WO2023272583A1 - 一种数据传输方法、装置及设备 - Google Patents

一种数据传输方法、装置及设备 Download PDF

Info

Publication number
WO2023272583A1
WO2023272583A1 PCT/CN2021/103547 CN2021103547W WO2023272583A1 WO 2023272583 A1 WO2023272583 A1 WO 2023272583A1 CN 2021103547 W CN2021103547 W CN 2021103547W WO 2023272583 A1 WO2023272583 A1 WO 2023272583A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor carrier
terminal device
data transmission
network device
carrier
Prior art date
Application number
PCT/CN2021/103547
Other languages
English (en)
French (fr)
Inventor
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/103547 priority Critical patent/WO2023272583A1/zh
Priority to CN202180002024.9A priority patent/CN115735393A/zh
Priority to EP21947537.3A priority patent/EP4366415A1/en
Publication of WO2023272583A1 publication Critical patent/WO2023272583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular, to a data transmission method, device and equipment.
  • NR new radio
  • LTE long term evolution
  • a serving cell of a terminal device is usually a single carrier cell, that is, a serving cell only supports a single carrier.
  • the demand for traffic, the number of terminals, and the types of terminals in the future network will show an explosive growth trend, and the capacity of the single-carrier serving cell will not be able to meet the demand.
  • the present disclosure provides a data transmission method, device and equipment, so as to realize the configuration of a multi-carrier serving cell in an NR system, thereby improving the capacity of the serving cell.
  • the present disclosure provides a data transmission method, which can be applied to a terminal device in a communication system.
  • the communication system may be an NR system.
  • the method may include: the terminal device determines the position of the non-anchor carrier of the serving cell in the frequency band, wherein the serving cell is configured with the anchor carrier and the non-anchor carrier; the terminal device performs data transmission on the non-anchor carrier.
  • the present disclosure provides a data transmission method, which can be applied to a network device in a communication system.
  • the communication system may be an NR system.
  • the method may include: the network device instructs the terminal device on the position of the non-anchor carrier of the serving cell in the frequency band, wherein the serving cell is configured with an anchor carrier and a non-anchor carrier; the network device performs data transmission on the non-anchor carrier .
  • the present disclosure provides a communication device.
  • the communication device may be a terminal device in a communication system or a chip or a system on a chip in a terminal device, and may also be used in a terminal device to implement the methods described in the above-mentioned embodiments.
  • function modules The communication device can implement the functions performed by the terminal device in the foregoing embodiments, and these functions can be implemented by executing corresponding software through hardware. These hardware or software include one or more modules with corresponding functions mentioned above.
  • the communication device includes: a determining module, configured to determine the position of a non-anchor carrier in the frequency band of the serving cell, wherein the serving cell is configured with an anchor carrier and a non-anchor carrier; data transmission on the carrier.
  • the present disclosure provides a communication device.
  • the communication device may be a network device in a communication system or a chip or a system on a chip in a network device, and may also be a network device used to implement the methods described in the above-mentioned embodiments. function modules.
  • the communication device can realize the functions performed by the network devices in the above-mentioned embodiments, and these functions can be realized by executing corresponding software through hardware.
  • These hardware or software include one or more modules with corresponding functions mentioned above.
  • the communication device includes: an indication module, configured to indicate the position of the non-anchor carrier of the serving cell of the terminal device in the frequency band, wherein the serving cell is configured with an anchor carrier and a non-anchor carrier; a second transmission module, configured to Data transmission on non-anchor carriers.
  • the present disclosure provides a communication device, including: an antenna; a memory; and a processor, respectively connected to the antenna and the memory, configured to execute computer-executable instructions stored in the memory, control the sending and receiving of the antenna, and be able to Realize the data transmission method according to any one of the first aspect, the second aspect and possible implementation manners thereof.
  • the present disclosure provides a computer storage medium and a processing module, which are used for storing computer-executable instructions in the computer storage medium. It is characterized in that, after the computer-executable instructions are executed by a processor, the computer-executable instructions can implement the first aspect and the second aspect.
  • the data transmission method in any one of the aspects and possible implementations thereof.
  • the network device configures multiple carriers for the serving cell of the terminal device, which increases the capacity of the serving cell. Furthermore, if the anchor carrier is the FR1 carrier and the non-anchor carrier is the FR2 carrier, the terminal device can camp on the FR1 carrier when it is in the idle state, and initiate random access to the FR2 carrier when the service arrives, and return to FR2 carrier for data transmission. In this way, power consumption is reduced and resources are saved.
  • FIG. 1 is a schematic structural diagram of a communication system in an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the implementation flow of the first data transmission method in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an anchor carrier and a non-anchor carrier in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an implementation flow of a second data transmission method in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an implementation flow of a third data transmission method in an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an implementation flow of a fourth data transmission method in an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another communication device in an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal device in an embodiment of the present disclosure.
  • Fig. 11 is a schematic structural diagram of a network device in an embodiment of the present disclosure.
  • first, second, third and the like may use the terms “first”, “second”, “third” and the like to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, “first information” may also be called “second information” without departing from the scope of the embodiments of the present disclosure, and similarly, “second information” may also be called “first information”.
  • first information may also be called “second information” without departing from the scope of the embodiments of the present disclosure, and similarly, “second information” may also be called “first information”.
  • the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • FIG. 1 is a schematic structural diagram of a communication system in an embodiment of the present disclosure.
  • the communication system 100 may include: a terminal device 101 and a network device 102 .
  • the above communication system 100 may support working in two networking modes of non-standalone networking (non-standalone, NSA) and/or standalone networking (standalone, SA). Then, the terminal device 101 may support NSA and/or SA, and the network device 102 may support NSA and/or SA.
  • NSA non-standalone networking
  • SA standalone networking
  • the foregoing terminal device 101 may be a device that provides voice or data connectivity to a user.
  • a terminal device may also be called a user equipment (user equipment, UE), a mobile station (mobile station), a subscriber unit (subsriber unit), a station (station), or a terminal (terminal equipment, TE).
  • Terminal equipment can be cellular phone (cellular phone), personal digital assistant (personal digital assistant, PDA), wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone), Wireless local loop (wireless local loop, WLL) station or tablet computer (pad), etc.
  • devices that can access the wireless communication system, communicate with the network side of the wireless communication system, or communicate with other devices through the wireless communication system are all terminal devices in the embodiments of the present disclosure.
  • a terminal device can communicate with a network device, and multiple terminal devices can also communicate with each other.
  • Terminal equipment can be statically fixed or mobile.
  • the foregoing network device 102 may be a device used on the access network side to support the terminal to access the wireless communication system.
  • it can be an evolved base station (evolved NodeB, eNB) in a 4G access technology communication system, a next generation base station (next generation NodeB, gNB) in a 5G access technology communication system, a transmission reception point (TRP) ), relay node (relay node), access point (access point, AP) and so on.
  • eNB evolved NodeB
  • gNB next generation base station
  • TRP transmission reception point
  • relay node relay node
  • access point access point
  • AP access point
  • the serving cell of the terminal device is usually a single carrier cell, that is, a serving cell only supports a single carrier.
  • the demand for traffic, the number of terminals, and the types of terminals will all show an explosive growth trend, and the capacity of single-carrier serving cells will not be able to meet business needs. Therefore, how to increase the capacity of the serving cell is an urgent problem to be solved.
  • the frequency ranges supported by the above communication system are respectively defined as frequency range FR1 (frequency range 1) and frequency range FR2 (frequency range 2).
  • the frequency range FR1 is the so-called 5G Sub-6GHz frequency band (450MHz to 6000MHz)
  • the frequency range FR2 is the 5G millimeter wave frequency band (24250MHz to 52600MHz).
  • the terminal device For a terminal device whose serving cell is an FR2 cell, in an idle state (idle state), the terminal device still needs to reside in the FR2 cell. In this way, the power consumption of the network equipment is increased.
  • an embodiment of the present disclosure provides a data transmission method, which can be applied to the above communication system.
  • FIG. 2 is a schematic diagram of the implementation flow of the first data transmission method in the embodiment of the present disclosure.
  • the above data transmission method may include:
  • the network device indicates to the terminal device the location of the non-anchor carrier on the frequency band.
  • the network device may configure multiple carriers for the serving cell of the terminal device, and the cell identifiers (such as physical cell IDs (PCI)) corresponding to the multiple carriers are the same.
  • the cell identifiers such as physical cell IDs (PCI)
  • PCI physical cell IDs
  • the serving cell may also be called a multi-carrier serving cell (serving cell with multiple carriers).
  • the network device may also configure multiple carriers for the serving cell of the terminal device according to the capability information of the terminal device.
  • the terminal device reports the maximum number of carriers N that it can support to the network device through capability information (such as UE-NR capability), and the network device can configure N carriers for the serving cell of the terminal device.
  • anchor carrier and the non-anchor carrier may be downlink carriers, or the anchor carrier and the non-anchor carrier may be uplink carriers.
  • the network device may select a carrier to deploy an anchor carrier, and send primary synchronization signals (primary synchronization signals, PSS), secondary synchronization signals (secondary synchronization signals, SSS), physical broadcast channel ( physical broadcast channel, PBCH) and so on.
  • PSS, SSS and PRBCH form a synchronization signal and a PBCH block (synchronization signal and PBCH block, SSB).
  • the network device selects at least one carrier to deploy a non-anchor carrier.
  • the network device can also send PSS, SSS, PBCH, etc. on the non-anchor carrier.
  • PSS, SSS, PBCH, etc. may not be sent on the non-anchor carrier. Embodiments of the present disclosure do not specifically limit this.
  • the network device can also send a physical downlink shared channel (physical downlink share channel, PDSCH), a physical downlink control channel (physical downlink control channel, PDCCH), a physical random access channel (physical random access channel) on the anchor carrier. access channel, PRACH), etc., and the PRACH can be sent on the non-anchor carrier, but the PDSCH, PDCCH, etc. are not sent, which is not specifically limited in the embodiments of the present disclosure.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PRACH physical random access channel
  • FIG. 3 is a schematic diagram of an anchor carrier and a non-anchor carrier in an embodiment of the present disclosure.
  • the network device configures three carriers for cell A.
  • carrier 1 is a deployed anchor carrier
  • carrier 2 is a deployed non-anchor carrier
  • carrier 3 is another deployed non-anchor carrier.
  • Carrier 1 can transmit SSB1, system information (system information, SI), paging message (paging), and PRACH, etc.
  • Carrier 2 can transmit the PRACH
  • carrier 3 can transmit the PRACH.
  • carrier 2 may also transmit SSB2 for synchronization
  • carrier 3 may also transmit SSB3.
  • anchor carrier and non-anchor carrier may be NR carriers.
  • anchor carrier and the non-anchor carrier may be intra-band (intra-band) carriers or inter-band (inter-band) carriers.
  • the center frequency of the anchor carrier may be lower than the center frequency of the non-anchor carrier, that is, the center frequency F DL1 of the non-anchor carrier satisfies: F DL1 > F DL2 , where F DL2 is the center frequency of the anchor carrier.
