WO2023249408A1 - N-말단 및/또는 c-말단이 절단된 가용성 ph20 폴리펩티드 및 이의 용도 - Google Patents

N-말단 및/또는 c-말단이 절단된 가용성 ph20 폴리펩티드 및 이의 용도 Download PDF

Info

Publication number
WO2023249408A1
WO2023249408A1 PCT/KR2023/008621 KR2023008621W WO2023249408A1 WO 2023249408 A1 WO2023249408 A1 WO 2023249408A1 KR 2023008621 W KR2023008621 W KR 2023008621W WO 2023249408 A1 WO2023249408 A1 WO 2023249408A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
polypeptide
seq
recombinant
terminus
Prior art date
Application number
PCT/KR2023/008621
Other languages
English (en)
French (fr)
Inventor
박순재
김규완
윤상훈
송형남
Original Assignee
(주)알테오젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)알테오젠 filed Critical (주)알테오젠
Publication of WO2023249408A1 publication Critical patent/WO2023249408A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2474Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01035Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase

Definitions

  • the present invention relates to soluble PH20 polypeptides truncated at the N-terminus and/or C-terminus and uses thereof.
  • Another attempt to increase the expression level of a protein is to increase the expression level by substituting amino acids by causing site-directed mutation in a specific region of the recombinant protein.
  • Proteins composed of polypeptides have a tertiary structure through folding when produced within cells.
  • By replacing amino acids in specific regions of the protein with other amino acids a favorable situation for folding is created, which in turn leads to an increase in protein expression. It can lead to Although there are many success stories in this case, there are inherent practical problems such as concerns about increased immunogenicity due to amino acid modification.
  • Hyaluronan (hyaluronic acid: HA) is a polypeptide found in the extracellular matrix of many cells, particularly within connective tissue. Hyaluronan is also found primarily in mammalian skin, cartilage, and synovial fluid. Hyaluronan is also a major component of the vitreous humor of the eye. Hyaluronan plays a role in various physiological processes such as water and plasma protein homeostasis (Laurent TC et al. (1992) FASEB J 6: 2397-2404). Certain diseases are associated with the expression and/or production of hyaluronan. Hyaluronidase is an enzyme that decomposes hyaluronan.
  • hyaluronidase By catalyzing the hydrolysis of hyaluronan, hyaluronidase can be used to treat diseases or disorders associated with the accumulation of hyaluronan or other glycosaminoglycans. Additionally, because hyaluronan is a major component of the skin or intestinal barrier, hyaluronidase can be used to increase tissue permeability and, therefore, to increase dispersion and delivery of therapeutic agents when injected subcutaneously.
  • hyaluronidases based on the native PH20 polypeptide can be used in combination with other therapeutic agents, typically as dispersants or spreaders. Zero usage. Many of these are in a form containing PH20 derived from sheep testes or bovine testicles.
  • the human PH20 protein consists of a total of 509 amino acids and is known as a glycophosphoinositol lipid anchored protein that exists in the plasma membrane of Sperm. Unlike Hyal1, Hyal2, Hyla3, or Hyal4, which are hyaluronidases present in the blood, which are active only at acidic pH, PH20 is active even at neutral pH, so it was developed for subcutaneous injection by mixing with drugs, making it industrially useful. It is being used.
  • HylenexTM a recombinant human PH20 polypeptide consisting of 447 amino acids in which some amino acids constituting the glycophosphoinositol anchor site at the C-terminus of PH20 have been cleaved and converted to soluble, has been used, and separately, a human PH20 polypeptide variant has been used. Materials used are also being developed.
  • human PH20 is a glycoprotein with N-linked glycosylation at six locations and has a very complex tertiary structure. To produce an industrially useful enzyme, it is expressed in animal cells such as CHO cells and then undergoes a complex purification process. Therefore, for industrial use of human PH20, it is very important to improve productivity according to the expression level in the fermentation medium of animal cells containing the human PH20 gene.
  • An object of the present invention is to provide a soluble recombinant PH20 polypeptide truncated at the N-terminus and/or C-terminus with improved productivity.
  • the object of the present invention is to provide a nucleic acid encoding the soluble recombinant PH20 polypeptide truncated at the N-terminus and/or C-terminus.
  • the purpose of the present invention is to provide a recombinant expression vector containing the above nucleic acid.
  • the purpose of the present invention is to provide host cells transformed with the above recombinant expression vector.
  • An object of the present invention relates to a method for producing a soluble recombinant PH20 polypeptide truncated at the N-terminus and/or C-terminus, which includes culturing the host cell.
  • the present invention provides recombinant PH20 polypeptides in which 1 to 7 amino acid residues are deleted from the N-terminus of mature animal wild-type PH20.
  • the recombinant PH20 polypeptide in which amino acid residues are deleted from the N-terminus of mature animal wild-type PH20 according to the present invention is
  • Figure 5 shows the N-terminus in the case of SEQ ID NO: 2 (C-terminus is Y483), SEQ ID NO: 9 (C-terminus is H478), and SEQ ID NO: 10 (C-terminus is H477) according to a specific embodiment of the present invention.
  • This diagram shows the enzyme activity of the culture medium of PH20 polypeptides starting with L36, N37 or D37, F38, R39, A40, and P41. Each activity was expressed as a measured value.
  • Figure 6 shows the N-terminus in the case of SEQ ID NO: 2 (C-terminus is Y483), SEQ ID NO: 9 (C-terminus is H478), and SEQ ID NO: 10 (C-terminus is H477) according to a specific embodiment of the present invention.
  • This figure shows the enzyme activity of the purified PH20 polypeptide starting with L36, N37, F38, R39, A40, and P41 at pH 5.3 as Specific Activity. Each activity was expressed as a measured value.
  • the present invention provides a compound comprising 1 to 7 amino acid residues, preferably 1 to 6 amino acid residues, preferably 1 to 5 amino acid residues, preferably 1 to 4 amino acids at the N-terminus of mature animal wild-type PH20. It relates to a recombinant PH20 polypeptide in which a residue, preferably 1 to 3 amino acid residues, preferably 1 to 2 amino acid residues, preferably 1 amino acid residue, has been deleted.
  • Animal wild type PH20 according to the present invention is, for example,
  • Hyaluronidase in the human body exists in plasma and other organs, and includes Hyal1, Hyal2, Hyal3, and Hyal4, which are active at acidic pH, and PH20, which is expressed in the acrosome of sperm and plays a role in the fertilization process.
  • the expression that cleavage occurred before amino acid residues N37, F38, R39, A40, P41, and P42 refers to the amino acid sequence of SEQ ID NO: 1, up to residue 36, which is the residue immediately before N37, and 37, which is the residue immediately before F38, respectively.
  • residue 36 which is the residue immediately before N37, and 37, which is the residue immediately before F38, respectively.
  • residues up to the 38th residue immediately before R39, up to the 39th residue immediately before A40, up to the 40th residue immediately before P41, and up to the 41st residue immediately before P42 were cut and removed.
  • PH20 polypeptide comprising the amino acid sequence of SEQ ID NO: 1, starting at N37 and ending at Y482 (N37-Y482);
  • PH20 polypeptide comprising a sequence (R39-H477) starting from R39 and ending with H477 in the amino acid sequence of SEQ ID NO: 10;
  • the composition may be a pharmaceutical composition.
  • the pharmaceutical composition may further include a pharmaceutically acceptable carrier, which is commonly used in the formulation of drugs, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, and calcium phosphate. , alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, etc. It may be one or more types selected from the group consisting of, but is not limited thereto.
  • the pharmaceutical composition may be in the form of a solution, suspension, syrup or emulsion in oil or aqueous medium, or may be formulated in the form of extracts, powders, powders, granules, tablets or capsules, and may be formulated with a dispersant or stabilizer for formulation. Additional topics may be included.
  • Anticancer agents that can be used for the above combination treatment include chemical anticancer agents, antibody-type anticancer agents, RNAi, cell therapy, etc., but are not limited thereto.
  • the anticancer agent that can be used for the above combination treatment is an immunotherapy agent, particularly preferably an immune checkpoint inhibitor, but is not limited thereto.
  • the present invention relates to vectors containing the above nucleic acids, particularly recombinant expression vectors.
  • DNA encoding the PH20 recombinant polypeptide can be obtained by standard molecular biology techniques (e.g. PCR amplification or cDNA cloning using hybridomas expressing the PH20 recombinant polypeptide). and the DNA can be "operably linked" to transcriptional and translational control sequences and inserted into an expression vector.
  • the host cells according to the present invention may be derived from plants or mammals.
  • COS7 cells monkey kidney cells (COS7) cells, NSO cells, SP2/0, Chinese hamster ovary (CHO) cells, W138, baby hamster kidney (BHK) cells.
  • COS7 cells monkey kidney cells
  • SP2/0 Chinese hamster ovary (CHO) cells
  • W138 wild-producing cells
  • BHK baby hamster kidney
  • Available uses include, but are not limited to, MDCK, myeloma cell lines, HuT 78 cells, and HEK293 cells.
  • CHO cells can be used.
  • Expression vectors suitable for eukaryotic hosts include These include, but are not limited to, expression control sequences derived from SV40, bovine papillomavirus, adenovirus, adeno-associated virus, cytomegalovirus, and retrovirus.
  • Expression vectors that can be used in bacterial hosts include bacterial plasmids obtained from Escherichia coli such as pET, pRSET, pBluescript, pGEX2T, pUC vector, col E1, pCR1, pBR322, pMB9 and their derivatives, plasmids with a wider host range such as RP4, ⁇ gt10 and ⁇ gt11.
  • phage DNA which can be exemplified by a wide variety of phage lambda derivatives such as NM989, and other DNA phages such as M13 and filamentous single-stranded DNA phages.
  • Expression vectors useful for yeast cells are expressed at 2°C. Plasmids and their derivatives.
  • a useful vector for insect cells is pVL941.
  • the present invention relates to a method for producing a recombinant PH20 recombinant polypeptide according to the present invention, which includes culturing host cells to express the recombinant PH20 recombinant polypeptide according to the present invention.
  • the expressed PH20 recombinant polypeptide can be separated from the host cell and purified to uniformity. Isolation or purification of the PH20 recombinant polypeptide may be performed by separation and purification methods used for conventional proteins, such as chromatography.
  • the chromatography may be, for example, a combination of one or more selected from affinity chromatography, ion exchange chromatography, or hydrophobic chromatography, but is not limited thereto. In addition to the above chromatography, filtration, ultrafiltration, salting out, dialysis, etc. can be used in combination.
  • PCR polymerase chain reaction
  • XhoI and NotI restriction enzyme sites of the pcDNA3.4-TOPO vector For expression in ExpiCHO cells, human serum albumin signal peptide was used.
  • HisTrap column the DNA sequence of His-Tag was placed at the 3'-end of PH20 cDNA. The N-terminal and C-terminal truncated PH20 polypeptide was performed using PCR, and amino acid substitutions were confirmed through DNA sequence analysis.
  • a plasmid containing L36-Y482 was prepared, and using this as a template, four variants were sequentially created with one additional amino acid at the N-terminus removed, Additionally, for each variant, four variants with the C-terminus ending in F468 were also produced.
  • a plasmid containing L36 to H477 was constructed and used as a template to sequentially produce five mutants with one additional N-terminal amino acid removed. Produced.
  • Example 2 Expression and purification of recombinant PH20 hyaluronidase with truncated N-terminus and C-terminus
  • N- and C-terminally truncated PH20 polypeptides were performed using the ExpiCHO expression system.
  • the plasmid containing the cDNA of the N- and C-terminally truncated PH20 polypeptide inserted into the pcDNA3.4-TOPO vector was transferred to ExpiCHO cells using ExpiFectamine CHO reagent. transfected into.
  • ExpiCHO expression medium 100 to 500 mL
  • ExpiCHO cells were cultured with shaking at 130 rpm for a total of 6 days, during which cells were cultured at 37°C for 1 day and an additional 5 days at a lower temperature of 32°C. After completion of culture, the cell supernatant was collected by centrifugation at 10,000 rpm for 30 minutes.
  • PH20 polypeptide with a His-tag at the C-terminus produced from ExpiCHO cells was purified by two-step column chromatography using AKTA prime equipment or similar equipment (GE Healthcare). Since the pI was close to 6, Q Sepharose, anion exchange chromatography, was used. In the case of bovine and sheep PH20 polypeptides, the pI was over 8, so a first-step purification was performed using a Capto S column, cation exchange chromatography, and each The protein was purified in two steps using a HisTrap HP column, a His-Tag affinity chromatography.
  • buffer A (20 mM sodium phosphate, pH 7.5
  • buffer B (20 mM sodium phosphate, pH 7.5, 0.5 M NaCl) were prepared.
  • the protein was bound to a Q Sepharose column, and non-specifically bound proteins were removed by flowing 5 CV of buffer A, and then the protein was eluted by flowing 5 CV of buffer B at a concentration gradient of 0 to 100%.
  • buffer A (20mM sodium phosphate, 15mM NaCl, pH 6.0) and Buffer B (20mM sodium phosphate, 500mM NaCl, pH 6.0) were prepared respectively.
  • the pH and conductivity of the culture medium were set to be the same as Buffer A, and the culture medium was filtered through a membrane with a pore size of 0.22 ⁇ m.
  • 3 column volumes (CV) of buffer A were passed through to remove non-specifically bound proteins.
  • the target protein was eluted by sequentially flowing 4 CV of Buffer B.
  • Buffer A (20mM sodium phosphate, 500mM NaCl, pH 7.5) and Buffer B (20mM sodium phosphate, 500mM NaCl, 500mM Imidazole, pH 7.5) were prepared respectively.
  • Buffer B 20mM sodium phosphate, 500mM NaCl, 500mM Imidazole, pH 7.5
  • After binding the protein sample to the HisTrap HP column 7 CV of 7% Buffer B was flowed to remove non-specifically bound proteins, and 3 CV of 40% Buffer B was flowed to elute the target protein.
  • the column eluate was dialyzed using Dialysis buffer (20mM sodium phosphate, 100mM NaCl, pH 7.0).
  • Purified protein samples were diluted in buffer (20 mM sodium phosphate, pH 5.3, 77 mM sodium chloride, and 0.01% (w/v) bovine serum albumin) by adjusting the dilution factor to fall within the standard curve range. 50 ⁇ l of the diluted sample was dispensed into each well of a 96-well plate, and a heating reaction was performed at 37°C for 10 minutes. 50 ⁇ l of 0.06% hyaluronic acid was additionally dispensed into each well. 0.06% hyaluronic acid is dissolved in 300 mM sodium phosphate buffer, pH 5.3. The sample and 0.06% hyaluronic acid were reacted at 37°C for 45 minutes.
  • buffer 20 mM sodium phosphate, pH 5.3, 77 mM sodium chloride, and 0.01% (w/v) bovine serum albumin
  • Acidic albumin solution is a solution of 0.1% albumin (BSA) dissolved in 24mM sodium acetate, 79mM acetic acid, pH 3.75 buffer. The absorbance value of the measured sample was converted to activity by a standard curve using an activity standard.
  • BSA albumin
  • the protein sample buffer was 20 mM sodium phosphate, pH 7.0, 77 mM sodium chloride, and 0.01% (w/v) bovine serum albumin, and the 0.06% hyaluronic acid aqueous solution was 20 mM sodium phosphate.
  • the same process was performed using a buffer solution, pH 7.0, dissolved in 70mM sodium chloride.
  • This activity measurement can also be measured in culture medium, but in this case, values below 300 units/mL are unreliable, so the limit of quantification, LOQ (Limit of Quantification), is set at 300 units/mL, and values below this indicate no activity. It is displayed as 0. Additionally, in the case of activity measurement using purified protein samples, the limit of quantification LOQ is set to 15 units/ ⁇ g.
  • PH20 polypeptide with the -terminus and C-terminus truncated was produced by the method of Example 1.
  • Each clone prepared in this way was purified from the culture medium obtained by transient transfection culture of animal cells, and the enzyme activity was compared at pH 5.3 and pH 7.0 by the method of Example 2.
  • mutants lacking one or two N-terminal amino acid residues in mature human hyaluronidase PH20 significantly increased the expression level in culture medium.
  • human hyaluronidase PH20 has the potential for industrial use as an injection, it is possible to obtain a variant with excellent industrial economic feasibility by producing a mutant enzyme with one or two N-terminal amino acids truncated. It shows.
  • the specific activity of the human hyaluronidase PH20 mutant enzyme composed of L36-F468 is not significantly reduced compared to the L36-Y482 PH20 mutant enzyme, but its expression in recombinant cells is extremely small, making it unsuitable for industrial use. It can be seen that it is a PH20 variant.
  • the interaction between the amino acids at the N-terminus and the amino acids located at the C-terminus of PH20 is important in the transcription and transfer process of the protein when the recombinant PH20 protein is expressed in cells. It can be seen that it affects stability, folding speed, etc. and further has a significant impact on the expression level of recombinant proteins secreted from cells. This has a very significant impact on the productivity of PH20 and its variants.
  • recombination is achieved by additionally removing 1 to 4, preferably 1 or 2, amino acid residues at the N-terminus.
  • the tertiary crystal structure of human PH20 has not yet been revealed.
  • amino acids such as F38, R39, and Y434 are located close to the asparagine side chain at position 37 at the N-terminus of PH20. While it is located and achieves an appropriate charge interaction, Leu36, the amino acid of the mature protein, does not form a specific bond with surrounding amino acids, and the hydrophobic amino acid is exposed to the aqueous solution, which adversely affects the speed and stability of conjugation and further expression during protein expression. effect can be predicted.
  • the same results as in the present invention can be predicted even in variants in which amino acids are substituted within the range of not significantly modifying the protein tertiary structure. Since this effect was confirmed in cattle and sheep PH20 with 63.6% and 63.5% homology to human PH20, and primate PH20 with more than 93.1% homology, respectively, 60%, 70%, 80%, 90%, and PH20 of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, and 99% can predict the same results as the present invention as long as the protein tertiary structure is not significantly modified.
  • 9 variants were produced in which human PH20, human serum hormone, or Ig kappa were replaced with a single peptide.
  • the sequence of the signal peptide is as listed in Table 2 below.
  • the PH20 polypeptide truncated at the N-terminus and/or C-terminus with increased enzyme activity and productivity presented in the present invention exhibits superior expression level and high enzyme activity compared to the existing recombinant PH20 polypeptide, resulting in reduced production cost when used industrially. can lead to a decrease in

