WO2022193219A1 - 传输物理下行控制信道配置信息的方法、装置及存储介质 - Google Patents

传输物理下行控制信道配置信息的方法、装置及存储介质 Download PDF

Info

Publication number
WO2022193219A1
WO2022193219A1 PCT/CN2021/081481 CN2021081481W WO2022193219A1 WO 2022193219 A1 WO2022193219 A1 WO 2022193219A1 CN 2021081481 W CN2021081481 W CN 2021081481W WO 2022193219 A1 WO2022193219 A1 WO 2022193219A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
user equipment
pdcch
ofdm symbols
Prior art date
Application number
PCT/CN2021/081481
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/081481 priority Critical patent/WO2022193219A1/zh
Priority to KR1020237034837A priority patent/KR20230155001A/ko
Priority to US18/549,004 priority patent/US20240155645A1/en
Priority to JP2023557441A priority patent/JP2024510659A/ja
Priority to CN202180000775.7A priority patent/CN115552830A/zh
Priority to EP21930811.1A priority patent/EP4311146A4/en
Priority to BR112023018793A priority patent/BR112023018793A2/pt
Publication of WO2022193219A1 publication Critical patent/WO2022193219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a method, an apparatus, and a readable storage medium for transmitting configuration information of a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • downlink data is carried on a physical downlink shared channel (PDSCH)
  • uplink data is carried on a physical uplink shared channel (PUSCH).
  • the base station schedules PDSCH and PUSCH through downlink control information (DCI) carried on a physical downlink control channel (PDCCH) channel.
  • DCI downlink control information
  • the PDCCH channel includes a common search space (common search space, CSS) and a user equipment specific search space (user equipment specific search space, USS).
  • the CSS is used to carry information such as cell common control information and multicast control information, and can also be used to carry user equipment (user equipment, UE) specific control information.
  • USS is used to carry UE-specific control information.
  • the PDCCH monitoring capability is defined according to a single time slot (slot) as a time unit. Specifically, according to the difference of the subcarrier spacing (SCS), the monitoring capability of the UE in each time slot is specified.
  • the monitoring capability of the UE in a time slot includes the maximum number of monitoring times in the time slot and the maximum number of non-overlapping control channel elements (CCEs) in the time slot. This definition applies to frequencies below 52.6GHZ.
  • the optional sub-carrier bandwidth is 15KHz, 30KHz, 60KHz or 120KHz.
  • the corresponding specific value of a time slot is different, for example: corresponding to 15KHz sub-carrier
  • the time slot of the bandwidth is 1 millisecond (ms)
  • the time slot corresponding to the 30KHz subcarrier bandwidth is 0.5ms
  • the time slot corresponding to the 60KHz subcarrier bandwidth is 0.25ms, and so on.
  • the time slot duration is shorter.
  • a larger subcarrier bandwidth such as 960KHz
  • a larger subcarrier bandwidth corresponds to a smaller duration (the duration is the duration of the time slot), for example: when the subcarrier bandwidth is 960KHz, the duration of a corresponding time slot is 1/64 millisecond (ms), here In a short duration, the UE may not be able to perform monitoring for the PDCCH channel in every time slot.
  • the user equipment may not be able to complete the monitoring of the PDCCH in each time domain unit, thereby affecting the effect of the user equipment monitoring the PDCCH and the reception of the PDCCH, making the terminal processing. Performance is degraded and needs to be optimized.
  • embodiments of the present disclosure provide a method, apparatus, device, and readable storage medium for transmitting physical downlink control channel configuration information, so as to save energy for user equipment.
  • an embodiment of the present disclosure provides a method for transmitting physical downlink control channel configuration information, where the method is performed by a network device or performed by a chip in the network device.
  • the network devices may include access network devices, such as base stations, nodeBs, and the like.
  • the method includes: the network device sends configuration information of a physical downlink control channel PDCCH to the user equipment, where the configuration information of the PDCCH is used to indicate a first time-frequency resource, and the first time-frequency resource is used to send the PDCCH and is located in a multi-slot in multiple consecutive time-domain cells in the group.
  • the user equipment can continue to receive PDCCH on continuous time-domain units, and the phase Compared with receiving the PDCCH from spaced time domain units, the possibility of energy saving is provided for the user equipment, which is beneficial to the energy saving of the user equipment.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is related to the number of time-domain units included in the time-frequency resources of the multi-slot group;
  • the maximum number of time-domain units occupied by a time-frequency resource in the time-frequency resource of the multi-slot group is related to the subcarrier spacing.
  • the maximum number of time-domain units occupied by the first time-frequency resources in the time-frequency resources of the multi-slot group is related to the number of time-domain units included in the time-frequency resources of the multi-slot group, so that the The maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is adjusted accordingly with the time-slot groups with different time-domain resources, so that the first time-frequency resource is in the multi-slot group.
  • the setting of the maximum number of time-domain units occupied in the time-frequency resources of a group is smarter.
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3.
  • the number of consecutive OFDM symbols occupied by the control resource set corresponding to the first time-frequency resource in one time domain unit is greater than 3, which can improve energy saving efficiency.
  • the number of consecutive OFDM symbols occupied in one time domain unit is equal to 3
  • the data with the same load can be sent on as few time domain resources as possible when the number of time domain symbols in the control resource set is large.
  • the network device also receives, from the user equipment, the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment.
  • the user equipment sends to the network equipment the number of consecutive OFDM symbols occupied by the user equipment and the control resource set supported by the user equipment in the time domain, so that the network equipment learns the capabilities of the user equipment, so that the learned continuous OFDM symbols can be Use symbols appropriately.
  • the network side device further determines, according to the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment, the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource .
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the determined first time-frequency resource can be matched with the capability of the user equipment.
  • the network side device determines that the number of consecutive OFDM symbols occupied by the control resource set corresponding to the first time-frequency resource in one time domain unit is greater than 3 and less than the number of consecutive OFDM symbols occupied by the control resource set supported by the user equipment in the time domain.
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the determined first time-frequency resource can be increased on the basis of the commonly used number of three symbols, and can be increased in the user equipment's within the capability range, so as to make the determined results more reasonable.
  • an embodiment of the present disclosure provides a method for transmitting physical downlink control channel configuration information, where the method is performed by a user equipment, or performed by a chip in the user equipment.
  • the user equipment may be a mobile phone.
  • the method includes: receiving configuration information of a physical downlink control channel PDCCH from a network device, where the configuration information of the PDCCH is used to indicate a first time-frequency resource, the first time-frequency resource is used to transmit the PDCCH and is located in a multi-slot group in multiple consecutive time-domain units.
  • the method further includes: the maximum number of time domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group and the time-frequency resource included in the time-frequency resource of the multi-slot group; The number of domain units is related to; or, the maximum number of time domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is related to the subcarrier spacing.
  • the method further includes: the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3.
  • the method further includes: sending, to the network device, the number of consecutive OFDM symbols occupied in the time domain by the set of control resources supported by the user equipment; wherein the number of occupied by the set of control resources supported by the user equipment in the time domain; The number of consecutive OFDM symbols is used to enable the network device to determine, according to the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment, the control resource set corresponding to the first time-frequency resource in a time domain unit The number of consecutive OFDM symbols occupied on the
  • an embodiment of the present application provides a communication device.
  • the communication apparatus may be used to perform the steps performed by the network device in the first aspect or any possible design of the first aspect.
  • the communication device may implement each function in the above-mentioned methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a communication module and a processing module coupled with each other, wherein the communication module can be used to support the communication device to communicate, and the processing module can be used by the communication device to perform processing operations, Such as generating information/messages to be sent, or processing received signals to obtain information/messages.
  • the transceiver module is configured to send configuration information of the physical downlink control channel PDCCH to the user equipment, where the configuration information of the PDCCH is used to indicate a first time-frequency resource, the first time
  • the frequency resources are used to transmit the PDCCH and are located in multiple consecutive time domain units in a multi-slot group.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is related to the number of time-domain units included in the time-frequency resources of the multi-slot group or, the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is related to the subcarrier spacing.
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3.
  • the transceiver module is further configured to receive, from the user equipment, the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment.
  • the communication device further comprises:
  • a processing module configured to determine, according to the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment, the continuous OFDM occupied by the control resource set corresponding to the first time-frequency resource in one time domain unit number of symbols.
  • the processing module is further configured to determine that the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3 and less than the control supported by the user equipment 101. The number of consecutive OFDM symbols occupied by the resource set in the time domain.
  • an embodiment of the present application provides a communication device.
  • the communication apparatus may be configured to perform the steps performed by the user equipment in the second aspect or any possible design of the second aspect.
  • the communication device may implement each function in the above-mentioned methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a communication module and a processing module coupled with each other, wherein the communication module can be used to support the communication device to communicate, and the processing module can be used by the communication device to perform processing operations, Such as generating information/messages to be sent, or processing received signals to obtain information/messages.
