WO2023249035A1 - Joining device and joining method - Google Patents

Joining device and joining method Download PDF

Info

Publication number
WO2023249035A1
WO2023249035A1 PCT/JP2023/022858 JP2023022858W WO2023249035A1 WO 2023249035 A1 WO2023249035 A1 WO 2023249035A1 JP 2023022858 W JP2023022858 W JP 2023022858W WO 2023249035 A1 WO2023249035 A1 WO 2023249035A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
workpiece holding
workpiece
bonded
radiation
Prior art date
Application number
PCT/JP2023/022858
Other languages
French (fr)
Japanese (ja)
Inventor
朗 山内
朋義 川崎
Original Assignee
ボンドテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボンドテック株式会社 filed Critical ボンドテック株式会社
Publication of WO2023249035A1 publication Critical patent/WO2023249035A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Definitions

  • the present invention relates to a bonding device and a bonding method.
  • the particle beam incident on the substrate is The dose amount becomes uneven.
  • a linear discharge chamber having a discharge chamber disposed in a posture such that its longitudinal direction is parallel to the bonding surface of the substrate may be employed.
  • the plasma density generated in the discharge chamber becomes nonuniform in the longitudinal direction of the discharge chamber, and as a result, the plasma density generated in the discharge chamber becomes non-uniform in the longitudinal direction of the discharge chamber.
  • the beam dose becomes non-uniform.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide a bonding apparatus and a bonding method that can uniformly activate the entire bonding surface of objects to be bonded.
  • the joining device includes: A joining device for joining two objects to be joined, a first workpiece holding section that holds one of the two workpieces; a second workpiece holding part that is disposed opposite to the first workpiece holding part and holds the other workpiece of the two workpieces; a particle beam source that emits a particle beam to a region including a part of the bonding surface of either of the two objects to be bonded;
  • the particle beam source includes: It has a plurality of radiation ports arranged in a direction along the bonding surface of the object to be bonded to which the particle beam is irradiated, The opening area of each of the plurality of radiation ports is set to be larger as the radiation ports are arranged farther from the center in the direction in which the plurality of radiation ports are arranged.
  • the particle beam source has a plurality of radiation ports arranged in a direction along the bonding surface of the workpiece to be irradiated with the particle beam, and the opening area of each of the plurality of radiation ports has a plurality of opening areas.
  • the radiation ports arranged at positions further away from the center in the direction in which the radiation ports are lined up are set larger. This makes the dose of the particle beam emitted from each of the plurality of radiation ports uniform, so that the particle beam can be irradiated uniformly in the direction in which the plurality of radiation ports are arranged on the bonding surface of the object to be joined.
  • the particle beam can be uniformly irradiated at Therefore, the entire bonding surface of the objects to be bonded can be activated uniformly.
  • FIG. 1 is a schematic front view of a joining device according to an embodiment of the present invention. It is a figure showing a part of joining device concerning an embodiment.
  • FIG. 2 is a schematic front view of a discharge chamber according to an embodiment.
  • FIG. 2 is a diagram illustrating a part of the bonding apparatus according to the embodiment, and illustrating a state where the distance between the stage and the head is the shortest.
  • FIG. 2 is a diagram showing a part of the bonding apparatus according to the embodiment, and showing a state where the distance between the stage and the head is the longest.
  • FIG. 3 is a diagram showing a particle beam irradiation area on a stage according to an embodiment.
  • FIG. 3 is a diagram showing a particle beam irradiation area in a head according to an embodiment.
  • FIG. 3 is an explanatory diagram of the operation of the bonding device according to the embodiment.
  • 3 is a schematic front view of a discharge chamber according to Comparative Example 1.
  • FIG. FIG. 3 is a diagram showing the film thickness measurement locations on the substrate used to evaluate the uniformity of the dose of the particle beam in the activation process.
  • 9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the P-axis direction of FIG. 8.
  • FIG. 9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the Q-axis direction of FIG. 8.
  • FIG. 8 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the Q-axis direction of FIG. 8.
  • FIG. 9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the P-axis direction of FIG. 8.
  • FIG. 9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the Q-axis direction of FIG. 8.
  • FIG. 9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to the embodiment, and showing the film thickness distribution in the P-axis direction of FIG. 8.
  • FIG. 9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to the embodiment, and showing the film thickness distribution in the Q-axis direction of FIG. 8.
  • FIG. 9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to the embodiment, and showing the film thickness distribution in the P-axis direction of FIG. 8.
  • FIG. 9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to the embodiment, and showing the film thickness distribution in the Q-axis direction of FIG. 8.
  • FIG. 3 is a diagram illustrating a part of a bonding apparatus according to Comparative Example 2.
  • FIG. 7 is a diagram showing a dose distribution when a substrate is irradiated with a particle beam using a bonding apparatus according to Comparative Example 2.
  • FIG. FIG. 3 is a schematic diagram of plasma distribution in the particle beam sources according to Comparative Examples 1 and 2 and the embodiment. It is a figure showing a part of joining device concerning a modification. It is an explanatory diagram of operation of a joining device concerning a modification. It is a schematic front view of the discharge chamber based on a modification.
  • the joining apparatus performs an activation process on the bonding surfaces of two substrates in a chamber in a reduced pressure atmosphere, and then brings the two substrates into contact with each other and applies pressure.
  • the substrate may be, for example, a glass substrate such as a Si substrate or a SiO 2 glass substrate, an oxide substrate (for example, a silicon oxide (SiO 2 ) substrate, an alumina substrate (Al 2 O 3 ) including a sapphire substrate, or a gallium oxide substrate). (Ga 2 O 3 ), nitride substrates (e.g.
  • the bonded object is made of any one of a LiTaO 3 ) substrate, a lithium niobate substrate (Ln:LiNbO 3 ), a diamond substrate, and the like.
  • the substrates W1 and W2 may be substrates whose bonding surfaces are provided with electrodes made of metal such as Au, Cu, Al, Ti, or the like. Further, it is preferable that the substrates W1 and W2 are each circular substrates having a diameter of 6 inches or less in a plan view.
  • the bonding surfaces of the two substrates which are to be bonded to each other, are irradiated with a particle beam to activate the bonding surfaces of the substrates.
  • the substrates may be heated before the activation treatment, or may be heated when the two substrates are brought into contact and pressurized.
  • the bonding apparatus includes a chamber 120, a stage 141, a head 142, a stage drive section 143, a head drive section 144, substrate heating sections 1411 and 1421, and It includes a shift amount measuring section 150 and particle beam sources 161 and 162.
  • the ⁇ Z direction in FIG. 2 will be described as the vertical direction
  • the XY direction will be described as the horizontal direction.
  • the chamber 120 is connected to a vacuum pump 121a via an exhaust pipe 121b and an exhaust valve 121c.
  • the exhaust valve 121c When the exhaust valve 121c is opened and the vacuum pump 121a is operated, the gas inside the chamber 120 is exhausted to the outside of the chamber 120 through the exhaust pipe 121b, and the air pressure inside the chamber 120 is reduced (reduced pressure).
  • the atmospheric pressure inside the chamber 120 can be set to 10 ⁇ 5 Pa or less.
  • the air pressure (degree of vacuum) in the chamber 120 can be adjusted by varying the opening/closing amount of the exhaust valve 121c to adjust the exhaust amount.
  • the stage 141 and the head 142 are arranged in the chamber 120 so as to face each other in the Z direction.
  • the stage 141 is a first object holder that holds the substrate W1 on its upper surface
  • the head 142 is a second object holder that holds the substrate W2 on its lower surface. Note that the upper surface of the stage 141 and the lower surface of the head 142 are roughened, considering that the contact surfaces of the substrates W1 and W2 with the stage 141 and the head 142 are mirror-finished and difficult to peel off from the stage 141 and the head 142. may have been done.
  • Stage 141 and head 142 each have a holding mechanism (not shown) that holds substrates W1 and W2.
  • the holding mechanism includes an electrostatic chuck, a mechanical clamp, and the like.
  • the stage 141 has a shape in which a stepped portion 141a is formed around the periphery. Then, in a state where the substrates W1 and W2 are placed on the stage 141, the peripheral portions of the substrates W1 and W2 are arranged above the step portion 141a.
  • the stage drive unit 143 can move the stage 141 in the XY directions or rotate it around the Z axis.
  • the head drive unit 144 includes an elevation drive unit 1441 that moves the head 142 up and down as shown by arrow AR1, an XY direction drive unit 1442 that moves the head 142 in the XY directions, and a rotation direction that rotates the head 142 around the Z axis. It has a rotation drive section 1443.
  • the head drive unit 144 also includes a piezo actuator 1444 for adjusting the inclination of the head 142 with respect to the stage 141, and a pressure sensor 1445 for measuring the pressure applied to the head 142.
  • the XY direction drive section 1442 and the rotation drive section 1443 move the head 142 relative to the stage 141 in the X direction, the Y direction, and the rotation direction around the Z axis, thereby moving the substrate W1 held on the stage 141.
  • the stage drive section 143 is not limited to a configuration in which it is arranged vertically below the stage 141; for example, a backup section (not shown) that receives pressure is provided vertically below the stage 141, and the stage drive section 143 is arranged vertically below the stage 141.
  • 143 may be arranged on the outer periphery of the stage 141, and the stage 141 may be driven from the side of the stage 141.
  • the elevating drive unit 1441 brings the head 142 closer to the stage 141 by moving the head 142 vertically downward. Further, the elevating drive unit 1441 moves the head 142 away from the stage 141 by moving the head 142 vertically upward. Then, when the elevating drive unit 1441 applies a driving force to the head 142 in a direction toward the stage 141 while the substrates W1 and W2 are in contact with each other, the substrate W2 is pressed against the substrate W1. Further, the elevating drive unit 1441 is provided with a pressure sensor 1441a that measures the driving force acting on the head 142 in a direction toward the stage 141.
  • the pressure sensor 1441a includes, for example, a piezoelectric element.
  • a plurality of pairs of piezo actuators 1444 and pressure sensors 1445 are arranged between the head 142 and the XY direction drive section 1442.
  • the pressure sensor 1445 is interposed between the upper end of the piezo actuator 1444 and the lower side of the XY direction drive section 1442.
