WO2023272936A1 - 辐射单元及基站天线 - Google Patents

辐射单元及基站天线 Download PDF

Info

Publication number
WO2023272936A1
WO2023272936A1 PCT/CN2021/116742 CN2021116742W WO2023272936A1 WO 2023272936 A1 WO2023272936 A1 WO 2023272936A1 CN 2021116742 W CN2021116742 W CN 2021116742W WO 2023272936 A1 WO2023272936 A1 WO 2023272936A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
substrate
ground
arms
arm
Prior art date
Application number
PCT/CN2021/116742
Other languages
English (en)
French (fr)
Inventor
刘正贵
李慧敏
孙小明
张强
杨耀庭
孙彦明
吴卫华
Original Assignee
中信科移动通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中信科移动通信技术股份有限公司 filed Critical 中信科移动通信技术股份有限公司
Priority to BR112023026858A priority Critical patent/BR112023026858A2/pt
Priority to EP21947869.0A priority patent/EP4340124A1/en
Publication of WO2023272936A1 publication Critical patent/WO2023272936A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas

Definitions

  • the present application relates to the technical field of communications, in particular to a radiation unit and a base station antenna.
  • the present application provides a radiating unit and a base station antenna, which are used to solve the technical problem in the prior art that it is difficult to reduce the mutual coupling between frequency bands in a fusion array antenna.
  • the present application provides a radiation unit, including a substrate and two groups of radiation arms, each group of radiation arms includes two radiation single arms, each of the radiation single arms is provided with at least one decoupling structure, the same The two radiating arms in the group of radiating arms are coupled through the radiating surface, one of the radiating arms in each group is located on the first surface of the substrate, and the other radiating arm is located on the second surface of the substrate, Or the two radiation single arms of each group of radiation arms are located on the same surface of the substrate.
  • the decoupling structure includes one or more of high and low resistance line decoupling stubs, open circuit decoupling stubs, and slot decoupling stubs.
  • At least one high and low resistance line decoupling stub is provided at the end of the single radiation arm away from the radiation center, and the single radiation arm is provided with a slit along the extending direction of the single radiation arm. Coupling.
  • the decoupling structure is mirror-symmetrical with respect to the center line of the single radiation arm.
  • the radiation unit provided according to the embodiment of the present application further includes a first substrate and a second substrate, the first substrate and the second substrate are orthogonally arranged and connected to the substrate, the first substrate and the The first side of the second substrate is provided with a feed structure, the first substrate and the second side of the second substrate are provided with a ground structure, and the ground structure and the feed structure are respectively connected to the radiation Arm coupling connection or electrical connection.
  • the ground structure includes a ground welding surface, a ground coupling surface and a ground surface, the ground welding surface is fixed to the substrate and electrically connected to the radiation surface, and the ground coupling surface It is located on the same side as the feed structure and the ground coupling surface is connected to the ground welding surface, the ground plane and the feed structure are located on opposite sides, and the ground coupling surface is coupled to the ground plane connect.
  • the ground plane and the ground coupling plane are located on opposite sides of the first substrate or the second substrate, and the ground welding surface protrudes outward from the first substrate or the second substrate.
  • the second substrate is used to connect the ground plane and the ground coupling plane, and the ground welding plane is in a convex shape after being connected with the ground coupling plane.
  • the feed structure includes a feed circuit, the feed circuit is coupled to the radiation arm for feed, and the end of the feed circuit is provided with a feed ground via hole, so The feeding ground via hole is connected to the grounding structure.
  • the first end of the first substrate is provided with a first bayonet socket
  • the second end of the second substrate is provided with a second bayonet socket
  • the first substrate and the The second substrate is orthogonally snapped together by the first bayonet socket and the second bayonet socket.
  • the present application further provides a base station antenna, including the radiation unit as described in the first aspect.
  • the radiating unit and the base station antenna provided by this application increase the impedance bandwidth by arranging the two radiating single arms of each group of radiating arms on the two surfaces of the substrate respectively, and make the two radiating single arms in the same group of radiating arms pass through
  • the radiating surface coupling adjusts the coupling area, realizes the weakening of different frequency signals, enhances the decoupling effect, and solves the technical problem that the fusion array antenna in the prior art is difficult to reduce the mutual coupling between frequency bands.
  • Fig. 1 is one of the structural schematic diagrams of the radiation unit provided by the embodiment of the present application.
  • Fig. 2 is the second structural schematic diagram of the radiation unit provided by the embodiment of the present application.
  • Fig. 3 is a schematic diagram of the distribution of the radiation single arm provided by the embodiment of the present application.
  • Fig. 4 is a perspective view of the radiation unit provided by the embodiment of the present application.
  • Fig. 5 is one of the structural schematic diagrams of the first substrate provided by the embodiment of the present application.