Abstract

본 발명은 성숙된 동물 야생형 PH20의 N-말단에서 1 내지 7개의 아미노산 잔기가 결실된 재조합 PH20 폴리펩티드 및 이의 용도에 관한 것이다. 본 발명에서 제시하는 효소 활성과 생산성이 증가된 N-말단 및/ 또는 C-말단이 결실된 PH20 폴리펩티드는 기존의 재조합 PH20 폴리펩티드에 비해 우수한 발현량과 효소활성을 나타내어 산업적 이용시 생산 비용 절감에 따른 치료 비용의 감소를 가져올 수 있다.

Description

N-말단 및/또는 C-말단이 절단된 가용성 PH20 폴리펩티드 및 이의 용도
본 발명은 N-말단 및/또는 C-말단이 절단된 가용성 PH20 폴리펩티드 및 이의 용도에 관한 것이다.
유전공학적인 방법을 이용하여 산업적으로 유용한 단백질을 생산하고자 할 때 재조합 세포 내에서 혹은 재조합 세포에서 분비되는 단백질의 발현량을 늘리려는 시도는 끊임없이 시도되어 왔다. 기존에 통상적인 여러가지 방법들이 시도되었으며 각각의 방법은 그 나름대로 장단점을 가지고 있다. 예를 들면, cloning 단계에서 Promoter를 적절히 선택을 하는 방안이 보편적으로 사용이 되었다, 그러나 이 경우에는 단백질 folding이 세포 내에서 rate limiting step인 경우에는 사용하는 Promoter에 따라 재조합 단백질의 발현량의 증가가 예측한 대로 되지는 않는 경우가 많다 (Su Xiao 등, Curr Opin Struct Biol. 2014, June 32-38.).
세포 밖으로 분비가 되는 단백질의 발현량을 높이기 위해서 발현하고자 하는 단백질의 N 말단에 위치하는 고유의 시그널 펩티드를 다른 단백질의 시그널 펩티드로 치환하여 하여 단백질의 발현을 늘리는 방법도 사용되었다 (Kober, L., Zehe, C. & Bode, J., 2013. Optimized Signal Peptides for the Development of High Expressing CHO Cell Lines. Biotechnology and bioengineering, 110(4), pp. 1164-1173.) 이 경우 단백질 발현이 자체의 시그널 펩티드를 사용하였을 때보다 증가하는 경우도 있지만, 간혹 단백질이 발현되어 세포 내의 Endoplasmic Reticulum의 세포막을 통과하면서 Signal peptidase에 의하여 절단될 때 시그널 펩티드와 성숙한 단백질의 N 말단 아미노산 사이를 정확히 절단하지 못하는 경우가 발생하기도 한다.
단백질의 발현량을 높이기 위한 다른 시도로는 발현시키고자 하는 단백질과 Chaperon을 함께 발현시켜서 재조합 단백질의 folding을 도와주고 발현되는 단백질이 응집(aggregation)되지 않게 함으로써 발현량을 늘리는 방법 등이 있다. 그러나 이 방법은 membrane bound Chaperon을 동시에 재조합 세포 내에서 발현시켜야 하는 기술적인 문제와 Chaperon 발현에 따른 세포 내에서의 생리학적인 문제 등으로 인하여 산업적으로는 자주 사용되지 않는다.
단백질의 발현량을 높이기 위한 또다른 시도로는 재조합 단백질의 특정 부위에 부위 특이적 돌연변이(Site Directed Mutagenesis)를 일으켜 아미노산을 치환하여 발현량을 증가시키는 방법이 있다. 폴리펩티드로 구성된 단백질은 세포 내에서 생산될 때 folding을 통하여 3차 구조를 가지는데, 단백질의 특정 부위의 아미노산을 다른 아미노산으로 치환함으로써 folding에 유리한 상황을 만들어 주고, 이는 이어서 단백질의 발현량의 증가로 이어질 수 있다. 이 경우 많은 성공사례가 있기도 하나 아미노산 변형에 따른 immunogenicity의 증가에 대한 우려 등의 현실적인 문제가 내재되어 있다.
히알루로난 (히알루론산: HA)은 많은 세포들의 세포외 기질, 특히, 연결합조직 내에서 발견되는 폴리펩티드이다. 히알루로난은 또한 포유동물의 피부, 연골 및 윤활액 (synovial fluid)에서 주로 발견된다. 히알루로난은 또한 눈의 유리체액의 주요한 구성요소이다. 히알루로난은 물과 혈장 단백질의 항상성에서와 같은 각종 생리 과정에서 역할을 한다(Laurent TC 등 (1992) FASEB J 6: 2397-2404). 특정 질환들은 히알루로난의 발현 및/또는 생산과 관련이 있다. 히알루로니다제는 히알루로난을 분해하는 효소이다. 히알루로난의 가수분해를 촉매함으로써, 히알루로니다제는 히알루로난 또는 다른 글리코사미노글리칸의 축적과 관련된 질환 또는 장애를 치료하는데 사용될 수 있다. 또한, 히알루로난은 피하나 장벽의 주된 성분이기 때문에, 히알루로니다제는 조직 투과성을 증가시키고, 따라서, 피하 주사 시 치료 약제의 분산 및 전달을 증가시키기 위하여 사용될 수 있다.
천연형 PH20 폴리펩티드에 기반한 다양한 히알루로니다제들 (예컨대, 하이다제 (Hydase)™, 비트라제 (Vitrase)™, 와이다제 (Wydase)™) 이 다른 치료제와 병용하여, 일반적으로 분산제 또는 산포제로 사용되고 있다. 이들 중 다수는 양의 고환 또는 소의 고환에서 추출한 PH20을 포함하는 형태이다.
인간 PH20 단백질은 모두 509 개의 아미노산으로 구성이 되어 있으며 Sperm의 plasma membrane에 존재하는 glycophosphoinositol lipid anchored 단백질로 알려져 있다. PH20는 혈액 내에 존재하는 히알루로니다제인 Hyal1, Hyal2, Hyla3, 혹은 Hyal4가 산성 pH에서만 활성이 있는 것과는 달리 중성 pH에서도 활성을 가지고 있기 때문에 약물과 함께 혼합하여 피하 주사용으로 개발되어 산업적으로 유용하게 사용되고 있다.
최근에는 PH20의 C-말단에서 glycophosphoinositol anchor 위치를 구성하는 일부 아미노산들이 절단되어 가용성으로 전환한 447개 아미노산으로 구성된 재조합 인간 PH20 폴리펩티드인 하일레넥스 (Hylenex)™가 사용되고 있으며, 이와는 별도로 인간 PH20 폴리펩티드 변이체를 이용한 물질도 개발되고 있다.
한편, 인간 PH20은 6군데에 N-linked glycosylation된 당단백질로서 매우 복잡한 3차 구조를 가지고 있고, 산업적으로 유용한 효소를 생산하기 위해서는 CHO 세포 등의 동물세포에서 발현 후 복잡한 정제 과정을 거쳐서 사용된다. 따라서, 인간 PH20의 산업적 이용에는 인간 PH20 유전자를 함유하는 동물세포의 발효 배지내에서의 발현량에 따른 생산성 향상이 매우 중요하다.
이러한 기술적 배경하에서, 본 발명자들은 N-말단 절단 또는 N-말단 및 C-말단의 절단이 가용성 재조합 PH20 폴리펩티드의 생산성을 향상시킬 수 있음을 확인하고 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 생산성이 향상된 N-말단 및/또는 C-말단이 절단된 가용성 재조합 PH20 폴리펩티드를 제공하는 것이다.
본 발명의 목적은 상기 N-말단 및/또는 C-말단이 절단된 가용성 재조합 PH20 폴리펩티드를 코딩하는 핵산을 제공하는 것이다.
본 발명의 목적은 상기 핵산을 포함하는 재조합 발현 벡터를 제공하는 것이다.
본 발명의 목적은 상기 재조합 발현 벡터로 형질전환된 숙주세포를 제공하는 것이다.
본 발명의 목적은 상기 숙주세포를 배양하는 단계를 포함하는 N-말단 및/또는 C-말단이 절단된 가용성 재조합 PH20 폴리펩티드의 제조방법에 관한 것이다.
본 발명은 성숙된 동물 야생형 PH20의 N-말단에서 1 내지 7개의 아미노산 잔기가 결실된 재조합 PH20 폴리펩티드를 제공한다.
구체적으로, 본 발명에 따른 성숙된 동물 야생형 PH20의 N-말단에서 아미노산 잔기가 결실된 재조합 PH20 폴리펩티드는
(a) 서열번호 1의 아미노산 서열을 갖는 인간 야생형 PH20 중 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드;
(b) 서열번호 2 내지 서열번호 8 중 어느 하나의 아미노산 서열을 갖는 영장류 야생형 PH20 중 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드;
(c) 서열번호 9의 아미노산 서열을 갖는 소 야생형 PH20 중 D37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드; 및
(d) 서열번호 10의 아미노산 서열을 갖는 양 야생형 PH20 중 D37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드;
로 구성된 군에서 선택된 것을 특징으로 할 수 있지만 이에 한정되는 것은 아니다.
본 발명은 상기 재조합 PH20 폴리펩티드를 코딩하는 핵산과 상기 핵산을 포함하는 재조합 발현 벡터를 제공한다.
또한, 본 발명은 상기 재조합 발현 벡터로 형질전환된 숙주세포와, 상기 숙주세포를 배양하는 단계를 포함하는 N-말단 및/또는 C-말단이 절단된 가용성 재조합 PH20 폴리펩티드의 제조방법을 제공한다.
도 1은 본 발명의 구체적 실시예에 따라 서열번호 1의 C-말단이 Y482 또는 F468의 경우에 각각 N-말단이 L36, N37, F38, R39, A40으로 시작하는 PH20 폴리펩티드의 배양액에서의 효소 활성을 제시한 도면이다. 각 활성은 가장 긴 아미노산 길이를 가지는 L36-Y482를 기준으로 상대 활성 백분율로 표시하였다.
도 2는 본 발명의 구체적 실시예에 따라 서열번호 1의 C-말단이 Y482 또는 F468의 경우에 각각 N-말단이 L36, N37, F38, R39, A40으로 시작하는 정제된 PH20 폴리펩티드의 pH 5.3에서의 효소 활성을 비활성(Specific Activity)으로 제시한 도면이다. 각 활성은 가장 긴 아미노산 길이를 가지는 L36-Y482를 기준으로 상대 활성 백분율로 표시하였다.
도 3은 본 발명의 구체적 실시예에 따라 서열번호 1의 C-말단이 Y482 또는 F468의 경우에 각각 N-말단이 L36, N37, F38, R39, A40으로 시작하는 정제된 PH20 폴리펩티드의 pH 7.0에서의 효소 활성을 Specific Activity로 제시한 도면이다. 각 활성은 가장 긴 아미노산 길이를 가지는 L36-Y482를 기준으로 상대 활성 백분율로 표시하였다.
도 4는 서열번호 1, 서열번호 2, 서열번호 9, 서열번호 10의 아미노산 서열을 Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/)를 사용하여 다중 서열 정렬 (Multiple Sequence Alignment)를 실시한 결과이다.
도 5는 본 발명의 구체적 실시예에 따라 서열번호 2 (C-말단이 Y483), 서열번호 9 (C-말단이 H478), 서열번호 10 (C-말단이 H477)의 경우에 각각 N-말단이 L36, N37 또는 D37, F38, R39, A40, P41로 시작하는 PH20 폴리펩티드의 배양액의 효소 활성을 제시한 도면이다. 각 활성은 측정값으로 표시하였다.
도 6은 본 발명의 구체적 실시예에 따라 서열번호 2 (C-말단이 Y483), 서열번호 9 (C-말단이 H478), 서열번호 10 (C-말단이 H477)의 경우에 각각 N-말단이 L36, N37, F38, R39, A40, P41로 시작하는 정제된 PH20 폴리펩티드의 pH 5.3에서의 효소 활성을 Specific Activity로 제시한 도면이다. 각 활성은 측정값으로 표시하였다.