  • the piezo actuators 1444 can be individually expanded and contracted in the vertical direction, and by expanding and contracting these, the inclination of the head 142 around the X-axis and the Y-axis and the vertical position of the head 142 are finely adjusted.
  • the pressure sensor 1445 includes, for example, a piezoelectric element, and measures the pressing force at a plurality of locations on the lower surface of the head 142.
  • the lower surface of the head 142 and the upper surface of the stage 141 are maintained parallel to the substrates W1 and W2. can be brought into contact with each other.
  • the substrate heating units 1411 and 1421 include an electric heater embedded in the back side of the holding mechanism when viewed from the side of the stage 141 and the head 142 that contact the substrates W1 and W2.
  • the substrate heating units 1411 and 1421 heat the substrates W1 and W2 by transmitting heat to the substrates W1 and W2 supported by the stage 141 and the head 142. Furthermore, by adjusting the amount of heat generated by the substrate heating units 1411 and 1421, the temperature of the substrates W1 and W2 or their bonding surfaces can be adjusted.
  • the positional deviation measuring unit 150 measures the horizontal positional deviation of the substrate W1 with respect to the substrate W2 by recognizing the positions of alignment marks provided on each of the substrates W1 and W2.
  • the positional deviation measurement unit 150 recognizes the alignment marks on the substrates W1 and W2 using, for example, light (eg, infrared light) that passes through the substrates W1 and W2.
  • the stage driving section 143 performs an operation of aligning the substrates W1 and W2 with each other by moving or rotating the stage 141 in the horizontal direction based on the amount of positional deviation measured by the amount of positional deviation measuring section 150. (alignment operation).
  • the particle beam sources 161 and 162 are, for example, fast atom beam (FAB) sources, and are fixed to the stage 141 and head 142 via beam source supports 122A and 122B, respectively.
  • FAB fast atom beam
  • the irradiation direction AR21 of the particle beam of the particle beam source 161 along the irradiation axis J1 is inclined with respect to the perpendicular n2 to the bonding surface of the substrate W2.
  • the irradiation direction AR22 of the particle beam of the particle beam source 162 along the irradiation axis J2 is inclined with respect to the perpendicular n1 to the bonding surface of the substrate W1. As shown in FIG.
  • the particle beam sources 161 and 162 each include a discharge chamber 1601, an electrode 1602 disposed in the discharge chamber 1601, a beam source driver (not shown), and a discharge chamber that discharges argon gas. It has a gas supply section 1604 that supplies gas into the chamber 1601.
  • the discharge chamber 1601 is formed from a carbon material in the shape of a long box, and its peripheral wall is provided with a plurality of radiation ports 1601a, 1601b, and 1601c that emit a particle beam containing neutral atoms.
  • the plurality of radiation ports 1601a, 1601b, and 1601c are each arranged in a row along the longitudinal direction of the discharge chamber 1601, as shown in FIG. 3, for example.
  • the radiation ports 1601a, 1601b, and 1601c are arranged in such a manner that the direction in which they are arranged is parallel to the joint surface of the substrates W1 and W2 to which the particle beams emitted from the radiation ports 1601a, 1601b, and 1601c are irradiated.
  • the plurality of radiation ports 1601a, 1601b, and 1601c are arranged in a direction along the bonding surface of the substrates W1 and W2 to which the particle beam is irradiated.
  • each of the plurality of radiation ports 1601a, 1601b, and 1601c is determined in the direction in which the plurality of radiation ports 1601a, 1601b, and 1601c are arranged, that is, the radiation located at a position away from the center in the longitudinal direction of the discharge chamber 1601.
  • the openings 1601a, 1601b, and 1601c are set to be larger.
  • the opening diameter D2 of the plurality of radiation ports 1601b arranged in the region Po2 adjacent to the region Po1 in the center in the longitudinal direction of the discharge chamber 1601 is equal to the opening diameter D1 of the plurality of radiation ports 1601a arranged in the region Po1. It's big in comparison.
  • the opening diameter D3 of the plurality of radiation ports 1601c arranged in the region Po3 at both ends in the longitudinal direction of the discharge chamber 1601 is larger than the opening diameter D2 of the plurality of radiation ports 1601c arranged in the region Po2.
  • the beam source driver includes a plasma generator (not shown) that generates argon gas plasma in the discharge chamber 1601 and a DC power supply (not shown) that applies a DC voltage between the electrode 1602 and the peripheral wall of the discharge chamber 1601. ).
  • the beam source driver applies a DC voltage between the peripheral wall of the discharge chamber 1601 and the electrode 1602 while generating argon gas plasma within the discharge chamber 1601 .
  • argon ions in the plasma are attracted to the peripheral wall of the discharge chamber 1601.
  • the argon ions heading toward the radiation port 1601a pass through the radiation port 1601a, they receive electrons from the peripheral wall of the discharge chamber 1601 formed from a carbon material at the outer periphery of the radiation port 1601a.
  • the argon ions then become electrically neutralized argon atoms and are emitted to the outside of the discharge chamber 1601.
  • the power supplied to the particle beam sources 161 and 162 is set to, for example, 1 kV and 100 mA.
  • the flow rate of argon gas introduced into the discharge chamber 1601 of each of the particle beam sources 161 and 162 is set to, for example, 50 sccm.
  • the density of the plasma containing argon generated in the discharge chamber 1601 is lower at both ends of the discharge chamber 1601 in the longitudinal direction than at the center of the discharge chamber 1601.
  • the plurality of radiation ports 1601a, 1601b, and 1601c of the discharge chamber 1601 are, as described above, the radiation port 1601b arranged at a position away from the center (region Po1) in the longitudinal direction of the discharge chamber 1601,
  • the aperture diameters D2 and D3 are set to be larger as the size becomes 1601c. Therefore, the dose of the particle beam irradiated from the particle beam source 161 onto the regions P11 and P21 on the substrate W1 can be made uniform in the X-axis direction in the regions P11 and P21. Further, the density of the particle beam irradiated from the particle beam source 161 onto the regions P12 and P22 on the substrate W2 can be made uniform in the X-axis direction in the regions P12 and P22.
  • the particle beam source 161 irradiates the substrate W2 held by the head 142 with a particle beam
  • the particle beam source 162 irradiates the substrate W1 held by the stage 141 with the particle beam.
  • the particle beam source 161 irradiates a region P12 on the ⁇ Y direction side of the substrate W2 with a particle beam
  • the particle beam source 162 irradiates a region P11 on the +Y direction side of the substrate W1 with a particle beam. do.
  • the particle beam source 161 irradiates a region P22 on the +Y direction side of the substrate W2 with a particle beam
  • the particle beam source 162 irradiates a region P21 on the -Y direction side of the substrate W1 with a particle beam. It will be in a state where it is irradiating.
  • the bonding apparatus moves the head 142 in the direction approaching the stage 141 as shown by the arrow AR12
  • the region on the substrate W2 to which the particle beam is irradiated moves from the region P22 in the ⁇ Y direction, and the substrate The region irradiated with the particle beam in W1 moves in the +Y direction from region P12.
  • the state shown in FIG. 4A is reached again.
  • the head 142 repeatedly moves up and down between a position separated by a distance H1 from the stage 141 and a position separated by a distance H2 from the stage 141.
  • the distance H1 and the distance H2 are set to be, for example, 1:3.
  • the distance H1 is set to 50 mm and the distance H2 is set to 150 mm.
  • the head 142 moves from a state in which the -Y direction side edge of the region of the substrates W1, W2 to which the particle beam is irradiated coincides with the +Y direction side edge of the substrate W1, W2 to the +Y direction side edge thereof. It is preferable to move the substrates W1 and W2 up and down until they coincide with the edges of the substrates W1 and W2 in the -Y direction.
  • the bonding apparatus changes the moving speed of the head 142 depending on the distance between the stage 141 and the head 142. Specifically, when the distance between the stage 141 and the head 142 is relatively long and the density of the particle beams reaching the substrates W1 and W2 is low, the moving speed of the head 142 is slowed down. On the other hand, when the distance between the stage 141 and the head 142 is relatively short and the density of the particle beams reaching the substrates W1 and W2 is high, the moving speed of the head 142 is increased.
  • the amount of particle beams reaching the substrates W1 and W2 per unit time can be made uniform, so that the amount of particle beams reaching the substrates W1 and W2 can be made uniform.
  • the etching rate can be made uniform.
  • the bonding device according to Comparative Example 1 is formed of a carbon material into a long box shape, and has a peripheral wall thereof provided with a plurality of radiation ports 91601a having the same opening diameter D1 for emitting particle beams.
  • the particle beam sources 9161 and 9162 are provided with a discharge chamber 91601 having a discharge chamber 91601.
  • the bonding apparatuses according to Comparative Examples 1 and 2 differ from the bonding apparatus according to the embodiment only in particle beam sources 9161 and 9162, and the other configurations and operations are similar to the bonding apparatus according to the embodiment. Therefore, the configuration of the bonding apparatus according to Comparative Example 1 will be described below using the same reference numerals as those used for each configuration of the bonding apparatus according to the embodiment. However, the bonding apparatus according to Comparative Example 1 moves the head 142 up and down at a constant moving speed. Further, in this evaluation, as the substrates W1 and W2, substrates having a diameter of 4 inches were used, in which a SiO 2 film was formed on a Si substrate by thermal oxidation treatment.
  • the film thickness distribution of the SiO 2 film before and after the activation treatment of the SiO 2 film side of the substrate using the particle beam sources 9161 and 9162 according to the comparative example, and the film thickness distribution of the SiO 2 film using the particle beam sources 161 and 162 according to the embodiment are shown.
  • the film thickness distributions of the SiO 2 films before and after the activation treatment of the SiO 2 film sides of the substrates W1 and W2 were compared.
  • the stage 141 and head 142 of the bonding apparatus according to Comparative Example 1 and the embodiment are arranged such that the SiO 2 film side of the substrates W1 and W2 faces the particle beam sources 9161, 9162, 161, and 162. I let it hold.
  • the head 142 was repeatedly raised and lowered 10 times at a moving speed of 3.5 mm/sec.
  • the head 142 was repeatedly raised and lowered 10 times while changing the moving speed between 3.5 mm/sec and 1.5 mm sec depending on the distance between the stage 141 and the head 142. .