  • a transceiver module configured to receive configuration information of a physical downlink control channel PDCCH from a network device, where the configuration information of the PDCCH is used to indicate a first time-frequency resource, and the first time-frequency resource is used to transmit the PDCCH and is located in a multi-slot in multiple consecutive time-domain cells in the group.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is related to the number of time-domain units included in the time-frequency resources of the multi-slot group or, the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is related to the subcarrier spacing.
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3.
  • the transceiver module is further configured to send to the network device the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment; wherein the control resource set supported by the user equipment is in the time domain.
  • the number of consecutive OFDM symbols occupied in the domain is used to enable the network device to determine, according to the consecutive OFDM symbols occupied in the time domain by the set of control resources supported by the user equipment, that the set of control resources corresponding to the first time-frequency resource is in one set.
  • the present disclosure provides a communication system, which may include the communication apparatus shown in the third aspect and the communication apparatus shown in the fourth aspect.
  • the communication device shown in the third aspect may be composed of software modules and/or hardware components.
  • the communication device shown in the fourth aspect may be composed of software modules and/or hardware components.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the first aspect or any one of the first aspects possible designs.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the second aspect or any one of the second aspects possible designs.
  • the present disclosure provides a computer-readable storage medium, where instructions (or computer programs, programs) are stored in the computer-readable storage medium, which, when invoked and executed on a computer, cause the computer to execute the above-mentioned first step.
  • instructions or computer programs, programs
  • the present disclosure provides a computer-readable storage medium, where instructions (or computer programs, programs) are stored in the computer-readable storage medium, which, when invoked and executed on a computer, cause the computer to execute the above-mentioned first step.
  • instructions or computer programs, programs
  • FIG. 1 is a schematic diagram of an architecture of a wireless communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for transmitting PDCCH configuration information provided by an embodiment of the present disclosure
  • FIG. 3 is a structural diagram of an apparatus for transmitting PDCCH configuration information provided by an embodiment of the present disclosure
  • FIG. 4 is a structural diagram of another apparatus for transmitting PDCCH configuration information provided by an embodiment of the present disclosure.
  • FIG. 5 is a structural diagram of another apparatus for transmitting PDCCH configuration information provided by an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of another apparatus for transmitting PDCCH configuration information provided by an embodiment of the present disclosure.
  • the method for transmitting PDCCH configuration information may be applied to a wireless communication system 100 , and the wireless communication system may include a terminal device 101 and a network device 102 .
  • the terminal device 101 is configured to support carrier aggregation, and the terminal device 101 can be connected to multiple carrier units of the network device 102, including one primary carrier unit and one or more secondary carrier units.
  • the above wireless communication system 100 is applicable to both a low frequency scenario (sub 6G) and a high frequency scenario (above 6G).
  • Application scenarios of the wireless communication system 100 include but are not limited to long term evolution (long term evolution, LTE) systems, LTE frequency division duplex (frequency division duplex, FDD) systems, LTE time division duplex (time division duplex, TDD) systems, global Worldwide interoperability for microwave access (WiMAX) communication system, cloud radio access network (CRAN) system, future 5th-Generation (5G) system, new wireless (new radio, NR) communication system or a future evolved public land mobile network (public land mobile network, PLMN) system, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Worldwide interoperability for microwave access
  • CDRF cloud radio access network
  • 5G future 5th-Generation
  • new wireless new radio, NR
  • PLMN public land mobile network
  • the terminal device 101 shown above may be a user equipment (UE), a terminal (terminal), an access terminal, a terminal unit, a terminal station, a mobile station (mobile station, MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or terminal equipment, etc.
  • the terminal device 101 may have a wireless transceiver function, which can communicate with one or more network devices of one or more communication systems (eg, wireless communication), and accept network services provided by the network devices, where the network devices include but not
  • the network device 102 is limited to the illustration.
  • the terminal device 101 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or terminal devices in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 102 may be an access network device (or an access network point).
  • the access network device refers to a device that provides a network access function, such as a radio access network (radio access network, RAN) base station, and the like.
  • the network device 102 may specifically include a base station (base station, BS), or include a base station and a radio resource management device for controlling the base station, and the like.
  • the network device 102 may also include a relay station (relay device), an access point, a base station in a future 5G network, a base station in a future evolved PLMN network, or an NR base station, and the like.
  • the network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip with a communication module.
  • the network device 102 includes but is not limited to: a next-generation base station (gnodeB, gNB) in 5G, an evolved node B (evolved node B, eNB) in the LTE system, a radio network controller (radio network controller, RNC), Node B (NB) in WCDMA system, wireless controller, base station controller (BSC) in CRAN system, base transceiver station (BTS) in GSM system or CDMA system, family Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • a next-generation base station gNB
  • eNB evolved node B
  • eNB evolved node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • family Base station for example, home evolved node
  • the processing principle of the terminal device 101 for the PDCCH is that the terminal device 101 monitors the PDCCH sent by the network device 102 in one or more search spaces (search spaces, SS) to receive downlink control information (downlink control information) carried by the PDCCH.
  • information, DCI for the sake of simplicity in this application, downlink control information may also be referred to as control information).
  • the SS is the set of candidate locations that the terminal device 101 needs to monitor the PDCCH.
  • the SS includes a common search space (CSS) and a UE-specific search space (USS), and NR introduces control resources for PDCCH.
  • the concept of a set control resource set, CORESET).
  • a CORESET is a candidate time-frequency resource for the terminal device 101 to attempt to detect the PDCCH using one or more SSs, and the CORESET may include multiple consecutive resource blocks in the frequency domain and multiple consecutive symbols in the time domain.
  • the time-frequency position of CORESET can be located at any position of the BWP and a time slot.
  • the time domain and frequency domain positions of CORESET can be semi-statically configured by the network device 102 side through high layer signaling.
  • the resources used by one PDCCH are composed of one or more CCEs aggregated in one CORESET, and the number of one or more CCEs corresponds to the AL of the PDCCH.
  • One CCE may be composed of 6 resource element groups (resource element groups, REGs), and each REG includes one symbol in the time domain and one resource block (resource block, RB) in the frequency domain.
  • REGs resource element groups
  • Each REG includes one symbol in the time domain and one resource block (resource block, RB) in the frequency domain.
  • One of the RBs may include 12 resource-elements (REs) in the frequency domain.
  • the terminal device 101 When monitoring a PDCCH sent by the network device 102, the terminal device 101 needs to perform detection according to each possible aggregation level of the PDCCH at the candidate position of each PDCCH configured by the network device 102. Therefore, when the aggregation level of the PDCCH is unknown Next, the terminal device 101 monitors each candidate location multiple times.
  • the embodiment of the present disclosure introduces a multi-slot PDCCH monitoring pattern (multi-slot PDCCH monitoring pattern), and in this mode, a multi-slot group (multi-slot group) or a multi-slot PDCCH monitoring span (multi-slot PDCCH monitoring span) corresponding to PDCCH monitoring is introduced PDCCH monitoring span).
  • the multi-slot group includes multiple time-domain units
  • the multi-slot PDCCH monitoring span includes multiple time-domain units
  • the time-domain unit is one time slot or half a time slot.
  • the multi-slot group corresponding to PDCCH monitoring and the multi-slot PDCCH monitoring span represent the same concept, and are different descriptions of the same concept.
  • the multi-slot group in the present disclosure may also be replaced by a multi-slot PDCCH listening span.
  • multi-slot PDCCH monitoring pattern not all time-domain units in a multi-slot group are configured with PDCCH, but some time-domain units are configured with PDCCH, for example: multi-slot group
  • One or some of the time slots are configured with PDCCH, and other time slots are not configured with PDCCH.
  • a slot in which the PDCCH is configured may be referred to as a PDCCH slot.
  • the PDCCH monitoring capability is defined in units of multi-slot groups.
  • FIG. 2 is a flowchart of a method for transmitting PDCCH configuration information according to an exemplary embodiment. As shown in FIG. 2 , this method include:
  • Step S21 the network device 102 sends the configuration information of the PDCCH to the user equipment 101, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used to send the PDCCH, and is located in the multi-slot group. in multiple consecutive time-domain units.
  • Step S22 the user equipment 101 receives the configuration information of the PDCCH from the network equipment 102, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for sending the PDCCH, and is located in the multi-slot group. in multiple consecutive time-domain units.
  • the first time-frequency resource is located in multiple consecutive time-domain units of the multi-slot group, which can be understood as the multiple time-domain units occupied by the first time-frequency resource are part of the time-frequency resources of the multi-slot group Continuous time domain resource.
  • the time domain units are time slots.
  • the time domain unit is a half slot.
  • the PDCCH is sent on the first time-frequency resource.
  • the user equipment 101 receives the PDCCH on the first time-frequency resource.
  • the multi-slot group includes a total of 8 time slots
  • the network device 102 sends the configuration information of the PDCCH to the user equipment 101
  • the first time-frequency resource indicated by the configuration information is the first, second, and third time slots in the 8 time slots.
  • 2, 3, and 4 time slots each of the first, 2, 3, and 4 time slots corresponds to one PDCCH.
  • the network device 102 transmits the corresponding 4 PDCCHs on the 1st to 4th time slots of the 8 time slots.
  • the user equipment 101 After receiving the configuration information of the PDCCH from the network device 102, receives 4 PDCCHs in the first to fourth time slots mentioned above.