도 7은 본 발명의 구체적 실시예에 따라 서열번호 1의 L36-Y482, N37-482, F38-Y482에 대해 시그널 펩티드(signal peptide)를 달리하여 배양액과 정제된 상태에서의 PH20 폴리펩티드의 pH 5.3에서의 효소 활성을 측정한 결과이다. Human Serum Albumin의 시그널 펩티드(signal peptide)를 사용하는 경우의 배양액 및 정제 단백질의 효소 활성, Human PH20의 시그널 펩티드(signal peptide)를 사용하는 경우의 배양액 및, 정제 단백질의 효소 활성, Human Immunoglobulin kappa의 시그널 펩티드(signal peptide)를 사용하는 경우의 배양액 및 정제 단백질의 효소 활성을 표시하였다. 배양액의 효소 활성 척도는 막대그래프로 주 Y-축에 제시되어 있고, 정제 단백질의 활성 척도는 꺽은선 그래프로 종 Y-축에 제시되어 있다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
PH20의 C-말단에서 절단되어 가용성으로 전환된 재조합 PH20 폴리펩티드의 산업적 이용 가능성을 확장하기 위하여 본 발명에서는 PH20의 N-말단을 추가 절단하여 생산성이 월등히 증가된 N-말단 및/또는 C-말단 절단 PH20 폴리펩티드를 제시한다. 본 발명에서의 “가용성(soluble)”은 수용액 상에서 응집 등이 일어나지 않고 활성을 가지는 3차원 구조를 가지는 형태를 의미한다.
이에 따라 본 발명은 성숙된 동물 야생형 PH20의 N-말단에서 1 내지 7개의 아미노산 잔기, 바람직하게는 1 내지 6개의 아미노산 잔기, 바람직하게는 1 내지 5개의 아미노산 잔기, 바람직하게는 1 내지 4개의 아미노산 잔기, 바람직하게는 1 내지 3개의 아미노산 잔기, 바람직하게는 1 내지 2개의 아미노산 잔기, 바람직하게는 1개의 아미노산 잔기가 결실된 재조합 PH20 폴리펩티드에 관한 것이다.
본 발명에서 성숙된 동물 야생형 PH20은 목적하는 기능을 나타내는 형태의 재조합 PH20 폴리펩티드를 의미할 수 있다. 본 발명에 따른 성숙된 동물 야생형 PH20은 예를 들어, 세포 외부로 성숙된 동물 야생형 PH20의 분비를 촉진시키는 시그널 펩티드 등이 분비 과정에서 절단된 상태를 의미할 수 있다.
상기 동물은 예를 들어, 포유류, 설치류 등일 수 있으며, 예를 들어, 인간, 래트, 마우스, 햄스터, 토끼, 돼지, 소, 사슴, 양, 원숭이 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 동물 야생형 PH20은 예를 들어,
(a) 서열번호 1의 아미노산 서열을 갖는 인간 야생형 PH20 중 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드;
(b) 서열번호 2 내지 서열번호 8 중 어느 하나의 아미노산의 서열을 갖는 영장류 야생형 PH20 중 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드;
(c) 서열번호 9의 아미노산 서열을 갖는 소 야생형 PH20 중 D37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드; 또는
(d) 서열번호 10의 아미노산 서열을 갖는 양 야생형 PH20 중 D37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드를 포함할 수 있지만 이에 한정되는 것은 아니다.
Figure PCTKR2023008621-appb-img-000001
Figure PCTKR2023008621-appb-img-000002
Figure PCTKR2023008621-appb-img-000003
Figure PCTKR2023008621-appb-img-000004
Figure PCTKR2023008621-appb-img-000005
인체에 존재하는 Hyaluronidase는 Plasma나 기타 기관에 존재하며, 산성 pH에서 활성을 가진 Hyal1, Hyal2, Hyal3, Hyal4가 있으며, 정자의 첨체에서 발현되고, 수정 과정에서 역할을 하는 PH20이 있다.
이 중 서열번호 1의 아미노산 서열을 갖는 인간 PH20 폴리펩티드는 M1 내지 T35의 Signal sequence와 L36 내지 S490까지의 Hyaluronidase 활성 부위, A491 내지 L509의 C-말단 GPI (Glycosyl-phosphatidyl inositol)-anchored sequence로 구성되어 있으며, C-말단 GPI-anchored Sequence 전부를 결여한 형태로 가용성으로 전환한 형태의 재조합 PH20 폴리펩티드는 생체 내에서 치료제, 분산제 또는 산포제로 사용하고 있다. 특히, C 말단의 아미노산 서열 중 일부 즉, I465 내지 L509 사이의 어떤 부분을 절단하는 경우에도 가용성은 유지하면서 효소 활성도 유지된다는 보고가 있다. 상업용 제품으로 개발되는 경우에는 C-말단을 482번으로 하고 있다. 하지만, 이 경우에는 Signal Sequence를 제외한 N-말단의 L36에서 시작되는 서열은 유지하고 있었다(WO 2010/077297A 등).
최근에 인간 PH20 폴리펩티드의 변이체에서 N-말단을 절단하여, L36 이외에도 N37, F38, R39, A40, P41, P42로 시작하는 인간 PH20 폴리펩티드 변이체가 효소 활성이 있음을 제시하며 이를 토대로 하여 열안정성과 효소 활성이 우수한 히알루로니다제 변이체가 개발된 바 있다(WO 2020/022791A 등).
원숭이 (Nasalis larvatus)의 PH20 폴리펩티드의 경우에는 인간 PH20 폴리펩티드와 93.1%의 서열 상동성을 갖고 있다. 따라서, 도 4의 다중서열분석 결과에 의거하여 원숭이 Nasalis larvatus의 PH20 폴리펩티드의 경우에는 C-말단이 Y483으로 끝난다고 예측이 가능하다.
소 (Bos taurus)의 PH20 폴리펩티드와 양(Ovis aries)의 PH20 폴리펩티드는 서로 간 90.6%의 서열 상동성을 갖으며, 인간 PH20 폴리펩티드와는 각각 63.6%, 63.5%의 서열 상동성을 갖고 있다. Meyer 등(1997)에 의하면 소 Bos taurus의 PH20 폴리펩티드의 경우에 가용성 폴리펩티드는 C-말단이 H478에서 끝난다고 보고되어 있다. 이러한 결과를 도 4의 다중서열분석 결과에 의거하면 양 Ovis aries의 PH20 폴리펩티드의 경우에는 C-말단이 H477에서 끝난다고 예측이 가능하다.
본 발명에서는 성숙된 천연형 PH20 폴리펩티드에서도 N-말단을 추가 절단, 즉 아미노산 잔기를 추가로 결실시켜 생산성이 증가된 N-말단 및 C-말단 절단 재조합 PH20 폴리펩티드를 제시한다. 본 발명에서 N-말단 및 C-말단 절단 재조합 PH20 폴리펩티드는 “PH20 변이체”와 실질적으로 동일한 개념으로 사용된다.
본 발명에 따른 재조합 PH20 폴리펩티드는 서열번호 1의 아미노산 서열을 갖는 야생형 PH20 중 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된다.
구체적으로, 본 발명에 따른 재조합 PH20 폴리펩티드는 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 서열번호 1의 아미노산 서열 중 N37, F38, R39, A40, P41, P42에서 시작하는 서열을 포함할 수 있다. 더욱 구체적으로, 본 발명에 따른 재조합 PH20 폴리펩티드는 서열번호 1의 아미노산 서열 중 N37 또는 F38에서 시작하는 서열을 포함할 수 있다.
N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되었다는 것은 N-말단의 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기의 바로 앞 아미노산 잔기까지가 절단되어 결실되었다는 의미이다.
예를 들어, N37, F38, R39, A40, P41, P42 아미노산 잔기 앞에서의 절단이 일어났다는 표현은, 각각 서열번호 1의 아미노산 서열에서 N37 바로 앞 잔기인 36번 잔기까지, F38 바로 앞 잔기인 37 잔기까지, R39 바로 앞 잔기인 38 잔기까지, A40 바로 앞 잔기인 39 잔기까지, P41 바로 앞 잔기인 40 잔기까지, P42 바로 앞 잔기인 41 잔기까지 절단되어 제거되었다는 것을 의미한다.
본 발명에 따른 재조합 PH20 폴리펩티드는 추가적으로, C-말단에서의 일부 아미노산 잔기가 결실될 수 있다. 구체적으로, 본 발명에 따른 재조합 PH20 폴리펩티드는 서열번호 1의 아미노산 서열 중 F468 내지 Y482로 구성된 군에서 선택된 아미노산 잔기 다음에서 절단되어 C-말단의 아미노산 잔기가 결실될 수 있다. 더욱 구체적으로, 본 발명에 따른 재조합 PH20 폴리펩티드는 서열번호 1의 아미노산 서열 중 F468 또는 Y482로 끝나는 서열을 포함할 수 있다.
서열번호 1의 아미노산 서열 중 F468 내지 Y482로 구성된 군에서 선택된 아미노산 잔기 다음에서 절단되어 C-말단의 아미노산 잔기가 결실되었다는 것은 F468 내지 Y482로 구성된 군에서 선택된 아미노산 잔기 바로 다음 아미노산 잔기부터 절단되어 결실되었다는 의미이다. 예를 들어, F468 또는 Y482 잔기 다음에서 절단은 서열번호 1의 아미노산 서열 중 F468 또는 Y482 다음 잔기부터 절단되어 제거되었음을 의미한다.
구체적인 실시예에서, 본 발명에 따른 재조합 PH20 폴리펩티드는 다음으로 구성된 군에서 선택될 수 있다:
(1) 서열번호 1의 아미노산 서열 중 N37에서 시작하고, Y482로 끝나는 서열(N37-Y482)을 포함하는 PH20 폴리펩티드;
(2) 서열번호 1의 아미노산 서열 중 N37에서 시작하고, F468로 끝나는 서열(N37-F468)을 포함하는 PH20 폴리펩티드;
(3) 서열번호 1의 아미노산 서열 중 F38에서 시작하고, Y482로 끝나는 서열(F38-Y482)을 포함하는 PH20 폴리펩티드; 또는
(4) 서열번호 1의 아미노산 서열 중 F38에서 시작하고, F468로 끝나는 서열(F38-Y468)을 포함하는 PH20 폴리펩티드.
(5) 서열번호 2 내지 서열번호 8 중 어느 하나의 아미노산 서열 중 N37에서 시작하고, L490으로 끝나는 서열(N37-L490)을 포함하는 PH20 폴리펩티드;
(6) 서열번호 2 내지 서열번호 8 중 어느 하나의 아미노산 서열 중 F38에서 시작하고, L490으로 끝나는 서열(F38-L490)을 포함하는 PH20 폴리펩티드;
(7) 서열번호 9의 아미노산 서열 중 D37에서 시작하고, H478로 끝나는 서열(D37-H478)을 포함하는 PH20 폴리펩티드;
(8) 서열번호 9의 아미노산 서열 중 F38에서 시작하고, H478로 끝나는 서열(F38-H478)을 포함하는 PH20 폴리펩티드;
(9) 서열번호 10의 아미노산 서열 중 D37에서 시작하고, H477로 끝나는 서열(D37-H477)을 포함하는 PH20 폴리펩티드;
(10) 서열번호 10의 아미노산 서열 중 F38에서 시작하고, H477로 끝나는 서열(F38-H477)을 포함하는 PH20 폴리펩티드;
(11) 서열번호 10의 아미노산 서열 중 R39에서 시작하고, H477로 끝나는 서열(R39-H477)을 포함하는 PH20 폴리펩티드; 및