  • the film thickness distribution of the SiO 2 film on the substrates W1 and W2 was determined by measuring the film thickness in 13 regions P1 to P13 on the substrates W1 and W2, as shown in FIG.
  • the center positions of each of the regions P1 to P13 were set to the coordinates shown in Table 1 below, assuming that the P-axis coordinates and Q-axis coordinates of the centers of the substrates W1 and W2 were respectively 0 [mm].
  • the SiO 2 film on the substrate W2 held by the head 142 had a film thickness distribution as shown in FIGS. 9A and 9B before and after the activation process, and the SiO 2 film on the substrate W1 held on the stage 141
  • film thickness distributions as shown in FIGS. 10A and 10B were obtained before and after the activation treatment.
  • the in-plane uniformity of the film thickness of the SiO 2 film on the substrate W2 held by the head 142 after the activation process is 4.0%
  • the in-plane uniformity of the SiO 2 film on the substrate W1 held on the stage 141 is 4.0%.
  • the in-plane uniformity of the film thickness after the activation treatment was 4.0%.
  • in-plane uniformity corresponds to the ratio of the median film thickness of the SiO 2 film in each of the regions P1 to P13 of the substrates W1 and W2 to the average value of the film thickness of the SiO 2 film in each of the regions P1 to P13.
  • the SiO 2 film on the substrate W2 held by the head 142 has a film thickness distribution as shown in FIGS. 11A and 11B before and after the activation process, and For the SiO 2 film, film thickness distributions as shown in FIGS. 12A and 12B were obtained before and after the activation treatment.
  • the in-plane uniformity of the film thickness of the SiO 2 film on the substrate W2 held by the head 142 after the activation process is 1.2%
  • the in-plane uniformity of the SiO 2 film on the substrate W1 held on the stage 141 is 1.2%.
  • the in-plane uniformity of the film thickness after the activation treatment was 1.1%.
  • the moving speed of the head 142 is changed depending on the distance between the stage 141 and the head 142, and like the particle beam sources 161 and 162 according to the embodiment, It is preferable that the plurality of radiation ports 1601a, 1601b, and 1601c of the discharge chamber 1601 are set such that the opening diameter becomes larger as the radiation ports 1601b and 1601c are disposed further away from the center in the longitudinal direction of the discharge chamber 1601. It can be seen that the in-plane uniformity of the SiO 2 films on the substrates W1 and W2 is improved.
  • the particle beam source 161 since the in-plane uniformity of the SiO 2 film on the substrates W1 and W2 depends on the uniformity of the dose of the particle beam irradiated onto the substrates W1 and W2, the particle beam source 161 according to the embodiment, It can be seen that in comparison with the particle beam sources 9161 and 9162 according to Comparative Example 1, the particle beam source No. 162 has improved uniformity of the dose of the particle beam irradiated within the planes of the substrates W1 and W2. In other words, it can be seen that in the embodiment, the uniformity of the dose of the particle beam irradiated within the planes of the substrates W1 and W2 is improved compared to Comparative Example 1.
  • the positions of the particle beam sources 161 and 162 are fixed, and the particle beams are irradiated from the outside of the substrates W1 and W2 toward the bonding surface of the substrates W1 and W2. .
  • the dose amount on the side of the substrates W1, W2 closer to the particle beam sources 161, 162 is larger than the dose amount on the side far from the particle beam source.
  • the amount of etching on the side of the substrates W1, W2 closer to the particle beam sources 161, 162 becomes larger than the amount of etching on the side far from the particle beam sources, and the amount of etching on the side of the substrates W1, W2 closer to the particle beam sources 161, 162 becomes larger than the amount of etching on the side far from the particle beam sources.
  • the plasma generated in the discharge chamber 91601 has a high density at the center in the longitudinal direction of the discharge chamber 1601. The density at both ends in the longitudinal direction is smaller than that of .
  • the particle beam source 161 is fixed to the stage 141 and includes a part of the bonding surface of the substrate W2 from outside the region of the stage 141 where the substrate W1 is arranged.
  • the head driving unit 144 moves the head 142 in the ⁇ Z direction while emitting the particle beam to the region. Accordingly, as the head 142 moves in the ⁇ Z direction, the region on the bonding surface of the substrate W2 that is irradiated with the particle beam moves within the bonding surface of the substrate W2. Therefore, by repeatedly moving the head 142 in the ⁇ Z directions, it is possible to uniformly irradiate the substrate W2 with the particle beam in the Y-axis direction.
  • the particle beam sources 161 and 162 have a plurality of radiation ports 1601a, 1601b, and 1601c arranged in a direction along the bonding surface of the substrates W1 and W2 to which the particle beam is irradiated. Radiation ports (for example 1601c). This makes the dose of the particle beam emitted from each of the plurality of radiation ports 1601a, 1601b, and 1601c uniform, so that the substrates W1 and W2 can be uniformly irradiated with the particle beam in the X-axis direction. Therefore, the entire bonding surface of the substrates W1 and W2 can be activated uniformly.
  • the bonding apparatus according to the present embodiment is preferably applied to so-called small-diameter substrates in which the substrates W1 and W2 are less than 4 inches, since the range in which the particle beam can be irradiated is limited to some extent.
  • the particle beam source 161 is fixed to the stage 141, and the particle beam source 161 is directed from outside the area of the stage 141 where the substrate W1 is placed to an area including a part of the bonding surface of the substrate W2.
  • the head driving unit 144 moves the head 142 in the ⁇ Z direction while emitting the beam. Accordingly, as the head 142 moves in the ⁇ Z direction, the region on the bonding surface of the substrate W2 that is irradiated with the particle beam moves within the bonding surface of the substrate W2.
  • the entire bonding surface of the substrate W2 can be uniformly irradiated with the particle beam, and the entire bonding surface can be uniformly activated. Further, since there is no need for a transport mechanism for supporting the particle beam source 161 and moving the particle beam source 161 in a direction horizontal to the substrate W2, the overall size of the apparatus can be reduced accordingly.
  • the bonding apparatus according to this modification includes a horizontal drive unit 3163 that collectively supports the particle beam sources 161 and 162 and moves the particle beam sources 161 and 162 in a horizontal direction perpendicular to the direction in which the substrates W1 and W2 face each other.
  • a horizontal drive unit 3163 that collectively supports the particle beam sources 161 and 162 and moves the particle beam sources 161 and 162 in a horizontal direction perpendicular to the direction in which the substrates W1 and W2 face each other.
  • the particle beam sources 161 and 162 move in the direction indicated by the arrow AR32 while irradiating the bonding surfaces of the substrates W1 and W2 with particle beams, respectively.
  • the bonding apparatus according to this modification may include particle beam sources 2161 and 2162 having a discharge chamber 21601 shown in FIG. 17, which will be described later, instead of the particle beam sources 161 and 162.
  • the distance between the particle beams 161, 162 and the substrates W1, W2 changes during irradiation of the particle beams onto the substrates W1, W2.
  • the dose of the particle beam irradiated to the substrate changes, and the etching rate of the surfaces of the substrates W1 and W2 changes accordingly.
  • the particle beams can be irradiated onto the substrates W1 and W2 while maintaining a constant distance between the particle beam sources 161 and 162 and the substrates W1 and W2. While keeping the moving speeds of the particles 161 and 162 constant, the dose of the particle beam irradiated onto the substrates W1 and W2 can be made uniform.
  • the discharge chamber 21601 may have a plurality of types of radiation ports 21601a, 21601b, and 21601c with different radiation directions, as in the particle beam sources 2161 and 2162 shown in FIG. 17, for example.
  • the radiation ports 21601a, 21601b, and 21601c are arranged in such a manner that the direction in which they are lined up is parallel to the joint surface of the substrates W1 and W2 to which the particle beams emitted from the radiation ports 21601a, 21601b, and 21601c are irradiated. .
  • the plurality of radiation ports 21601a, 21601b, and 21601c are arranged in a direction along the bonding surface of the substrates W1 and W2 to which the particle beam is irradiated. Further, the opening area of each of the plurality of radiation ports 21601a, 21601b, and 21601c is determined by the direction in which the plurality of radiation ports 21601a, 21601b, and 21601c are lined up, that is, the radiation arranged at a position away from the center in the longitudinal direction of the discharge chamber 21601.
  • the openings 21601a, 21601b, and 21601c have a larger inclination angle from a direction perpendicular to the longitudinal direction of the discharge chamber 21601 toward one end in the longitudinal direction.
  • the radiation axis J21 of the particle beams of the plurality of radiation ports 21601a arranged in the central area Po21 in the longitudinal direction of the discharge chamber 21601 is approximately parallel to the direction orthogonal to the longitudinal direction of the discharge chamber 21601. be.
  • the radiation axis J22 of the plurality of radiation ports 21601b arranged in the region Po22 adjacent to the region Po21 in the longitudinal direction of the discharge chamber 21601 is in a direction perpendicular to the longitudinal direction of the discharge chamber 21601, that is, with respect to the radiation axis J21. and is inclined by an angle ⁇ 21.
  • the radiation axis J23 of the plurality of radiation ports 21601c arranged in the region Po23 at both longitudinal ends of the discharge chamber 21601 is at an angle with respect to the direction perpendicular to the longitudinal direction of the discharge chamber 21601, that is, with respect to the radiation axis J21. It is inclined by ⁇ 22, and the angle ⁇ 22 is larger than the angle ⁇ 21.
  • the plasma generated in the discharge chamber 21601 has a relatively high density of plasma, starting from a place near the center in the longitudinal direction of the discharge chamber 21601, to both ends of the discharge chamber 21601 in the longitudinal direction.
  • a particle beam is emitted through a radiation aperture 21601c disposed in the radiation port 21601c. Therefore, the difference in the dose of the particle beams emitted from the radiation ports 21601a, 21601b, and 21601c can be reduced.
  • the embodiment includes a radiation direction changing unit (not shown) that changes the radiation direction of the particle beam of at least one of the particle beam sources 161 and 162 according to the distance between the stage 141 and the head 142. There may be.
  • the bonding device may be fixed to the stage 141. It may include one particle beam source fixed to the head 142, or it may include one particle beam source fixed to the head 142.
  • the head 142 is raised and lowered, but the present invention is not limited to this.
