匀光柱面透镜组,包括:第一匀光柱面透镜109、第二匀光柱面透镜110和第三匀光柱面透镜111;其中,第一匀光柱面透镜109的柱面轴向109a和第二匀光柱面透镜110的柱面轴向110a平行设置(附图2中,由于绘图角度原因,无法完全视出第一匀光柱面透镜109的柱面轴向109a和第二匀光柱面透镜110的柱面轴向110a平行);第一匀光柱面透镜109的柱面轴向109a和第三匀光柱面透镜111的柱面轴向111a正交设置,且第二匀光柱面透镜110的柱面轴向110a与第三匀光柱面透镜111的柱面轴向111a正交设置。
本实施例中,所述第一匀光柱面透镜109的柱面轴向109a和第三匀光柱面透镜111的柱面轴向111a正交设置,用于对来自第一光源101和第二光源102的光束产生两个正交方向的均匀光强分布;第二匀光柱面透镜110的柱面轴向110a和第三匀光柱面透镜111的柱面轴向111a正交设置,用于对来自第二分色镜108的光束产生两个正交方向的均匀光强分布。
例如:当我们设定,将第一匀光柱面透镜109的柱面轴向109a设定为Y方向,将第三匀光柱面透镜111的柱面轴向111a设定为X方向。当第一匀光透镜109用于对来自第一光源101和第二光源102的光束产生Y方向的均匀光强分布时,则与其柱面轴向正交的第三匀光柱面透镜111用于对来自第一光源101和第二光源102的光束产生X方向的均匀光强分布,第一匀光柱面透镜109和第三匀光柱面透镜111组合对来自第一分光镜107的光束进行Y和X两个正交方向产生均匀光强分布,相当于一个复眼透镜的作用。
同理,当我们设定,将第二匀光柱面透镜110的柱面轴向110a设定为Y方向,将第三匀光柱面透镜111的柱面轴向111a设定为X方向。当第二匀光柱面透镜110对来自第三光源103的光束产生Y方向的均匀光强分布时,则与其柱面轴向正交的第三匀光柱面透镜111用于对对来自第三光源103的光束产生X方向的均匀光强分布。
所述来自第一光源101的光束经第一准直透镜组104准直后经由第一分色镜107透射,来自第二光源102的光束经第二准直透镜组105准直后再经由第一分色镜107反射,第一匀光柱面透镜109设置在第一分色镜107光路前方,经由第一分色镜107透射和反射的光束在所述第一匀光柱面透镜109的入光面前汇聚;所述来自第一光源101和第二光源102的光束分别经第一准直透镜组104和第二准直透镜组105准直后的经由第一分色镜107在所述第一匀光柱面透镜109的入光面前汇聚;第一匀光柱面透镜109对来自第一光源101和第二光源102的光束产生Y方向的均匀光强分布;
所述第二匀光柱面透镜110设置在第三准直透镜组106的光路正前方,对经第三准直透镜组106准直后的光束进行匀光,第二匀光柱面透镜110对来自第三光源103的光束产生Y方向的均匀光强分布;
来自第一匀光柱面透镜109的光束经由第二分色镜108反射,来自第二匀光柱面透镜110的光束经由第二分色镜108透射,第三匀光柱面透镜111设置在第二分色镜108光路前方,经由第二分色镜108透射和反射的光束在所述第三匀光柱面透镜111入光面前汇聚,并入射到第三匀光柱面透镜111进行再一次匀光,第三匀光柱面透镜111用于对来自第一光源101和第二光源102的光束产生X方向的均匀光强分布,同时对来自第三光源103的光束产生X方向的均匀光强分布。
本实施例中,第一匀光柱面透镜109,第二匀光柱面透镜110,以及第三匀光柱面透镜111三者之间的柱面轴向设置不一定如上述设置,也可以 设置成其他形式,只要能够满足所述第一匀光柱面透镜109的柱面轴向109a和第三匀光柱面透镜111的柱面轴向111a正交设置,用于对来自第一光源101和第二光源102的光束产生两个正交方向的均匀光强分布;第二匀光柱面透镜110的柱面轴向110a和第三匀光柱面透镜111的柱面轴向111a正交设置,用于对来自第二分色镜108的光束产生两个正交方向的均匀光强分布。