(12) 서열번호 10의 아미노산 서열 중 A40에서 시작하고, H477로 끝나는 서열(A40-H477)을 포함하는 PH20 폴리펩티드.
본 발명은 다른 측면에서, 상기 재조합 PH20 폴리펩티드를 포함하는 암 치료용 조성물 및 이를 이용한 암 치료방법을 제공한다.
상기 암은 특별히 제한되지 않으며, 고형암 및 혈액암을 모두 포함한다. 이러한 암의 예로는 흑색종 등의 피부암, 간암, 간세포암(hepatocellular carcinoma), 위암, 유방암, 폐암, 난소암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 대장암, 결장암, 자궁경부암, 뇌암, 전립선암, 골암, 갑상선암, 부갑상선암, 신장암, 식도암, 담도암, 고환암, 직장암, 두경부암, 경추암, 요관암, 골육종, 신경아세포종, 섬유육종, 횡문근육종, 성상세포종, 신경모세포종 및 신경교종으로 이루어진 군에서 선택될 수 있지만, 이에 한정되는 것은 아니다. 바람직하게는 본 발명의 조성물로 치료할 수 있는 암은 대장암, 유방암, 폐암 및 신장암으로 구성된 군에서 선택될 수 있지만, 이에 한정되는 것은 아니다.
상기 조성물은 약학 조성물일 수 있다. 상기 약학 조성물은 약학적으로 허용 가능한 담체를 추가로 포함할 수 있으며, 상기 담체는 약물의 제제화에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네랄 오일 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 상기 약학 조성물은 또한 약학 조성물 제조에 통상적으로 사용되는 희석제, 부형제, 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제로 이루어진 군에서 선택된 1종 이상을 추가로 포함할 수 있다.
상기 약학 조성물은 경구 또는 비경구로 투여할 수 있다. 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 내피 투여, 국소 투여, 비내 투여, 폐내 투여 및 직장내 투여 등으로 투여할 수 있다. 경구 투여 시, 단백질 또는 펩티드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화될 수 있다. 또한, 상기 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
상기 약학적 조성물은 오일 또는 수성 매질중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 등의 형태로 제형화될 수 있으며, 제형화를 위하여 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
특히, 본 발명에 따른 암 치료용 조성물은 다른 항암제와의 병용 치료 용도로 사용되는 것을 특징으로 한다.
상기 병용 치료 용도로 사용가능한 항암제는 화학항암제, 항체 형태의 항암제, RNAi, 세포 치료제 등이 바람직하지만 이에 한정되는 것은 아니다.
상기 병용 치료 용도로 사용가능한 항암제는 면역항암제, 특히 바람직하게는 면역체크포인트 저해제(immune checkpoint inhibitor)이지만 이에 한정되는 것은 아니다.
본 발명은 다른 관점에서, 본 발명에 따른 성숙된 동물 야생형 PH20의 N-말단 및/또는 C-말단에서의 아미노산 잔기가 결실된 재조합 PH20 폴리펩티드를 코딩하는 핵산에 관한 것이다.
본 명세서에서 사용되는 핵산은 세포, 세포 용해물(lysate) 중에 존재하거나, 또는 부분적으로 정제된 형태 또는 실질적으로 순수한 형태로 존재할 수도 있다. 핵산은 알칼리/SDS 처리, CsCl 밴드화(banding), 컬럼 크로마토그래피, 아가로스 겔 전기 영동 및 해당 기술분야에 잘 알려진 기타의 것을 포함하는 표준 기술에 의해 다른 세포 성분 또는 기타 오염 물질, 예를 들어 다른 세포의 핵산 또는 단백질로부터 정제되어 나올 경우 "단리"되거나 "실질적으로 순수하게 된" 것이다. 본 발명의 핵산은 예를 들어 DNA 또는 RNA일 수 있다.
본 발명은 또 다른 관점에서, 상기 핵산을 포함하는 벡터, 특히 재조합 발현 벡터에 관한 것이다. 본 발명에 따른 재조합 PH20 재조합 폴리펩티드의 발현을 위하여, PH20 재조합 폴리펩티드를 코딩하는 DNA를 표준 분자 생물학 기술(예를 들어 PCR 증폭 또는 PH20 재조합 폴리펩티드를 발현하는 하이브리도마를 사용한 cDNA 클로닝)로 수득할 수 있으며, DNA가 전사 및 번역 제어 서열에 "작동되도록 결합"되어 발현 벡터 내로 삽입될 수 있다.
본 명세서에서 사용되는 용어 "작동되도록 결합"은 벡터 내의 전사 및 번역 제어 서열이 PH20 재조합 폴리펩티드를 코딩하는 유전자의 전사 및 번역을 조절하는 의도된 기능을 하도록 PH20 재조합 폴리펩티드를 코딩하는 유전자가 벡터 내로 라이게이션된다는 것을 의미할 수 있다. 발현 벡터 및 발현 제어 서열은 사용되는 발현용 숙주세포와 적합하도록 선택된다. PH20 재조합 폴리펩티드를 코딩하는 유전자는 표준 방법(예를 들어 PH20 재조합 폴리펩티드를 코딩하는 유전자 단편 및 벡터 상의 상보성 제한 효소 부위의 라이게이션, 또는 제한 효소 부위가 전혀 존재하지 않을 경우 블런트(blunt) 말단 라이게이션)으로 발현 벡터 내로 삽입된다.
또한, 상기 재조합 발현 벡터는 숙주세포에서 PH20 재조합 폴리펩티드를 코딩하는 유전자의 발현을 제어하는 조절서열을 지닌다. "조절서열"은 PH20 재조합 폴리펩티드를 코딩하는 유전자의 전사 또는 번역을 제어하는 프로모터, 인핸서 및 기타 발현 제어 요소(예를 들어 폴리아데닐화 신호)를 포함할 수 있다. 통상의 기술자는 형질전환시킬 숙주세포의 선택, 단백질의 발현 수준 등과 같은 인자에 따라 조절 서열을 달리 선택하여, 발현 벡터의 디자인이 달라질 수 있음을 인식할 수 있다.
본 발명은 또 다른 관점에서, 상기 핵산 또는 상기 벡터를 포함하는 숙주세포에 관한 것이다. 본 발명에 따른 숙주 세포는 동물세포, 식물세포, 효모, 대장균 및 곤충세포로 구성된 군에서 선택되는 것이 바람직하지만, 이에 한정되는 것은 아니다.
구체적으로는 본 발명에 따른 숙주세포는 대장균, 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스 속 (Streptomyces sp.), 슈도모나스 속(Pseudomonas sp.), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스 속(Staphylococcus sp.)과 같은 원핵 세포일 수 있다. 또한, 아스페르길러스 속(Aspergillus sp.)과 같은 진균, 피치아 파스토리스(Pichia pastoris), 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 쉬조사카로마세스 속(Schizosaccharomyces sp.) 및 뉴로스포라 크라사(Neurospora crassa)와 같은 효모, 그 밖의 하등진핵 세포, 및 곤충으로부터의 세포와 같은 고등 진핵생물의 세포와 같은 진핵 세포일 수 있다.
또한 본 발명에 따른 숙주세포는 식물이나 포유동물로부터 유래할 수 있다. 바람직하게는, 원숭이 신장 세포7(COS7: monkey kidney cells)세포, NSO 세포, SP2/0, 차이니즈 햄스터 난소(CHO: Chinese hamster ovary) 세포, W138, 어린 햄스터 신장(BHK: baby hamster kidney)세포, MDCK, 골수종 세포주, HuT 78 세포 및 HEK293 세포 등이 이용가능하지만 이에 한정되지 않는다. 특히 바람직하게는 CHO 세포가 사용될 수 있다.
상기 핵산 또는 벡터는 숙주세포에 형질주입 또는 트랜스펙션 (transfection)된다. "형질주입" 또는 "트랜스펙션” 시키기 위해 원핵 또는 진핵 숙주세포 내로 외인성 핵산(DNA 또는 RNA)을 도입하는 데에 통상 사용되는 여러 종류의 다양한 기술, 예를 들어 전기 영동법, 인산칼슘 침전법, DEAE-덱스트란 트랜스펙션 또는 리포펙션(lipofection) 등을 사용할 수 있다. 본 발명에 따른 PH20 재조합 폴리펩티드를 발현시키기 위해 다양한 발현 숙주/벡터 조합이 이용될 수 있다. 진핵숙주에 적합한 발현 벡터로는 이들로 한정되는 것은 아니지만 SV40, 소 유두종바이러스, 아데노바이러스, 아데노-연관 바이러스(adeno-associated virus), 시토메갈로바이러스 및 레트로바이러스로부터 유래된 발현 조절 서열이 포함된다. 세균 숙주에 사용할 수 있는 발현 벡터에는 pET, pRSET, pBluescript, pGEX2T, pUC벡터, col E1, pCR1, pBR322, pMB9 및 이들의 유도체와 같이 대장균(Escherichia coli)에서 얻어지는 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, λgt10과 λgt11, NM989와 같은 매우 다양한 파지 람다(phage lambda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라멘트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 효모 세포에 유용한 발현 벡터는 2℃ 플라스미드 및 그의 유도체이다. 곤충 세포에 유용한 벡터는 pVL941이다.
본 발명은 또 다른 관점에서, 숙주세포를 배양하여 본 발명에 따른 재조합 PH20 재조합 폴리펩티드를 발현시키는 단계를 포함하는 본 발명에 따른 재조합 PH20 재조합 폴리펩티드의 제조방법에 관한 것이다.
상기 재조합 PH20 재조합 폴리펩티드를 발현할 수 있는 재조합 발현 벡터가 포유류 숙주세포 내로 도입될 경우, PH20 재조합 폴리펩티드는 숙주세포에서 발현되기에 충분한 기간 동안, 또는 더 바람직하게는 숙주세포가 배양되는 배양 배지 내로 PH20 재조합 폴리펩티드가 분비되게 하기에 충분한 기간 동안 숙주세포를 배양함으로써 제조될 수 있다.
경우에 따라서, 발현된 PH20 재조합 폴리펩티드는 숙주세포로부터 분리하여 균일하도록 정제할 수 있다. 상기 PH20 재조합 폴리펩티드의 분리 또는 정제는 통상의 단백질에서 사용되고 있는 분리, 정제 방법, 예를 들어 크로마토그래피에 의해 수행될 수 있다. 상기 크로마토그래피는 예를 들어, 친화성 크로마토그래피, 이온교환 크로마토그래피 또는 소수성 크로마토그래피에서 선택된 하나 이상의 조합일 수 있지만, 이에 한정되지는 않는다. 상기 크로마토그래피 이외에, 추가로 여과, 초여과, 염석, 투석 등을 조합하여 사용할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 해당 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예 1. N-말단 및 C-말단이 절단된 재조합 PH20 히알루로니다제의 클로닝
PH20 폴리펩티드 발현을 위해, 천연형 인간 PH20 폴리펩티드의 L36에서 S509까지의 아미노산을 암호화하고 있는 서열, 원숭이 Nasalis larvatus의 PH20 폴리펩티드 (Uniprot ID: H2DJA7)은 아미노산 M1~L510을 암호화하는 DNA 서열, 소 Bos taurus의 PH20 폴리펩티드 (Uniprot ID: F1MTV1)은 아미노산 L36~H478을 암호화하는 DNA 서열, 양 Ovis aries의 PH20 폴리펩티드 (Uniprot ID: W5NSU1)은 아미노산 L36~H477을 암호화하는 DNA 서열을 각각 Genscript사(한국)에서 합성하였다.