  • Fig. 6 is the second structural schematic diagram of the first substrate provided by the embodiment of the present application.
  • FIG. 7 is one of the structural schematic diagrams of the second substrate provided by the embodiment of the present application.
  • Fig. 8 is the second structural schematic diagram of the second substrate provided by the embodiment of the present application.
  • Radiation unit 10. Substrate; 11. First radiation arm; 12. Second radiation arm; 13. Third radiation arm; 14. Fourth radiation arm; 101. Gap decoupling branch; 102. High and low resistance line decoupling stub; 103, ground connection point; 104, first coupling surface; 105, second coupling surface; 21, first substrate; 22, second substrate; 211, first feed circuit; 212, second A feed ground through hole; 213, the first ground coupling plane; 214, the first ground plane; 215, the first ground welding plane; 216, the first bayonet; 221, the second feed circuit; 222, the second feed Electrical ground through hole; 223, second ground coupling plane; 224, second ground plane; 225, second ground welding plane; 226, second bayonet.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the radiation unit 1 provided by the embodiment of the present application includes a substrate 10 and two sets of radiation arms, and the radiation arms are installed on the surface of the substrate 10 .
  • the radiation arm can be a printed circuit structure, a die-casting integral molding structure or a sheet metal stamping structure.
  • Each group of radiating arms includes two radiating single arms, and the two radiating single arms are respectively arranged at both ends of the radiating arm to form a half-wave or full-wave structure.
  • Figure 3 is a schematic diagram of the distribution of radiation arms after the substrate is removed, as shown in Figure 3, the first radiation arm 11 and the third radiation arm 13 form a group of radiation arms, the second radiation arm 12 and the fourth radiation arm 14 forms another group of radiating arms, and the two groups of radiating arms are distributed orthogonally; or the first radiating single arm 11 and the second radiating single arm 12 form a group of radiating arms, and the third radiating single arm 13 and the fourth radiating single arm 14 form Another group of radiation arms, two groups of radiation arms are symmetrically distributed up and down.
  • Each radiating single arm is provided with at least one decoupling structure, which is used to increase the suppression structure of different frequencies and reduce the coupling effect between frequency bands.
  • the substrate 10 includes a first surface and a second surface on opposite sides, one radiation arm of each group of radiation arms is located on the first surface of the substrate, and the other radiation arm is located on the second surface of the substrate.
  • the first surface or the second surface is provided with a coupling surface, and two radiating single arms in the same group of radiating arms are coupled through the radiating surface, which can increase the matching bandwidth and improve the filtering effect.
  • the two radiation arms of each group of radiation arms are located on the same surface of the substrate, that is, the two radiation arms of one group of radiation arms are located on the first surface of the substrate, and the two radiation arms of another group of radiation arms are located on the same surface of the substrate. on the second surface of the substrate.
  • Fig. 1 is a schematic structural diagram of the radiation unit 1 on the first surface
  • Fig. 2 is a schematic structural diagram of the radiation unit 1 on the second surface, as shown in Fig. 1 and Fig. 2
  • the arms 12 are both located on the first surface
  • the third radiating single arm 13 and the fourth radiating single arm 14 are both located on the second surface
  • the first coupling surface 104 and the second coupling surface 105 are both located on the first surface.
  • the first radiating single arm 11 and the third radiating single arm 13 are coupled through the second coupling surface 105, and the second radiating single arm 12 and the fourth radiating single arm 14 are coupled through the first
  • the coupling surface 104 is coupled; in the embodiment where the two groups of radiating arms are distributed symmetrically up and down, the first radiating single arm 11 and the second radiating single arm 12 are coplanar, and the third radiating single arm 13 and the fourth radiating single arm 14 are coplanar.
  • the first coupling surface 104 and the second coupling surface 105 increase the impedance bandwidth, realize the weakening of different frequency signals by adjusting the coupling area, and realize the effect of decoupling.
  • the impedance bandwidth is increased by arranging the two radiation single arms of each group of radiation arms on the two surfaces of the substrate respectively, and by making the two radiation single arms in the same group of radiation arms pass through the radiation Surface coupling, adjust the coupling area, realize the weakening of different frequency signals, enhance the decoupling effect, and solve the technical problem that the fusion array antenna in the prior art is difficult to reduce the mutual coupling between frequency bands.
  • the installation positions of all radiating single arms are rotationally symmetrical or mirror symmetrical with respect to the center of the substrate.
  • the installation positions of all radiation arms are rotationally symmetrical relative to the center of the substrate, so that two groups of radiation arms form two polarizations of +45° and -45°.
  • the decoupling structure includes one or more of high and low resistance line decoupling stubs, open circuit decoupling stubs and gap decoupling stubs. Its function is to increase the frequency difference suppression structure on the radiation single arm and reduce the frequency difference between arrays. Mutual coupling effects.