  • the anchor carrier may be the FR1 carrier
  • the non-anchor carrier may be the FR2 carrier.
  • the network device can indicate to the terminal device the location of the non-anchor carrier on the frequency band (or the location of the non-anchor carrier) by sending indication information or sending radio resource control (RRC) signaling on the anchor carrier
  • RRC radio resource control
  • the configuration information of the anchor carrier such as the center frequency and carrier bandwidth of the anchor carrier.
  • the network device may also indicate the downlink configuration information, uplink configuration information, and reference signal configuration information of the anchor carrier and/or the non-anchor carrier Wait.
  • the terminal device determines the position of the non-anchor carrier on the frequency band.
  • the terminal device may determine the location of the non-anchor carrier on the frequency band according to the instruction of the network device in S201.
  • the terminal device and the network device perform data transmission on the non-anchor carrier.
  • the terminal device may perform data transmission with the network device on the non-anchor carrier. For example, the terminal device receives data sent by the network device on the non-anchor carrier, the terminal device sends data to the network device on the non-anchor carrier, the network device sends data to the terminal device on the non-anchor carrier, and/or the network device The data sent by the terminal device is received on the non-anchor carrier.
  • the terminal device determines the downlink non-anchor carrier in S202 , in S203, the network device can send downlink data on the downlink anchor carrier.
  • FDD frequency division duplex
  • the downlink data can include random access information, downlink user data, etc.; and for time division duplex (time division duplex, TDD) NR system, due to The uplink carrier and the downlink carrier are the same carrier, then, in S203, the terminal device can send uplink data on the non-anchor carrier determined in S202, such as sending random access information, the network device can time-share the terminal device in S202 to determine Send downlink data, such as paging messages, downlink user data, etc., on the outgoing non-anchor carrier.
  • TDD time division duplex
  • FIG. 4 is a schematic flowchart of the implementation of the second data transmission method in the embodiment of the present disclosure.
  • the above data transfer method may also include:
  • the network device indicates timing information on the anchor carrier to the terminal device.
  • the foregoing timing information is used to indicate a timing mapping relationship between the non-anchor carrier and the anchor carrier.
  • the timing information may include a system frame number offset (system frame number offset, SFN offset), a frame boundary offset (frame boundary offset), and a slot boundary offset (slot boundary offset).
  • SFN offset system frame number offset
  • frame boundary offset frame boundary offset
  • slot boundary offset slot boundary offset
  • the timing information may also include other information for indicating the timing mapping relationship between the non-anchor carrier and the anchor carrier, which is not specifically limited in this embodiment of the present disclosure.
  • the network device may carry the timing information on the SI, and may also carry the timing information on the RRC signaling.
  • the network device may indicate timing information to the terminal device through S401, so that the synchronization between the anchor carrier and the non-anchor carrier can be completed according to the timing information.
  • the above S203 may include: S402, the terminal device and the network device perform data transmission on the non-anchor carrier according to the timing information.
  • the terminal device may also perform radio resource management (radio resource management, RRM) on the non-anchor carrier ) measurement, radio link monitoring (radio link monitoring, RLS) measurement, beam management (beam management) measurement, etc.
  • RRM radio resource management
  • RLS radio link monitoring
  • beam management beam management
  • the network device configures multiple carriers for the serving cell of the terminal device, which increases the capacity of the serving cell. Furthermore, if the anchor carrier is the FR1 carrier and the non-anchor carrier is the FR2 carrier, the terminal device can camp on the FR1 carrier when it is in the idle state, and initiate random access to the FR2 carrier when the service arrives, and return to FR2 carrier for data transmission. In this way, power consumption is reduced and resources are saved.
  • FIG. 5 is a schematic diagram of the implementation process of the third data transmission method in the embodiment of the present disclosure.
  • the network device can indicate the position of the non-anchor carrier on the frequency band through the indication information on the anchor carrier.
  • the above data Transfer methods can also include:
  • the network device sends indication information to the terminal device on the anchor carrier.
  • the network device may send indication information to the terminal device on the anchor carrier to indicate the position on the non-anchor carrier (it can also be understood as indicating the non-anchor carrier's center frequency, carrier bandwidth, etc. configuration information of the anchor carrier).
  • the PBCH on the anchor carrier carries a master information block (master information block, MIB), and the above indication information may be carried in the MIB to indicate the position on the non-anchor carrier.
  • MIB master information block
  • system information (system information, SI) is carried in the PDSCH and/or PDCCH on the anchor carrier, and the above indication information may be carried in the SI to indicate the position on the non-anchor carrier.
  • the above indication information may include: SSB configuration information (such as ssb-PositionsInBurst, ssb-PeriodicityServingCell, ss-PBCH-BlockPower, etc.), uplink and downlink configuration information (such as tdd-UL-DL-ConfigurationCommon), timing Advance amount (such as n-TimingAdvanceOffset), downlink configuration information (such as downlinkConfigCommon), uplink configuration information (such as uplinkConfigCommon), etc.
  • SSB configuration information such as ssb-PositionsInBurst, ssb-PeriodicityServingCell, ss-PBCH-BlockPower, etc.
  • uplink and downlink configuration information such as tdd-UL-DL-ConfigurationCommon
  • timing Advance amount such as n-TimingAdvanceOffset
  • downlink configuration information such as downlinkConfigCommon
  • uplinkConfigCommon such as uplinkConfigCommon
  • the above indication information may also be carried in other information on the anchor carrier, or carried on the anchor carrier separately, which is not specifically limited in this embodiment of the present disclosure.
  • the terminal device determines the position of the non-anchor carrier on the frequency band according to the indication information.
  • the terminal device receives the indication information sent by the network device on the anchor carrier, and determines the position of the non-anchor carrier on the frequency band according to the indication information. Optionally, the terminal device is in idle state.
  • the above indication information is carried in the SI to indicate the position on the non-anchor carrier.
  • S502 may be: the terminal device may blindly search for the PSS and SSS first, and after searching, the terminal device may receive the MIB on the anchor carrier. Next, the terminal device determines the received SI on the anchor carrier according to the indication in the MIB. Then, the terminal device determines the position of the non-anchor carrier on the frequency band according to the indication of the SI.
  • the above indication information is carried in the SI to indicate the position on the non-anchor carrier.
  • S502 may include: the terminal device may blindly search for the PSS and SSS first, and after searching, the terminal device may receive the MIB on the anchor carrier. Next, the terminal device determines the position of the non-anchor carrier on the frequency band according to the indication in the MIB.
  • the terminal device and the network device perform data transmission on the non-anchor carrier.
  • the terminal device may perform data transmission with the network device on the non-anchor carrier. For example, the terminal device receives data sent by the network device on the non-anchor carrier, the terminal device sends data to the network device on the non-anchor carrier, the network device sends data to the terminal device on the non-anchor carrier, and/or the network device The data sent by the terminal device is received on the non-anchor carrier.
  • the terminal device determines in S502 that it is a downlink non-anchor carrier, and in S503 the network device can use the downlink anchor carrier At this time, the downlink data can include random access information, downlink user data, etc.; and for the TDD NR system, since the uplink carrier and the downlink carrier are the same carrier, then, in S203, the terminal device can be in S202 Send uplink data on the non-anchor carrier determined in S202, such as sending random access information, the network device can time-sharingly send downlink data on the non-anchor carrier determined by the terminal device in S202, such as paging messages, downlink user data Wait.
  • the above SI may also carry timing information, and the timing information is used to indicate the timing mapping relationship between the non-anchor carrier and the anchor carrier.
  • the timing information may include SFN offset, frame boundary offset and slot boundary offset.
  • the timing information may also include other information for indicating the timing mapping relationship between the non-anchor carrier and the anchor carrier, which is not specifically limited in this embodiment of the present disclosure.
  • the above data transmission method further includes: S401, the network device indicates timing information on the anchor carrier to the terminal device.
  • the network device may indicate timing information to the terminal device through S401, so that the synchronization between the anchor carrier and the non-anchor carrier can be completed according to the timing information.
  • the above S503 may include: S402, the terminal device and the network device perform data transmission on the non-anchor carrier according to the timing information.
  • the terminal device may also perform RRM measurement, RLS measurement, and beam management measurement on the non-anchor carrier Wait.
  • the network device configures multiple carriers for the serving cell of the terminal device, which increases the capacity of the serving cell. Furthermore, if the anchor carrier is the FR1 carrier and the non-anchor carrier is the FR2 carrier, the terminal device can camp on the FR1 carrier when it is in the idle state, and initiate random access to the FR2 carrier when the service arrives, and return to FR2 carrier for data transmission. In this way, power consumption is reduced and resources are saved. Furthermore, the network device indicates the non-anchor carrier to the terminal device on the anchor carrier, so that the terminal device can determine the position of the non-anchor carrier on the frequency band by monitoring the anchor carrier, reducing system signaling interaction and power consumption.
  • Figure 6 is a schematic diagram of the implementation process of the fourth data transmission method in the embodiment of the present disclosure.
  • the network device can indicate the position of the non-anchor carrier on the frequency band through RRC signaling, and the above data transmission method can also be include:
  • the network device sends an RRC command to the terminal device.
  • the RRC signaling can indicate the position of the non-anchor carrier in the frequency band (it can also be understood as indicating the configuration information of the non-anchor carrier such as the center frequency and carrier bandwidth of the non-anchor carrier).
  • RRC signaling may carry one or more of the following information: SSB configuration information (such as ssb-PositionsInBurst, ssb-PeriodicityServingCell, ss-PBCH-BlockPower, etc.), uplink and downlink configuration information (such as tdd-UL- DL-ConfigurationCommon), timing advance (such as n-TimingAdvanceOffset), downlink configuration information (such as downlinkConfigCommon), uplink configuration information (such as uplinkConfigCommon), etc.
  • SSB configuration information such as ssb-PositionsInBurst, ssb-PeriodicityServingCell, ss-PBCH-BlockPower, etc.
  • uplink and downlink configuration information such as tdd-UL- DL-ConfigurationCommon
  • timing advance such as n-TimingAdvanceOffset
  • downlink configuration information such as downlinkConfigCommon
  • uplinkConfigCommon such as
  • the terminal device determines the position of the non-anchor carrier on the frequency band according to the RRC command.
  • the terminal device receives the RRC signaling sent by the network device, and determines the position of the non-anchor carrier on the frequency band according to the indication of the RRC signaling.
  • the terminal device is in an inactive state (inactive state) or a connected state (connected state).
  • the terminal device and the network device perform data transmission on the non-anchor carrier.
  • the terminal device determines the position of the non-anchor carrier on the frequency band through S02, it can perform data transmission with the network device on the non-anchor carrier. For example, the terminal device receives data sent by the network device on the non-anchor carrier, the terminal device sends data to the network device on the non-anchor carrier, the network device sends data to the terminal device on the non-anchor carrier, and/or the network device The data sent by the terminal device is received on the non-anchor carrier.