합성된 각각의 PH20 폴리펩티드 유전자를 중합효소 연쇄반응(이하, PCR이라 함)에 의해 증폭시키고, pcDNA3.4-TOPO 벡터의 XhoI 및 NotI 제한효소 부위에 삽입하였다. ExpiCHO 세포에서의 발현을 위해, 인간 혈청 알부민 시그널 펩티드를 사용하였다. HisTrap 컬럼을 이용한 단백질 정제를 위해, His-Tag의 DNA 서열을 PH20 cDNA의 3'-말단에 위치시켰다. N-말단 및 C-말단 절단 PH20 폴리펩티드는 PCR을 이용하여 수행하였으며, DNA 염기서열 분석을 통해 아미노산 치환을 확인하였다.
인간 PH20 폴리펩티드의 N-말단이 절단된 변이체 제작을 위해 L36-Y482를 포함하는 플라스미드를 제작하고, 이를 주형으로 사용하여 순차적으로 N-말단의 아미노산이 추가적으로 1개씩 제거된 변이체 4종을 제작하고, 또한 각 변이체에 대해 C-말단이 F468로 끝나는 변이체 4종도 제작하였다.
원숭이 (Nasalis larvatus) PH20 폴리펩티드의 N-말단이 절단된 변이체 제작을 위해 L36~Y483을 포함하는 플라스미드를 제작하고, 이를 주형으로 사용하여 순차적으로 N-말단의 아미노산이 추가적으로 1개씩 제거된 변이체 5종을 제작하였다.
소(Bos Taurus) PH20의 N-말단이 절단된 변이체 제작을 위해 L36~H478을 포함하는 플라스미드를 제작하고, 이를 주형으로 사용하여 순차적으로 N-말단의 아미노산이 추가적으로 1개씩 제거된 변이체 5종을 제작하였다.
양(Ovis aries) PH20의 N- 말단이 절단된 변이체 제작을 위해 L36~H477을 포함하는 플라스미드를 제작하고, 이를 주형으로 사용하여 순차적으로 N-말단의 아미노산이 추가적으로 1개씩 제거된 변이체 5종을 제작하였다.
실시예 2. N-말단 및 C-말단이 절단된 재조합 PH20 히알루로니다제의 발현 및 정제
N-말단 및 C-말단이 절단된 PH20 폴리펩티드의 발현은 ExpiCHO 발현 시스템을 사용하여 수행하였다. ExpiCHO 세포의 세포 밀도가 6x106 cells/mL에 도달했을 때, pcDNA3.4-TOPO 벡터에 삽입된 N-말단 및 C-말단 절단 PH20 폴리펩티드의 cDNA를 포함하는 플라스미드를 ExpiFectamine CHO 시약을 사용하여 ExpiCHO 세포 내로 형질 감염시켰다. 세포 배양 배지로서, ExpiCHO 발현 배지 (100 내지 500 mL)를 사용하였다. 형질감염 후, ExpiCHO 세포를 총 6일 동안 130 rpm에서 진탕 배양하였고, 그 동안 세포를 37℃에서 1일 동안 배양하고, 5일 동안 32℃의 더 낮은 온도에서 추가로 배양하였다. 배양 완료 후, 세포 상층액을 10,000 rpm에서 30분 동안 원심분리하여 수집하였다.
ExpiCHO 세포에서 생산한 C-말단에 His-tag이 붙은 PH20 폴리펩티드는 AKTA prime 장비나 이와 유사한 장비(GE Healthcare사)를 이용하여 2단계의 컬럼 크로마토그래피로 정제하였는데, 이 인간 PH20, Nasalis larvatus PH20의 경우에는 pI가 6에 가까우므로 Anion Exchange Chromatography인 Q Sepharose를 사용하였고, 소와 양의 PH20 폴리펩티드의 경우에는 pI가 8 이상이므로 Cation Exchange Chromatography인 Capto S 컬럼을 사용하여 1단계 정제를 실시하였고, 각 단백질은 His-Tag 친화 Chromatography인 HisTrap HP 컬럼으로 2 단계 정제를 실시하였다.
Q Sepharose 컬럼을 이용한 단백질 정제를 위해서 버퍼 A (20 mM sodium phosphate, pH 7.5)와 버퍼 B (20 mM sodium phosphate, pH 7.5, 0.5 M NaCl)를 제조하였다. 단백질을 Q Sepharose 컬럼에 결합시키고, 버퍼 A를 5 CV 흘려주어 비 특이적으로 결합한 단백질을 제거한 후, 0~100%의 농도 기울기로 버퍼 B를 5 CV 흘려주어 단백질을 용출하였다.
Capto S 컬럼을 이용한 단백질 정제를 위해서 버퍼 A (20 mM sodium phosphate, 15 mM NaCl, pH 6.0)와 버퍼 B (20 mM sodium phosphate, 500 mM NaCl, pH 6.0)를 각각 제조하였다. 배양액의 pH와 conductivity를 Buffer A와 동일하게 맞추고 0.22 μm pore 크기의 membrane에 배양액을 여과하였다. 다음 Capto S 컬럼에 단백질을 결합시킨 후 버퍼 A를 3 column volume (CV) 흘려주어 비특이적(non-specific)으로 결합한 단백질을 제거하였다. Buffer B를 4 CV 순차적으로 흘려주어 타겟 단백질을 용출하였다.
HisTrap HP 컬럼을 이용한 단백질 정제를 위해서 Buffer A (20 mM sodium phosphate, 500 mM NaCl, pH 7.5)와 Buffer B (20 mM sodium phosphate, 500 mM NaCl, 500 mM Imidazole, pH 7.5)를 각각 제조하였다. 단백질 시료를 HisTrap HP 컬럼에 결합시킨 후 비특이적으로 결합된 단백질을 제거하고자 7% Buffer B를 7 CV 흘려주었으며, 타겟 단백질의 용출을 위해 40% Buffer B를 3 CV 흘려주었다. 컬럼 용출액은 Dialysis buffer (20 mM sodium phosphate, 100 mM NaCl, pH 7.0)를 이용하여 투석하였다.
실시예 3 N-말단 및 C-말단이 절단된 재조합 PH20 히알루로니다제의 N-말단 서열 분석
정제된 N-말단 및 C-말단이 절단된 PH20 폴리펩티드를 7.5% SDS-PAGE gel의 Lane당 10 μg씩 Loading하고 전기영동 (150V, 1시간)을 수행하였다. 이후, 전기 영동으로 전개된 단백질이 포함된 Gel을 Blotting Kit에 PVDF Membrane과 함께 넣어서 100V 전압으로 90분간 Transfer 하였고, Transfer가 잘 되었는지를 Ponceau S 염색을 통해 확인하였다. 최종적으로, 각 단백질 띠를 절개하여 얻은 시료를 PPSQ-53A Protein sequencer (Shimadzu사, 일본)으로 N말단 5개의 아미노산에 대해 서열분석을 실시하였다.
N-말단 서열 분석의 결과, 다른 PH20 폴리펩티드의 경우에는 예상되는 서열이 확인이 되었지만, 인간 PH20 폴리펩티드의 경우에 N37-Y482, N37-F468의 경우에는 N말단의 아미노산이 Asparagine이 아닌 Aspartate로 일부 발견되어서 De-amidation이 발생한 것으로 나타났다. 이 결과와 도 4의 다중 서열 분석 결과에서 해당 아미노산이 소나 양의 경우에는 Aspartate로 나타나는 것을 볼 때, 이 위치의 아미노산은 Aspartate의 경우가 단백질의 구조를 안정화시켜 주는 역할을 하는 것으로 추정이 가능하다.
실시예 4 N-말단 및 C-말단이 절단된 재조합 PH20 히알루로니다제 활성 측정
히알루로니다제의 활성은 탁도 분석법으로 측정하였는데, 이는 히알루론산이 알부민(BSA)과 혼합될 때 생성되는 침전물로 인해 발생하는 탁도의 정도를 흡광도로 측정하는 방법이다. 히알루론산이 PH20 폴리펩티드에 의해 가수분해되면, 알부민과 혼합시 생성되는 침전물의 탁도/흡광도가 감소한다. 이 분석은 pH 5.3에서 일반적으로 다음과 같이 수행된다. 활성(units)을 알고 있는 히알루로니다아제 표준물질을 6, 8, 10, 12, 15 및 20 units/mL로 희석하고 각 시험관에 제조하였다. 정제된 단백질 시료를 완충액 (20 mM 인산나트륨, pH 5.3, 77 mM 염화나트륨 및 0.01% (w/v) 소 혈청 알부민)에서, 희석 인자를 표준 곡선 범위 내에 속하도록 조정함으로써 희석하였다. 50 ㎕의 희석된 시료를 96-well plate의 각 Well에 분주하고, 37℃ 에서 10분 동안 가온 반응을 하였다. 0.06% 히알루론산 50 ㎕를 각 Well에 추가 분주하였다. 0.06% 히알루론산은 300 mM 인산나트륨 완충액, pH 5.3에 녹아 있는 상태이다. 시료와 0.06% 히알루론산을 37℃ 에서 45분간 반응시켰다. 반응 종료 후, 효소-기질 반응 용액 40 ㎕를 산성 알부민 용액 200 ㎕에 분주하고, 실온에서 19분 동안 방치하였다. 그 후 분광광도계를 이용하여 600 nm에서 흡광도를 측정하였다. 산성 알부민 용액은 0.1% 알부민(BSA)이 24mM 아세트산나트륨, 79mM 아세트산, pH 3.75 완충액에 용해되어 있는 용액이다. 측정된 시료의 흡광도 값을 활성 표준품에 의한 표준 곡선에 의하여 활성으로 전환하였다.
위의 과정을 pH 7.0에서 수행할 때에는 단백질 시료 완충액을 20 mM 인산나트륨, pH 7.0, 77 mM 염화나트륨 및 0.01% (w/v) 소 혈청 알부민을 사용하였고, 0.06% 히알루론산 수용액은 20 mM 인산나트륨 완충액, pH 7.0, 70mM 염화나트륨에 녹인 것을 사용하여 동일한 과정을 진행하였다.
이러한 활성 측정은 배양액에서도 측정이 가능한데, 이 경우에는 300 units/mL 이하의 값은 신뢰성이 없기 때문에 정량 한계, LOQ (Limit of Quantification)는 300 units/mL로 설정하고 이 이하의 값은 활성 없음, 0으로 표시하였다. 또한 정제한 단백질 시료를 이용한 활성 측정의 경우에는 정량 한계 LOQ를 15 units/㎍으로 설정된다.
서열번호 1의 천연형 PH20 폴리펩티드의 M1-T35의 Signal Sequence를 제외한 부분에서 N-말단을 L36, N37, F38, R39, A40으로 조정하고, C-말단은 F468, Y482를 선정하여 총 10개의 N-말단 및 C-말단이 절단된 PH20 폴리펩티드를 실시예 1의 방법으로 제작하였다. 이렇게 제조된 각 클론을 동물세포의 Transient Transfection 배양으로 얻은 배양액에서 정제를 하여 효소 활성을 pH 5.3과 pH 7.0에서 실시예 2의 방법으로 비교하였다.
도 1에 기재된 바와 같이, 각 배양액의 인간 PH20 활성을 비교한 결과, 천연형 N-말단을 갖고 있는 성숙된 L36-Y482의 배양액에서의 활성에 대비하여 놀랍게도 N37-Y482의 배양액에서의 활성이 3배 이상 높았고, N-말단의 아미노산 잔기가 2개 추가 결실된 F38-Y482의 경우에도 배양액의 인간 PH20 활성이 2배 이상 높았다.
그러나 N-말단의 아미노산 잔기가 3개 결여된 R39-Y482의 경우에는 효소의 발현이 거의 되지 않았으며, N 말단 아미노산 잔기가 4개 결여된 경우에도 배양액에서의 효소 발현은 거의 되지 않았다.
결론적으로 인간 히알루로니다제 PH20의 경우, 성숙된 인간 히알루로니다제 PH20에서 N-말단 아미노산 잔기가 하나 혹은 두 개 결여된 변이체가 배양액에서의 발현량이 월등히 증가됨을 확인하였다. 특히, 인간 히알루로니다제 PH20이 주사제로서 산업상 이용 가능성이 있음을 고려할 때 N 말단 아미노산을 하나 혹은 둘을 절단한 형태의 변이체 효소를 생산하는 경우 산업적으로 탁월한 경제성을 가지는 변이체를 얻을 수 있음을 보여준다.