  • each radiating arm is provided with a high-low resistance line decoupling branch 102 at the end away from the radiating center, and each radiating arm is provided with a slot decoupling branch 101 along its own extension direction.
  • each radiating arm is mirror-symmetrical with respect to the center line of the radiating arm, for example, as shown in FIG. 3 , the hexagonal radiating arm is provided with slot decoupling branches 101 on opposite sides. , the slot decoupling stub 101 on each radiating arm is left-right symmetrical with respect to the centerline of the radiating arm. It should be noted that the length of the slot decoupling stub 101 is determined according to the decoupling frequency band.
  • the radiation unit 1 provided in the embodiment of the present application further includes a first substrate 21 and a second substrate 22 , the first substrate 21 and the second substrate 22 are arranged orthogonally and are connected to the substrate 10 .
  • both the first substrate 21 and the second substrate 22 are vertically connected to the substrate 10 .
  • the first end of the first substrate 21 is provided with a first bayonet opening 216
  • the second end of the second substrate 22 is provided with a second bayonet opening 226 .
  • the two substrates 22 are orthogonally snapped together through the first bayonet slot 216 and the second bayonet slot 226 .
  • the first substrate 21 and the second substrate 22 both include a first side and a second side opposite to each other, and the first side of the first substrate 21 and the second substrate 22 are both provided with a feed structure.
  • the feed structure is directly electrically connected to the radiation arm to form a direct feed.
  • the feed structure and the radiation arm form a coupled feed, and the feed structure is coupled and electrically connected to the radiation arm, which not only reduces the welding process, but also expands the bandwidth.
  • Both the second side surfaces of the first substrate 21 and the second substrate 22 are provided with a ground structure, and the ground structure is coupled or electrically connected with the radiation arm.
  • the ground structure includes a ground welding surface, a ground coupling surface, and a ground surface.
  • the ground welding surface is fixed to the substrate 10 and is electrically connected to the radiation surface.
  • the welding surface is connected, the ground plane and the feed structure are located on opposite sides, the ground coupling plane is coupled to the ground plane, and the coupling area of the two affects the impedance bandwidth and decoupling effect of the radiation unit 1 .
  • FIG. 5 and FIG. 6 are structural schematic diagrams of the first substrate 21 on the first side and the second side respectively, and the two first ground coupling surfaces 213 and the feed structure are arranged on the On the first side, the first ground coupling surface 213 is located in the direction where the first substrate 21 is close to the substrate 10, the first ground plane 214 is located on the second side as shown in FIG. .
  • first ground plane 214 and the first ground coupling plane 213 are located on opposite sides of the first substrate 21, and the first ground solder plane 215 connects the first ground plane 214 and the first ground coupling plane 213, so that the first ground plane
  • the ground 214 is coupled to the first ground coupling plane 213 .
  • the first ground welding surface 215 is in a convex shape after being connected with the first ground coupling surface 213 , and the first ground welding surface 215 protrudes outward from the first substrate 21 .
  • the first ground welding surface 215 is welded to the ground connection point 103 to realize the fixing of the substrate 10 .
  • the ground pad 103 is arranged on the substrate 10 .
  • the second substrate 22 also includes a second ground coupling plane 223 , a second ground plane 224 and a second ground soldering plane 225 , the ground structure of the second substrate 22 and the ground structure of the first substrate 21 Same, no more details here.
  • the feeding structure includes a feeding circuit, and the feeding circuit is coupled with the radiation arm for feeding.
  • a feed ground via hole is provided at the end of the feed circuit, and the feed ground via hole is connected to the ground structure.
  • the first feed circuit 211 and the first ground coupling surface 213 are located on the same surface, the end of the first feed circuit 211 is provided with a first feed ground via hole 212, the first feed circuit 211 is connected to the first ground plane 214 on the second side through the first feeding ground via hole 212 to ensure the DC grounding of the feeding signal.
  • the second substrate 22 also includes a second feed circuit 221 and a second feed ground via 222 , and the feed structure of the second substrate 22 is the same as that of the first substrate 21 . I won't repeat them here.
  • An embodiment of the present application further provides a base station antenna, where the base station antenna includes the radiation unit 1 described in any one of the foregoing embodiments.
  • the base station antenna provided by the embodiment of the present application increases the impedance bandwidth by arranging the two radiating single arms of each group of radiating arms on the two surfaces of the substrate respectively, and makes the two radiating single arms in the same group of radiating arms pass through the radiation Surface coupling, adjust the coupling area, realize the weakening of different frequency signals, enhance the decoupling effect, and solve the technical problem that the fusion array antenna in the prior art is difficult to reduce the mutual coupling between frequency bands