  • the terminal device determines in S502 that it is a downlink non-anchor carrier, and in S503 the network device can use the downlink anchor carrier At this time, the downlink data can include random access information, downlink user data, etc.; and for the TDD NR system, since the uplink carrier and the downlink carrier are the same carrier, then, in S203, the terminal device can be in S202 Send uplink data on the non-anchor carrier determined in S202, such as sending random access information, the network device can time-sharingly send downlink data on the non-anchor carrier determined by the terminal device in S202, such as paging messages, downlink user data Wait.
  • the above RRC signaling may also carry timing information, which is used to indicate the timing mapping relationship between the non-anchor carrier and the anchor carrier.
  • the timing information may include SFN offset, frame boundary offset and slot boundary offset.
  • the timing information may also include other information for indicating the timing mapping relationship between the non-anchor carrier and the anchor carrier, which is not specifically limited in this embodiment of the present disclosure.
  • the above data transmission method further includes: S401, the network device indicates timing information on the anchor carrier to the terminal device.
  • the network device may indicate timing information to the terminal device through S401, so that the synchronization between the anchor carrier and the non-anchor carrier can be completed according to the timing information.
  • the above S603 may include: S402, the terminal device and the network device perform data transmission on the non-anchor carrier according to the timing information.
  • the terminal device may also perform RRM measurement, RLS measurement, and beam management measurement on the non-anchor carrier Wait.
  • the network device configures multiple carriers for the serving cell of the terminal device, which increases the capacity of the serving cell. Furthermore, if the anchor carrier is the FR1 carrier and the non-anchor carrier is the FR2 carrier, the terminal device can camp on the FR1 carrier when it is in the idle state, and initiate random access to the FR2 carrier when the service arrives, and return to FR2 carrier for data transmission. In this way, power consumption is reduced and resources are saved.
  • an implementation process on the terminal device side of the data transmission method provided by the embodiments of the present disclosure may include:
  • Step 11 the terminal device determines the position of the non-anchor carrier of the serving cell on the frequency band.
  • Step 12 the terminal device performs data transmission with the network device on the non-anchor carrier.
  • the anchor carrier is used for transmission: PSS, SSS, PBCH, PDSCH, paging, PDCCH and so on.
  • step 12 may include: the terminal device performs random access, receives a paging message or receives downlink data on a non-anchor carrier.
  • the anchor carrier and the non-anchor carrier are NR carriers.
  • the center frequency of the anchor carrier is lower than the center frequency of the non-anchor carriers.
  • step 11 and step 12 reference may be made to the specific description of S202 and S203 in the embodiment of FIG. 2 , and details are not repeated here.
  • the above data transmission method may further include: Step 13, the terminal device receives timing information on the anchor carrier. Step 14, the terminal device performs data transmission on the non-anchor carrier according to the timing information.
  • step 13 and step 14 reference may be made to the specific description of S401 and S402 in the embodiment of FIG. 4 , and details are not repeated here.
  • the above data transmission method may further include: the terminal device performs RRM measurement, RLM measurement, beam management measurement, etc. on the non-anchor carrier.
  • an implementation process on the network device side of the data transmission method provided by the embodiments of the present disclosure may include:
  • Step 21 the network device indicates to the terminal device the location of the non-anchor carrier on the frequency band.
  • Step 22 the network device performs data transmission with the terminal device on the non-anchor carrier.
  • the anchor carrier is used for transmission: PSS, SSS, PBCH, PDSCH, paging, PDCCH and so on.
  • step 22 may include: the network device receives random access information, performs paging or sends downlink data on the non-anchor carrier.
  • the anchor carrier and the non-anchor carrier are NR carriers.
  • the center frequency of the anchor carrier is lower than the center frequency of the non-anchor carriers.
  • step 21 and step 22 reference may be made to the specific description of S201 and S203 in the embodiment of FIG. 2 , and details are not repeated here.
  • the above data transmission method may further include: Step 23, the network device indicates timing information on the anchor carrier. Step 24, the network device performs data transmission on the non-anchor carrier according to the timing information.
  • step 23 and step 24 reference may be made to the specific description of S401 and S402 in the embodiment of FIG. 4 , and details are not repeated here.
  • another implementation process on the terminal device side of the data transmission method provided by the embodiments of the present disclosure may include:
  • Step 31 the terminal device determines the position of the non-anchor carrier on the frequency band according to the indication information.
  • Step 32 the terminal device performs data transmission with the network device on the non-anchor carrier.
  • the anchor carrier is used for transmission: PSS, SSS, PBCH, PDSCH, paging, PDCCH and so on.
  • step 32 may include: the terminal device performs random access, receives a paging message or receives downlink data on a non-anchor carrier.
  • the anchor carrier and the non-anchor carrier are NR carriers.
  • the center frequency of the anchor carrier is lower than the center frequency of the non-anchor carriers.
  • step 31 and step 32 reference may be made to the specific description of S502 and S503 in the embodiment of FIG. 5 , and details are not repeated here.
  • the above data transmission method may further include: Step 33, the terminal device receives timing information on the anchor carrier. Step 34, the terminal device performs data transmission on the non-anchor carrier according to the timing information.
  • step 33 and step 34 reference may be made to the specific description of S401 and S402 in the embodiment of FIG. 4 , and details are not repeated here.
  • the above data transmission method may further include: the terminal device performs RRM measurement, RLM measurement, beam management measurement, etc. on the non-anchor carrier.
  • another implementation process on the network device side of the data transmission method provided by the embodiments of the present disclosure may include:
  • Step 41 the network device sends indication information to the terminal device on the anchor carrier.
  • Step 42 the network device performs data transmission with the terminal device on the non-anchor carrier.
  • the anchor carrier is used for transmission: PSS, SSS, PBCH, PDSCH, paging, PDCCH and so on.
  • step 42 may include: the network device receives random access information, performs paging or sends downlink data on the non-anchor carrier.
  • the anchor carrier and the non-anchor carrier are NR carriers.
  • the center frequency of the anchor carrier is lower than the center frequency of the non-anchor carriers.
  • step 41 and step 42 reference may be made to the specific description of S501 and S503 in the embodiment of FIG. 5 , and details are not repeated here.
  • the above data transmission method may further include: Step 43, the network device indicates timing information on the anchor carrier. Step 44, the network device performs data transmission on the non-anchor carrier according to the timing information.
  • step 43 and step 44 reference may be made to the specific description of S401 and S402 in the embodiment of FIG. 4 , and details are not repeated here.
  • another implementation process on the terminal device side of the data transmission method provided by the embodiments of the present disclosure may include:
  • Step 51 the terminal device determines the position of the non-anchor carrier on the frequency band according to the RRC instruction.
  • Step 52 the terminal device performs data transmission with the network device on the non-anchor carrier.
  • the anchor carrier is used for transmission: PSS, SSS, PBCH, PDSCH, paging, PDCCH and so on.
  • step 52 may include: the terminal device performs random access, receives a paging message or receives downlink data on a non-anchor carrier.
  • the anchor carrier and the non-anchor carrier are NR carriers.
  • the center frequency of the anchor carrier is lower than the center frequency of the non-anchor carriers.
  • step 51 and step 52 reference may be made to the specific description of S602 and S603 in the embodiment of FIG. 6 , and details are not repeated here.
  • the above data transmission method may further include: Step 53, the terminal device receives timing information on the anchor carrier. Step 54, the terminal device performs data transmission on the non-anchor carrier according to the timing information.
  • step 53 and step 54 reference may be made to the specific description of S401 and S402 in the embodiment of FIG. 4 , and details are not repeated here.
  • the above data transmission method may further include: the terminal device performs RRM measurement, RLM measurement, beam management measurement, etc. on the non-anchor carrier.
  • another implementation process on the network device side of the data transmission method provided by the embodiments of the present disclosure may include:
  • Step 61 the network device sends an RRC instruction to the terminal device.
  • Step 62 the network device performs data transmission with the terminal device on the non-anchor carrier.
  • the anchor carrier is used for transmission: PSS, SSS, PBCH, PDSCH, paging, PDCCH and so on.
  • step 62 may include: the network device receives random access information, performs paging or sends downlink data on the non-anchor carrier.
  • the anchor carrier and the non-anchor carrier are NR carriers.
  • the center frequency of the anchor carrier is lower than the center frequency of the non-anchor carriers.
  • step 61 and step 62 reference may be made to the specific description of S601 and S603 in the embodiment of FIG. 6 , and details are not repeated here.
  • the above data transmission method may further include: Step 63, the network device indicates timing information on the anchor carrier. Step 64, the network device performs data transmission on the non-anchor carrier according to the timing information.
  • step 63 and step 64 reference may be made to the specific description of S401 and S402 in the embodiment of FIG. 4 , and details are not repeated here.
  • an embodiment of the present disclosure also provides a communication device, which may be a terminal device in a communication system or a chip or a system-on-chip in a terminal device, and may also be a terminal device used to implement the above implementations.
  • the communication device can implement the functions performed by the terminal device in the foregoing embodiments, and these functions can be implemented by executing corresponding software through hardware. These hardware or software include one or more modules with corresponding functions mentioned above.
  • FIG. 7 is a schematic structural diagram of a communication device in an embodiment of the present disclosure. Referring to FIG.
  • the communication device 700 includes: a determining module 701, configured to determine the position of a non-anchor carrier of a serving cell in a frequency band, wherein , the serving cell is configured with an anchor carrier and a non-anchor carrier; the first transmission module 702 is configured to perform data transmission on the non-anchor carrier.
  • the first transmission module is further configured to: receive indication information on the anchor carrier, where the indication information is used to indicate the position of the non-anchor carrier in the frequency band; or receive RRC signaling, wherein , the RRC signaling is used to indicate the position of the non-anchor carrier in the frequency band.
  • the indication information is carried in MIB or SI.
  • the anchor carrier is used to transmit one or more of the following information: PSS, SSS, PBCH, PDSCH, paging, PDCCH.
  • the first transmission module is further configured to send capability information to the network device before the determination module determines the position of the non-anchor carrier of the serving cell in the frequency band, and the capability information is used to instruct the network device to The maximum number of carriers that the device can support Configure anchor and non-anchor carriers for the serving cell.
  • the first transmission module is also used to receive timing information on the anchor carrier, and the timing information is used to indicate the timing mapping relationship between the non-anchor carrier and the anchor carrier; the first transmission module is also used to Based on the timing information, data transmission is performed on the non-anchor carrier.
  • the first transmission module is configured to perform random access, receive a paging message or receive downlink data on a non-anchor carrier.
  • the first transmission module is further configured to perform radio resource management measurement, radio link monitoring measurement and/or beam management measurement on the non-anchor carrier.
  • the anchor carrier and the non-anchor carrier are NR carriers.
  • the center frequency of the anchor carrier is lower than the center frequency of the non-anchor carriers.
  • the first transmission module 702 mentioned in the embodiments of the present disclosure may be a transceiver interface, a transceiver circuit, or a transceiver, etc.; the determination module 701 may be one or more processors.
  • an embodiment of the present disclosure also provides a communication device.
  • the communication device may be a network device in a communication system or a chip or a system on a chip in a network device, and may also be a network device used to implement the above implementations.
  • the communication device can realize the functions performed by the network devices in the above-mentioned embodiments, and these functions can be realized by executing corresponding software through hardware. These hardware or software include one or more modules with corresponding functions mentioned above.