나아가, 도 2와 도 3에 기재된 바와 같이 L36-Y482, N37-Y482, F38-Y482의 비활성 (Specific Activity)을 측정하였을 때 비활성에서는 차이가 거의 없으므로, 도 1에서의 인간 히알루로니다제 PH20의 활성 차이는 생산성의 차이에서 기인한 것으로 확인이 되었다. 더욱이 효소의 C 말단이 Y482로 끝나는 단백질보다 C-말단 아미노산이 14개 더 짧은 PH20 변이체의 경우에는 유일하게 N-말단 아미노산이 하나가 결여된 N37-F468만이 배양액에서 활성을 나타내었다.
특히, 도 2에서는 정제된 각 폴리펩티드의 활성을 pH 5.3에서의 Specific Activity로 나타냈는데, C-말단을 Y482로 하는 경우에는 L36-Y482, N37-Y482, F38-Y482의 차이가 거의 없었지만, C-말단을 F468로 하는 경우에는 N37-F468, F38-F468이 L36-F468보다 1.5~2배가량 Specific Activity가 높은 것으로 확인되었다. 이러한 양상은 pH 7.0에서의 Specific Activity에서도 확인할 수 있었다.
즉, 도 2 및 도 3 등의 결과를 보면 PH20의 C 말단 아미노산들을 현재 상업용으로 사용되고 있는 PH20의 482번보다 더 단축하여 추가적으로 절단되어 468 위치에서 끝나는 효소의 경우 L36-F468은 동물세포에서 거의 발현이 되지 않았다. 이 경우 발현된 극미량의 L36-F468 변이체를 정제하여 비활성을 측정한 결과 효소의 비활성은 L36-Y482에 비해 약 60% 수준 정도임을 알 수 있으며, 이러한 사실을 토대로 하면, PH20 폴리펩티드의 Hyaluronidase 활성 또는 생산성은 성숙된 인간 히알루로니다제 PH20에서 N-말단의 아미노산 잔기가 1개 또는 2개 추가 결실이 될 때, 월등히 증가한다는 것을 알 수 있다.
결론적으로 L36-F468로 구성된 인간 히알루로니다제 PH20 변이체 효소의 비활성은 L36-Y482 PH20 변이체 효소 대비 비활성은 아주 크게 저하되지는 않았지만 재조합 세포 내에서의 발현이 극미량이어서 산업적으로 유용하게 사용되기에는 부적합한 형태의 PH20 변이체임을 알 수 있다.
반면, N37-F468 변이체의 경우에는 세포에서의 발현이 상당히 증가되었으며 이는 L36-Y482 변이체 발현량의 결과와 유사한 경향이나, N 말단 아미노산 하나가 더 절단된 N37-F468의 세포 내에서의 발현량은 L36-F468 대비 최소 100 배 이상 획기적으로 증가하는 것을 볼 수 있다.
PH20의 분자 모델링과 본 발명의 실험결과를 종합하여 볼 때 PH20의 N 말단의 아미노산과 C 말단에 위치한 아미노산 들과의 상호 작용은 재조합 PH20 단백질이 세포 내에서 발현될 때 단백질의 전사 및 전이과정에서 안정성, 접힘 속도 등에 영향을 미치고 나아가 세포에서 분비되는 재조합 단백질의 발현량에 큰 영향을 끼치는 것을 알 수 있다. 이는 PH20 및 변이체들의 생산성에 매우 중대한 영향을 미친다. 이러한 결과는 인간 PH20뿐만 아니라 소나 양 등에서 추출한 포유류 유래의 PH20에도 적용될 수 있으며, 나아가서 인간 PH20 과 구조적 혹은 물리화학적으로 유사한 성질을 가지는 다른 PH20에도 적용될 수 있을 것으로 예측할 수 있다.
또한, 원숭이 (Nasalis larvatus), 소 (Bos taurus) 및 양 (Ovis aries)의 경우에도 도 5와 도 6에 도시된 바와 같이, 인간 PH20 폴리펩티드의 특성과 서열 구조가 유사하며 생체의 기능이 동일한 포유류 PH20, 특히, 표 1에 기재된 원숭이 (Nasalis larvatus), 소 (Bos taurus), 양 (Ovis aries)에서도 이러한 특성이 유지되는 것이 나타났다. 특히 양 PH20 폴리펩티드의 경우에는 N-말단이 A40으로 시작하는 경우에 발현량이 높은 것으로 나타났다.
정리하면, 이러한 본 발명의 결과에 따르면, 성숙한 PH20 단백질, 특히 인간 PH20 등의 동물 PH20의 경우, N-말단의 아미노산 잔기를 추가적으로 1개 내지 4개, 바람직하게는 1개 또는 2개 제거함으로써 재조합 세포에서 발현율을 획기적으로 증가시켜서 단백질 생산성을 증대시킬 수 있었다.
인간 PH20은 C-말단이 Y482에서 종결되는 경우, 성숙된 PH20에서 N-말단 일부 아미노산 잔기가 추가로 제거된 PH20은 히알루로니다제의 고유 활성에 큰 변동이 없이 발현량이 크게 증가하는 양상을 보여 주었으며, C-말단이 F468로 종결되는 경우는 성숙된 PH20에서 N-말단 아미노산 잔기가 추가로 1개 또는 2개가 제거된 변이체가 N-말단이 성숙한 상태의 단백질보다 오히려 효소의 비활성 증가하는 양상을 보여 주었다. 인간 PH20의 아미노산의 특정 부위에서 다른 아미노산으로 치환하여 단백질의 비활성 증가시키는 시도는 있었으나 N 말단의 아미노산을 제거하여 단백질의 활성을 유지 혹은 증가시키면서 세포에서의 발현율을 크게 증가시킨 사례는 지금까지 없었다. N-말단이 결실된(deletion) 변이체들의 경우 PH20의 특정 부위에 아미노산을 치환 (replacement)한 PH20에 비하여 인체에 장기간 투여하여도 immunogenicity 측면에서 유리하다는 것을 예측할 수 있다.
성숙된 단백질에서 N-말단을 절단한 경우에 발현량이 증가한다는 보고는 Human alpha 1-antitrypsin (H. Johansen 등, Mol. Biol. Med. 1987, 4:291-305), Human papillomavirus L1 protein (M. Wei 등, Emerging Microbes & Infections, 2018, 7:160)에서 찾아볼 수 있지만, 각 사례에서 N-말단 부위의 아미노산의 위치 및 절단 숫자 등에서 서로 공통적인 유사점을 발견하기 어렵다. 예를 들면 Human alpha 1-antitrypsin 의 경우에는 N 말단 아미노산을 5 개 내지 10 개 deletion 하였을 경우 세포 내에서 발현량은 증가하였지만 효소의 활성은 변하지 않았으며, Human papillomavirus L1 protein 의 경우 N-말단 아미노산을 10개 혹은 15개 절단할 경우 단백질의 전체 발현량에는 변함이 없으나, 단백질의 solubility를 증가시키는 경우가 있었다. 특히 PH20 같은 히알루로니다제의 경우는 이러한 시도가 없었으며, 본 발명과 같이 N 말단 아미노산이 하나 혹은 둘의 절단에 의하여 발현량이 획기적으로 증가하고 활성 또한 증가하는 사례는 발견할 수 없었다.
인간 PH20의 3차 결정구조는 아직 밝혀지지 않았다. 그러나 단백질의 3차 구조를 예측하는 프로그램을 이용하여 PH20의 3차 구조를 예측하여 본 결과, PH20의 N-말단에 있는 37번 위치의 Asparagine side chain과 가까이에 F38, R39, Y434 등의 아미노산들이 위치하고 있으며 적절한 Charge interaction을 이루고 있는 반면, 성숙한 단백질의 아미노산인 Leu36이 주위의 아미노산들과 특정 결합을 이루지 않고, hydrophobic한 아미노산이 수용액에 노출됨으로써 단백질의 발현시 접합의 속도나 안정성 나아가서 발현에 악영향을 끼치는 것으로 예측할 수 있다.
성숙된 야생형 동물 PH20 단백질에서는 단백질 3차 구조를 크게 변형하지 않는 범위 내에서 아미노산을 치환한 변이체에서도 본 발명과 동일한 결과를 예측할 수 있다. 인간 PH20과의 상동성이 63.6%, 63.5% 인 소, 양 PH20도, 93.1% 이상인 영장류 PH20에서도 이의 효과를 확인하였으므로, 각 PH20과의 상동성이 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%의 PH20도 단백질 3차 구조가 크게 변형되지 않는 범위에서 본 발명과 동일한 결과를 예측할 수 있다.
실시예 5 시그널 펩티드를 달리한 N-말단 및 C-말단이 절단된 재조합 PH20 히알루로니다제 제조 및 활성 측정
시그널 펩티드 (Signal peptide)에 따른 변화를 확인하기 위해 인간 PH20, 인간 혈청 호르몬 또는 Ig kappa의 single peptide로 교체된 변이체 9종을 제작하였다. 시그널 펩티드의 서열은 아래의 표 2에 기재된 바와 같다.
앞선 실시예에서는 시그널 펩티드를 인간 혈청 알부민 (Human Serum Albumin, HSA)의 시그널 펩티드를 사용하였는데, 이 시그널 펩티드를 표 2에 기재된 다른 시그널 펩티드를 적용하여서도 위와 같은 결과가 나타나는지 확인하였다.
표 2의 시그널 펩티드를 적용한 것 이외에는 실시예 1 및 실시예 2와 같이 재조합 인간 PH20의 L36-Y482, N37-Y482, F38-Y482을 제조하여 실시예 4와 같은 활성 분석을 실시하여 그 결과를 도 7에 제시하였다.
도 7에 기재된 바와 같이, 인간 PH20이나 Ig kappa의 시그널 펩티드를 사용한 경우에도 인간 혈청 호르몬을 사용한 경우와 유사하게 성숙된 PH20에서의 N-말단에서의 추가적인 아미노산 결실이 일어난 경우의 생산성 증가와 유사한 경향을 나타내어, 성숙된 PH20에서의 N-말단에서의 추가적인 아미노산 결실이 일어난 경우의 발현량과 생산성이 증가하는 현상은 시그널 펩티드의 종류와는 관련이 적은 것을 확인하였다.
본 발명에서 제시하는 효소 활성과 생산성이 증가된 N-말단 및/또는 C-말단이 절단된 PH20 폴리펩티드는 기존의 재조합 PH20 폴리펩티드 대비 우수한 발현량과 높은 효소 활성을 나타내어 산업적 이용시 생산 비용 절감에 따른 치료제 비용의 감소를 가져올 수 있다.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
참고문헌
1. H. Johansen, J. Sultiphong, G. Sathe, P. Jacobs, A. Cravador, A. Bollen, M. Rosenberg, and A. Shatzman, “High-level production of fully active human alpha 1-antitrypsin in Escherichia coli.” Mol. Biol. Med. (1987) 4:291-305,
2. J.H. Dunham, R.C. Meyer, E.L. Garcia, and R.A. Hall, “GPR37 Surface Expression Enhancement via N-Terminal Truncation or Protein-Protein Interactions”, Biochemistry (2009) 48:10286-10297
3. M. Wei, D. Wang, Z. Li, S. Song, X. Kong, X. Mo, Y. Yang, M. He, Z. Li, B. Huang, Z. Lin, H. Pan, Q. Zheng, H. Yu, Y. Gu, J. Zhang, S. Li and N. Xia, “N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro”, Emerging Microbes & Infections (2018) 7:160
4. M. F. Meyer, G. Kreil, and H. Aschauer, “The soluble hyaluronidase from bull testes is a fragment of the membrane-bound PH-20 enzyme”, FEBS letter (1997) 413:385-388
전자파일 첨부하였음.