本实施例中,所述第一准直透镜组104的中心光轴和第二准直透镜组105的中心光轴垂直,或者所述第一准直透镜组104的中心光轴和第三准直透镜组106的中心光轴垂直;所述来自第一光源101的光束经第一准直透镜组104准直,来自第二光源102的光束经第二准直透镜组105准直;第一分色镜107相对于第一光源101的光束入射面可以对入射的光进行透射,同时第一分色镜107相对于第二光源102的光束入射面可以对入射的光进行反射,第一分色镜107对来自第一光源101的光束进行透射,对来自第二光源102的光束进行反射,使其在所述第一匀光柱面透镜109的入光面前汇聚;所述第二匀光柱面透镜110设置在第三准直透镜106的光路正前方,所述来自第三光源103的光束经第三准直透镜组106准直后进入第二匀光柱面透镜110;第二分色镜108相对于第一匀光柱面透镜109的光束入射面可以对入射的光进行反射,同时第二分色镜108相对于第二匀光柱面透镜110的光束入射面可以对入射的光进行透射;第二分色镜108对来自第一匀光柱面透镜109的光束进行反射,对来自第二匀光柱面透镜110的光束进行透射,使光束在所述第三匀光柱面透镜111的入光面前汇聚并入射到第三匀光柱面透镜111。
本实施例中,所述第一分色镜107和第二分色镜108为平行设置。
本实施例中,所述第二匀光柱面透镜110的中心光轴和第三匀光柱面透镜111的中心光轴平行,均与第一匀光柱面透镜109的中心光轴垂直。
在本实施例中,优选地,所述第一分色镜107与第一准直透镜组104的中心光轴夹角为45度,所述第一分色镜107与第二准直透镜组105的中心光轴夹角也为45度;所述第二分色镜108与第一准直透镜组104的中心光轴夹角为45度,所述第二分色镜108与第三准直透镜组106的中心光轴夹角也为45度。
在本实施例中,第一准直透镜组104、第二准直透镜组105和第三准直透镜组106可以设置为平面透镜或曲面透镜或者其他类型的透镜。
在本实施例中,第一分色镜107和第二分色镜108可以设置成平面透镜;第一分色镜107相对于第一光源101的光束入射面上可以镀有增透膜,第一分色镜107相对于第二光源102的光束入射面上可以镀有增反膜;第二分色镜108相对于第一匀光柱面透镜109的光束入射面上可以镀有增反膜,同时第二分色镜108相对于第二匀光柱面透镜110的光束入射面上可以镀有增透膜。
在本实施例中,第一匀光柱面透镜109与第二匀光柱面透镜110或者第三匀光柱面透镜111相互之间也可以按照其他角度设置,同时,第一分色镜107和第二分色镜108与匀光柱面透镜之间的角度也可以相应设置成其他角度,只要能够满足:第一分色镜107汇聚第一光源101的光束和来自第二光源102的光束;同时,第二分色镜108汇聚来自第一分色镜107汇聚的光线和第三光源103的光束即可。
本实施例中,所述第一匀光柱面透镜109、第二匀光柱面透镜110和第三匀光柱面透镜111的柱面阵列表面均为凸柱面透镜及其之间的凹形接缝平滑连接的周期排列结构,入光面和出光面均完全被所述的柱面阵列所覆盖;入光面上的凸柱面透镜的面形结构和出光面上的凸柱面透镜的面形结构成镜面对称;所述第一匀光柱面透镜109和/或第二匀光柱面透镜110和/或第三匀光柱面透镜111可为塑料或者玻璃材质。
本实施例中,所述三基色光源可以是LED光源或者激光光源;优选地,所述三基色光源由红色LED光源、蓝色LED光源和绿色LED光源组成。
本实施例中,所述投影照明光路可用于显示芯片为DMD或者LCOS或者LCD的投影模组。
综上所述,该投影照明光路实现三路光源及其准直光路相互独立,采用匀光柱面透镜组对光束进行均匀化,结构简单合理,保证了每个光源的输出功率,且有利于降低加工和装配的成本。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (10)