  • FIG. 8 is a schematic structural diagram of another communication device in an embodiment of the present disclosure. Referring to FIG.
  • the communication device 800 includes: an indication module 801 configured to indicate that the non-anchor carrier of the serving cell of the terminal device is in the frequency band , where the serving cell is configured with an anchor carrier and a non-anchor carrier; the second transmission module 802 is configured to perform data transmission on the non-anchor carrier.
  • the second transmission module is configured to send indication information to the terminal device on the anchor carrier, where the indication information is used to indicate the position of the non-anchor carrier in the frequency band; or, send RRC signaling, wherein , the RRC signaling is used to indicate the position of the non-anchor carrier in the frequency band.
  • the indication information is carried in MIB or SI.
  • the anchor carrier is used to transmit one or more of the following information: PSS, SSS, PBCH, PDSCH, paging, PDCCH.
  • the indication module is further configured to configure the anchor carrier and non-anchor carrier for the serving cell according to the capability information reported by the terminal device before indicating the position of the non-anchor carrier in the frequency band of the serving cell.
  • Point carrier the capability information is used to indicate the maximum number of carriers that the terminal device can support.
  • the indication module is configured to indicate timing information on the anchor carrier, and the timing information is used to indicate the timing mapping relationship between the non-anchor carrier and the anchor carrier; the second transmission module is configured to , to perform data transmission on a non-anchor carrier.
  • the second transmission module is configured to receive random access information, perform paging, or send downlink data on a non-anchor carrier.
  • the anchor carrier and the non-anchor carrier are NR carriers.
  • the center frequency of the anchor carrier is lower than the center frequency of the non-anchor carriers.
  • the second transmission module 802 mentioned in the embodiments of the present disclosure may be a transceiver interface, a transceiver circuit, or a transceiver, etc.; the indication module 801 may be one or more processors.
  • FIG. 9 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • the communication device 900 adopts general-purpose computer hardware, including a processor 901, a memory 902, a bus 903, an input device 904 and an output device 905 .
  • memory 902 may include computer storage media in the form of volatile and/or non-volatile memory, such as read-only memory and/or random access memory.
  • Memory 902 may store operating systems, application programs, other program modules, executable code, program data, user data, and the like.
  • Input devices 904 such as a keyboard or pointing devices such as a mouse, trackball, touch pad, microphone, joystick, game pad, satellite TV dish, scanner, or similar device, may be used to enter commands and information into a communication device. These input devices can be connected to the processor 901 through the bus 903 .
  • the output device 905 can be used for communication equipment to output information.
  • the output device 905 can also be other peripheral output devices, such as speakers and/or printing devices. These output devices can also be connected to the processor 901 through the bus 903. .
  • the communication device may be connected to a network through the antenna 906, for example, connected to a local area network (local area network, LAN).
  • a local area network local area network, LAN
  • computer-executed instructions stored in the control device may be stored in remote storage devices and are not limited to local storage.
  • the communication device can execute the communication method on the terminal device side or the network device side in the above embodiment, and refer to the above embodiment for the specific execution process. I won't repeat them here.
  • the memory 902 stores computer-executed instructions for realizing the functions of the determination module 701 and the first transmission module 702 in FIG. 7 .
  • the functions/implementation process of the determination module 701 and the first transmission module 702 in FIG. 7 can be realized by calling the computer execution instructions stored in the memory 902 by the processor 901 in FIG. 9 , and the specific implementation process and functions refer to the above-mentioned related embodiments .
  • the memory 902 stores computer-executed instructions for realizing the functions of the indication module 801 and the second transmission module 802 in FIG. 8 .
  • the functions/implementation process of the indication module 801 and the second transmission module 802 in FIG. 8 can be realized by calling the computer execution instructions stored in the memory 902 by the processor 901 in FIG. 9 , and the specific implementation process and functions refer to the above-mentioned related embodiments. .
  • the terminal device may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • FIG. 10 is a schematic structural diagram of a terminal device in an embodiment of the present disclosure.
  • the terminal device 1000 may include one or more of the following components: a processing component 1001, a memory 1002, a power supply component 1003, a multimedia component 1004, An audio component 1005 , an input/output (I/O) interface 1006 , a sensor component 1007 , and a communication component 1008 .
  • the processing component 1001 generally controls the overall operations of the terminal device 1000, such as operations associated with display, telephone calls, data communication, camera operations, and recording operations.
  • the processing component 1001 may include one or more processors 1310 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1001 may include one or more modules to facilitate interaction between processing component 1001 and other components. For example, processing component 1001 may include a multimedia module to facilitate interaction between multimedia component 1004 and processing component 1001 .
  • the memory 1002 is configured to store various types of data to support operations at the device 1000 . Examples of such data include instructions for any application or method operating on the terminal device 1000, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1002 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1003 provides power to various components of the terminal device 1000 .
  • the power supply component 1003 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the terminal device 1000 .
  • the multimedia component 1004 includes a screen providing an output interface between the terminal device 1000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or a swipe action, but also detect duration and pressure associated with the touch or swipe operation.