  • the user equipment 101 by configuring the first time-frequency resource for sending the PDCCH to be located on a plurality of consecutive time-domain units in a multi-slot group, the user equipment 101 can continue on the continuous time-domain unit when receiving the PDCCH Compared with receiving the PDCCH from spaced time domain units, the receiving provides the possibility of energy saving for the user equipment 101, which is beneficial to the energy saving of the user equipment 101.
  • the first time-frequency resources are continuously distributed on the time-domain resources in the multi-slot group, so that the time when the user equipment 101 receives the PDCCH is expected to be concentrated, and when the user equipment 101 receives the PDCCH, the behavior is completed. Afterwards, some radio frequency devices can be turned off, thereby achieving the effect of energy saving.
  • the processing of the PDCCH by the user equipment 101 does not necessarily need to be performed synchronously with the reception of the PDCCH, but may be performed synchronously during the reception of the PDCCH, or may be performed after the reception of the PDCCH is completed.
  • the embodiment of the present disclosure only provides a possibility of energy saving for the user equipment 101.
  • a user equipment 101 with a good performance function can judge whether to enter the energy saving mode according to its own ability after receiving all the PDCCHs in a multi-slot group.
  • the embodiment of the present disclosure does not forcefully stipulate that the user equipment 101 must perform an operation of switching the energy saving mode.
  • the embodiment of the present disclosure provides a method for transmitting PDCCH configuration information, the method includes:
  • the network device 102 sends the configuration information of the PDCCH to the user equipment 101, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for sending the PDCCH, and is located in a plurality of consecutive time-frequency resources in the multi-slot group. in the time domain unit.
  • the user equipment 101 receives the configuration information of the PDCCH from the network equipment 102, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for transmitting the PDCCH, and is located in a plurality of consecutive time-frequency resources in the multi-slot group. in the time domain unit.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is related to the number of time-domain units included in the time-frequency resource of the multi-slot group.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is positively correlated with the number of time-domain units included in the time-frequency resources of the multi-slot group, that is, The greater the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group, the greater the number of time-domain units included in the time-frequency resource of the multi-slot group; The smaller the maximum number of time-domain units occupied in the time-frequency resources of the multi-slot group, the smaller the number of time-domain units included in the time-frequency resources of the multi-slot group.
  • the number of time slots included in the time-frequency resource of the multi-slot group is 4, and the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is 2.
  • the number of time slots included in the time-frequency resource of the multi-slot group is 8, and the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is 3.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is proportional to the number of time-domain units included in the time-frequency resources of the multi-slot group.
  • the number of time slots included in the time-frequency resource of the multi-slot group is 4, and the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is 2.
  • the number of time slots included in the time-frequency resource of the multi-slot group is 8, and the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is 4.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is related to the number of time-domain units included in the time-frequency resources of the multi-slot group, Therefore, the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is adjusted accordingly with the time-slot groups with different time-domain resources, so that the first time-frequency resource is within the time-frequency resource of the multi-slot group.
  • the setting method of the maximum number of time domain units occupied in the time-frequency resources of the multi-slot group is more intelligent.
  • the embodiment of the present disclosure provides a method for transmitting PDCCH configuration information, the method includes:
  • the network device 102 sends the configuration information of the PDCCH to the user equipment 101, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for sending the PDCCH, and is located in a plurality of consecutive time-frequency resources in the multi-slot group. in the time domain unit.
  • the user equipment 101 receives the configuration information of the PDCCH from the network equipment 102, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for transmitting the PDCCH, and is located in a plurality of consecutive time-frequency resources in the multi-slot group. in the time domain unit.
  • the maximum number of time-domain units occupied in the time-frequency resources of the multi-slot group is related to the subcarrier spacing
  • the maximum number of time-domain units occupied by the first time-frequency resources in the time-frequency resources of the multi-slot group The number is related to the subcarrier spacing.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is positively correlated with the subcarrier spacing.
  • the number of time slots included in the multi-slot group is 4, and the maximum number of PDCCH time slots included in the multi-slot group is 2.
  • the number of time slots included in the multi-slot group is 8, and the maximum number of PDCCH time slots included in the multi-slot group is 3.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is proportional to the subcarrier spacing.
  • the number of time slots included in the multi-slot group is 4, and the maximum number of PDCCH time slots included in the multi-slot group is 2.
  • the number of time slots included in the multi-slot group is 8, and the maximum number of PDCCH time slots included in the multi-slot group is 4.
  • the embodiment of the present disclosure provides a method for transmitting PDCCH configuration information, the method includes:
  • the network device 102 sends the configuration information of the PDCCH to the user equipment 101, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for sending the PDCCH, and is located in a plurality of consecutive time-frequency resources in the multi-slot group. in the time domain unit.
  • the user equipment 101 receives the configuration information of the PDCCH from the network equipment 102, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for transmitting the PDCCH, and is located in a plurality of consecutive time-frequency resources in the multi-slot group. in the time domain unit.
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3.
  • the number of consecutive OFDM symbols occupied by the control resource set corresponding to the first time-frequency resource in one time domain unit is greater than 3, which can improve energy saving efficiency.
  • the number of consecutive OFDM symbols occupied by the set in one time domain unit is equal to 3
  • the data with the same load can be sent on as few time domain resources as possible when the number of time domain symbols in the control resource set is large.
  • the embodiment of the present disclosure provides a method for transmitting PDCCH configuration information, the method includes:
  • Step S10-1 the user equipment 101 sends to the network device 102 the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment 101.
  • Step S10-2 the network device 102 receives from the user equipment 101 the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment 101.
  • Step S21 the network device 102 sends the configuration information of the PDCCH to the user equipment 101, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used to send the PDCCH, and is located in the multi-slot group. in multiple consecutive time-domain units.
  • Step S22 the user equipment 101 receives the configuration information of the PDCCH from the network equipment 102, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for sending the PDCCH, and is located in the multi-slot group. in multiple consecutive time-domain units.
  • the user equipment 101 sends to the network equipment 102 the number of consecutive OFDM symbols occupied by the user equipment to receive the control resource set supported by the user equipment in the time domain, so that the network equipment 102 learns the capabilities of the user equipment 101, so that the This known number of consecutive OFDM symbols is used appropriately.
  • the embodiment of the present disclosure provides a method for transmitting PDCCH configuration information, the method includes:
  • Step S10-1 the user equipment 101 sends to the network device 102 the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment 101.
  • Step S10-2 the network device 102 receives from the user equipment 101 the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment 101.
  • Step S10-3 the network device 102 determines, according to the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment, the consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource number of symbols.
  • Step S21 the network device 102 sends the configuration information of the PDCCH to the user equipment 101, the configuration information of the PDCCH is used to indicate the first time-frequency resource, and the first time-frequency resource is used to send the PDCCH and is located in a multi-slot group. in multiple consecutive time-domain units.
  • Step S22 the user equipment 101 receives the configuration information of the PDCCH from the network equipment 102, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for sending the PDCCH, and is located in the multi-slot group. in multiple consecutive time-domain units.
  • the maximum number of time-domain symbols of the control resource set supported by the user equipment 101 is related to the data processing capability of the user equipment 101 .
  • the maximum number of time-domain symbols of the control resource set supported by the user equipment 101 is related to the CSC.
  • the maximum number of time-domain symbols in the control resource set supported by the UE is 3.
  • the maximum number of time-domain symbols of the control resource set supported by the UE is 4.
  • the maximum number of time-domain symbols of the control resource set supported by the UE is 6.
  • the maximum number of time-domain symbols of the control resource set supported by the user equipment 101 is related to the data processing capability and the CSC of the user equipment 101 .
  • the user equipment 101 reports the number of consecutive OFDM symbols occupied by the control resource set it supports in the time domain
  • the network device 102 determines the number of consecutive OFDM symbols occupied by the user equipment control resource set in the time domain
  • the number of consecutive OFDM symbols occupied by the control resource set corresponding to the first time-frequency resource in one time domain unit which may be the number of consecutive OFDM symbols occupied by the determined control resource set corresponding to the first time-frequency resource in one time domain unit match the capabilities of the user equipment.
  • the embodiment of the present disclosure provides a method for transmitting PDCCH configuration information, the method includes:
  • Step S10-1 the user equipment 101 sends to the network device 102 the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment 101.
  • Step S10-2 the network device 102 receives from the user equipment 101 the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment 101.
  • Step S10-4 the network device 102 determines, according to the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment, the consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource The number of symbols is greater than 3 and less than the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment 101 .