Claims (13)

  1. 성숙된 동물 야생형 PH20의 N-말단에서 1 내지 7개의 아미노산 잔기가 결실된 재조합 PH20 폴리펩티드.
  2. 제1항에 있어서,
    (a) 서열번호 1의 아미노산 서열을 갖는 인간 야생형 PH20 중 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드;
    (b) 서열번호 2 내지 서열번호 8 중 어느 하나의 아미노산 서열을 갖는 영장류 야생형 PH20 중 N37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드;
    (c) 서열번호 9의 아미노산 서열을 갖는 소 야생형 PH20 중 D37 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드; 및
    (d) 서열번호 10의 아미노산 서열을 갖는 양 야생형 PH20 중 D37 내지 P42 로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 N-말단의 아미노산 잔기가 결실된, 재조합 PH20 폴리펩티드;
    로 구성된 군에서 선택되는 것을 특징으로 하는 재조합 PH20 폴리펩티드.
  3. 제1항에 있어서, 서열번호 1의 아미노산 서열 중 N37, F38, R39, A40, P41, P42에서 시작하는 서열을 포함하는 재조합 PH20 폴리펩티드.
  4. 제1항에 있어서, 서열번호 1의 아미노산 서열 중 N37 또는 F38에서 시작하는 서열을 포함하는 재조합 PH20 폴리펩티드.
  5. 제1항에 있어서, C-말단에서의 일부 아미노산 잔기가 추가적으로 결실된 재조합 PH20 폴리펩티드.
  6. 제5항에 있어서, 서열번호 1의 아미노산 서열 중 F468 내지 Y482로 구성된 군에서 선택된 아미노산 잔기 다음에서 절단되어 C-말단의 아미노산 잔기가 결실된 것을 특징으로 하는 재조합 PH20 폴리펩티드.
  7. 제6항에 있어서, 서열번호 1의 아미노산 서열 중 F468 또는 Y482로 끝나는 서열을 포함하는 재조합 PH20 폴리펩티드.
  8. 제1항에 있어서, 다음으로 구성된 군에서 선택되는 것을 특징으로 하는 재조합 PH20 폴리펩티드:
    (1) 서열번호 1의 아미노산 서열 중 N37에서 시작하고, Y482로 끝나는 서열(N37-Y482)을 포함하는 PH20 폴리펩티드;
    (2) 서열번호 1의 아미노산 서열 중 N37에서 시작하고, F468로 끝나는 서열(N37-F468)을 포함하는 PH20 폴리펩티드;
    (3) 서열번호 1의 아미노산 서열 중 F38에서 시작하고, Y482로 끝나는 서열(F38-Y482)을 포함하는 PH20 폴리펩티드; 또는
    (4) 서열번호 1의 아미노산 서열 중 F38에서 시작하고, F468로 끝나는 서열(F38-Y468)을 포함하는 PH20 폴리펩티드.
    (5) 서열번호 2 내지 서열번호 8 중 어느 하나의 아미노산 서열 중 N37에서 시작하고, L490으로 끝나는 서열(N37-L490)을 포함하는 PH20 폴리펩티드;
    (6) 서열번호 2 내지 서열번호 8 중 어느 하나의 아미노산 서열 중 F38에서 시작하고, L490으로 끝나는 서열(F38-L490)을 포함하는 PH20 폴리펩티드;
    (7) 서열번호 9의 아미노산 서열 중 D37에서 시작하고, H478로 끝나는 서열(D37-H478)을 포함하는 PH20 폴리펩티드;
    (8) 서열번호 9의 아미노산 서열 중 F38에서 시작하고, H478로 끝나는 서열(F38-H478)을 포함하는 PH20 폴리펩티드;
    (9) 서열번호 10의 아미노산 서열 중 D37에서 시작하고, H477로 끝나는 서열(D37-H477)을 포함하는 PH20 폴리펩티드;
    (10) 서열번호 10의 아미노산 서열 중 F38에서 시작하고, H477로 끝나는 서열(F38-H477)을 포함하는 PH20 폴리펩티드;
    (11) 서열번호 10의 아미노산 서열 중 R39에서 시작하고, H477로 끝나는 서열(R39-H477)을 포함하는 PH20 폴리펩티드; 및
    (12) 서열번호 10의 아미노산 서열 중 A40에서 시작하고, H477로 끝나는 서열(A40-H477)을 포함하는 PH20 폴리펩티드.
  9. 제1항 내지 제8항 중 어느 한 항의 재조합 PH20 폴리펩티드를 코딩하는 핵산.
  10. 제9항에 따른 핵산을 포함하는 재조합 발현 벡터.
  11. 제10항에 따른 재조합 발현 벡터로 형질전환된 숙주세포.
  12. 제11항에 있어서, 동물세포, 식물세포, 효모, 대장균 및 곤충세포로 구성된 군에서 선택된 것임을 특징으로 하는 숙주세포.
  13. 제12항에 따른 숙주세포를 배양하는 단계를 포함하는 재조합 PH20 폴리펩티드의 제조방법.
PCT/KR2023/008621 2022-06-22 2023-06-21 N-말단 및/또는 c-말단이 절단된 가용성 ph20 폴리펩티드 및 이의 용도 WO2023249408A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220076030 2022-06-22
KR10-2022-0076030 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023249408A1 true WO2023249408A1 (ko) 2023-12-28