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供一种辐射单元及基站天线,涉及通讯技术领域。该辐射单元包括基板和两组辐射臂,每组所述辐射臂包括两个辐射单臂,每一所述辐射单臂均设置有至少一个去耦结构,同一组辐射臂中的两个辐射单臂通过辐射面耦合,每组所述辐射臂的其中一个辐射单臂位于所述基板的第一表面,另一个辐射单臂位于所述基板的第二表面,或每组所述辐射臂的两个辐射单臂均位于所述基板的同一表面。本申请提供的辐射单元及基站天线,通过将每组辐射臂的两个辐射单臂分别设置于基板的两个表面,增加了阻抗带宽,通过使同一组辐射臂中的两个辐射单臂通过辐射面耦合,调节耦合面积,实现了异频信号的减弱,增强了去耦效果,解决了现有技术中融合阵列天线难以减小频段间互耦的技术问题。

Description

辐射单元及基站天线
相关申请的交叉引用
本申请要求于2021年06月30提交的申请号为202110734497.X,发明名称为“辐射单元及基站天线”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及通讯技术领域,尤其涉及一种辐射单元及基站天线。
背景技术
随着互联网与物联网的发展,4G/5G融合阵列天线成了研究重难点,传统辐射单元之间通过电磁耦合作用相互影响,很难减小频段间的耦合及二次辐射,准确性低,误差大。如何在多频融合的前提下减小频段间的耦合及二次辐射,保证每个频段指标不恶化,成为亟待解决的问题。
发明内容
本申请提供一种辐射单元及基站天线,用以解决现有技术中融合阵列天线难以减小频段间互耦的技术问题。
第一方面,本申请提供一种辐射单元,包括基板和两组辐射臂,每组所述辐射臂包括两个辐射单臂,每一所述辐射单臂均设置有至少一个去耦结构,同一组辐射臂中的两个辐射单臂通过辐射面耦合,每组所述辐射臂的其中一个辐射单臂位于所述基板的第一表面,另一个辐射单臂位于所述基板的第二表面,或每组所述辐射臂的两个辐射单臂均位于所述基板的同一表面。
根据本申请实施例提供的辐射单元,所述去耦结构包括高低阻线去耦枝节、开路去耦枝节和缝隙去耦枝节中的一种或多种。
根据本申请实施例提供的辐射单元,所述辐射单臂远离辐射中心的端部设有至少一个高低阻线去耦枝节,所述辐射单臂沿所述辐射单臂的延伸方向设有缝隙去耦枝节。
根据本申请实施例提供的辐射单元,所述去耦结构相对于所述辐射单臂的中心线呈镜像对称。
根据本申请实施例提供的辐射单元,还包括第一基板和第二基板,所述第一基板和所述第二基板正交设置并均与所述基板相连,所述第一基板与所述第二基板的第一侧面均设置有馈电结构,所述第一基板与所述第二基板的第二侧面均设置有接地结构,所述接地结构和所述馈电结构分别与所述辐射臂耦合连接或电气连接。
根据本申请实施例提供的辐射单元,所述接地结构包括接地焊接面、接地耦合面和接地面,所述接地焊接面与所述基板固定并与所述辐射面电气连接,所述接地耦合面与所述馈电结构位于同一侧且所述接地耦合面与所述接地焊接面相连,所述接地面与所述馈电结构位于相对的两侧,所述接地耦合面与所述接地面耦合连接。
根据本申请实施例提供的辐射单元,所述接地面和所述接地耦合面位于所述第一基板或第二基板的相对两侧,所述接地焊接面外凸于所述第一基板或第二基板以连接所述接地面与所述接地耦合面,所述接地焊接面与所述接地耦合面相连后呈凸字形。
根据本申请实施例提供的辐射单元,所述馈电结构包括馈电电路,所述馈电电路与所述辐射臂耦合馈电,所述馈电电路的末端设有馈电接地通孔,所述馈电接地通孔与所述接地结构相连。
根据本申请实施例提供的辐射单元,所述第一基板的第一端设有第一卡口,所述第二基板的第二端设有第二卡口,所述第一基板与所述第二基板通过所述第一卡口和所述第二卡口正交卡装在一起。
第二方面,本申请还提供一种基站天线,包括如第一方面所述的辐射单元。