  1. 一种投影照明光路,其特征在于,包括:
    由第一光源、第二光源和第三光源组成的三基色光源;
    分别设置于所述第一光源光路上的第一准直透镜组、设置于所述第二光源光路上的第二准直透镜组和设置于所述第三光源光路上的第三准直透镜组;
    分光镜片组,包括:第一分色镜和第二分色镜;
    由入光面和出光面均为柱面阵列结构的匀光柱面透镜组成的匀光柱面透镜组,包括:第一匀光柱面透镜、第二匀光柱面透镜和第三匀光柱面透镜,组合用于产生两个正交方向的均匀光强分布;
    其中,第一匀光柱面透镜的柱面轴向与第三匀光柱面透镜的柱面轴向正交设置,且第二匀光柱面透镜的柱面轴向与第三匀光柱面透镜的柱面轴向正交设置。
  2. 根据权利要求1所述的投影照明光路,其特征在于,所述第二匀光柱面透镜的中心光轴和第三匀光柱面透镜的中心光轴平行,且均与第一匀光柱面透镜的中心光轴垂直。
  3. 根据权利要求1或2所述的投影照明光路,其特征在于,第一匀光透镜用于对来自第一光源和第二光源的光束产生与第一匀光柱面透镜的柱面轴向相同方向的均匀光强分布,与第一匀光透镜的柱面轴向正交的第三匀光柱面透镜用于对来自第一光源和第二光源的光束产生与第三匀光柱面透镜的柱面轴向相同方向的均匀光强分布;第二匀光柱面透镜用于对来自第三光源的光束产生与第二匀光柱面透镜的柱面轴向相同方向的均匀光强分布,与第二匀光透镜的柱面轴向正交的第三匀光柱面透镜用于 对来自第三光源的光束产生与第三匀光柱面透镜的柱面轴向相同方向的均匀光强分布。
  4. 根据权利要求1或2所述的投影照明光路,其特征在于,所述第一匀光柱面透镜、第二匀光柱面透镜和第三匀光柱面透镜的柱面阵列表面均为凸柱面透镜及其之间的凹形接缝平滑连接的周期排列结构,入光面和出光面均完全被所述的柱面阵列所覆盖;入光面上的凸柱面透镜的面形结构和出光面上的凸柱面透镜的面形结构成镜面对称。
  5. 根据权利要求1或2所述的投影照明光路,其特征在于,所述第一匀光柱面透镜和/或第二匀光柱面透镜和/或第三匀光柱面透镜可为塑料或者玻璃材质。
  6. 根据权利要求1所述的投影照明光路,其特征在于,所述第二准直透镜组的中心光轴和第三准直透镜组的中心光轴平行,均与第一准直透镜组的中心光轴垂直。
  7. 根据权利要求1所述的投影照明光路,其特征在于,所述来自第一光源的光束经第一准直透镜组准直后经由第一分色镜透射,来自第二光源的光束经第二准直透镜组准直后再经由第一分色镜反射,第一匀光柱面透镜设置在第一分色镜光路前方,经由第一分色镜透射和反射的光束在所述第一匀光柱面透镜的入光面前汇聚;来自第一匀光柱面透镜的光束经由第二分色镜反射,来自第二匀光柱面透镜的光束经由第二分色镜透射,第三匀光柱面透镜设置在第二分色镜光路前方,经由第二分色镜透射和反射的光束在所述第三匀光柱面透镜入光面前汇聚。
  8. 根据权利要求1所述的投影照明光路,其特征在于,所述第一分色镜和第二分色镜平行设置。
  9. 根据权利要求1所述的投影照明光路,其特征在于,所述三基色光源为 LED光源或者激光光源。
  10. 根据权利要求1所述的投影照明光路,其特征在于,所述第一分色镜与第一准直透镜组的中心光轴夹角为45度,所述第一分色镜与第二准直透镜组的中心光轴夹角也为45度;所述第二分色镜与第一准直透镜组的中心光轴夹角为45度,所述第二分色镜与第三准直透镜组的中心光轴夹角也为45度。
PCT/CN2016/093399 2015-09-22 2016-08-05 一种投影照明光路 WO2017050026A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520739445.1 2015-09-22
CN201520739445.1U CN204964979U (zh) 2015-09-22 2015-09-22 一种投影照明光路