  • the stage 141 may be raised and lowered while the movement of the head 142 in the vertical direction is restricted, or , both the stage 141 and the head 142 may move up and down.
  • the bonding surface of the substrates W1 and W2 is irradiated with a particle beam in the activation process
  • the invention is not limited to this.
  • an ion gun is used to irradiate the ion beam onto the substrates W1 and W2. It is also possible to irradiate the joint surface of W2.
  • the particle beam sources 161 and 162 may irradiate the joint surface of the substrates W1 and W2 with Si particles together with argon.
  • the objects to be bonded are the substrates W1 and W2
  • the present invention is not limited to this, and for example, the objects to be bonded may be a chip and a substrate.
  • the present invention is suitable for manufacturing, for example, CMOS (Complementary MOS) image sensors, memories, arithmetic elements, and MEMS (Micro Electro Mechanical Systems).
  • CMOS Complementary MOS
  • MEMS Micro Electro Mechanical Systems

Abstract

This joining device comprises: a stage (141) that holds a substrate (W1); a head (142) that is arranged facing the stage (141) and that holds a substrate (W2); and particle beam sources (161, 162), each of which radiates a particle beam to a region including a section of a joining surface of the substrates (W1, W2). In addition, each of the particle beam source (161, 162) has a plurality of radiation ports that are arranged in a direction along the joining surface of the substrates (W1, W2) onto which the particle beam is radiated. An opening area of each of the plurality of radiation ports is set so as to be greater for a radiation port that is arranged at a position more distant from a longitudinal center section of a discharging chamber.

Description

接合装置および接合方法Bonding equipment and bonding method
 本発明は、接合装置および接合方法に関する。 The present invention relates to a bonding device and a bonding method.
 一対の基板の接合面へ粒子ビームを照射することにより一対の基板の接合面それぞれを活性化させる表面活性化処理を行った後、一対の基板の接合面同士を接触させることにより一対の基板同士を接合する方法が提案されている(例えば特許文献1参照)。この方法では、チャンバ内において、一対の基板それぞれを保持したステージを互いに離間した状態で配置し、チャンバ内で定位置に固定された粒子ビーム源からステージに保持された基板ぞれぞれの接合面に向けて粒子ビームを照射することにより基板の接合面を活性化させる。 After performing a surface activation treatment that activates each bonding surface of a pair of substrates by irradiating the bonding surface of the pair of substrates with a particle beam, the bonding surfaces of the pair of substrates are brought into contact with each other. A method of joining has been proposed (for example, see Patent Document 1). In this method, a stage holding each of a pair of substrates is placed in a chamber at a distance from each other, and each substrate held on the stage is bonded from a particle beam source fixed at a fixed position in the chamber. The bonding surface of the substrate is activated by irradiating the surface with a particle beam.
特開2015-8228号公報JP 2015-8228 Publication
 しかしながら、特許文献1に記載された方法では、基板の接合面に対して粒子ビームの照射方向が傾斜していることから基板における粒子ビームの入射面に平行な方向において基板に入射する粒子ビームのドーズ量が不均一になってしまう。また、粒子ビーム源としては、ライン状であり、その長手方向が基板に接合面に平行となる姿勢で配置される放電室を有するものが採用される場合がある。しかしながら、このような粒子ビーム源の場合、放電室内で発生させるプラズマ密度が放電室の長手方向において不均一になり、これに伴い、基板の接合面における粒子ビームの入射面と直交する方向における粒子ビームのドーズ量が不均一になってしまう。このように、基板の接合面における粒子ビームの入射面に平行な方向並びに入射面と直交する方向において基板の接合面に入射する粒子ビームのドーズ量が不均一になると、接合面全体を均一に活性化できない虞がある。 However, in the method described in Patent Document 1, since the irradiation direction of the particle beam is inclined with respect to the bonding surface of the substrate, the particle beam incident on the substrate is The dose amount becomes uneven. Further, as the particle beam source, a linear discharge chamber having a discharge chamber disposed in a posture such that its longitudinal direction is parallel to the bonding surface of the substrate may be employed. However, in the case of such a particle beam source, the plasma density generated in the discharge chamber becomes nonuniform in the longitudinal direction of the discharge chamber, and as a result, the plasma density generated in the discharge chamber becomes non-uniform in the longitudinal direction of the discharge chamber. The beam dose becomes non-uniform. In this way, if the dose of the particle beam incident on the bonding surface of the substrate becomes uneven in the direction parallel to the incident surface of the particle beam on the bonding surface of the substrate and in the direction orthogonal to the incident surface, it is difficult to uniformly spread the entire bonding surface. There is a possibility that it may not be activated.
 本発明は、上記事由に鑑みてなされたものであり、被接合物の接合面全体を均一に活性化処理できる接合装置および接合方法を提供することを目的とする。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide a bonding apparatus and a bonding method that can uniformly activate the entire bonding surface of objects to be bonded.
 上記目的を達成するため、本発明に係る接合装置は、
 2つの被接合物を接合する接合装置であって、
 前記2つの被接合物のうちのいずれか一方の被接合物を保持する第1被接合物保持部と、
 前記第1被接合物保持部に対向して配置され、前記2つの被接合物のうちの他方の被接合物を保持する第2被接合物保持部と、
 前記2つの被接合物のいずれかの接合面の一部を含む領域へ粒子ビームを放射する粒子ビーム源と、を備え、
 前記粒子ビーム源は、
 粒子ビームが照射される被接合物の接合面に沿った方向に配列する複数の放射口を有し、
 前記複数の放射口それぞれの開口面積は、前記複数の放射口の並び方向における中央部から離れた位置に配置される放射口ほど大きく設定されている。
In order to achieve the above object, the joining device according to the present invention includes:
A joining device for joining two objects to be joined,
a first workpiece holding section that holds one of the two workpieces;
a second workpiece holding part that is disposed opposite to the first workpiece holding part and holds the other workpiece of the two workpieces;
a particle beam source that emits a particle beam to a region including a part of the bonding surface of either of the two objects to be bonded;
The particle beam source includes:
It has a plurality of radiation ports arranged in a direction along the bonding surface of the object to be bonded to which the particle beam is irradiated,
The opening area of each of the plurality of radiation ports is set to be larger as the radiation ports are arranged farther from the center in the direction in which the plurality of radiation ports are arranged.
 本発明によれば、粒子ビーム源が、粒子ビームが照射される被接合物の接合面に沿った方向に配列する複数の放射口を有し、複数の放射口それぞれの開口面積が、複数の放射口の並び方向における中央部から離れた位置に配置される放射口ほど大きく設定されている。これにより、複数の放射口それぞれから放射される粒子ビームのドーズ量が均一になるので、被接合物の接合面における複数の放射口の並び方向において均一に粒子ビームを照射することができる。また、粒子ビーム源から粒子ビームを被接合物に向けて放射しながら、被接合物の接合面に対して水平な方向へ移動させることにより、被接合物の接合面における粒子ビーム源の移動方向において均一に粒子ビームを照射することができる。従って、被接合物の接合面全体を均一に活性化することができる。 According to the present invention, the particle beam source has a plurality of radiation ports arranged in a direction along the bonding surface of the workpiece to be irradiated with the particle beam, and the opening area of each of the plurality of radiation ports has a plurality of opening areas. The radiation ports arranged at positions further away from the center in the direction in which the radiation ports are lined up are set larger. This makes the dose of the particle beam emitted from each of the plurality of radiation ports uniform, so that the particle beam can be irradiated uniformly in the direction in which the plurality of radiation ports are arranged on the bonding surface of the object to be joined. In addition, by moving the particle beam from the particle beam source toward the object to be welded and moving it in a direction horizontal to the surface to be welded, the direction of movement of the particle beam source on the surface to be welded The particle beam can be uniformly irradiated at Therefore, the entire bonding surface of the objects to be bonded can be activated uniformly.
本発明の実施の形態に係る接合装置の概略正面図である。1 is a schematic front view of a joining device according to an embodiment of the present invention. 実施の形態に係る接合装置の一部を示す図である。It is a figure showing a part of joining device concerning an embodiment. 実施の形態に係る放電室の概略正面図である。FIG. 2 is a schematic front view of a discharge chamber according to an embodiment. 実施の形態に係る接合装置の一部を示し、ステージ-ヘッド間距離が最短になった状態を示す図である。FIG. 2 is a diagram illustrating a part of the bonding apparatus according to the embodiment, and illustrating a state where the distance between the stage and the head is the shortest. 実施の形態に係る接合装置の一部を示し、ステージ-ヘッド間距離が最長になった状態を示す図である。FIG. 2 is a diagram showing a part of the bonding apparatus according to the embodiment, and showing a state where the distance between the stage and the head is the longest. 実施の形態に係るステージにおける粒子ビームの照射領域を示す図である。FIG. 3 is a diagram showing a particle beam irradiation area on a stage according to an embodiment. 実施の形態に係るヘッドにおける粒子ビームの照射領域を示す図である。FIG. 3 is a diagram showing a particle beam irradiation area in a head according to an embodiment. 実施の形態に係る接合装置の動作説明図である。FIG. 3 is an explanatory diagram of the operation of the bonding device according to the embodiment. 比較例1に係る放電室の概略正面図である。3 is a schematic front view of a discharge chamber according to Comparative Example 1. FIG. 活性化処理における粒子ビームのドーズ量の均一性の評価に用いた基板の膜厚測定箇所を示す図である。FIG. 3 is a diagram showing the film thickness measurement locations on the substrate used to evaluate the uniformity of the dose of the particle beam in the activation process. 比較例1に係る活性化処理前後のSiO膜の膜厚分布を示し、図8のP軸方向の膜厚分布を示す図である。9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the P-axis direction of FIG. 8. FIG. 比較例1に係る活性化処理前後のSiO膜の膜厚分布を示し、図8のQ軸方向の膜厚分布を示す図である。9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the Q-axis direction of FIG. 8. FIG. 比較例1に係る活性化処理前後のSiO膜の膜厚分布を示し、図8のP軸方向の膜厚分布を示す図である。9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the P-axis direction of FIG. 8. FIG. 比較例1に係る活性化処理前後のSiO膜の膜厚分布を示し、図8のQ軸方向の膜厚分布を示す図である。9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to Comparative Example 1, and showing the film thickness distribution in the Q-axis direction of FIG. 8. FIG. 実施の形態に係る活性化処理前後のSiO膜の膜厚分布を示し、図8のP軸方向の膜厚分布を示す図である。9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to the embodiment, and showing the film thickness distribution in the P-axis direction of FIG. 8. FIG. 実施の形態に係る活性化処理前後のSiO膜の膜厚分布を示し、図8のQ軸方向の膜厚分布を示す図である。9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to the embodiment, and showing the film thickness distribution in the Q-axis direction of FIG. 8. FIG. 実施の形態に係る活性化処理前後のSiO膜の膜厚分布を示し、図8のP軸方向の膜厚分布を示す図である。9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to the embodiment, and showing the film thickness distribution in the P-axis direction of FIG. 8. FIG. 実施の形態に係る活性化処理前後のSiO膜の膜厚分布を示し、図8のQ軸方向の膜厚分布を示す図である。9 is a diagram showing the film thickness distribution of the SiO 2 film before and after the activation treatment according to the embodiment, and showing the film thickness distribution in the Q-axis direction of FIG. 8. FIG. 比較例2に係る接合装置の一部を示す図である。3 is a diagram illustrating a part of a bonding apparatus according to Comparative Example 2. FIG. 比較例2に係る接合装置で基板に粒子ビームを照射したときのドーズ量の分布を示す図である。7 is a diagram showing a dose distribution when a substrate is irradiated with a particle beam using a bonding apparatus according to Comparative Example 2. FIG. 比較例1、2および実施の形態に係る粒子ビーム源におけるプラズマの分布の模式図である。FIG. 3 is a schematic diagram of plasma distribution in the particle beam sources according to Comparative Examples 1 and 2 and the embodiment. 変形例に係る接合装置の一部を示す図である。It is a figure showing a part of joining device concerning a modification. 変形例に係る接合装置の動作説明図である。It is an explanatory diagram of operation of a joining device concerning a modification. 変形例に係る放電室の概略正面図である。It is a schematic front view of the discharge chamber based on a modification.