本申请提供的辐射单元及基站天线,通过将每组辐射臂的两个辐射单臂分别设置于基板的两个表面,增加了阻抗带宽,通过使同一组辐射臂中的两个辐射单臂通过辐射面耦合,调节耦合面积,实现了异频信号的减弱,增强了去耦效果,解决了现有技术中融合阵列天线难以减小频段间互耦的技术问题。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的辐射单元的结构示意图之一;
图2是本申请实施例提供的辐射单元的结构示意图之二;
图3是本申请实施例提供的辐射单臂的分布示意图;
图4是本申请实施例提供的辐射单元的立体图;
图5是本申请实施例提供的第一基板的结构示意图之一;
图6是本申请实施例提供的第一基板的结构示意图之二;
图7是本申请实施例提供的第二基板的结构示意图之一;
图8是本申请实施例提供的第二基板的结构示意图之二;
附图标记:
1、辐射单元;10、基板;11、第一辐射单臂;12、第二辐射单臂;13、第三辐射单臂;14、第四辐射单臂;101、缝隙去耦枝节;102、高低阻线去耦枝节;103、接地连接点;104、第一耦合面;105、第二耦合面;21、第一基板;22、第二基板;211、第一馈电电路;212、第一馈电接地通孔;213、第一接地耦合面;214、第一接地面;215、第一接地焊接面;216、第一卡口;221、第二馈电电路;222、第二馈电接地通孔;223、第二接地耦合面;224、第二接地面;225、第二接地焊接面;226、第二卡口。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实例用于说明本申请,但不用来限制本申请的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、 “左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
如图1和图2所示,本申请实施例提供的辐射单元1包括基板10和两组辐射臂,辐射臂安装于基板10的表面。辐射臂可为印刷电路结构、压铸一体化成型结构或钣金冲压结构。
每组辐射臂包括两个辐射单臂,两个辐射单臂分别设置于该辐射臂的两端,形成半波或全波结构。图3为去除基板后的辐射单臂分布示意图,如图3所示,第一辐射单臂11和第三辐射单臂13形成一组辐射臂,第二辐射单臂12和第四辐射单臂14形成另一组辐射臂,两组辐射臂正交分布;或者第一辐射单臂11和第二辐射单臂12形成一组辐射臂,第三辐射单臂13和第四辐射单臂14形成另一组辐射臂,两组辐射臂上下对称分布。
每一辐射单臂均设置有至少一个去耦结构,用于增加异频的抑制结构,减小频段间的耦合影响。
基板10包括位于相对两侧的第一表面和第二表面,每组辐射臂的其中一个辐射单臂位于基板的第一表面,另一个辐射单臂位于基板的第二表面。第一表面或第二表面设置有耦合面,同一组辐射臂中的两个辐射单臂通过辐射面耦合,可增加匹配带宽,改善滤波效果。或者,每组辐射臂的两个辐射单臂均位于基板的同一表面,即一组辐射臂的两个辐射单臂均位于基板的第一表面,另一组辐射臂的两个辐射单臂均位于基板的第二表面。
例如,图1是辐射单元1在第一表面的结构示意图,图2是辐射单元1在第二表面的结构示意图,如图1和图2所示,第一辐射单臂11和第二辐射单臂12均位于第一表面,第三辐射单臂13和第四辐射单臂14均位于第二表面,第一耦合面104和第二耦合面105均位于第一表面。在两组 辐射臂正交分布的实施例中,第一辐射单臂11和第三辐射单臂13通过第二耦合面105耦合,第二辐射单臂12和第四辐射单臂14通过第一耦合面104耦合;在两组辐射臂上下对称分布的实施例中,第一辐射单臂11和第二辐射单臂12共面,第三辐射单臂13和第四辐射单臂14共面。第一耦合面104和第二耦合面105增加了阻抗带宽,通过调节耦合面积实现了异频信号的减弱,实现了去耦的效果。