  • Step S21 the network device 102 sends the configuration information of the PDCCH to the user equipment 101, the configuration information of the PDCCH is used to indicate the first time-frequency resource, and the first time-frequency resource is used to send the PDCCH and is located in a multi-slot group. in multiple consecutive time-domain units.
  • Step S22 the user equipment 101 receives the configuration information of the PDCCH from the network equipment 102, the configuration information of the PDCCH is used to indicate the first time-frequency resource, the first time-frequency resource is used for sending the PDCCH, and is located in the multi-slot group. in multiple consecutive time-domain units.
  • the number of time domain symbols of the control resource set corresponding to the PDCCH on the PDCCH time slot in the multi-slot group is greater than 3 and less than or equal to the continuous OFDM symbols occupied in the time domain by the control resource set supported by the user equipment 101
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the determined first time-frequency resource can be increased on the basis of the commonly used number of 3 symbols and is within the capability range of the user equipment in order to make the determined results more reasonable.
  • the embodiments of the present application further provide a communication device, which can have the functions of the network device 102 in the above method embodiments, and can be used to execute the network device 102 provided by the above method embodiments. Steps performed by the device 102 .
  • This function can be implemented by hardware, or can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus 300 shown in FIG. 3 may be used as the network device involved in the above method embodiments, and perform the steps performed by the network device in the above method embodiments.
  • the communication device 300 may include a transceiver module 301 and a processing module 302 , and the transceiver module 301 and the processing module 302 are coupled to each other.
  • the transceiver module 301 can be used to support the communication device 300 to communicate, and the transceiver module 301 can have a wireless communication function, for example, can perform wireless communication with other communication devices through a wireless air interface.
  • the processing module 302 may be configured to support the communication device 300 to perform the processing actions in the foregoing method embodiments, including but not limited to: generating information and messages sent by the transceiver module 301 , and/or demodulating the signals received by the transceiver module 301 decoding and so on.
  • the transceiver module 301 is configured to send configuration information of the physical downlink control channel PDCCH to the user equipment, where the configuration information of the PDCCH is used to indicate a first time-frequency resource, the first time
  • the frequency resources are used to transmit the PDCCH and are located in multiple consecutive time domain units in a multi-slot group.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is related to the number of time-domain units included in the time-frequency resource of the multi-slot group.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resource of the multi-slot group is related to the subcarrier spacing.
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3.
  • the transceiver module is further configured to receive, from the user equipment, the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment.
  • the processing module 302 is configured to determine, according to the number of consecutive OFDM symbols occupied in the time domain by the control resource set supported by the user equipment, the continuous occupied time domain unit of the control resource set corresponding to the first time-frequency resource The number of OFDM symbols.
  • the processing module 302 is further configured to determine that the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3 and less than the control resource set supported by the user equipment 101 occupied in the time domain The number of consecutive OFDM symbols.
  • the apparatus 400 includes a memory 401 , a processor 402 , a transceiver component 403 , and a power supply component 406 .
  • the memory 401 is coupled with the processor 402, and can be used to store programs and data necessary for the communication device 400 to realize various functions.
  • the processor 402 is configured to support the communication device 400 to perform the corresponding functions in the above-mentioned methods, and the functions can be implemented by calling programs stored in the memory 401 .
  • the transceiver component 403 may be a wireless transceiver, and may be used to support the communication device 400 to receive signaling and/or data through a wireless air interface, and to transmit signaling and/or data.
  • the transceiver component 403 may also be referred to as a transceiver unit or a communication unit, and the transceiver component 403 may include a radio frequency component 404 and one or more antennas 405, wherein the radio frequency component 404 may be a remote radio unit (remote radio unit, RRU), specifically It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals, and the one or more antennas 405 can be specifically used for radiation and reception of radio frequency signals.
  • RRU remote radio unit
  • the processor 402 can perform baseband processing on the data to be sent, and output the baseband signal to the radio frequency unit, and the radio frequency unit performs the radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 402, and the processor 402 converts the baseband signal into data and sends the data to the baseband signal. to be processed.
  • the embodiments of the present application further provide a communication device, which can have the functions of the user equipment 101 in the above method embodiments, and can be used to execute the user equipment provided by the above method embodiments. Steps performed by device 101 .
  • This function can be implemented by hardware, or can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus 500 shown in FIG. 5 may be used as the user equipment involved in the above method embodiments, and perform the steps performed by the user equipment in the above method embodiments.
  • the communication device 500 may include a transceiver module 501 and a processing module 502, and the transceiver module 501 and the processing module 502 are coupled to each other.
  • the transceiver module 501 can be used to support the communication device 500 to communicate, and the transceiver module 501 can have a wireless communication function, for example, can perform wireless communication with other communication devices through a wireless air interface.
  • the processing module 502 may be configured to support the communication apparatus 500 to perform the processing actions in the foregoing method embodiments, including but not limited to: generating information and messages sent by the transceiver module 501 , and/or demodulating the signals received by the transceiver module 501 decoding and so on.
  • the transceiver module When performing the steps implemented by the network device 102, the transceiver module is configured to receive configuration information of the physical downlink control channel PDCCH from the network device, where the configuration information of the PDCCH is used to indicate a first time-frequency resource, the first time-frequency
  • the resources are used to transmit the PDCCH and are located in multiple consecutive time domain units in a multi-slot group.
  • the maximum number of time-domain units occupied by the first time-frequency resource in the time-frequency resources of the multi-slot group is related to the number of time-domain units included in the time-frequency resources of the multi-slot group;
  • the maximum number of time-domain units occupied by a time-frequency resource in the time-frequency resource of the multi-slot group is related to the subcarrier spacing.
  • the number of consecutive OFDM symbols occupied in one time domain unit by the control resource set corresponding to the first time-frequency resource is greater than 3.
  • the transceiver module is further configured to send, to the network device, the number of consecutive OFDM symbols occupied in the time domain by the set of control resources supported by the user equipment; wherein the number of consecutive OFDM symbols occupied in the time domain by the set of control resources supported by the user equipment
  • the number of symbols is used to enable the network device to determine, according to the continuous OFDM symbols occupied in the time domain by the control resource set supported by the user equipment, the number of occupied time-domain units by the control resource set corresponding to the first time-frequency resource. The number of consecutive OFDM symbols.
  • Apparatus 600 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the apparatus 600 may include one or more of the following components: a processing component 602, a memory 604, a power supply component 606, a multimedia component 608, an audio component 610, an input/output (I/O) interface 612, a sensor component 614, and communication component 616 .
  • the processing component 602 generally controls the overall operation of the device 600, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 602 may include one or more processors 620 to execute instructions to perform all or some of the steps of the methods described above. Additionally, processing component 602 may include one or more modules that facilitate interaction between processing component 602 and other components. For example, processing component 602 may include a multimedia module to facilitate interaction between multimedia component 608 and processing component 602.
  • Memory 604 is configured to store various types of data to support operation at device 600 . Examples of such data include instructions for any application or method operating on device 600, contact data, phonebook data, messages, pictures, videos, and the like. Memory 604 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 606 provides power to the various components of device 600 .
  • Power components 606 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 600 .
  • Multimedia component 608 includes screens that provide an output interface between the device 600 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 608 includes a front-facing camera and/or a rear-facing camera. When the device 600 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 610 is configured to output and/or input audio signals.
  • audio component 610 includes a microphone (MIC) that is configured to receive external audio signals when device 600 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 604 or transmitted via communication component 616 .
  • audio component 610 also includes a speaker for outputting audio signals.
  • the I/O interface 612 provides an interface between the processing component 602 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 614 includes one or more sensors for providing status assessment of various aspects of device 600 .
  • the sensor assembly 614 can detect the open/closed state of the device 600, the relative positioning of components, such as the display and keypad of the device 600, and the sensor assembly 614 can also detect a change in the position of the device 600 or a component of the device 600 , the presence or absence of user contact with the device 600 , the orientation or acceleration/deceleration of the device 600 and the temperature change of the device 600 .
  • Sensor assembly 614 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 614 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 614 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 616 is configured to facilitate wired or wireless communication between apparatus 600 and other devices.
  • Device 600 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 616 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 616 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 600 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 604 including instructions, executable by the processor 620 of the apparatus 600 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输物理下行控制信道配置信息的方法、装置及介质,该方法包括:向用户设备发送物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。采用该方法,为用户设备提供节能的可能,有利于用户设备的节能。