  • the multimedia component 1004 includes a front camera and/or a rear camera. When the device 1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1005 is configured to output and/or input audio signals.
  • the audio component 1005 includes a microphone (MIC), which is configured to receive an external audio signal when the terminal device 1000 is in an operation mode, such as a calling mode, a recording mode and a voice recognition mode. Received audio signals may be further stored in memory 1002 or transmitted via communication component 1008 .
  • the audio component 1005 also includes a speaker for outputting audio signals.
  • the I/O interface 1006 provides an interface between the processing component 1001 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1007 includes one or more sensors, which are used to provide status assessments of various aspects for the terminal device 1000 .
  • the sensor component 1007 can detect the open/closed state of the device 1000, the relative positioning of components, for example, the components are the display and the keypad of the terminal device 1000, and the sensor component 1007 can also detect the position of the terminal device 1000 or a component of the terminal device 1000 Changes, the presence or absence of user contact with the terminal device 1000, the orientation or acceleration/deceleration of the terminal device 1000 and the temperature change of the terminal device 1000.
  • the sensor assembly 1007 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1007 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1007 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1008 is configured to facilitate wired or wireless communication between the terminal device 1000 and other devices.
  • the terminal device 1000 can access a wireless network based on communication standards, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 1008 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1008 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • the terminal device 1000 may be implemented by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable A programmable gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGA Field Programmable A programmable gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • embodiments of the present disclosure provide a network device, where the network device is consistent with the network device in one or more embodiments above.
  • FIG. 11 is a schematic structural diagram of a network device in an embodiment of the present disclosure.
  • the network device 1100 may include a processing component 1101, which further includes one or more processors, and a memory represented by a memory 1102
  • the resources are used to store instructions executable by the processing component 1101, such as application programs.
  • An application program stored in memory 1102 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1101 is configured to execute instructions, so as to execute any one of the foregoing methods applied to the network device A.
  • the network device 1100 may also include a power supply component 1103 configured to perform power management of the network device 1100, a wired or wireless network interface 1104 configured to connect the network device 1100 to a network, and an input-output (I/O) interface 1105 .
  • the network device 1100 can operate based on an operating system stored in the memory 1102, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • an embodiment of the present disclosure also provides a computer-readable storage medium, in which instructions are stored; when the instructions are run on a computer, the terminal is used to execute the above-mentioned one or more embodiments.
  • the communication method on the device side or the network device A side.
  • an embodiment of the present disclosure also provides a computer program or a computer program product.
  • the computer program product When the computer program product is executed on a computer, the computer implements the terminal device side or the network device A in one or more embodiments above. side communication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法、装置及设备。该数据传输方法可以应用于一通信系统,如新无线(NR)系统。该方法可以包括:终端设备确定服务小区的非锚点载波在频带中的位置,其中,服务小区配置有锚点载波和非锚点载波;终端设备在非锚点载波上进行数据传输。在本公开中,网络设备为终端设备的服务小区配置多个载波,以提高服务小区的容量。

Description

一种数据传输方法、装置及设备 技术领域
本公开涉及无线通信技术领域,尤其涉及一种数据传输方法、装置及设备。
背景技术
随着无线通信技术的不断发展,在长期演进(long term evolution,LTE)技术之后出现了新无线(new radio,NR)技术。
在NR系统中,终端设备的服务小区通常是单载波小区,即一个服务小区只支持单个载波。但是面对未来网络中对业务量需求、终端数目以及终端种类都将会呈现爆发时的增长趋势,单载波服务小区的容量将无法满足需求。
所以,如何提高服务小区的容量是一个亟待解决的问题。
发明内容
本公开提供了一种数据传输方法、装置及设备,以实现在NR系统中配置多载波服务小区,进而提升服务小区的容量。
第一方面,本公开提供一种数据传输方法,该方法可以应用于一通信系统中的终端设备。该通信系统可以为NR系统。该方法可以包括:终端设备确定服务小区的非锚点载波在频带中的位置,其中,服务小区配置有锚点载波和非锚点载波;终端设备在非锚点载波上进行数据传输。
第二方面,本公开提供一种数据传输方法,该方法可以应用于一通信系统中的网络设备。该通信系统可以为NR系统。该方法可以包括:网络设备指示终端设备的服务小区的非锚点载波在频带中的位置,其中,服务小区配置有锚点载波和非锚点载波;网络设备在非锚点载波上进行数据传输。
第三方面,本公开提供一种通信装置,该通信装置可以为通信系统中的终端设备或者终端设备中的芯片或者片上系统,还可以为终端设备中用于实现上述各个实施例所述的方法的功能模块。该通信装置可以实现上述各实施例中终端设备所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该通信装置包括:确定模块,用于确定服务小区的非锚点载波在频带中的位置,其中,服务小区配置有锚点载波和非锚点载波;第一传输模块,用于在非锚点载波上进行数据传输。
第四方面,本公开提供一种通信装置,该通信装置可以为通信系统中的网络设备或者网络设备中的芯片或者片上系统,还可以为网络设备中用于实现上述各个实施例所述的方法的功能模块。该通信装置可以实现上述各实施例中网络设备所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该通信装置包括:指示模块,用于指示终端设备的服务小区的非锚点载波在频带中的位置,其中,服务小区配置有锚点载波和非锚点载波;第二传输模块,用 于在非锚点载波上进行数据传输。
第五方面,本公开提供一种通信设备,包括:天线;存储器;处理器,分别与天线及存储器连接,被配置为通执行存储在存储器上的计算机可执行指令,控制天线的收发,并能够实现如第一方面、第二方面及其可能的实施方式中任一项的数据传输方法。
第六方面,本公开提供一种计算机存储介质,处理模块,用于计算机存储介质存储有计算机可执行指令,其特征在于,计算机可执行指令被处理器执行后能够实现如第一方面、第二方面及其可能的实施方式中任一项的数据传输方法。
在本公开中,网络设备为终端设备的服务小区配置多个载波,提高了服务小区的容量。进一步地,若锚点载波为FR1载波,非锚点载波为FR2载波,则终端设备可以在处于idle态时驻留在FR1载波,而在业务到达时,向FR2载波发起随机接入,回到FR2载波进行数据传输。如此,降低功耗,节约资源。
应当理解的是,本公开的第三至六方面与本公开的第一至二方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本公开实施例中的一种通信系统的结构示意图;
图2为本公开实施例中的第一种数据传输方法的实施流程示意图;
图3为本公开实施例中的锚点载波和非锚点载波的示意图;
图4为本公开实施例中的第二种数据传输方法的实施流程示意图;
图5为本公开实施例中的第三种数据传输方法的实施流程示意图;
图6为本公开实施例中的第四种数据传输方法的实施流程示意图;
图7为本公开实施例中的一种通信装置的结构示意图;
图8为本公开实施例中的另一种通信装置的结构示意图;
图9为本公开实施例中的一种通信设备的结构示意图;
图10为本公开实施例中的一种终端设备的结构示意图;
图11为本公开实施例中的一种网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下 文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,“第一信息”也可以被称为“第二信息”,类似地,“第二信息”也可以被称为“第一信息”。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例提供一种通信系统。该通信系统可以为第五代(5 th generation,5G)通信系统,如NR系统。图1为本公开实施例中的一种通信系统的结构示意图,参见图1所示,该通信系统100可以包括:终端设备101和网络设备102。
在一些可能的实施例中,上述通信系统100可以支持以非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)两种组网方式工作。那么,上述终端设备101可以支持NSA和/或SA,网络设备102可以支持NSA和/或SA。
示例性的,上述终端设备101可以为一种向用户提供语音或者数据连接性的设备。在一些实施例中,终端设备也可以称为用户设备(user equipment,UE)、移动台(mobile station)、用户单元(subsriber unit)、站台(station)或者终端(terminal equipment,TE)等。终端设备可以为蜂窝电话(cellular phone)、个人数字助理(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)、无线本地环路(wireless local loop,WLL)台或者平板电脑(pad)等。随着无线通信技术的发展,可以接入无线通信系统、可以与无线通信系统的网络侧进行通信或者通过无线通信系统与其他设备进行通信的设备都是本公开实施例中的终端设备。例如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能完全网络中的视频监控仪器、收款机等。在本公开实施例中,终端设备可以与网络设备进行通信,多个终端设备之间也可以进行通信。终端设备可以是静态固定的,也可以移动的。