本申请实施例提供的辐射单元,通过将每组辐射臂的两个辐射单臂分别设置于基板的两个表面,增加了阻抗带宽,通过使同一组辐射臂中的两个辐射单臂通过辐射面耦合,调节耦合面积,实现了异频信号的减弱,增强了去耦效果,解决了现有技术中融合阵列天线难以减小频段间互耦的技术问题。
所有辐射单臂的安装位置为相对于基板的中心呈旋转对称或镜像对称。例如图3所示,所有辐射单臂的安装位置相对于基板的中心呈旋转对称,使两组辐射臂形成+45°和-45°两个极化。
去耦结构包括高低阻线去耦枝节、开路去耦枝节和缝隙去耦枝节中的一种或多种,其作用为在辐射单臂上增加异频的抑制结构,减小阵列间的异频互耦影响。
例如,根据图1至图3所示,每一辐射单臂远离辐射中心的端部设有高低阻线去耦枝节102,每一辐射单臂沿自身的延伸方向设有缝隙去耦枝节101。其中,高低阻线去耦枝节102为至少一个。
进一步地,每个辐射单臂的去耦结构均相对于辐射单臂的中心线呈镜像对称,例如图3所示,六边形的辐射单臂在相对边上均设置了缝隙去耦枝节101,每个辐射单臂上的缝隙去耦枝节101均相对于该辐射单臂的中心线左右对称。需要说明的是,缝隙去耦枝节101的长度根据去耦的频段决定。
本申请实施例提供的辐射单元1还包括第一基板21和第二基板22,第一基板21和第二基板22正交设置且均与基板10相连。
例如图4所示,第一基板21和第二基板22均与基板10垂直相连。进一步地,根据图5~图8所示,第一基板21的第一端设有第一卡口216,第二基板22的第二端设有第二卡口226,第一基板21与第二基板22通过 第一卡口216和第二卡口226正交卡装在一起。
第一基板21与第二基板22均包括相背的第一侧面和第二侧面,第一基板21与第二基板22的第一侧面均设置有馈电结构。在一实施例中,馈电结构直接与辐射臂电气连接,形成直接馈电。在另一实施例中,馈电结构与辐射臂形成耦合馈电,通过馈电结构与辐射臂耦合电连接,既减少了焊接工序,又能扩展带宽。
第一基板21与第二基板22的第二侧面均设置有接地结构,接地结构与辐射臂耦合连接或电连接。
在本实施例中,接地结构包括接地焊接面、接地耦合面和接地面,接地焊接面与基板10固定并与辐射面电连接,接地耦合面与馈电结构位于同一侧且接地耦合面与接地焊接面相连,接地面与馈电结构位于相对的两侧,接地耦合面与接地面耦合连接,二者的耦合面积影响辐射单元1的阻抗带宽和去耦效果。
以第一基板21为例,图5和图6分别为第一基板21在第一侧面和第二侧面的结构示意图,两个第一接地耦合面213与馈电结构设置于图5所示的第一侧面,第一接地耦合面213位于第一基板21靠近基板10的方向,第一接地面214位于图6所示的第二侧面,第一接地耦合面213与第一接地面214耦合连接。
进一步地,第一接地面214与第一接地耦合面213位于第一基板21的相对两侧,第一接地焊接面215连接第一接地面214和第一接地耦合面213,以使第一接地面214和第一接地耦合面213耦合连接。其中,第一接地焊接面215与第一接地耦合面213相连后呈凸字形,第一接地焊接面215外凸于第一基板21。第一接地焊接面215与接地连接点103焊接,实现基板10的固定。接地焊接点103布设在基板10上。
如图7和图8所示,第二基板22同样包括第二接地耦合面223、第二接地面224和第二接地焊接面225,第二基板22的接地结构和第一基板21的接地结构相同,在此不再赘述。
馈电结构包括馈电电路,馈电电路与辐射臂耦合馈电。为了实现馈电结构的直流接地,在馈电电路的末端还设置有馈电接地通孔,馈电接地通孔与接地结构相连。
例如图5和图6所示,第一馈电电路211与第一接地耦合面213位于同一表面,第一馈电电路211的末端设置有第一馈电接地通孔212,第一馈电电路211通过第一馈电接地通孔212与第二侧面的第一接地面214相连,保证馈电信号的直流接地。
如图7和图8所示,第二基板22同样包括第二馈电电路221和第二馈电接地通孔222,第二基板22的馈电结构和第一基板21的馈电结构相同,在此不再赘述。
本申请实施例还提供一种基站天线,该基站天线包括如上述任一实施例所述的辐射单元1。