Description

传输物理下行控制信道配置信息的方法、装置及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种传输物理下行控制信道(physical downlink control channel,PDCCH)配置信息的方法、装置及可读存储介质。
背景技术
目前,新无线(new radio,NR)中,将下行数据承载在物理下行共享信道(physical downlink shared channel,PDSCH)上,将上行数据承载在物理上行共享信道(physical uplink shared channel,PUSCH)上。基站通过承载在物理下行控制信道(physical downlink control channel,PDCCH)信道的下行控制信息(downlink control information,DCI)调度PDSCH和PUSCH。
PDCCH信道中包括公共搜索空间(common search space,CSS)和用户设备特定搜索空间(user equipment specific search space,USS)。其中,CSS用于承载小区公共控制信息、组播控制信息等信息,也可用于承载用户设备(user equipment,UE)特定的控制信息。USS用于承载UE特定的控制信息。
R15协议中,PDCCH监听(monitoring)能力是按照单个时隙(slot)为时间单位进行定义的。具体为:根据子载波间隔(Subcarrier spacing,SCS)的不同,规定UE在每个时隙内的监听能力。UE在一个时隙内的监听能力包括此时隙内最大的监听次数,以及此时隙内最大的非重叠控制信道单元(control channel element,CCE)的个数。此定义适用于52.6GHZ以下的频率,可选的子载波带宽为15KHz、30KHz、60KHz或120KHz,一个时隙的时长在子载波带宽不同时,对应的具体值不同,例如:对应于15KHz子载波带宽的时隙的时长为1毫秒(ms),对应于30KHz子载波带宽的时隙的时长为0.5ms,对应于60KHz子载波带宽的时隙的时长为0.25ms,依次类推。随着子载波带宽越大,时隙的时长越短。
在高频段(例如60GHz左右的频段)内,为了应对相位噪声,通常会选择使用较大的子载波带宽,例如960KHz。较大的子载波带宽对应着较小的时长(此时长是时隙的时长),例如:在子载波带宽是960KHz时,对应的一个时隙的时长为1/64毫秒(ms),在此较短的时长内,UE可能无法在每个时隙都执行针对PDCCH信道的监听。
综上,在使用的子载波间隔越大时,可能导致用户设备无法在每个时域单元上均完成对PDCCH的监听,从而影响用户设备监听PDCCH的效果以及对PDCCH的接收,使终端的处理性能下降,需要优化。
发明内容
有鉴于此,本公开实施例提供了一种传输物理下行控制信道配置信息的方法、装置、设备及可读存储介质,用以为用户设备节能。
第一方面,本公开实施例提供了一种传输物理下行控制信道配置信息的方法,所述方法由网络设备执行,或者由网络设备中的芯片执行。其中网络设备可以包括接入网设备,例如基站、nodeB等。
此方法包括:网络设备向用户设备发送物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
采用此方法,通过配置用于发送PDCCH的第一时频资源位于多时隙组中的多个连续的时域单元上,使用户设备在接收PDCCH时可以在连续的时域单元上持续接收,相比于从间隔的时域单元上接收PDCCH,为用户设备提供节能的可能,有利于用户设备的节能。
所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
采用此方法,使第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关,从而使第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量随着时域资源不同的时隙组而相应的调整,使第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量的设置方式更智能。
所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
采用此方法,使第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3,可以提高节能效率,相比于使第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数等于3的方 式,可以在控制资源集合时域符号数较多的情况下在尽量少的时域资源上将同样载荷的数据发送完成。
网络设备还从用户设备接收用户设备支持的控制资源集合在时域上占用的连续OFDM符号数。
采用此方法,用户设备向网络设备发送用户设备接收用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,从而使网络设备获知用户设备的能力,从而可以将获知的此连续的OFDM符号数进行恰当的使用。
网络侧设备还根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
采用此方法,可以使确定出的第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数与用户设备的能力相匹配。
网络侧设备确定第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3并且小于所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数。
采用此方法,可以使确定出的第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数,在常用的3个符号数的基础上有所增加并且在用户设备的能力范围之内,从而使确定出的结果更为合理。
第二方面,本公开实施例提供了一种传输物理下行控制信道配置信息的方法,所述方法由用户设备执行,或者由用户设备中的芯片执行。其中用户设备可以是手机。
此方法包括:从网络设备接收物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
在一实施方式中,此方法还包括:所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
在一实施方式中,此方法还包括:所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
在一实施方式中,此方法还包括:向网络设备发送用户设备支持的控制资源集合在时域上占用的连续OFDM符号数;其中,所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数用于,使所述网络设备根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
第三方面,本申请实施例提供一种通信装置。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中由网络设备执行的步骤。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第三方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行上述第一方面所述步骤时,收发模块,被配置为向用户设备发送物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
在一实施方式中,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
在一实施方式中,所述收发模块,还被配置为从用户设备接收用户设备支持的控制资源集合在时域上占用的连续OFDM符号数。
在一实施方式中,所述通信装置还包括:
处理模块,被配置为根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
在一实施方式中,所述处理模块,还被配置为确定第一时频资源对应的 控制资源集合在一个时域单元上占用的连续OFDM符号数大于3并且小于所述用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
第四方面,本申请实施例提供一种通信装置。该通信装置可用于执行上述第二方面或第二方面的任一可能的设计中由用户设备执行的步骤。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第四方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
收发模块,被配置为从网络设备接收物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
在一实施方式中,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
在一实施方式中,所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
在一实施方式中,所述收发模块,还被配置为向网络设备发送用户设备支持的控制资源集合在时域上占用的连续OFDM符号数;其中,所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数用于,使所述网络设备根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
第五方面,本公开提供一种通信系统,该通信系统可以包括第三方面所示的通信装置以及第四方面所示的通信装置。其中,第三方面所示的通信装置可由软件模块和/或硬件组件构成。第四方面所示的通信装置可由软件模块和/或硬件组件构成。
第六方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第 一方面或第一方面的任意一种可能的设计。
第七方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第八方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第九方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
上述第二方面至第九方面及其可能的设计中的有益效果可以参考对第一方面及其任一可能的设计中的所述方法的有益效果的描述。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是本公开实施例提供的一种传输PDCCH配置信息的方法的流程图;
图3是本公开实施例提供的一种传输PDCCH配置信息的装置的结构图;
图4是本公开实施例提供的另一种传输PDCCH配置信息的装置的结构图;
图5是本公开实施例提供的另一种传输PDCCH配置信息的装置的结构图;
图6是本公开实施例提供的另一种传输PDCCH配置信息的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
如图1所示,本申请实施例提供的传输PDCCH配置信息的方法可应用于无线通信系统100,该无线通信系统可以包括终端设备101以及网络设备102。其中,终端设备101被配置为支持载波聚合,终端设备101可连接至网络设备102的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景(sub 6G),也可适用于高频场景(above 6 G)。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示终端设备101可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该终端设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,终端设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN网络中的终端 设备等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
以NR为例,终端设备101对于PDCCH的处理原则是,终端设备101在一个或多个搜索空间(search space,SS)监听网络设备102发送的PDCCH以接收PDCCH所承载的下行控制信息(downlink control information,DCI)(在本申请中为简便说明,下行控制信息也可称为控制信息)。其中,SS即终端设备101需要监听PDCCH的候选位置集合,SS包括公共搜索空间(common search space,CSS)和UE专属搜索空间(UE specific search space,USS),并且NR中对于PDCCH引入了控制资源集合(control resource set,CORESET)的概念。一个CORESET是终端设备101尝试使用一个或多个SS检测PDCCH的候选时频资源,CORESET可包括频域上连续多个资源块以及时域上连续多个符号。CORESET的时频位置可位于BWP和一个时隙的任意位置。CORESET的时域及频域位置可由网络设备102侧通过高层信令半静态配置。
一个PDCCH使用的资源由一个CORESET内的一个或多个CCE聚合构成,一个或多个CCE的数量与PDCCH的AL对应。目前NR支持的PDCCH的聚合等级与PDCCH使用的CCE的数量之间具有相应的对应关系。一个CCE 可由6个资源单元组(resource element group,REG)组成,每个REG在时域上包括一个符号、频域上包括一个资源块(resource block,RB)。其中一个RB在频域上可包括12个资源单元(resource-element,RE)。当监听网络设备102发送的一个PDCCH时,终端设备101需要在网络设备102配置的每个PDCCH的候选位置,根据PDCCH的每一个可能的聚合等级进行检测,因此,在未知PDCCH的聚合等级的情况下,终端设备101在每个候选位置进行多次监听。
本公开实施例中引入了多时隙PDCCH监听模式(multi-slot PDCCH monitoring pattern),以及此模式下引入了PDCCH监听对应的多时隙组(multi-slot group)或者多时隙PDCCH监听跨度(multi-slot PDCCH monitoring span)。其中,多时隙组中包括多个时域单元,多时隙PDCCH监听跨度中包括多个时域单元,所述时域单元是一个时隙或半个时隙。
其中,PDCCH监听对应的多时隙组与多时隙PDCCH监听跨度表示同一概念,是对同一概念的不同描述方式。本公开中的多时隙组也可以替换为多时隙PDCCH监听跨度。
在多时隙PDCCH监听模式(multi-slot PDCCH monitoring pattern)下,一个多时隙组内并不是所有的时域单元都配置有PDCCH,而是其中部分时域单元上配置有PDCCH,例如:多时隙组中一个或者部分几个时隙配置有PDCCH,其它时隙上不配置PDCCH。可以将配置有PDCCH的时隙称为PDCCH时隙。在此多时隙PDCCH监听模式下,PDCCH监听能力是以多时隙组为单位进行定义的。