上述网络设备102可以为接入网侧用于支持终端接入无线通信系统的设备。例如,可以是4G接入技术通信系统中的演进型基站(evolved NodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等。
在上述通信系统中,终端设备的服务小区通常是单载波小区,即一个服务小区只支持单个载波。但是面对未来网络中对业务量需求、终端数目以及终端种类都将会呈现爆发时的增长趋势,单载波服务小区的容量将无法满足业务需求。所以,如何提高服务小区的容量是一个亟待解决的问题。
进一步地,上述通信系统所支持的频率范围分别定义为频率范围FR1(frequency range 1)和频率范围FR2(frequency range 2)。其中,频率范围FR1即为通常所讲的5G Sub-6GHz频段(450MHz至6000MHz),频率范围FR2即为5G毫米波频段(24250MHz至52600MHz)。对于服务小区为FR2小区的终端设备来说,在空闲态(idle态)下,终端设备仍需要驻留在FR2小区。这样,增加了网络设备的功耗。
为了解决上述问题,本公开实施例提供一种数据传输方法,该方法可以应用于上述通信系统。
结合上述通信系统,以下行数据传输为例,图2为本公开实施例中的第一种数据传输方法的实施流程示意图,参见图2所示,上述数据传输方法可以包括:
S201,网络设备向终端设备指示非锚点载波在频带上的位置。
应理解的,网络设备可以为终端设备的服务小区配置多个载波,多个载波对应的小区标识(如物理小区标识(physical cell ID,PCI))是相同的。在一个小区的多个载波中,一个载波为锚点载波(anchor carrier)(也可以称为主载波),其他载波为非锚点载波(non-anchor carrier)(也可以称为辅载波)。可选的,该服务小区也可以称为多载波服务小区(serving cell with multiple carriers)。
在一些可能的实施方式中,网络设备还可以根据终端设备的能力信息,为终端设备的服务小区配置多个载波。示例性的,终端设备通过能力信息(如UE-NR capability)向网络设备上报自身能够支持的最大载波数N,网络设备可以为终端设备的服务小区配置N个载波。
进一步地,锚点载波和非锚点载波可以为下行载波,或者锚点载波和非锚点载波可以为上行载波。
在一实施例中,网络设备可以选择一个载波部署锚点载波,并在锚点载波上发送主同步信号(primary synchronization signals,PSS)、辅同步信号(secondary synchronization signals,SSS)、物理广播信道(physical broadcast channel,PBCH)等。可选的,PSS、SSS和PRBCH组成同步信号和PBCH块(synchronization signal and PBCH block,SSB)。
进一步地,网络设备选择至少一个载波部署非锚点载波,此时,网络设备在非锚点载波上也可以发送PSS、SSS、PBCH等。当然,在非锚点载波上也可以不发送PSS、SSS、PBCH等。本公开实施例对此不作具体限定。
在一实施例中,网络设备在锚点载波上还可以发送物理下行共享信道(physical downlink share channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理随机接入信道(physical random access channel,PRACH)等,而在非锚点载波上可以发送PRACH,但不发送PDSCH、PDCCH等,本公开实施例对此不作具体限定。
示例性的,图3为本公开实施例中的锚点载波和非锚点载波的示意图,参见图3所示,网络设备为小区A配置3个载波。其中,载波1为部署的锚点载波,载波2为部署的一个非锚点载波,载波3为部署的另一个非锚点载波。载波1上可以传输SSB1、系统信息(system information,SI)、寻呼消息(paging)以及PRACH等。载波2可以传输PRACH,载波3可以传输PRACH。可选的,载波2还可以传输用于同步的SSB2,载波3还可以传输SSB3。
需要说明的是,上述锚点载波和非锚点载波可以为NR载波。可选的,锚点载波和非锚点载波可以为带内(intra-band)载波或者带间(inter-band)载波。
在一实施例中,为了降低功耗,锚点载波的中心频率可以低于非锚点载波的中心频率,即非锚点载波的中心频率F DL1满足:F DL1>F DL2,其中,F DL2为锚点载波的中心频率。示例性的,锚点载波可以为FR1载波,非锚点载波可以为FR2载波,那么,当终端设备处idle态时,可以驻留在FR1载波(即锚点载波)上进行监听。当业务达到时,终端设备向FR2载波(即非锚点载波)发起随机接入,回到FR2载波进行数据传输。
在本公开实施例中,通过上述S201,网络设备可以通过在锚点载波上发送指示信息或者发送无线资源控制(RRC)信令来向终端设备指示非锚点载波在频带上的位置(或者非锚点载波的中心频率、载波带宽等锚点载波的配置信息。)
在一些可能的实施例中,网络设备除了指示非锚点载波在频带中的位置之外,还可以指示锚点载波和/或非锚点载波的下行配置信息、上行配置信息、参考信号配置信息等。
S202,终端设备确定非锚点载波在频带上的位置。
应理解的,终端设备可以根据S201中网络设备的指示,确定在频带上非锚点载波的位置。
S203,终端设备与网络设备在非锚点载波上进行数据传输。
应理解的,终端设备在通过S202确定出非锚点载波在频带上的位置之后,可以与网络设备在非锚点载波上进行数据传输。例如,终端设备在非锚点载波上接收网络设备发送的数据、终端设备在非锚点载波上向网络设备发送数据、网络设备在非锚点载波上向终端设备发送数据和/或网络设备在非锚点载波上接收终端设备发送的数据。
在本公开实施例中,对于频分双工(frequency division duplex,FDD)NR系统,由于上行载波和下行载波可以为不同频率的载波,那么,通过S202终端设备确定出的是下行非锚点载波,在S203中网络设备可以在下行锚点载波上发送下行数据,此时,下行数据可以包括随机接入信息、下行用户数据等;而对于时分双工(time division duplex,TDD)NR系统,由于上行载波和下行载波为同一载波,那么,在S203中终端设备可以在S202中确定出的非锚点载波上发送上行数据,如发送随机接入信息,网络设备可以分时在S202中终端设备确定出的非锚点载波上发送下行数据,如寻呼消息、下行用户数据等。
在一些可能的实施方式中,图4为本公开实施例中的第二种数据传输方法的实施流程示意图,参见图4所示,为了减少系统中信令交互,进一步地降低功耗,在S203之前,上述数据传输方法还可以包括:
S401,网络设备向终端设备在锚点载波上指示定时信息。
其中,上述定时信息用于指示非锚点载波与锚点载波的定时映射关系。示例性的,定时信息可以包括系统帧号偏移(system frame number offset,SFN offset)、帧边界偏移(frame boundary offset)以及时隙边界偏移(slot boundary offset)。当然。定时信息还可以包括用于指示非锚点载波与锚点载波之间的定时映射关系的其他信息,本公开实施例对此不作具体限定。
在实际应用中,网络设备可以将定时信息承载于SI,还可以将定时信息承载于RRC信令。
在一实施例中,若非锚点载波上不携带SSB,则网络设备可以通过S401向终端设备指示定时信息,以使得根据定时信息能够完成锚点载波和非锚点载波之间的同步。
进一步地,上述S203可以包括:S402,终端设备与网络设备在非锚点载波上根据定时信息进行数据传输。
在另一种可能的实施方式中,为了监控配置给服务小区的多个载波,实现移动性管理,在S202之后,终端设备还可以在非锚点载波上进行无线资源管理(radio resource management,RRM)测量、无线链路监测(radio link monitoring,RLS)测量、波束管理(beam management)测量等。
在本公开实施例中,网络设备为终端设备的服务小区配置多个载波,提高了服务小区的容量。进一步地,若锚点载波为FR1载波,非锚点载波为FR2载波,则终端设备可以在处于idle态时驻留在FR1载波,而在业务到达时,向FR2载波发起随机接入,回到FR2载波进行数据传输。如此,降低功耗,节约资源。
图5为本公开实施例中的第三种数据传输方法的实施流程示意图,参见图5所示,网络设备可以通过锚点载波上的指示信息指示非锚点载波在频带上的位置,上述数据传输方法还可以包括:
S501,网络设备在锚点载波上向终端设备发送指示信息。
在一些可能的实施方式中,网络设备可以在锚点载波上向终端设备发送指示信息,以指示非锚点载波上的位置(也可以理解为指示非锚点载波的中心频、载波带宽等非锚点载波的配置信息)。
在一实施例中,在锚点载波上的PBCH中携带有主信息块(master information block,MIB),可以将上述指示信息承载于MIB中指示非锚点载波上的位置。
在另一实施例中,在锚点载波上的PDSCH和/或PDCCH中携带有系统消息(system information,SI),可以将上述指示信息承载于SI中指示非锚点载波上的位置。
在本公开实施例中,上述指示信息可以包括:SSB配置信息(如ssb-PositionsInBurst、ssb-PeriodicityServingCell、ss-PBCH-BlockPower等)、上下行配置信息(如tdd-UL-DL-ConfigurationCommon)、定时提前量(如n-TimingAdvanceOffset)、下行配置信息(如downlinkConfigCommon)、上行配置信息(如uplinkConfigCommon)等。
当然,上述指示信息还可以携带在锚点载波上的其他信息中,或者单独承载于锚点载波上,本公开实施例对此不作具体限定。
S502,终端设备根据指示信息,确定非锚点载波在频带上的位置。
应理解的,终端设备在锚点载波上接收网络设备发送的指示信息,并根据指示信息确定非锚点载波在频带上的位置。可选的,终端设备处于idle态。
在一实施例中,上述指示信息承载于SI中指示非锚点载波上的位置。S502可以为:终端设备可以先盲搜PSS和SSS,在搜到后,终端设备可以在锚点载波上接收MIB。接下来,终端设备根据MIB中指示,确定锚点载波上接收SI。然后,终端设备根据SI的指示,确定非锚点载波在频带上的位置。
在另一实施例中,上述指示信息承载于SI中指示非锚点载波上的位置。S502可以包括:终端设备可以先盲搜PSS和SSS,在搜到后,终端设备可以在锚点载波上接收MIB。接下来,终端设备根据MIB中指示,确定非锚点载波在频带上的位置。
S503,终端设备与网络设备在非锚点载波上进行数据传输。
应理解的,终端设备在通过S502确定出非锚点载波在频带上的位置之后,可以与网络设备在非锚点载波上进行数据传输。例如,终端设备在非锚点载波上接收网络设备发送的数据、终端设备在非锚点载波上向网络设备发送数据、网络设备在非锚点载波上向终端设备发送数据和/或网络设备在非锚点载波上接收终端设备发送的数据。
在本公开实施例中,对于FDD NR系统,由于上行载波和下行载波可以为不同频率的载波,那么,通过S502终端设备确定出的是下行非锚点载波,在S503中网络设备可以在下行锚点载波上发送下行 数据,此时,下行数据可以包括随机接入信息、下行用户数据等;而对于TDD NR系统,由于上行载波和下行载波为同一载波,那么,在S203中终端设备可以在S202中确定出的非锚点载波上发送上行数据,如发送随机接入信息,网络设备可以分时在S202中终端设备确定出的非锚点载波上发送下行数据,如寻呼消息、下行用户数据等。
在一些可能的实施方式中,上述SI还可以携带有定时信息,该定时信息用于指示非锚点载波与锚点载波的定时映射关系。示例性的,定时信息可以包括SFN offset、frame boundary offset以及slot boundary offset。当然。定时信息还可以包括用于指示非锚点载波与锚点载波之间的定时映射关系的其他信息,本公开实施例对此不作具体限定。
那么,仍参见图4所示,在S503之前,上述数据传输方法还包括:S401,网络设备向终端设备在锚点载波上指示定时信息。
在一实施例中,若非锚点载波上不携带SSB,则网络设备可以通过S401向终端设备指示定时信息,以使得根据定时信息能够完成锚点载波和非锚点载波之间的同步。
进一步地,上述S503可以包括:S402,终端设备与网络设备在非锚点载波上根据定时信息进行数据传输。
在另一种可能的实施方式中,为了监控配置给服务小区的多个载波,实现移动性管理,在S502之后,终端设备还可以在非锚点载波上进行RRM测量、RLS测量、波束管理测量等。
在本公开实施例中,网络设备为终端设备的服务小区配置多个载波,提高了服务小区的容量。进一步地,若锚点载波为FR1载波,非锚点载波为FR2载波,则终端设备可以在处于idle态时驻留在FR1载波,而在业务到达时,向FR2载波发起随机接入,回到FR2载波进行数据传输。如此,降低功耗,节约资源。进一步地,网络设备在锚点载波上向终端设备指示非锚点载波,使得终端设备可以通过监听锚点载波确定非锚点载波在频带上的位置,减少系统信令交互,降低功耗。
图6为本公开实施例中的第四种数据传输方法的实施流程示意图,参见图6所示,网络设备可以通过RRC信令指示非锚点载波在频带上的位置,上述数据传输方法还可以包括:
S601,网络设备向终端设备发送RRC指令。
应理解的,RRC信令可以指示非锚点载波在频带中的位置(也可以理解为指示非锚点载波的中心频、载波带宽等非锚点载波的配置信息)。
在本公开实施例中,RRC信令可以携带以下一个或者多个信息:SSB配置信息(如ssb-PositionsInBurst、ssb-PeriodicityServingCell、ss-PBCH-BlockPower等)、上下行配置信息(如tdd-UL-DL-ConfigurationCommon)、定时提前量(如n-TimingAdvanceOffset)、下行配置信息(如downlinkConfigCommon)、上行配置信息(如uplinkConfigCommon)等。
S602,终端设备根据RRC指令,确定非锚点载波在频带上的位置。
应理解的,终端设备接收网络设备发送的RRC信令,并根据RRC信令的指示确定非锚点载波在频带上的位置。可选的,终端设备处于去激活态(inactive态)、连接态(connected态)。
S603,终端设备与网络设备在非锚点载波上进行数据传输。
应理解的,终端设备在通过S02确定出非锚点载波在频带上的位置之后,可以与网络设备在非锚 点载波上进行数据传输。例如,终端设备在非锚点载波上接收网络设备发送的数据、终端设备在非锚点载波上向网络设备发送数据、网络设备在非锚点载波上向终端设备发送数据和/或网络设备在非锚点载波上接收终端设备发送的数据。
在本公开实施例中,对于FDD NR系统,由于上行载波和下行载波可以为不同频率的载波,那么,通过S502终端设备确定出的是下行非锚点载波,在S503中网络设备可以在下行锚点载波上发送下行数据,此时,下行数据可以包括随机接入信息、下行用户数据等;而对于TDD NR系统,由于上行载波和下行载波为同一载波,那么,在S203中终端设备可以在S202中确定出的非锚点载波上发送上行数据,如发送随机接入信息,网络设备可以分时在S202中终端设备确定出的非锚点载波上发送下行数据,如寻呼消息、下行用户数据等。
在一些可能的实施方式中,上述RRC信令还可以携带定时信息,该定时信息用于指示非锚点载波与锚点载波的定时映射关系。示例性的,定时信息可以包括SFN offset、frame boundary offset以及slot boundary offset。当然。定时信息还可以包括用于指示非锚点载波与锚点载波之间的定时映射关系的其他信息,本公开实施例对此不作具体限定。
那么,仍参见图4所示,在S603之前,上述数据传输方法还包括:S401,网络设备向终端设备在锚点载波上指示定时信息。