 以下、本発明の実施の形態1に係る接合装置について、図を参照しながら説明する。本実施の形態に係る接合装置は、減圧雰囲気にあるチャンバ内で、2つの基板の接合面に対して活性化処理を行い、その後、基板同士を接触させて加圧することにより、2つの基板を接合する。ここで、基板としては、例えば、Si基板、SiOガラス基板等のガラス基板、酸化物基板(例えば、酸化ケイ素(SiO)基板、サファイア基板を含むアルミナ基板(Al)、酸化ガリウム(Ga)等)、窒化物基板(例えば、窒化ケイ素(SiN)、窒化アルミニウム(AlN)、窒化ガリウム(GaN))、GaAs基板、炭化ケイ素(SiC)基板、タンタル酸リチウム(Lt:LiTaO)基板、ニオブ酸リチウム基板(Ln:LiNbO)、ダイヤモンド基板などのいずれかからなる被接合物である。或いは、基板W1、W2として、接合面にAu、Cu、Al、Ti等の金属から形成された電極が設けられた基板であってもよい。また、基板W1、W2は、それぞれ、直径6インチ以下の平面視円形の基板であることが好ましい。活性化処理では、2つの基板それぞれの互いに接合される接合面に対して、粒子ビームを照射することにより基板の接合面を活性化する。なお、活性化処理の前に基板を加熱してもよいし、2つの基板同士を接触させて加圧する際に加熱してもよい。 EMBODIMENT OF THE INVENTION Hereinafter, the joining apparatus based on Embodiment 1 of this invention is demonstrated with reference to figures. The bonding apparatus according to this embodiment performs an activation process on the bonding surfaces of two substrates in a chamber in a reduced pressure atmosphere, and then brings the two substrates into contact with each other and applies pressure. Join. Here, the substrate may be, for example, a glass substrate such as a Si substrate or a SiO 2 glass substrate, an oxide substrate (for example, a silicon oxide (SiO 2 ) substrate, an alumina substrate (Al 2 O 3 ) including a sapphire substrate, or a gallium oxide substrate). (Ga 2 O 3 ), nitride substrates (e.g. silicon nitride (SiN), aluminum nitride (AlN), gallium nitride (GaN)), GaAs substrates, silicon carbide (SiC) substrates, lithium tantalate (Lt: The bonded object is made of any one of a LiTaO 3 ) substrate, a lithium niobate substrate (Ln:LiNbO 3 ), a diamond substrate, and the like. Alternatively, the substrates W1 and W2 may be substrates whose bonding surfaces are provided with electrodes made of metal such as Au, Cu, Al, Ti, or the like. Further, it is preferable that the substrates W1 and W2 are each circular substrates having a diameter of 6 inches or less in a plan view. In the activation process, the bonding surfaces of the two substrates, which are to be bonded to each other, are irradiated with a particle beam to activate the bonding surfaces of the substrates. Note that the substrates may be heated before the activation treatment, or may be heated when the two substrates are brought into contact and pressurized.
 本実施の形態に係る接合装置は、図1に示すように、チャンバ120と、ステージ141と、ヘッド142と、ステージ駆動部143と、ヘッド駆動部144と、基板加熱部1411、1421と、位置ずれ量測定部150と、粒子ビーム源161、162と、を備える。なお、以下の説明において、適宜図2の±Z方向を上下方向、XY方向を水平方向として説明する。チャンバ120は、排気管121bと排気弁121cとを介して真空ポンプ121aに接続されている。排気弁121cを開状態にして真空ポンプ121aを作動させると、チャンバ120内の気体が、排気管121bを通してチャンバ120外へ排出され、チャンバ120内の気圧が低減(減圧)される。なお、チャンバ120内の気圧は、10-5Pa以下にすることができる。また、排気弁121cの開閉量を変動させて排気量を調節することにより、チャンバ120内の気圧(真空度)を調節することができる。 As shown in FIG. 1, the bonding apparatus according to the present embodiment includes a chamber 120, a stage 141, a head 142, a stage drive section 143, a head drive section 144, substrate heating sections 1411 and 1421, and It includes a shift amount measuring section 150 and particle beam sources 161 and 162. In the following description, the ±Z direction in FIG. 2 will be described as the vertical direction, and the XY direction will be described as the horizontal direction. The chamber 120 is connected to a vacuum pump 121a via an exhaust pipe 121b and an exhaust valve 121c. When the exhaust valve 121c is opened and the vacuum pump 121a is operated, the gas inside the chamber 120 is exhausted to the outside of the chamber 120 through the exhaust pipe 121b, and the air pressure inside the chamber 120 is reduced (reduced pressure). Note that the atmospheric pressure inside the chamber 120 can be set to 10 −5 Pa or less. Moreover, the air pressure (degree of vacuum) in the chamber 120 can be adjusted by varying the opening/closing amount of the exhaust valve 121c to adjust the exhaust amount.
 ステージ141とヘッド142とは、チャンバ120内において、Z方向において互いに対向するように配置されている。ステージ141は、その上面で基板W1を保持する第1被接合物保持部であり、ヘッド142は、その下面で基板W2を保持する第2被接合物保持部である。なお、ステージ141の上面とヘッド142の下面とは、基板W1、W2のステージ141、ヘッド142との接触面が鏡面でステージ141、ヘッド142から剥がれにくい場合を考慮して、粗面加工が施されていてもよい。ステージ141およびヘッド142は、それぞれ基板W1、W2を保持する保持機構(図示せず)を有する。保持機構は、静電チャック、機械式クランプ等を有する。また、ステージ141は、周部に段部141aが形成された形状を有する。そして、ステージ141に基板W1、W2が載置された状態において、基板W1、W2の周部が段部141aの上方に配置される。 The stage 141 and the head 142 are arranged in the chamber 120 so as to face each other in the Z direction. The stage 141 is a first object holder that holds the substrate W1 on its upper surface, and the head 142 is a second object holder that holds the substrate W2 on its lower surface. Note that the upper surface of the stage 141 and the lower surface of the head 142 are roughened, considering that the contact surfaces of the substrates W1 and W2 with the stage 141 and the head 142 are mirror-finished and difficult to peel off from the stage 141 and the head 142. may have been done. Stage 141 and head 142 each have a holding mechanism (not shown) that holds substrates W1 and W2. The holding mechanism includes an electrostatic chuck, a mechanical clamp, and the like. Further, the stage 141 has a shape in which a stepped portion 141a is formed around the periphery. Then, in a state where the substrates W1 and W2 are placed on the stage 141, the peripheral portions of the substrates W1 and W2 are arranged above the step portion 141a.
 ステージ駆動部143は、ステージ141をXY方向へ移動させたり、Z軸周りに回転させたりすることができる。 The stage drive unit 143 can move the stage 141 in the XY directions or rotate it around the Z axis.
 ヘッド駆動部144は、矢印AR1に示すようにヘッド142を昇降させる昇降駆動部1441と、ヘッド142をXY方向へ移動させるXY方向駆動部1442と、ヘッド142をZ軸周りの回転方向に回転させる回転駆動部1443と、を有する。また、ヘッド駆動部144は、ヘッド142のステージ141に対する傾きを調整するためのピエゾアクチュエータ1444と、ヘッド142に加わる圧力を測定するための圧力センサ1445と、を有する。XY方向駆動部1442および回転駆動部1443が、X方向、Y方向、Z軸周りの回転方向において、ヘッド142をステージ141に対して相対的に移動させることにより、ステージ141に保持された基板W1とヘッド142に保持された基板W2とのアライメントが可能となる。なお、ステージ駆動部143は、ステージ141の鉛直下方に配置された構成に限定されるものではなく、例えば、ステージ141の鉛直下方に圧力を受けるバックアップ部(図示せず)を設け、ステージ駆動部143が、ステージ141の外周部に配置し、ステージ141の側方からステージ141を駆動する構成であってもよい。 The head drive unit 144 includes an elevation drive unit 1441 that moves the head 142 up and down as shown by arrow AR1, an XY direction drive unit 1442 that moves the head 142 in the XY directions, and a rotation direction that rotates the head 142 around the Z axis. It has a rotation drive section 1443. The head drive unit 144 also includes a piezo actuator 1444 for adjusting the inclination of the head 142 with respect to the stage 141, and a pressure sensor 1445 for measuring the pressure applied to the head 142. The XY direction drive section 1442 and the rotation drive section 1443 move the head 142 relative to the stage 141 in the X direction, the Y direction, and the rotation direction around the Z axis, thereby moving the substrate W1 held on the stage 141. This makes it possible to align the substrate W2 held by the head 142. Note that the stage drive section 143 is not limited to a configuration in which it is arranged vertically below the stage 141; for example, a backup section (not shown) that receives pressure is provided vertically below the stage 141, and the stage drive section 143 is arranged vertically below the stage 141. 143 may be arranged on the outer periphery of the stage 141, and the stage 141 may be driven from the side of the stage 141.