Publications (1)

Publication Number Publication Date
WO2017050026A1 true WO2017050026A1 (zh) 2017-03-30

Family

ID=55060033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093399 WO2017050026A1 (zh) 2015-09-22 2016-08-05 一种投影照明光路

Country Status (2)

Country Link
CN (1) CN204964979U (zh)
WO (1) WO2017050026A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204964979U (zh) * 2015-09-22 2016-01-13 广景视睿科技(深圳)有限公司 一种投影照明光路
CN107436510B (zh) * 2017-09-19 2023-12-26 歌尔光学科技有限公司 Lcos照明装置
CN218567814U (zh) * 2022-03-25 2023-03-03 华为技术有限公司 投影光机、显示设备和交通工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273641A (zh) * 1998-06-05 2000-11-15 精工爱普生股份株式会社 光源装置和显示装置
US6302544B1 (en) * 1999-03-12 2001-10-16 Nec Viewtechnology, Ltd. Image projection system with light reflector
US20090296047A1 (en) * 2008-05-28 2009-12-03 Canon Kabushiki Kaisha Image display apparatus
CN103529629A (zh) * 2012-08-30 2014-01-22 广景科技有限公司 Dlp微型投影机
CN203909463U (zh) * 2014-06-26 2014-10-29 深圳市安华光电技术有限公司 一种投影照明光路
CN204964979U (zh) * 2015-09-22 2016-01-13 广景视睿科技(深圳)有限公司 一种投影照明光路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273641A (zh) * 1998-06-05 2000-11-15 精工爱普生股份株式会社 光源装置和显示装置
US6302544B1 (en) * 1999-03-12 2001-10-16 Nec Viewtechnology, Ltd. Image projection system with light reflector
US20090296047A1 (en) * 2008-05-28 2009-12-03 Canon Kabushiki Kaisha Image display apparatus
CN103529629A (zh) * 2012-08-30 2014-01-22 广景科技有限公司 Dlp微型投影机
CN203909463U (zh) * 2014-06-26 2014-10-29 深圳市安华光电技术有限公司 一种投影照明光路
CN204964979U (zh) * 2015-09-22 2016-01-13 广景视睿科技(深圳)有限公司 一种投影照明光路

Also Published As

Publication number Publication date
CN204964979U (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2017049935A1 (zh) 一种投影照明光路及其投影模组
WO2015172537A1 (zh) Dlp微型投影机
US9482937B2 (en) Illumination system and projection apparatus
WO2017012220A1 (zh) 一种紧凑型投影装置
WO2015172536A1 (zh) 直线型dlp微型投影机
TWI395049B (zh) 影像投射裝置及稜鏡
US10754162B2 (en) Projection apparatus and head-mounted display device
WO2019071951A1 (zh) 复眼透镜组及投影装置
WO2018000520A1 (zh) 一种dlp投影模组
WO2016095619A1 (zh) 直线型dlp微型投影机
JP7141323B2 (ja) 投影装置
WO2013053171A1 (zh) Dlp微型投影机及其投影方法
WO2016023281A1 (zh) Dlp微型投影机
WO2017050026A1 (zh) 一种投影照明光路
WO2023231449A1 (zh) 匀光组件、投影光机及投影设备
TW201710741A (zh) 顯示系統及其適用之頭戴式顯示器
WO2017101460A1 (zh) 一种合光系统及其投影照明光路
WO2017020636A1 (zh) Dlp微型投影机
US10712641B2 (en) Image projection apparatus
WO2017084285A1 (zh) 一种光束合光系统及其投影装置
US20240027884A1 (en) Illumination system and projection apparatus
TW201232153A (en) Laser projecting device
WO2022174840A1 (zh) 光源和激光投影设备
WO2022078436A1 (zh) 投影光学系统
TW201305712A (zh) 投影裝置及其光源裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16847908

Country of ref document: EP

Kind code of ref document: A1