本公开实施例提供了一种传输PDCCH配置信息的方法,参照图2,图2是根据一示例性实施例示出的一种传输PDCCH配置信息的方法的流程图,如图2所示,此方法包括:
步骤S21,网络设备102向用户设备101发送PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
步骤S22,用户设备101从网络设备102接收PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
其中,所述第一时频资源位于多时隙组的多个连续的时域单元中,可以 理解为所述第一时频资源占用的多个时域单元是多时隙组的时频资源中一部分连续的时域资源。
在一实施方式中,所述时域单元是时隙。
在一实施方式中,所述时域单元是半时隙。
在一实施方式中,网络设备102向用户设备101发送PDCCH的配置信息后,在所述第一时频资源上发送所述PDCCH。用户设备101在所述第一时频资源上接收所述PDCCH。
在一示例中,多时隙组中共包括8个时隙,网络设备102向用户设备101发送PDCCH的配置信息,此配置信息指示的第一时频资源是所述8个时隙中的第1、2、3、4个时隙,此第1、2、3、4个时隙中每个时隙对应于一个PDCCH。网络设备102在所述8个时隙中的第1至4个时隙上发送相应的4个PDCCH。用户设备101从网络设备102中接收到PDCCH的配置信息后,在所述中的第1至4个时隙上接收4个PDCCH。
本公开实施例中,通过配置用于发送PDCCH的第一时频资源位于多时隙组中的多个连续的时域单元上,使用户设备101在接收PDCCH时可以在连续的时域单元上持续接收,相比于从间隔的时域单元上接收PDCCH,为用户设备101提供节能的可能,有利于用户设备101的节能。
需要注意的是,本公开实施例中使第一时频资源在多时隙组中的时域资源上连续分布,是希望用户设备101接收PDCCH的时间较为集中,当用户设备101接收PDCCH的行为完成后,可以关闭部分射频器件,因而达到节能的效果。而用户设备101针对PDCCH的处理并不必须与接收PDCCH同步进行,而是可以在接收PDCCH的过程中同步进行,也可以在接收PDCCH完成后再进行。本公开实施例中只是为用户设备101提供了一种节能的可能,一个执行功能良好的用户设备101可以在一个多时隙组中接收完所有的PDCCH后,根据自身能力判断是否要进入节能模式,本公开实施例并没有强行规定用户设备101必须执行节能模式转换的操作。
本公开实施例提供了一种传输PDCCH配置信息的方法,此方法包括:
网络设备102向用户设备101发送PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
用户设备101从网络设备102接收PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
其中,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关。
在一实施方式中,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与多时隙组的时频资源包括的时域单元的数量呈正相关,即,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量越大,多时隙组的时频资源包括的时域单元的数量越大;第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量越小,多时隙组的时频资源包括的时域单元的数量越小。
在一示例中:
多时隙组的时频资源包括的时隙的数量是4个,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量是2个。
多时隙组的时频资源包括的时隙的数量是8个,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量是3个。
在一实施方式中,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与多时隙组的时频资源包括的时域单元的数量呈正比。
在一示例中:
多时隙组的时频资源包括的时隙的数量是4个,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量是2个。
多时隙组的时频资源包括的时隙的数量是8个,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量是4个。
本公开实施例中,使第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关,从而使第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量随着时域资源不同的时隙组而相应的调整,使第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量的设置方式更智能。
本公开实施例提供了一种传输PDCCH配置信息的方法,此方法包括:
网络设备102向用户设备101发送PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
用户设备101从网络设备102接收PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
其中,多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关时,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
在一实施方式中,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔呈正相关。
在一示例中,:
子载波间隔为480KHz时,多时隙组中包括的时隙的数量是4个,多时隙组中包括的PDCCH时隙的最大数量是2个。
子载波间隔为960KHz时,多时隙组中包括的时隙的数量是8个,多时隙组中包括的PDCCH时隙的最大数量是3个。
在一实施方式中,第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔呈正比。
在一示例中:
子载波间隔为480KHz时,多时隙组中包括的时隙的数量是4个,多时隙组中包括的PDCCH时隙的最大数量是2个。
子载波间隔为960KHz时,多时隙组中包括的时隙的数量是8个,多时隙组中包括的PDCCH时隙的最大数量是4个。
本公开实施例提供了一种传输PDCCH配置信息的方法,此方法包括:
网络设备102向用户设备101发送PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
用户设备101从网络设备102接收PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位 于多时隙组中的多个连续的时域单元中。
其中,所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
本公开实施例中,使第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3,可以提高节能效率,相比于使第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数等于3的方式,可以在控制资源集合时域符号数较多的情况下在尽量少的时域资源上将同样载荷的数据发送完成。
本公开实施例提供了一种传输PDCCH配置信息的方法,此方法包括:
步骤S10-1,用户设备101向网络设备102发送用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
步骤S10-2,网络设备102从用户设备101接收用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
步骤S21,网络设备102向用户设备101发送PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
步骤S22,用户设备101从网络设备102接收PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
本公开实施例中,用户设备101向网络设备102发送用户设备接收用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,从而使网络设备102获知用户设备101的能力,从而可以将获知的此连续的OFDM符号数进行恰当的使用。
本公开实施例提供了一种传输PDCCH配置信息的方法,此方法包括:
步骤S10-1,用户设备101向网络设备102发送用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
步骤S10-2,网络设备102从用户设备101接收用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
步骤S10-3,网络设备102根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,确定第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
步骤S21,网络设备102向用户设备101发送PDCCH的配置信息,所述PDCCH的配置信息用于指示所述第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
步骤S22,用户设备101从网络设备102接收PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
在一实施方式中,用户设备101支持的最大的控制资源集合时域符号数与用户设备101的数据处理能力相关。
在一实施方式中,用户设备101支持的最大的控制资源集合时域符号数与CSC相关。
在一示例中:
在SCS小于或等于120KH时,UE支持的最大的控制资源集合时域符号数为3。
在SCS等于480KHz时,UE支持的最大的控制资源集合时域符号数为4。
在SCS等于960KHz时,UE支持的最大的控制资源集合时域符号数为6。
在一实施方式中,用户设备101支持的最大的控制资源集合时域符号数与用户设备101的数据处理能力和CSC相关。
本公开实施例中,用户设备101上报其所支持的控制资源集合在时域上占用的连续OFDM符号数,网络设备102根据所述用户设备控制资源集合在时域上占用的连续OFDM符号数确定第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数,可以使确定出的第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数与用户设备的能力相匹配。
本公开实施例提供了一种传输PDCCH配置信息的方法,此方法包括:
步骤S10-1,用户设备101向网络设备102发送用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
步骤S10-2,网络设备102从用户设备101接收用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
步骤S10-4,网络设备102根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,确定第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3并且小于所述用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
步骤S21,网络设备102向用户设备101发送PDCCH的配置信息,所述PDCCH的配置信息用于指示所述第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
步骤S22,用户设备101从网络设备102接收PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
本公开实施例中,使多时隙组中的PDCCH时隙上的PDCCH对应的控制资源集合时域符号数大于3并且小于或等于用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数,可以使确定出的第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数,在常用的3个符号数的基础上有所增加并且在用户设备的能力范围之内,从而使确定出的结果更为合理。
基于与以上方法实施例相同的构思,本申请实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的网络设备102的功能,并可用于执行上述方法实施例提供的由网络设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图3所示的通信装置300可作为上述方法实施例所涉及的网络设备,并执行上述方法实施例中由网络设备执行的步骤。如图3所示,该通信装置300可包括收发模块301以及处理模块302,该收发模块301以及处理模块302之间相互耦合。该收发模块301可用于支持通信装置300进行通信,收发模块301可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块302可用于支持该通信装置300执行上述方法实施例中的处理动作,包括但不限于:生成由收发模块301发 送的信息、消息,和/或,对收发模块301接收的信号进行解调解码等等。
在执行由网络设备102实施的步骤时,收发模块301被配置为向用户设备发送物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关。或者,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
所述收发模块,还被配置为从用户设备接收用户设备支持的控制资源集合在时域上占用的连续OFDM符号数。
处理模块302,被配置为根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
处理模块302,还被配置为确定第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3并且小于所述用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
当该通信装置为网络设备102时,其结构还可如图4所示。以基站为例说明通信装置的结构。如图4所示,装置400包括存储器401、处理器402、收发组件403、电源组件406。其中,存储器401与处理器402耦合,可用于保存通信装置400实现各功能所必要的程序和数据。该处理器402被配置为支持通信装置400执行上述方法中相应的功能,所述功能可通过调用存储器401存储的程序实现。收发组件403可以是无线收发器,可用于支持通信装置400通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件403也可被称为收发单元或通信单元,收发组件403可包括射频组件404以及一个或多个天线405,其中,射频组件404可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线405具体可用于进行射频信号的辐射和接收。