 昇降駆動部1441は、ヘッド142を鉛直下方向へ移動させることにより、ヘッド142をステージ141に近づける。また、昇降駆動部1441は、ヘッド142を鉛直上方向に移動させることにより、ヘッド142をステージ141から遠ざける。そして、昇降駆動部1441は、基板W1、W2同士が接触した状態においてヘッド142に対してステージ141に近づく方向への駆動力を作用させると、基板W2が基板W1に押し付けられる。また、昇降駆動部1441には、ヘッド142に対してステージ141に近づく方向へ作用させる駆動力を測定する圧力センサ1441aが設けられている。圧力センサ1441aによる測定値から、昇降駆動部1441により基板W2が基板W1に押し付けられたときに基板W1、W2の接合面に作用する圧力が検出できる。圧力センサ1441aは、例えば圧電素子を有する。 The elevating drive unit 1441 brings the head 142 closer to the stage 141 by moving the head 142 vertically downward. Further, the elevating drive unit 1441 moves the head 142 away from the stage 141 by moving the head 142 vertically upward. Then, when the elevating drive unit 1441 applies a driving force to the head 142 in a direction toward the stage 141 while the substrates W1 and W2 are in contact with each other, the substrate W2 is pressed against the substrate W1. Further, the elevating drive unit 1441 is provided with a pressure sensor 1441a that measures the driving force acting on the head 142 in a direction toward the stage 141. From the measured value by the pressure sensor 1441a, the pressure acting on the joint surface of the substrates W1 and W2 when the substrate W2 is pressed against the substrate W1 by the lifting drive unit 1441 can be detected. The pressure sensor 1441a includes, for example, a piezoelectric element.
 ピエゾアクチュエータ1444と圧力センサ1445との組は、ヘッド142とXY方向駆動部1442との間に複数組配置されている。圧力センサ1445は、ピエゾアクチュエータ1444の上端部とXY方向駆動部1442の下側との間に介在している。ピエゾアクチュエータ1444は、各別に上下方向に伸縮可能であり、これらが伸縮することにより、ヘッド142のX軸周りおよびY軸周りの傾きとヘッド142の上下方向の位置とが微調整される。また、圧力センサ1445は、例えば圧電素子を有し、ヘッド142の下面における複数箇所での加圧力を測定する。そして、複数の圧力センサ1445で測定された加圧力が等しくなるように複数のピエゾアクチュエータ1444それぞれを駆動することにより、ヘッド142の下面とステージ141の上面とを平行に維持しつつ基板W1、W2同士を接触させることができる。 A plurality of pairs of piezo actuators 1444 and pressure sensors 1445 are arranged between the head 142 and the XY direction drive section 1442. The pressure sensor 1445 is interposed between the upper end of the piezo actuator 1444 and the lower side of the XY direction drive section 1442. The piezo actuators 1444 can be individually expanded and contracted in the vertical direction, and by expanding and contracting these, the inclination of the head 142 around the X-axis and the Y-axis and the vertical position of the head 142 are finely adjusted. Further, the pressure sensor 1445 includes, for example, a piezoelectric element, and measures the pressing force at a plurality of locations on the lower surface of the head 142. By driving each of the plurality of piezo actuators 1444 so that the pressing forces measured by the plurality of pressure sensors 1445 are equal, the lower surface of the head 142 and the upper surface of the stage 141 are maintained parallel to the substrates W1 and W2. can be brought into contact with each other.
 基板加熱部1411、1421は、例えば前述の保持機構が静電チャックの場合、ステージ141、ヘッド142における、基板W1、W2が当接する面側から見て保持機構の裏側に埋め込まれた電熱ヒータを有する第1被接合物加熱部である。基板加熱部1411、1421は、ステージ141、ヘッド142に支持されている基板W1、W2に熱を伝達することにより基板W1、W2を加熱する。また、基板加熱部1411、1421の発熱量を調節することにより、基板W1、W2またはそれらの接合面の温度を調節できる。位置ずれ量測定部150は、基板W1、W2それぞれに設けられた位置合わせ用のマーク(アライメントマーク)の位置を認識することにより、基板W1の基板W2に対する水平方向の位置ずれ量を測定する。位置ずれ量測定部150は、例えば基板W1、W2を透過する光(例えば赤外光)を用いて基板W1、W2のアライメントマークを認識する。ステージ駆動部143は、位置ずれ量測定部150により測定された位置ずれ量に基づいて、ステージ141を水平方向に移動させたり回転させたりすることにより、基板W1、W2の相互間の位置合わせ動作(アライメント動作)を実行する。 For example, when the above-mentioned holding mechanism is an electrostatic chuck, the substrate heating units 1411 and 1421 include an electric heater embedded in the back side of the holding mechanism when viewed from the side of the stage 141 and the head 142 that contact the substrates W1 and W2. This is a first object heating section having a first object heating section. The substrate heating units 1411 and 1421 heat the substrates W1 and W2 by transmitting heat to the substrates W1 and W2 supported by the stage 141 and the head 142. Furthermore, by adjusting the amount of heat generated by the substrate heating units 1411 and 1421, the temperature of the substrates W1 and W2 or their bonding surfaces can be adjusted. The positional deviation measuring unit 150 measures the horizontal positional deviation of the substrate W1 with respect to the substrate W2 by recognizing the positions of alignment marks provided on each of the substrates W1 and W2. The positional deviation measurement unit 150 recognizes the alignment marks on the substrates W1 and W2 using, for example, light (eg, infrared light) that passes through the substrates W1 and W2. The stage driving section 143 performs an operation of aligning the substrates W1 and W2 with each other by moving or rotating the stage 141 in the horizontal direction based on the amount of positional deviation measured by the amount of positional deviation measuring section 150. (alignment operation).
 粒子ビーム源161、162は、例えば高速原子ビーム(FAB、Fast Atom Beam)源であり、それぞれ、ビーム源支持部122A、122Bを介してステージ141、ヘッド142に固定されている。ここで、粒子ビーム源161の粒子ビームの照射軸J1に沿った照射方向AR21は、基板W2の接合面の垂線n2に対して傾斜している。また、粒子ビーム源162の粒子ビームの照射軸J2に沿った照射方向AR22は、基板W1の接合面の垂線n1に対して傾斜している。粒子ビーム源161、162は、それぞれ、例えば図2に示すように、放電室1601と、放電室1601内に配置される電極1602と、ビーム源駆動部(図示せず)と、アルゴンガスを放電室1601内へ供給するガス供給部1604と、を有する。放電室1601は、炭素材料から長尺箱状に形成され、その周壁には、中性原子を含む粒子ビームを放射する複数の放射口1601a、1601b、1601cが設けられている。 The particle beam sources 161 and 162 are, for example, fast atom beam (FAB) sources, and are fixed to the stage 141 and head 142 via beam source supports 122A and 122B, respectively. Here, the irradiation direction AR21 of the particle beam of the particle beam source 161 along the irradiation axis J1 is inclined with respect to the perpendicular n2 to the bonding surface of the substrate W2. Further, the irradiation direction AR22 of the particle beam of the particle beam source 162 along the irradiation axis J2 is inclined with respect to the perpendicular n1 to the bonding surface of the substrate W1. As shown in FIG. 2, the particle beam sources 161 and 162 each include a discharge chamber 1601, an electrode 1602 disposed in the discharge chamber 1601, a beam source driver (not shown), and a discharge chamber that discharges argon gas. It has a gas supply section 1604 that supplies gas into the chamber 1601. The discharge chamber 1601 is formed from a carbon material in the shape of a long box, and its peripheral wall is provided with a plurality of radiation ports 1601a, 1601b, and 1601c that emit a particle beam containing neutral atoms.
 複数の放射口1601a、1601b、1601cは、例えば図3に示すように、それぞれ、放電室1601の長手方向に沿って列状に配置されている。ここで、放射口1601a、1601b、1601cそれぞれの並び方向は、放射口1601a、1601b、1601cから放射される粒子ビームが照射される基板W1、W2の接合面と平行になる姿勢で配置されている。即ち、複数の放射口1601a、1601b、1601cは、粒子ビームが照射される基板W1、W2の接合面に沿った方向に配列している。また、複数の放射口1601a、1601b、1601cそれぞれの開口面積は、複数の放射口1601a、1601b、1601cの並び方向、即ち、放電室1601の長手方向における中央部から離れた位置に配置される放射口1601a、1601b、1601cほど大きくなるように設定されている。放電室1601の長手方向における中央部の領域Po1に隣接する領域Po2に配設される複数の放射口1601bの開口径D2は、領域Po1に配設される複数の放射口1601aの開口径D1に比べて大きい。また、放電室1601の長手方向における両端部の領域Po3に配設される複数の放射口1601cの開口径D3は、領域Po2に配設される複数の放射口1601cの開口径D2に比べて大きい。 The plurality of radiation ports 1601a, 1601b, and 1601c are each arranged in a row along the longitudinal direction of the discharge chamber 1601, as shown in FIG. 3, for example. Here, the radiation ports 1601a, 1601b, and 1601c are arranged in such a manner that the direction in which they are arranged is parallel to the joint surface of the substrates W1 and W2 to which the particle beams emitted from the radiation ports 1601a, 1601b, and 1601c are irradiated. . That is, the plurality of radiation ports 1601a, 1601b, and 1601c are arranged in a direction along the bonding surface of the substrates W1 and W2 to which the particle beam is irradiated. Further, the opening area of each of the plurality of radiation ports 1601a, 1601b, and 1601c is determined in the direction in which the plurality of radiation ports 1601a, 1601b, and 1601c are arranged, that is, the radiation located at a position away from the center in the longitudinal direction of the discharge chamber 1601. The openings 1601a, 1601b, and 1601c are set to be larger. The opening diameter D2 of the plurality of radiation ports 1601b arranged in the region Po2 adjacent to the region Po1 in the center in the longitudinal direction of the discharge chamber 1601 is equal to the opening diameter D1 of the plurality of radiation ports 1601a arranged in the region Po1. It's big in comparison. Further, the opening diameter D3 of the plurality of radiation ports 1601c arranged in the region Po3 at both ends in the longitudinal direction of the discharge chamber 1601 is larger than the opening diameter D2 of the plurality of radiation ports 1601c arranged in the region Po2. .