在一实施例中,若非锚点载波上不携带SSB,则网络设备可以通过S401向终端设备指示定时信息,以使得根据定时信息能够完成锚点载波和非锚点载波之间的同步。
进一步地,上述S603可以包括:S402,终端设备与网络设备在非锚点载波上根据定时信息进行数据传输。
在另一种可能的实施方式中,为了监控配置给服务小区的多个载波,实现移动性管理,在S602之后,终端设备还可以在非锚点载波上进行RRM测量、RLS测量、波束管理测量等。
在本公开实施例中,网络设备为终端设备的服务小区配置多个载波,提高了服务小区的容量。进一步地,若锚点载波为FR1载波,非锚点载波为FR2载波,则终端设备可以在处于idle态时驻留在FR1载波,而在业务到达时,向FR2载波发起随机接入,回到FR2载波进行数据传输。如此,降低功耗,节约资源。
在一些可能的实施方式中,本公开实施例提供的数据传输方法在终端设备侧的一种实施流程可以包括:
步骤11,终端设备确定服务小区的非锚点载波在频带上的位置。
步骤12,终端设备在非锚点载波上与网络设备进行数据传输。
在一些可能的实施方式中,锚点载波用于传输:PSS、SSS、PBCH、PDSCH、paging、PDCCH等。
在一些可能的实施方式中,步骤12可以包括:终端设备在非锚点载波上进行随机接入、接收寻呼消息或接收下行数据。
可选的,锚点载波和非锚点载波为NR载波。
进一步地,锚点载波的中心频率低于非锚点载波的中心频率。
应理解的,步骤11和步骤12的具体实施过程可以参见图2的实施例中对S202和S203的具体描 述,在此不做赘述。
在一些可能的实施方式中,上述数据传输方法还可以包括:步骤13,终端设备在锚点载波上接收定时信息。步骤14,终端设备根据定时信息,在非锚点载波上进行数据传输。
应理解的,步骤13和步骤14的具体实施过程可以参见图4的实施例中对S401和S402的具体描述,在此不做赘述。
在一些可能的实施方式中,在步骤11之后,上述数据传输方法还可以包括:终端设备在非锚点载波上进行RRM测量、RLM测量、波束管理测量等。
相应的,本公开实施例提供的数据传输方法在网络设备侧的一种实施流程可以包括:
步骤21,网络设备向终端设备指示非锚点载波在频带上的位置。
步骤22,网络设备在非锚点载波上与终端设备进行数据传输。
在一些可能的实施方式中,锚点载波用于传输:PSS、SSS、PBCH、PDSCH、paging、PDCCH等。
在一些可能的实施方式中,步骤22可以包括:网络设备在非锚点载波上接收随机接入信息、进行寻呼或发送下行数据。
可选的,锚点载波和非锚点载波为NR载波。
进一步地,锚点载波的中心频率低于非锚点载波的中心频率。
应理解的,步骤21和步骤22的实施过程可以参见图2的实施例中对S201和S203的具体描述,在此不做赘述。
在一些可能的实施方式中,上述数据传输方法还可以包括:步骤23,网络设备在锚点载波上指示定时信息。步骤24,网络设备根据定时信息,在非锚点载波上进行数据传输。
应理解的,步骤23和步骤24的具体实施过程可以参见图4的实施例中对S401和S402的具体描述,在此不做赘述。
在一些可能的实施方式中,本公开实施例提供的数据传输方法在终端设备侧的另一种实施流程可以包括:
步骤31,终端设备根据指示信息,确定非锚点载波在频带上的位置。
步骤32,终端设备在非锚点载波上与网络设备进行数据传输。
在一些可能的实施方式中,锚点载波用于传输:PSS、SSS、PBCH、PDSCH、paging、PDCCH等。
在一些可能的实施方式中,步骤32可以包括:终端设备在非锚点载波上进行随机接入、接收寻呼消息或接收下行数据。
可选的,锚点载波和非锚点载波为NR载波。
进一步地,锚点载波的中心频率低于非锚点载波的中心频率。
应理解的,步骤31和步骤32的具体实施过程可以参见图5的实施例中对S502和S503的具体描述,在此不做赘述。
在一些可能的实施方式中,上述数据传输方法还可以包括:步骤33,终端设备在锚点载波上接收定时信息。步骤34,终端设备根据定时信息,在非锚点载波上进行数据传输。
应理解的,步骤33和步骤34的具体实施过程可以参见图4的实施例中对S401和S402的具体描 述,在此不做赘述。
在一些可能的实施方式中,在步骤31之后,上述数据传输方法还可以包括:终端设备在非锚点载波上进行RRM测量、RLM测量、波束管理测量等。
相应的,本公开实施例提供的数据传输方法在网络设备侧的另一种实施流程可以包括:
步骤41,网络设备在锚点载波上向终端设备发送指示信息。
步骤42,网络设备在非锚点载波上与终端设备进行数据传输。
在一些可能的实施方式中,锚点载波用于传输:PSS、SSS、PBCH、PDSCH、paging、PDCCH等。
在一些可能的实施方式中,步骤42可以包括:网络设备在非锚点载波上接收随机接入信息、进行寻呼或发送下行数据。
可选的,锚点载波和非锚点载波为NR载波。
进一步地,锚点载波的中心频率低于非锚点载波的中心频率。
应理解的,步骤41和步骤42的具体实施过程可以参见图5的实施例中对S501和S503的具体描述,在此不做赘述。
在一些可能的实施方式中,上述数据传输方法还可以包括:步骤43,网络设备在锚点载波上指示定时信息。步骤44,网络设备根据定时信息,在非锚点载波上进行数据传输。
应理解的,步骤43和步骤44的具体实施过程可以参见图4的实施例中对S401和S402的具体描述,在此不做赘述。
在一些可能的实施方式中,本公开实施例提供的数据传输方法在终端设备侧的又一种实施流程可以包括:
步骤51,终端设备根据RRC指令,确定非锚点载波在频带上的位置。
步骤52,终端设备在非锚点载波上与网络设备进行数据传输。
在一些可能的实施方式中,锚点载波用于传输:PSS、SSS、PBCH、PDSCH、paging、PDCCH等。
在一些可能的实施方式中,步骤52可以包括:终端设备在非锚点载波上进行随机接入、接收寻呼消息或接收下行数据。
可选的,锚点载波和非锚点载波为NR载波。
进一步地,锚点载波的中心频率低于非锚点载波的中心频率。
应理解的,步骤51和步骤52的具体实施过程可以参见图6的实施例中对S602和S603的具体描述,在此不做赘述。
在一些可能的实施方式中,上述数据传输方法还可以包括:步骤53,终端设备在锚点载波上接收定时信息。步骤54,终端设备根据定时信息,在非锚点载波上进行数据传输。
应理解的,步骤53和步骤54的具体实施过程可以参见图4的实施例中对S401和S402的具体描述,在此不做赘述。
在一些可能的实施方式中,在步骤51之后,上述数据传输方法还可以包括:终端设备在非锚点载波上进行RRM测量、RLM测量、波束管理测量等。
相应的,本公开实施例提供的数据传输方法在网络设备侧的又一种实施流程可以包括:
步骤61,网络设备向终端设备发送RRC指令。
步骤62,网络设备在非锚点载波上与终端设备进行数据传输。
在一些可能的实施方式中,锚点载波用于传输:PSS、SSS、PBCH、PDSCH、paging、PDCCH等。
在一些可能的实施方式中,步骤62可以包括:网络设备在非锚点载波上接收随机接入信息、进行寻呼或发送下行数据。
可选的,锚点载波和非锚点载波为NR载波。
进一步地,锚点载波的中心频率低于非锚点载波的中心频率。
应理解的,步骤61和步骤62的具体实施过程可以参见图6的实施例中对S601和S603的具体描述,在此不做赘述。
在一些可能的实施方式中,上述数据传输方法还可以包括:步骤63,网络设备在锚点载波上指示定时信息。步骤64,网络设备根据定时信息,在非锚点载波上进行数据传输。
应理解的,步骤63和步骤64的具体实施过程可以参见图4的实施例中对S401和S402的具体描述,在此不做赘述。
基于相同的发明构思,本公开实施例还提供一种通信装置,该通信装置可以为通信系统中的终端设备或者终端设备中的芯片或者片上系统,还可以为终端设备中用于实现上述各个实施例所述的方法的功能模块。该通信装置可以实现上述各实施例中终端设备所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。图7为本公开实施例中的一种通信装置的结构示意图,参见图7所示,该通信装置700包括:确定模块701,用于确定服务小区的非锚点载波在频带中的位置,其中,服务小区配置有锚点载波和非锚点载波;第一传输模块702,用于在非锚点载波上进行数据传输。
在一些可能的实施方式中,第一传输模块,还用于于:在锚点载波上接收指示信息,指示信息用于指示非锚点载波在频带中的位置;或,接收RRC信令,其中,RRC信令用于指示非锚点载波在频带中的位置。
在一些可能的实施方式中,指示信息承载于MIB或SI。
在一些可能的实施方式中,锚点载波用于传输以下一个或者多个信息:PSS、SSS、PBCH、PDSCH、paging、PDCCH。
在一些可能的实施方式中,第一传输模块,还用于在确定模块确定服务小区的非锚点载波在频带中的位置之前,向网络设备发送能力信息,能力信息用于指示网络设备根据终端设备能够支持的最大载波数为服务小区配置锚点和非锚点载波。
在一些可能的实施方式中,第一传输模块,还用于在锚点载波上接收定时信息,定时信息用于指示非锚点载波与锚点载波的定时映射关系;第一传输模块,还用于根据定时信息,在非锚点载波上进行数据传输。
在一些可能的实施方式中,第一传输模块,用于在非锚点载波上进行随机接入、接收寻呼消息或接收下行数据。
在一些可能的实施方式中,第一传输模块,还用于在非锚点载波上进行无线资源管理测量、无线链 路监测测量和/或波束管理测量。
在一些可能的实施方式中,锚点载波和非锚点载波为NR载波。
在一些可能的实施方式中,锚点载波的中心频率低于非锚点载波的中心频率。
需要说明的是,确定模块701和第一传输模块702的具体实现过程可参考图2至图6实施例的详细描述,为了说明书的简洁,这里不再赘述。
本公开实施例中提到的第一传输模块702可以为收发接口、收发电路或者收发器等;确定模块701可以为一个或者多个处理器。
基于相同的发明构思,本公开实施例还提供一种通信装置,该通信装置可以为通信系统中的网络设备或者网络设备中的芯片或者片上系统,还可以为网络设备中用于实现上述各个实施例所述的方法的功能模块。该通信装置可以实现上述各实施例中网络设备所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。图8为本公开实施例中的另一种通信装置的结构示意图,参见图8所示,该通信装置800包括:指示模块801,用于指示终端设备的服务小区的非锚点载波在频带中的位置,其中,服务小区配置有锚点载波和非锚点载波;第二传输模块802,用于在非锚点载波上进行数据传输。
在一些可能的实施方式中,第二传输模块,用于在锚点载波上向终端设备发送指示信息,指示信息用于指示非锚点载波在频带中的位置;或,发送RRC信令,其中,RRC信令用于指示非锚点载波在频带中的位置。
在一些可能的实施方式中,指示信息承载于MIB或SI。
在一些可能的实施方式中,锚点载波用于传输以下一个或者多个信息:PSS、SSS、PBCH、PDSCH、paging、PDCCH。
在一些可能的实施方式中,所述指示模块,还用于在指示服务小区的非锚点载波在频带中的位置之前,根据终端设备上报的能力信息,为服务小区配置锚点载波和非锚点载波,能力信息用于指示终端设备能够支持的最大载波数。
在一些可能的实施方式中,指示模块,用于在锚点载波上指示定时信息,定时信息用于指示非锚点载波与锚点载波的定时映射关系;第二传输模块,用于根据定时信息,在非锚点载波上进行数据传输。
在一些可能的实施方式中,第二传输模块,用于在非锚点载波上接收随机接入信息、进行寻呼或发送下行数据。
在一些可能的实施方式中,锚点载波和非锚点载波为NR载波。
在一些可能的实施方式中,锚点载波的中心频率低于非锚点载波的中心频率。
需要说明的是,指示模块801和第二传输模块802的具体实现过程可参考图2至图6实施例的详细描述,为了说明书的简洁,这里不再赘述。
本公开实施例中提到的第二传输模块802可以为收发接口、收发电路或者收发器等;指示模块801可以为一个或者多个处理器。
基于相同的发明构思,本公开实施例提供一种通信设备,该通信设备可以为上述一个或者多个实施例中所述的终端设备或者网络设备。图9为本公开实施例中的一种通信设备的结构示意图,参见图9 所示,通信设备900,采用了通用的计算机硬件,包括处理器901、存储器902、总线903、输入设备904和输出设备905。
在一些可能的实施方式中,存储器902可以包括以易失性和/或非易失性存储器形式的计算机存储媒体,如只读存储器和/或随机存取存储器。存储器902可以存储操作系统、应用程序、其他程序模块、可执行代码、程序数据、用户数据等。
输入设备904可以用于向通信设备输入命令和信息,输入设备904如键盘或指向设备,如鼠标、轨迹球、触摸板、麦克风、操纵杆、游戏垫、卫星电视天线、扫描仪或类似设备。这些输入设备可以通过总线903连接至处理器901。
输出设备905可以用于通信设备输出信息,除了监视器之外,输出设备905还可以为其他外围输出设各,如扬声器和/或打印设备,这些输出设备也可以通过总线903连接到处理器901。
通信设备可以通过天线906连接到网络中,例如连接到局域网(local area network,LAN)。在联网环境下,控制备中存储的计算机执行指令可以存储在远程存储设备中,而不限于在本地存储。
当通信设备中的处理器901执行存储器902中存储的可执行代码或应用程序时,通信设备以执行以上实施例中的终端设备侧或者网络设备侧的通信方法,具体执行过程参见上述实施例,在此不再赘述。
此外,上述存储器902中存储有用于实现图7中的确定模块701和第一传输模块702的功能的计算机执行指令。图7中的确定模块701和第一传输模块702的功能/实现过程均可以通过图9中的处理器901调用存储器902中存储的计算机执行指令来实现,具体实现过程和功能参考上述相关实施例。
或者,上述存储器902中存储有用于实现图8中的指示模块801和第二传输模块802的功能的计算机执行指令。图8中的指示模块801和第二传输模块802的功能/实现过程均可以通过图9中的处理器901调用存储器902中存储的计算机执行指令来实现,具体实现过程和功能参考上述相关实施例。
基于相同的发明构思,本公开实施例提供一种终端设备,该终端设备与上述一个或者多个实施例中的终端设备一致。可选的,终端设备可以为移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
图10为本公开实施例中的一种终端设备的结构示意图,参见图10所示,终端设备1000可以包括以下一个或多个组件:处理组件1001、存储器1002、电源组件1003、多媒体组件1004、音频组件1005、输入/输出(I/O)的接口1006、传感器组件1007以及通信组件1008。
处理组件1001通常控制终端设备1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1001可以包括一个或多个处理器1310来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1001可以包括一个或多个模块,便于处理组件1001和其他组件之间的交互。例如,处理组件1001可以包括多媒体模块,以方便多媒体组件1004和处理组件1001之间的交互。
存储器1002被配置为存储各种类型的数据以支持在设备1000的操作。这些数据的示例包括用于在终端设备1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1002可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程 只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1003为终端设备1000的各种组件提供电力。电源组件1003可以包括电源管理系统,一个或多个电源,及其他与为终端设备1000生成、管理和分配电力相关联的组件。
多媒体组件1004包括在终端设备1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1004包括一个前置摄像头和/或后置摄像头。当设备1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1005被配置为输出和/或输入音频信号。例如,音频组件1005包括一个麦克风(MIC),当终端设备1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1002或经由通信组件1008发送。在一些实施例中,音频组件1005还包括一个扬声器,用于输出音频信号。