当通信装置400需要发送数据时,处理器402可对待发送的数据进行基 带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置400时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器402,处理器402将基带信号转换为数据并对该数据进行处理。
基于与以上方法实施例相同的构思,本申请实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的用户设备101的功能,并可用于执行上述方法实施例提供的由用户设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图5所示的通信装置500可作为上述方法实施例所涉及的用户设备,并执行上述方法实施例中由用户设备执行的步骤。如图5所示,该通信装置500可包括收发模块501以及处理模块502,该收发模块501以及处理模块502之间相互耦合。该收发模块501可用于支持通信装置500进行通信,收发模块501可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块502可用于支持该通信装置500执行上述方法实施例中的处理动作,包括但不限于:生成由收发模块501发送的信息、消息,和/或,对收发模块501接收的信号进行解调解码等等。
在执行由网络设备102实施的步骤时,收发模块被配置为从网络设备接收物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
所述收发模块,还被配置为向网络设备发送用户设备支持的控制资源集合在时域上占用的连续OFDM符号数;其中,所述用户设备支持的控制资源 集合在时域上占用的连续OFDM符号数用于,使所述网络设备根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
当该通信装置为用户设备101时,其结构还可如图6所示。装置600可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,装置600可以包括以下一个或多个组件:处理组件602,存储器604,电源组件606,多媒体组件608,音频组件610,输入/输出(I/O)的接口612,传感器组件614,以及通信组件616。
处理组件602通常控制装置600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件602可以包括一个或多个处理器620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件602可以包括一个或多个模块,便于处理组件602和其他组件之间的交互。例如,处理组件602可以包括多媒体模块,以方便多媒体组件608和处理组件602之间的交互。
存储器604被配置为存储各种类型的数据以支持在设备600的操作。这些数据的示例包括用于在装置600上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件606为装置600的各种组件提供电力。电源组件606可以包括电源管理系统,一个或多个电源,及其他与为装置600生成、管理和分配电力相关联的组件。
多媒体组件608包括在所述装置600和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测 与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件608包括一个前置摄像头和/或后置摄像头。当设备600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件610被配置为输出和/或输入音频信号。例如,音频组件610包括一个麦克风(MIC),当装置600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器604或经由通信组件616发送。在一些实施例中,音频组件610还包括一个扬声器,用于输出音频信号。
I/O接口612为处理组件602和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件614包括一个或多个传感器,用于为装置600提供各个方面的状态评估。例如,传感器组件614可以检测到设备600的打开/关闭状态,组件的相对定位,例如所述组件为装置600的显示器和小键盘,传感器组件614还可以检测装置600或装置600一个组件的位置改变,用户与装置600接触的存在或不存在,装置600方位或加速/减速和装置600的温度变化。传感器组件614可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件614还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件614还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件616被配置为便于装置600和其他设备之间有线或无线方式的通信。装置600可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件616经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置600可以被一个或多个应用专用集成电路 (ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器604,上述指令可由装置600的处理器620执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种传输物理下行控制信道配置信息的方法,所述方法由网络设备执行,所述方法包括:
    向用户设备发送物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
  2. 如权利要求1所述的传输物理下行控制信道配置信息的方法,其中,
    所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,
    所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
  3. 如权利要求1所述的传输物理下行控制信道配置信息的方法,其中,所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
  4. 如权利要求1所述的传输物理下行控制信道配置信息的方法,其中,所述方法还包括:
    从用户设备接收用户设备支持的控制资源集合在时域上占用的连续OFDM符号数。
  5. 如权利要求4所述的传输物理下行控制信道配置信息的方法,其中,所述方法还包括:
    根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
  6. 如权利要求5所述的传输物理下行控制信道配置信息的方法,其中,所述根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数,包括:
    确定第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3并且小于所述用户设备支持的控制资源集合在时域上占 用的连续OFDM符号数。
  7. 一种传输物理下行控制信道配置信息的方法,所述方法由用户设备执行,所述方法包括:
    从网络设备接收物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
  8. 如权利要求6所述的传输物理下行控制信道配置信息的方法,其中,
    所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,
    所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
  9. 如权利要求6所述的传输物理下行控制信道配置信息的方法,其中,
    所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
  10. 如权利要求9所述的传输物理下行控制信道配置信息的方法,其中,所述方法还包括:
    向网络设备发送用户设备支持的控制资源集合在时域上占用的连续OFDM符号数;其中,所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数用于,使所述网络设备根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
  11. 一种通信装置,包括:
    收发模块,被配置为向用户设备发送物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
  12. 如权利要求11所述的通信装置,其中,
    所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,
    所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
  13. 如权利要求11所述的通信装置,其中,
    所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
  14. 如权利要求11所述的通信装置,其中,
    所述收发模块,还被配置为从用户设备接收用户设备支持的控制资源集合在时域上占用的连续OFDM符号数。
  15. 如权利要求14所述的通信装置,其中,所述通信装置还包括:
    处理模块,被配置为根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号数,确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
  16. 如权利要求15所述的通信装置,其中,
    所述处理模块,还被配置为确定第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3并且小于所述用户设备101支持的控制资源集合在时域上占用的连续OFDM符号数。
  17. 一种通信装置,包括:
    收发模块,被配置为从网络设备接收物理下行控制信道PDCCH的配置信息,所述PDCCH的配置信息用于指示第一时频资源,所述第一时频资源用于发送PDCCH,且位于多时隙组中的多个连续的时域单元中。
  18. 如权利要求17所述的通信装置,其中,
    所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与所述多时隙组的时频资源包括的时域单元的数量相关;或者,
    所述第一时频资源在所述多时隙组的时频资源中占用的时域单元的最大数量与子载波间隔相关。
  19. 如权利要求17所述的通信装置,其中,
    所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数大于3。
  20. 如权利要求17所述的通信装置,其中,
    所述收发模块,还被配置为向网络设备发送用户设备支持的控制资源集合在时域上占用的连续OFDM符号数;其中,所述用户设备支持的控制资源 集合在时域上占用的连续OFDM符号数用于,使所述网络设备根据所述用户设备支持的控制资源集合在时域上占用的连续OFDM符号确定所述第一时频资源对应的控制资源集合在一个时域单元上占用的连续OFDM符号数。
  21. 一种通信装置,包括处理器以及存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-6中任一项所述的方法。
  22. 一种通信装置,包括处理器以及存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求7-10中任一项所述的方法。
  23. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-6中任一项所述的方法。
  24. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求7-10中任一项所述的方法。
PCT/CN2021/081481 2021-03-18 2021-03-18 传输物理下行控制信道配置信息的方法、装置及存储介质 WO2022193219A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2021/081481 WO2022193219A1 (zh) 2021-03-18 2021-03-18 传输物理下行控制信道配置信息的方法、装置及存储介质
KR1020237034837A KR20230155001A (ko) 2021-03-18 2021-03-18 물리 다운링크 제어 채널 설정 정보의 전송 방법, 장치 및 저장 매체
US18/549,004 US20240155645A1 (en) 2021-03-18 2021-03-18 Method and apparatus for transmitting configuration information of physical downlink control channel, and storage medium
JP2023557441A JP2024510659A (ja) 2021-03-18 2021-03-18 物理ダウンリンク制御チャネル設定情報の送信方法、装置及び記憶媒体
CN202180000775.7A CN115552830A (zh) 2021-03-18 2021-03-18 传输物理下行控制信道配置信息的方法、装置及存储介质
EP21930811.1A EP4311146A4 (en) 2021-03-18 2021-03-18 METHOD AND DEVICE FOR TRANSMITTING CONFIGURATION INFORMATION OF A PHYSICAL DOWNLINK CONTROL CHANNEL AND STORAGE MEDIUM
BR112023018793A BR112023018793A2 (pt) 2021-03-18 2021-03-18 Método para transmitir informação de configuração de um canal de controle de enlace descendente físico, dispositivo de comunicação, e, meio de armazenamento legível por computador