本申请实施例提供的基站天线,通过将每组辐射臂的两个辐射单臂分别设置于基板的两个表面,增加了阻抗带宽,通过使同一组辐射臂中的两个辐射单臂通过辐射面耦合,调节耦合面积,实现了异频信号的减弱,增强了去耦效果,解决了现有技术中融合阵列天线难以减小频段间互耦的技术问题
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种辐射单元,其特征在于,包括基板和两组辐射臂,每组所述辐射臂包括两个辐射单臂,每一所述辐射单臂均设置有至少一个去耦结构,同一组辐射臂中的两个辐射单臂通过辐射面耦合,每组所述辐射臂的其中一个辐射单臂位于所述基板的第一表面,另一个辐射单臂位于所述基板的第二表面,或每组所述辐射臂的两个辐射单臂均位于所述基板的同一表面。
  2. 根据权利要求1所述的辐射单元,其特征在于,所述去耦结构包括高低阻线去耦枝节、开路去耦枝节和缝隙去耦枝节中的一种或多种。
  3. 根据权利要求2所述的辐射单元,其特征在于,所述辐射单臂远离辐射中心的端部设有至少一个高低阻线去耦枝节,所述辐射单臂沿所述辐射单臂的延伸方向设有缝隙去耦枝节。
  4. 根据权利要求2所述的辐射单元,其特征在于,所述去耦结构相对于所述辐射单臂的中心线呈镜像对称。
  5. 根据权利要求1所述的辐射单元,其特征在于,还包括第一基板和第二基板,所述第一基板和所述第二基板正交设置并均与所述基板相连,所述第一基板与所述第二基板的第一侧面均设置有馈电结构,所述第一基板与所述第二基板的第二侧面均设置有接地结构,所述接地结构和所述馈电结构分别与所述辐射臂耦合连接或电气连接。
  6. 根据权利要求5所述的辐射单元,其特征在于,所述接地结构包括接地焊接面、接地耦合面和接地面,所述接地焊接面与所述基板固定并与所述辐射面电气连接,所述接地耦合面与所述馈电结构位于同一侧且所述接地耦合面与所述接地焊接面相连,所述接地面与所述馈电结构位于相对的两侧,所述接地耦合面与所述接地面耦合连接。
  7. 根据权利要求6所述的辐射单元,其特征在于,所述接地面和所述接地耦合面位于所述第一基板或第二基板的相对两侧,所述接地焊接面外凸于所述第一基板或第二基板以连接所述接地面与所述接地耦合面,所述接地焊接面与所述接地耦合面相连后呈凸字形。
  8. 根据权利要求5所述的辐射单元,其特征在于,所述馈电结构包括馈电电路,所述馈电电路与所述辐射臂耦合馈电,所述馈电电路的末端设有馈电接地通孔,所述馈电接地通孔与所述接地结构相连。
  9. 根据权利要求5所述的辐射单元,其特征在于,所述第一基板的第一端设有第一卡口,所述第二基板的第二端设有第二卡口,所述第一基板与所述第二基板通过所述第一卡口和所述第二卡口正交卡装在一起。
  10. 一种基站天线,其特征在于,所述基站天线包括如权利要求1至9任一项所述的辐射单元。
PCT/CN2021/116742 2021-06-30 2021-09-06 辐射单元及基站天线 WO2023272936A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112023026858A BR112023026858A2 (pt) 2021-06-30 2021-09-06 Unidade de radiação e antena de estação base
EP21947869.0A EP4340124A1 (en) 2021-06-30 2021-09-06 Radiation unit and base station antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110734497.X 2021-06-30
CN202110734497.XA CN113471668B (zh) 2021-06-30 2021-06-30 辐射单元及基站天线