 ビーム源駆動部は、放電室1601内にアルゴンガスのプラズマを発生させるプラズマ発生部(図示せず)と、電極1602と放電室1601の周壁との間に直流電圧を印加する直流電源(図示せず)と、を有する。ビーム源駆動部は、放電室1601内にアルゴンガスのプラズマを発生させた状態で、放電室1601の周壁と電極1602との間に直流電圧を印加する。このとき、プラズマ中のアルゴンイオンが、放電室1601の周壁に引き寄せられる。このとき、放射口1601aへ向かうアルゴンイオンは、放射口1601aを通り抜ける際、放射口1601aの外周部の、炭素材料から形成された放電室1601の周壁から電子を受け取る。そして、このアルゴンイオンは、電気的に中性化されたアルゴン原子となって放電室1601外へ放出される。ここで、粒子ビーム源161、162への供給電力は、例えば1kV、100mAに設定されている。そして、粒子ビーム源161、162それぞれの放電室1601内へ導入されるアルゴンガスの流量は、例えば50sccmに設定される。また、放電室1601内で発生するアルゴンを含むプラズマは、放電室1601の長手方向における両端部の密度が放電室1601の中央部の密度に比べて小さくなる。これに対して、放電室1601の複数の放射口1601a、1601b、1601cは、前述のように、放電室1601の長手方向における中央部(領域Po1)から離れた位置に配置される放射口1601b、1601cほど開口径D2、D3が大きくなるように設定されている。このため、粒子ビーム源161から基板W1における領域P11、P21に照射される粒子ビームのドーズ量を、領域P11、P21におけるX軸方向において均一にすることができる。また、粒子ビーム源161から基板W2における領域P12、P22に照射される粒子ビームの密度が、領域P12、P22におけるX軸方向において均一にすることができる。 The beam source driver includes a plasma generator (not shown) that generates argon gas plasma in the discharge chamber 1601 and a DC power supply (not shown) that applies a DC voltage between the electrode 1602 and the peripheral wall of the discharge chamber 1601. ). The beam source driver applies a DC voltage between the peripheral wall of the discharge chamber 1601 and the electrode 1602 while generating argon gas plasma within the discharge chamber 1601 . At this time, argon ions in the plasma are attracted to the peripheral wall of the discharge chamber 1601. At this time, when the argon ions heading toward the radiation port 1601a pass through the radiation port 1601a, they receive electrons from the peripheral wall of the discharge chamber 1601 formed from a carbon material at the outer periphery of the radiation port 1601a. The argon ions then become electrically neutralized argon atoms and are emitted to the outside of the discharge chamber 1601. Here, the power supplied to the particle beam sources 161 and 162 is set to, for example, 1 kV and 100 mA. The flow rate of argon gas introduced into the discharge chamber 1601 of each of the particle beam sources 161 and 162 is set to, for example, 50 sccm. Furthermore, the density of the plasma containing argon generated in the discharge chamber 1601 is lower at both ends of the discharge chamber 1601 in the longitudinal direction than at the center of the discharge chamber 1601. On the other hand, the plurality of radiation ports 1601a, 1601b, and 1601c of the discharge chamber 1601 are, as described above, the radiation port 1601b arranged at a position away from the center (region Po1) in the longitudinal direction of the discharge chamber 1601, The aperture diameters D2 and D3 are set to be larger as the size becomes 1601c. Therefore, the dose of the particle beam irradiated from the particle beam source 161 onto the regions P11 and P21 on the substrate W1 can be made uniform in the X-axis direction in the regions P11 and P21. Further, the density of the particle beam irradiated from the particle beam source 161 onto the regions P12 and P22 on the substrate W2 can be made uniform in the X-axis direction in the regions P12 and P22.
 次に、本実施の形態に係る接合装置の動作について説明する。図4Aに示すように、粒子ビーム源161は、粒子ビームをヘッド142に保持された基板W2へ照射し、粒子ビーム源162は、粒子ビームをステージ141に保持された基板W1へ照射する。ここで、粒子ビーム源161は、基板W2における-Y方向側の領域P12に粒子ビームを照射し、粒子ビーム源162は、基板W1における+Y方向側の領域P11に粒子ビームを照射しているとする。この状態から、接合装置が、矢印AR11に示すように、ヘッド142をステージ141から離れる方向へ移動させると、基板W2における粒子ビームが照射される領域が、図5Aの矢印AR21に示すように、領域P12から+Y方向へ移動する。また、基板W1における粒子ビームが照射される領域が、図5Bの矢印AR22に示すように、領域P11から-Y方向へ移動する。そして、図4Bに示すように、粒子ビーム源161が、基板W2における+Y方向側の領域P22に粒子ビームを照射し、粒子ビーム源162が、基板W1における-Y方向側の領域P21に粒子ビームを照射している状態となる。次に、接合装置が、矢印AR12に示すように、ヘッド142をステージ141に近づく方向へ移動させると、基板W2における粒子ビームが照射される領域が、領域P22から-Y方向へ移動し、基板W1における粒子ビームが照射される領域が、領域P12から+Y方向へ移動する。そして、再び図4Aに示す状態になる。ここで、ヘッド142は、ステージ141から距離H1だけ離間した位置と、ステージ141から距離H2だけ離間した位置と、の間で繰り返し昇降する。また、距離H1と距離H2とは、例えば1:3となるように設定される。具体的には、距離H1が50mm、距離H2が150mmとなるように設定される。なお、ヘッド142は、基板W1、W2における粒子ビームが照射される領域のーY方向側の端縁が基板W1、W2の+Y方向側の端と一致した状態から、その+Y方向側の端縁が基板W1、W2の-Y方向側の端縁と一致した状態となるまで移動するように昇降させるのが好ましい。 Next, the operation of the bonding apparatus according to this embodiment will be explained. As shown in FIG. 4A, the particle beam source 161 irradiates the substrate W2 held by the head 142 with a particle beam, and the particle beam source 162 irradiates the substrate W1 held by the stage 141 with the particle beam. Here, the particle beam source 161 irradiates a region P12 on the −Y direction side of the substrate W2 with a particle beam, and the particle beam source 162 irradiates a region P11 on the +Y direction side of the substrate W1 with a particle beam. do. From this state, when the bonding apparatus moves the head 142 in the direction away from the stage 141 as shown by the arrow AR11, the area on the substrate W2 to which the particle beam is irradiated changes as shown by the arrow AR21 in FIG. 5A. Move in the +Y direction from area P12. Furthermore, the region on the substrate W1 that is irradiated with the particle beam moves from the region P11 in the −Y direction, as shown by the arrow AR22 in FIG. 5B. Then, as shown in FIG. 4B, the particle beam source 161 irradiates a region P22 on the +Y direction side of the substrate W2 with a particle beam, and the particle beam source 162 irradiates a region P21 on the -Y direction side of the substrate W1 with a particle beam. It will be in a state where it is irradiating. Next, when the bonding apparatus moves the head 142 in the direction approaching the stage 141 as shown by the arrow AR12, the region on the substrate W2 to which the particle beam is irradiated moves from the region P22 in the −Y direction, and the substrate The region irradiated with the particle beam in W1 moves in the +Y direction from region P12. Then, the state shown in FIG. 4A is reached again. Here, the head 142 repeatedly moves up and down between a position separated by a distance H1 from the stage 141 and a position separated by a distance H2 from the stage 141. Further, the distance H1 and the distance H2 are set to be, for example, 1:3. Specifically, the distance H1 is set to 50 mm and the distance H2 is set to 150 mm. Note that the head 142 moves from a state in which the -Y direction side edge of the region of the substrates W1, W2 to which the particle beam is irradiated coincides with the +Y direction side edge of the substrate W1, W2 to the +Y direction side edge thereof. It is preferable to move the substrates W1 and W2 up and down until they coincide with the edges of the substrates W1 and W2 in the -Y direction.
 また、接合装置は、図6に示すように、ステージ141とヘッド142との間の距離に応じて、ヘッド142の移動速度を変化させる。具体的には、ステージ141とヘッド142との間の距離が比較的長く、基板W1、W2に到達する粒子ビームの密度が小さい状態では、ヘッド142の移動速度を遅くする。一方、ステージ141とヘッド142との間の距離が比較的短く、基板W1、W2に到達する粒子ビームの密度が大きい状態では、ヘッド142の移動速度を早くする。これにより、ステージ141に対するヘッド142の位置に関わらず、単位時間当たりに基板W1、W2に到達する粒子ビームの量を均一にすることができるので、基板W1、W2の接合面内における粒子ビームによるエッチングレートを均一にすることができる。 Further, as shown in FIG. 6, the bonding apparatus changes the moving speed of the head 142 depending on the distance between the stage 141 and the head 142. Specifically, when the distance between the stage 141 and the head 142 is relatively long and the density of the particle beams reaching the substrates W1 and W2 is low, the moving speed of the head 142 is slowed down. On the other hand, when the distance between the stage 141 and the head 142 is relatively short and the density of the particle beams reaching the substrates W1 and W2 is high, the moving speed of the head 142 is increased. As a result, regardless of the position of the head 142 with respect to the stage 141, the amount of particle beams reaching the substrates W1 and W2 per unit time can be made uniform, so that the amount of particle beams reaching the substrates W1 and W2 can be made uniform. The etching rate can be made uniform.