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081481 WO2022193219A1 (zh) 2021-03-18 2021-03-18 传输物理下行控制信道配置信息的方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022193219A1 true WO2022193219A1 (zh) 2022-09-22

Family

ID=83321310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081481 WO2022193219A1 (zh) 2021-03-18 2021-03-18 传输物理下行控制信道配置信息的方法、装置及存储介质

Country Status (7)

Country Link
US (1) US20240155645A1 (zh)
EP (1) EP4311146A4 (zh)
JP (1) JP2024510659A (zh)
KR (1) KR20230155001A (zh)
CN (1) CN115552830A (zh)
BR (1) BR112023018793A2 (zh)
WO (1) WO2022193219A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622453A (zh) * 2017-03-24 2019-12-27 瑞典爱立信有限公司 用于时隙聚合的资源分配信令
US20200304230A1 (en) * 2019-03-22 2020-09-24 Samsung Electronics Co., Ltd. Scheduling in communication systems with multiple service types
CN112514317A (zh) * 2020-11-06 2021-03-16 北京小米移动软件有限公司 一种通信方法、通信装置及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
KR102454306B1 (ko) * 2016-09-28 2022-10-12 아이디에이씨 홀딩스, 인크. 무선 통신 시스템을 위한 기준 신호 설계

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622453A (zh) * 2017-03-24 2019-12-27 瑞典爱立信有限公司 用于时隙聚合的资源分配信令
US20200304230A1 (en) * 2019-03-22 2020-09-24 Samsung Electronics Co., Ltd. Scheduling in communication systems with multiple service types
CN112514317A (zh) * 2020-11-06 2021-03-16 北京小米移动软件有限公司 一种通信方法、通信装置及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "PDCCH monitoring enhancements to support NR above 52.6 GHz", 3GPP DRAFT; R1-2100893, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971245 *
See also references of EP4311146A4 *
ZTE, SANECHIPS: "Discussion on the PDCCH monitoring enhancements for 52.6 to 71 GHz", 3GPP DRAFT; R1-2100074, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970778 *

Also Published As

Publication number Publication date
US20240155645A1 (en) 2024-05-09
EP4311146A4 (en) 2024-05-22
BR112023018793A2 (pt) 2023-10-31
KR20230155001A (ko) 2023-11-09
JP2024510659A (ja) 2024-03-08
EP4311146A1 (en) 2024-01-24
CN115552830A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2023201730A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023206424A1 (zh) 一种上行切换的方法、装置及可读存储介质
WO2023133901A1 (zh) 一种资源冲突处理方法、装置及可读存储介质
WO2023019553A1 (zh) 一种传输时频资源配置信息的方法、装置及可读存储介质
WO2022193219A1 (zh) 传输物理下行控制信道配置信息的方法、装置及存储介质
WO2022205123A1 (zh) 一种传输调度间隔信息的方法、装置及可读存储介质
WO2023245503A1 (zh) 一种监听方法、发送方法、装置、设备以及可读存储介质
WO2023130469A1 (zh) 一个确定信道接入方式的方法、装置及存储介质
WO2023092362A1 (zh) 一种确定监听能力的时长单位的方法、装置及存储介质
WO2022246709A1 (zh) 一种传输用户设备能力的方法、装置及存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2024082289A1 (zh) 一种监听或发送信息的方法、装置、设备以及存储介质
WO2023092353A1 (zh) 确定时隙个数、位置、多时隙组时长的方法、装置及介质
WO2024007338A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2023115410A1 (zh) 一种确定定时值的方法、装置及可读存储介质
WO2022205103A1 (zh) 一种传输harq-ack的方法、装置及可读存储介质
WO2024026683A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2023159443A1 (zh) 一种传输唤醒信号的方法、装置及可读存储介质
WO2023201569A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023164901A1 (zh) 一种传输唤醒信号的方法、装置、设备及可读存储介质
WO2023236195A1 (zh) 一种传输时域资源配置信息的方法、装置及可读存储介质
WO2023159445A1 (zh) 一种传输唤醒信号的方法、装置及可读存储介质
WO2023044602A1 (zh) 监听或发送物理下行控制信道的方法、装置及存储介质
WO2023245627A1 (zh) 一种传输配置信息的方法、装置、设备及可读存储介质
WO2024060153A1 (zh) 一种发送或监听下行控制信息的方法、装置、设备或介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549004

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023557441

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023018793

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237034837

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034837

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023124687

Country of ref document: RU

Ref document number: 2021930811

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021930811

Country of ref document: EP

Effective date: 20231018

ENP Entry into the national phase

Ref document number: 112023018793

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230915

WWE Wipo information: entry into national phase

Ref document number: 11202306801V

Country of ref document: SG