I/O接口1006为处理组件1001和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1007包括一个或多个传感器,用于为终端设备1000提供各个方面的状态评估。例如,传感器组件1007可以检测到设备1000的打开/关闭状态,组件的相对定位,例如组件为终端设备1000的显示器和小键盘,传感器组件1007还可以检测终端设备1000或终端设备1000一个组件的位置改变,用户与终端设备1000接触的存在或不存在,终端设备1000方位或加速/减速和终端设备1000的温度变化。传感器组件1007可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1007还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1007还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1008被配置为便于终端设备1000和其他设备之间有线或无线方式的通信。终端设备1000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1008经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1008还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端设备1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
基于相同的发明构思,本公开实施例提供一种网络设备,该网络设备与上述一个或者多个实施例中的网络设备一致。
图11为本公开实施例中的一种网络设备的结构示意图,参见图11所示,网络设备1100可以包括处理组件1101,其进一步包括一个或多个处理器,以及由存储器1102所代表的存储器资源,用于存储可由处理组件1101的执行的指令,例如应用程序。存储器1102中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1101被配置为执行指令,以执行上述方法前述应用在所述网络设备A的任一方法。
网络设备1100还可以包括一个电源组件1103被配置为执行网络设备1100的电源管理,一个有线或无线网络接口1104被配置为将网络设备1100连接到网络,和一个输入输出(I/O)接口1105。网络设备1100可以操作基于存储在存储器1102的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
基于相同的发明构思,本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;当指令在计算机上运行时,用于执行上述一个或者多个实施例中终端设备侧或者网络设备A侧的通信方法。
基于相同的发明构思,本公开实施例还提供一种计算机程序或计算机程序产品,当计算机程序产品在计算机上被执行时,使得计算机实现上述一个或者多个实施例中终端设备侧或者网络设备A侧的通信方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种数据传输方法,其特征在于,包括:
    终端设备确定服务小区的非锚点载波在频带中的位置,其中,所述服务小区配置有锚点载波和所述非锚点载波;
    所述终端设备在所述非锚点载波上进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定服务小区的非锚点载波在频带中的位置,包括:
    所述终端设备在所述锚点载波上接收指示信息,所述指示信息用于指示所述非锚点载波在所述频带中的位置;或,
    所述终端设备接收无线资源控制RRC信令,其中,所述RRC信令用于指示所述非锚点载波在所述频带中的位置。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息承载于主信息块MIB或系统信息SI。
  4. 根据权利要求1所述的方法,其特征在于,所述锚点载波用于传输以下一个或者多个信息:主同步信号、辅同步信号、物理广播信道、物理下行共享信道、寻呼消息、物理下行控制信道。
  5. 根据权利要求1所述的方法,其特征在于,在所述终端设备确定服务小区的非锚点载波在频带中的位置之前,所述方法还包括:
    所述终端设备向所述网络设备发送能力信息,所述能力信息用于指示所述网络设备根据所述终端设备能够支持的最大载波数为所述服务小区配置所述锚点载波和所述非锚点载波。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述锚点载波上接收定时信息,所述定时信息用于指示所述非锚点载波与所述锚点载波的定时映射关系;
    所述终端设备在所述非锚点载波上进行数据传输,包括:
    所述终端设备根据所述定时信息,在所述非锚点载波上进行数据传输。
  7. 根据权利要求1所述的方法,其特征在于,所述终端设备在所述非锚点载波上进行数据传输,包括:
    所述终端设备在所述非锚点载波上进行随机接入、接收寻呼消息或接收下行数据。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述非锚点载波上进行无线资源管理测量、无线链路监测测量和/或波束管理测量。
  9. 根据权利要求1所述的方法,其特征在于,所述锚点载波和所述非锚点载波为新无线NR载波。
  10. 根据权利要求1所述的方法,其特征在于,所述锚点载波的中心频率低于所述非锚点载波的中心频率。
  11. 一种数据传输方法,其特征在于,包括:
    网络设备指示终端设备的服务小区的非锚点载波在频带中的位置,其中,所述服务小区配置有锚点载波和所述非锚点载波;
    所述网络设备在所述非锚点载波上进行数据传输。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备指示终端设备的服务小区的非锚点载波在频带中的位置,包括:
    所述网络设备在所述锚点载波上向所述终端设备发送指示信息,所述指示信息用于指示所述非锚点载波在所述频带中的位置;或,
    所网络设备发送无线资源控制RRC信令,其中,所述RRC信令用于指示所述非锚点载波在所述频带中的位置。
  13. 根据权利要求12所述的方法,其特征在于,所述指示信息承载于主信息块MIB或系统信息SI。
  14. 根据权利要求11所述的方法,其特征在于,所述锚点载波用于传输以下一个或者多个信息:主同步信号、辅同步信号、物理广播信道、物理下行共享信道、寻呼消息、物理下行控制信道。
  15. 根据权利要求11所述的方法,其特征在于,在所述网络设备指示终端设备的服务小区的非锚点载波在频带中的位置之前,所述方法还包括:
    所述网络设备根据所述终端设备上报的能力信息,为所述服务小区配置所述锚点载波和所述非锚点载波,所述能力信息用于指示所述终端设备能够支持的最大载波数。
  16. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述锚点载波上指示定时信息,所述定时信息用于指示所述非锚点载波与所述锚点载波的定时映射关系;
    所述网络设备在所述非锚点载波上进行数据传输,包括:
    所述网络设备根据所述定时信息,在所述非锚点载波上进行数据传输。
  17. 根据权利要求11所述的方法,其特征在于,所述网络设备在所述非锚点载波上进行数据传输,包括:
    所述网络设备在所述非锚点载波上接收随机接入信息、进行寻呼或发送下行数据。
  18. 根据权利要求11所述的方法,其特征在于,所述锚点载波和所述非锚点载波为新无线NR载波。
  19. 根据权利要求11所述的方法,其特征在于,所述锚点载波的中心频率低于所述非锚点载波的中心频率。
  20. 一种通信装置,其特征在于,包括:
    确定模块,用于确定服务小区的非锚点载波在频带中的位置,其中,所述服务小区配置有锚点载波和所述非锚点载波;
    第一传输模块,用于在所述非锚点载波上进行数据传输。
  21. 一种通信装置,其特征在于,包括:
    指示模块,用于指示终端设备的服务小区的非锚点载波在频带中的位置,其中,所述服务小区配置有锚点载波和所述非锚点载波;
    第二传输模块,用于在所述非锚点载波上进行数据传输。
  22. 一种通信设备,其特征在于,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现如权利要求1至10或权利要求11至19任一项所述的数据传输方法。
  23. 一种计算机存储介质,处理模块,用于所述计算机存储介质存储有计算机可执行指令,其特征在于,所述计算机可执行指令被处理器执行后能够实现如权利要求1至10或权利要求11至19任一项所述的数据传输方法。
PCT/CN2021/103547 2021-06-30 2021-06-30 一种数据传输方法、装置及设备 WO2023272583A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/103547 WO2023272583A1 (zh) 2021-06-30 2021-06-30 一种数据传输方法、装置及设备
CN202180002024.9A CN115735393A (zh) 2021-06-30 2021-06-30 一种数据传输方法、装置及设备
EP21947537.3A EP4366415A1 (en) 2021-06-30 2021-06-30 Data transmission method and apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103547 WO2023272583A1 (zh) 2021-06-30 2021-06-30 一种数据传输方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2023272583A1 true WO2023272583A1 (zh) 2023-01-05

Family

ID=84692396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103547 WO2023272583A1 (zh) 2021-06-30 2021-06-30 一种数据传输方法、装置及设备

Country Status (3)

Country Link
EP (1) EP4366415A1 (zh)
CN (1) CN115735393A (zh)
WO (1) WO2023272583A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166346A (zh) * 2006-10-18 2008-04-23 鼎桥通信技术有限公司 网络侧通知用户设备辅载波频点信息的方法和装置
CN102685891A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种无线通信系统中载波聚合的实现方法及系统
CN107645371A (zh) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 一种载波配置的方法、装置和系统
CN107734687A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种获取网络系统资源配置方法、终端、网络设备及系统
CN111565463A (zh) * 2019-02-13 2020-08-21 华为技术有限公司 一种数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166346A (zh) * 2006-10-18 2008-04-23 鼎桥通信技术有限公司 网络侧通知用户设备辅载波频点信息的方法和装置
CN102685891A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种无线通信系统中载波聚合的实现方法及系统
CN107645371A (zh) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 一种载波配置的方法、装置和系统
CN107734687A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种获取网络系统资源配置方法、终端、网络设备及系统
CN111565463A (zh) * 2019-02-13 2020-08-21 华为技术有限公司 一种数据传输方法及装置

Also Published As

Publication number Publication date
EP4366415A1 (en) 2024-05-08
CN115735393A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2021051402A1 (zh) 传输配置状态激活方法、装置及存储介质
WO2021007787A1 (zh) 资源分配方法、装置及存储介质
WO2021232439A1 (zh) 频率资源授权方法、装置及计算机可读存储介质
WO2023050354A1 (zh) 一种sdt传输方法、装置及存储介质
WO2023044626A1 (zh) 一种初始部分带宽确定方法、装置及存储介质
WO2021203363A1 (zh) 信道状态信息报告配置方法、装置及计算机可读存储介质
WO2023201730A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023184455A1 (zh) 一种通信方法、通信装置及通信设备
WO2023044684A1 (zh) 一种用于天线切换配置的srs发送方法、装置及存储介质
WO2023272583A1 (zh) 一种数据传输方法、装置及设备
WO2023151093A1 (zh) 一种传输终端能力的方法、装置及可读存储介质
WO2022193219A1 (zh) 传输物理下行控制信道配置信息的方法、装置及存储介质
WO2023184558A1 (zh) 一种确定功率等级的方法、装置信设备
WO2023201569A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2024082289A1 (zh) 一种监听或发送信息的方法、装置、设备以及存储介质
WO2023115410A1 (zh) 一种确定定时值的方法、装置及可读存储介质
WO2023245503A1 (zh) 一种监听方法、发送方法、装置、设备以及可读存储介质
WO2023236116A1 (zh) 一种传输唤醒信号的方法、装置、电子设备及存储介质
WO2023164907A1 (zh) 一种传输下行控制信息的方法、装置、设备及存储介质
WO2023130469A1 (zh) 一个确定信道接入方式的方法、装置及存储介质
WO2023225922A1 (zh) 一种传输频段信息的方法、装置及可读存储介质
WO2023130396A1 (zh) 一种监听方法、装置及可读存储介质
WO2024077610A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2023115282A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2021174552A1 (zh) 数据传输方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947537

Country of ref document: EP

Effective date: 20240130