Family

ID=89380204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008621 WO2023249408A1 (ko) 2022-06-22 2023-06-21 N-말단 및/또는 c-말단이 절단된 가용성 ph20 폴리펩티드 및 이의 용도

Country Status (2)

Country Link
KR (1) KR20240000391A (ko)
WO (1) WO2023249408A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721348A (en) * 1990-12-14 1998-02-24 University Of Connecticut DNA encoding PH-20 proteins
US20150010529A1 (en) * 2013-07-03 2015-01-08 Ge Wei Thermally stable ph20 hyaluronidase variants and uses thereof
KR20170065032A (ko) * 2014-10-14 2017-06-12 할로자임, 아이엔씨 아데노신 디아미네이즈-2(ada2)의 조성물, 이의 변이체 및 이를 사용하는 방법
KR20200130451A (ko) * 2019-03-25 2020-11-18 (주)알테오젠 인간 히알루로니다제 ph20의 변이체와 약물을 포함하는 피하투여용 약학 조성물
KR20220069045A (ko) * 2020-01-23 2022-05-26 (주)알테오젠 안정성이 향상된 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721348A (en) * 1990-12-14 1998-02-24 University Of Connecticut DNA encoding PH-20 proteins
US20150010529A1 (en) * 2013-07-03 2015-01-08 Ge Wei Thermally stable ph20 hyaluronidase variants and uses thereof
KR20170065032A (ko) * 2014-10-14 2017-06-12 할로자임, 아이엔씨 아데노신 디아미네이즈-2(ada2)의 조성물, 이의 변이체 및 이를 사용하는 방법
KR20200130451A (ko) * 2019-03-25 2020-11-18 (주)알테오젠 인간 히알루로니다제 ph20의 변이체와 약물을 포함하는 피하투여용 약학 조성물
KR20220069045A (ko) * 2020-01-23 2022-05-26 (주)알테오젠 안정성이 향상된 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물

Also Published As

Publication number Publication date
KR20240000391A (ko) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2021150079A1 (ko) 안정성이 향상된 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물
KR100226296B1 (ko) 인터루킨-1베타프로티아제 및 인터루킨-1베타프로티아제 억제물질
WO2011152694A2 (en) Fusion protein having factor vii activity
WO2012177020A2 (en) Composition and formulation comprising recombinant human iduronate-2-sulfatase and preparation method thereof
WO2013051900A2 (en) Blood coagulation factor ⅶ and ⅶa derivatives, conjugates and complexes comprising the same, and use thereof
WO2013025079A1 (en) Method for preparing active form of tnfr-fc fusion protein
WO2017222337A1 (ko) Fviii 및 vwf 인자를 포함하는 키메라 단백질 및 그 용도
WO2016006963A1 (en) Insulin analogue
WO2012053823A2 (ko) 인자 ix 활성을 갖는 융합 단백질
JP2018502908A (ja) アルファ‐1‐ アンチトリプシン(a1at)融合タンパク質及びその使用
WO2023249408A1 (ko) N-말단 및/또는 c-말단이 절단된 가용성 ph20 폴리펩티드 및 이의 용도
WO2017222330A1 (ko) 재조합 단쇄 fviii 및 그 화학 접합물
WO2018004294A9 (ko) 인간 성장호르몬 변이 단백질 또는 이의 트랜스페린 융합 단백질을 유효성분으로 포함하는 약학적 조성물
WO2013183948A1 (ko) 고당화된 지속형 인간 성장호르몬 단백질 및 이의 제조방법
WO2013191352A1 (en) New uses of modified human tumor necrosis factor receptor-1 polypeptide
WO2021194186A1 (ko) Vgll1 펩타이드를 포함하는 암 치료용 조성물
WO2022108148A1 (ko) 자가 항체에 대한 회피율 또는 활성이 증가된 adamts13 변이체
US20220144903A1 (en) Recombinant ccn domain proteins and fusion proteins
WO2020251163A1 (ko) 생산성이 향상된 비독성 프로테아제
WO2015030479A1 (ko) 인간 혈액응고 7인자 유도체의 대량 생산 방법
WO2024058648A1 (ko) 신규한 히알루로니다제 ph-20 변이체 및 그 용도
WO2012057527A2 (en) Method for mass production of factor vii/viia
WO2009145573A9 (ko) 아미노 말단의 메티오닌이 제거된 재조합 사람 변이 인터페론-베타 단백질을 생산하는 재조합 대장균 및 이의 제조방법
WO2022010273A1 (ko) 보체 경로 억제제를 포함하는 융합단백질 및 이의 용도
WO2024014770A1 (ko) mRNA 백신 및 치료제의 제조를 위한 변형된 RNA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827518

Country of ref document: EP

Kind code of ref document: A1