Publications (1)

Publication Number Publication Date
WO2023272936A1 true WO2023272936A1 (zh) 2023-01-05

Family

ID=77874285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116742 WO2023272936A1 (zh) 2021-06-30 2021-09-06 辐射单元及基站天线

Country Status (4)

Country Link
EP (1) EP4340124A1 (zh)
CN (1) CN113471668B (zh)
BR (1) BR112023026858A2 (zh)
WO (1) WO2023272936A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471668B (zh) * 2021-06-30 2022-07-19 中信科移动通信技术股份有限公司 辐射单元及基站天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960737A (zh) * 2015-12-03 2016-09-21 华为技术有限公司 一种多频通信天线以及基站
US20190044232A1 (en) * 2017-08-02 2019-02-07 Wistron Neweb Corporation Antenna structure
CN110416719A (zh) * 2019-08-08 2019-11-05 武汉虹信通信技术有限责任公司 辐射单元及天线
CN110676579A (zh) * 2019-10-28 2020-01-10 华南理工大学 一种平面扩频宽带基站天线
CN111029727A (zh) * 2019-12-09 2020-04-17 瑞声科技(新加坡)有限公司 一种天线单元及基站
CN111864367A (zh) * 2020-07-27 2020-10-30 摩比天线技术(深圳)有限公司 低频辐射单元及基站天线
CN113471668A (zh) * 2021-06-30 2021-10-01 中信科移动通信技术股份有限公司 辐射单元及基站天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203339298U (zh) * 2013-06-20 2013-12-11 华南理工大学 一种宽带双极化四叶草平面天线
CN207883897U (zh) * 2017-11-08 2018-09-18 罗森伯格技术(昆山)有限公司 一种宽频基站天线辐射单元
CN210430080U (zh) * 2019-07-29 2020-04-28 华南理工大学 宽带双极化滤波基站天线单元、基站天线阵列及通信设备
WO2021114017A1 (zh) * 2019-12-09 2021-06-17 瑞声声学科技(深圳)有限公司 一种天线单元及基站
CN213304351U (zh) * 2020-10-20 2021-05-28 京信通信技术(广州)有限公司 低频辐射单元和天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960737A (zh) * 2015-12-03 2016-09-21 华为技术有限公司 一种多频通信天线以及基站
US20190044232A1 (en) * 2017-08-02 2019-02-07 Wistron Neweb Corporation Antenna structure
CN110416719A (zh) * 2019-08-08 2019-11-05 武汉虹信通信技术有限责任公司 辐射单元及天线
CN110676579A (zh) * 2019-10-28 2020-01-10 华南理工大学 一种平面扩频宽带基站天线
CN111029727A (zh) * 2019-12-09 2020-04-17 瑞声科技(新加坡)有限公司 一种天线单元及基站
CN111864367A (zh) * 2020-07-27 2020-10-30 摩比天线技术(深圳)有限公司 低频辐射单元及基站天线
CN113471668A (zh) * 2021-06-30 2021-10-01 中信科移动通信技术股份有限公司 辐射单元及基站天线

Also Published As

Publication number Publication date
CN113471668A (zh) 2021-10-01
EP4340124A1 (en) 2024-03-20
BR112023026858A2 (pt) 2024-03-05
CN113471668B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN102299418B (zh) 多层宽频微带天线
AU2007215840B2 (en) Small-size wide-band antenna and radio communication device
WO2018218603A1 (zh) 双极化辐射单元、天线、基站及通信系统
CN206907920U (zh) 一种双频段微带天线及应用该天线的无人机
JP3964435B2 (ja) グリッドパッチアンテナ
CN107528115A (zh) 一种差分馈电双极化振子组件、振子单元及振子天线
CN107808998A (zh) 多极化辐射振子及天线
CN109546334B (zh) 一种用于多频基站天线的低剖面十字形振子
CN207353447U (zh) 多极化辐射振子及天线
WO2021000098A1 (zh) 天线和电子设备
WO2021120663A1 (zh) 5g天线及其辐射单元
WO2021000141A1 (zh) 天线振子以及阵列天线
WO2020168778A1 (zh) 一种辐射装置和多频段阵列天线
WO2023272936A1 (zh) 辐射单元及基站天线
CN108899642A (zh) 天线系统及应用该天线系统的移动终端
WO2023045282A1 (zh) 高频辐射单元与多频基站天线
WO2022052379A1 (zh) 一种新型巴伦结构及其辐射单元、天线
WO2020010636A1 (zh) 和及差模式天线及通信产品
CN109742539A (zh) 一种具有宽带及滤波特性的贴片天线
CN208674360U (zh) 垂直极化全波振子阵列天线以及定向辐射天线
TWI568080B (zh) 多頻天線結構
KR20130140084A (ko) 안테나 장치 및 통신 장치
CN108110421B (zh) 一种带开路枝节的圆极化矩形环天线
CN207910058U (zh) 一种变形的倒v形双面反对称结构偶极振子机载卫通天线
CN207818893U (zh) 微带天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/015127

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2021947869

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023026858

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021947869

Country of ref document: EP

Effective date: 20231215

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023026858

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231219