 ここで、本実施の形態に係る接合装置を用いて、活性化処理における基板W1、W2の接合面への粒子ビームのドーズ量の均一性を、比較例1に係る接合装置の場合と比較しながら評価した結果について説明する。比較例1に係る接合装置は、例えば図7に示すように、炭素材料から長尺箱状に形成され、その周壁に粒子ビームを放射する同一の開口径D1を有する複数の放射口91601aが設けられた放電室91601を有する粒子ビーム源9161、9162を備える。なお、比較例1、2に係る接合装置は、粒子ビーム源9161、9162のみが実施の形態に係る接合装置と相違しその他の構成並びに動作は実施の形態に係る接合装置と同様である。そこで、以下、比較例1に係る接合装置の構成について、適宜、実施の形態に係る接合装置の各構成について用いた符号と同一の符号を用いて説明する。但し、比較例1に係る接合装置は、ヘッド142を一定の移動速度で昇降させる。また、この評価では、基板W1、W2として、Si基板上に熱酸化処理によりSiO膜が形成された直径4インチの基板を使用した。そして、比較例に係る粒子ビーム源9161、9162を用いて基板のSiO膜側を活性化処理した前後のSiO膜の膜厚分布と、実施の形態に係る粒子ビーム源161、162を用いて基板W1、W2のSiO膜側を活性化処理した前後のSiO膜の膜厚分布と、を比較した。ここで、比較例1、実施の形態に係る接合装置のステージ141とヘッド142とのそれぞれに、基板W1、W2におけるSiO膜側が粒子ビーム源9161、9162、161、162側に向くようにして保持させた。また、比較例1に係る接合装置では、ヘッド142を移動速度3.5mm/secで10回繰り返し昇降させた。実施の形態に係る接合装置では、ステージ141とヘッド142との間の距離に応じて、ヘッド142の移動速度を3.5mm/sec乃至1.5mmsecの間で変化させながら10回繰り返し昇降させた。 Here, using the bonding apparatus according to the present embodiment, the uniformity of the dose of the particle beam to the bonding surfaces of the substrates W1 and W2 in the activation process was compared with that of the bonding apparatus according to Comparative Example 1. The results of the evaluation will be explained below. For example, as shown in FIG. 7, the bonding device according to Comparative Example 1 is formed of a carbon material into a long box shape, and has a peripheral wall thereof provided with a plurality of radiation ports 91601a having the same opening diameter D1 for emitting particle beams. The particle beam sources 9161 and 9162 are provided with a discharge chamber 91601 having a discharge chamber 91601. Note that the bonding apparatuses according to Comparative Examples 1 and 2 differ from the bonding apparatus according to the embodiment only in particle beam sources 9161 and 9162, and the other configurations and operations are similar to the bonding apparatus according to the embodiment. Therefore, the configuration of the bonding apparatus according to Comparative Example 1 will be described below using the same reference numerals as those used for each configuration of the bonding apparatus according to the embodiment. However, the bonding apparatus according to Comparative Example 1 moves the head 142 up and down at a constant moving speed. Further, in this evaluation, as the substrates W1 and W2, substrates having a diameter of 4 inches were used, in which a SiO 2 film was formed on a Si substrate by thermal oxidation treatment. Then, the film thickness distribution of the SiO 2 film before and after the activation treatment of the SiO 2 film side of the substrate using the particle beam sources 9161 and 9162 according to the comparative example, and the film thickness distribution of the SiO 2 film using the particle beam sources 161 and 162 according to the embodiment are shown. The film thickness distributions of the SiO 2 films before and after the activation treatment of the SiO 2 film sides of the substrates W1 and W2 were compared. Here, the stage 141 and head 142 of the bonding apparatus according to Comparative Example 1 and the embodiment are arranged such that the SiO 2 film side of the substrates W1 and W2 faces the particle beam sources 9161, 9162, 161, and 162. I let it hold. In addition, in the bonding apparatus according to Comparative Example 1, the head 142 was repeatedly raised and lowered 10 times at a moving speed of 3.5 mm/sec. In the bonding apparatus according to the embodiment, the head 142 was repeatedly raised and lowered 10 times while changing the moving speed between 3.5 mm/sec and 1.5 mm sec depending on the distance between the stage 141 and the head 142. .
 基板W1、W2のSiO膜の膜厚分布は、図8に示すように、基板W1、W2上の13個の領域P1乃至P13で膜厚の測定を行うことにより行った。なお、領域P1乃至P13それぞれの中心位置は、それぞれ、基板W1、W2の中心のP軸座標、Q軸座標をそれぞれ0[mm]とした場合、下記表1に示す座標となるようにした。 The film thickness distribution of the SiO 2 film on the substrates W1 and W2 was determined by measuring the film thickness in 13 regions P1 to P13 on the substrates W1 and W2, as shown in FIG. The center positions of each of the regions P1 to P13 were set to the coordinates shown in Table 1 below, assuming that the P-axis coordinates and Q-axis coordinates of the centers of the substrates W1 and W2 were respectively 0 [mm].
 比較例1では、ヘッド142に保持された基板W2のSiO膜について、活性化処理前後で図9Aおよび図9Bに示すような膜厚分布が得られ、ステージ141に保持された基板W1のSiO膜について、活性化処理前後で図10Aおよび図10Bに示すような膜厚分布が得られた。ここで、ヘッド142に保持された基板W2のSiO膜の活性化処理後の膜厚の面内均一性は、4.0%であり、ステージ141に保持された基板W1のSiO膜の活性化処理後の膜厚の面内均一性は、4.0%であった。なお、「面内均一性」は、基板W1、W2の領域P1乃至P13それぞれにおけるSiO膜の膜厚のメジアンの領域P1乃至P13それぞれにおけるSiO膜の膜厚の平均値に対する比率に相当する。 In Comparative Example 1, the SiO 2 film on the substrate W2 held by the head 142 had a film thickness distribution as shown in FIGS. 9A and 9B before and after the activation process, and the SiO 2 film on the substrate W1 held on the stage 141 For the two films, film thickness distributions as shown in FIGS. 10A and 10B were obtained before and after the activation treatment. Here, the in-plane uniformity of the film thickness of the SiO 2 film on the substrate W2 held by the head 142 after the activation process is 4.0%, and the in-plane uniformity of the SiO 2 film on the substrate W1 held on the stage 141 is 4.0%. The in-plane uniformity of the film thickness after the activation treatment was 4.0%. Note that "in-plane uniformity" corresponds to the ratio of the median film thickness of the SiO 2 film in each of the regions P1 to P13 of the substrates W1 and W2 to the average value of the film thickness of the SiO 2 film in each of the regions P1 to P13. .
 また、実施の形態では、ヘッド142に保持された基板W2のSiO膜について、活性化処理前後で図11Aおよび図11Bに示すような膜厚分布が得られ、ステージ141に保持された基板W1のSiO膜について、活性化処理前後で図12Aおよび図12Bに示すような膜厚分布が得られた。ここで、ヘッド142に保持された基板W2のSiO膜の活性化処理後の膜厚の面内均一性は、1.2%であり、ステージ141に保持された基板W1のSiO膜の活性化処理後の膜厚の面内均一性は、1.1%であった。比較例1および実施の形態に係る結果から、ステージ141とヘッド142との間の距離に応じてヘッド142の移動速度を変化させるとともに、実施の形態に係る粒子ビーム源161、162のように、放電室1601の複数の放射口1601a、1601b、1601cが、放電室1601の長手方向における中央部から離れた位置に配置される放射口1601b、1601cほど開口径が大きくなるように設定されているほうが基板W1、W2のSiO膜の面内均一性が向上することが判る。ここで、基板W1、W2のSiO膜の面内均一性は、基板W1、W2に照射される粒子ビームのドーズ量の均一性に依存することから、実施の形態に係る粒子ビーム源161、162は、比較例1に係る粒子ビーム源9161、9162と比べて、基板W1、W2の面内に照射される粒子ビームのドーズ量の均一性が向上していることが判る。つまり、実施の形態では、比較例1に比べて基板W1、W2の面内に照射される粒子ビームのドーズ量の均一性が向上していることが判る。 Furthermore, in the embodiment, the SiO 2 film on the substrate W2 held by the head 142 has a film thickness distribution as shown in FIGS. 11A and 11B before and after the activation process, and For the SiO 2 film, film thickness distributions as shown in FIGS. 12A and 12B were obtained before and after the activation treatment. Here, the in-plane uniformity of the film thickness of the SiO 2 film on the substrate W2 held by the head 142 after the activation process is 1.2%, and the in-plane uniformity of the SiO 2 film on the substrate W1 held on the stage 141 is 1.2%. The in-plane uniformity of the film thickness after the activation treatment was 1.1%. From the results of Comparative Example 1 and the embodiment, the moving speed of the head 142 is changed depending on the distance between the stage 141 and the head 142, and like the particle beam sources 161 and 162 according to the embodiment, It is preferable that the plurality of radiation ports 1601a, 1601b, and 1601c of the discharge chamber 1601 are set such that the opening diameter becomes larger as the radiation ports 1601b and 1601c are disposed further away from the center in the longitudinal direction of the discharge chamber 1601. It can be seen that the in-plane uniformity of the SiO 2 films on the substrates W1 and W2 is improved. Here, since the in-plane uniformity of the SiO 2 film on the substrates W1 and W2 depends on the uniformity of the dose of the particle beam irradiated onto the substrates W1 and W2, the particle beam source 161 according to the embodiment, It can be seen that in comparison with the particle beam sources 9161 and 9162 according to Comparative Example 1, the particle beam source No. 162 has improved uniformity of the dose of the particle beam irradiated within the planes of the substrates W1 and W2. In other words, it can be seen that in the embodiment, the uniformity of the dose of the particle beam irradiated within the planes of the substrates W1 and W2 is improved compared to Comparative Example 1.
 ところで、図13Aに示すような従来の接合装置では、粒子ビーム源161、162の位置が固定されており、基板W1、W2の外側から基板W1、W2の接合面に向かって粒子ビームを照射する。この構成では、基板W1、W2における粒子ビーム源161、162に近い側のほうのドーズ量が粒子ビーム源の遠い側のドーズ量に比べて大きくなる。このため、基板W1、W2における粒子ビーム源161、162に近い側のほうのエッチング量が粒子ビーム源の遠い側のエッチング量に比べて大きくなり、基板W1、W2の±Y方向の両端部でエッチング量に差異が生じてしまう。また、図13Bに示すように、従来の粒子ビーム源9161が、長尺箱状の放電室91601を有する場合、放電室91601内で発生したプラズマは、放電室1601の長手方向における中央部の密度に比べて長手方向における両端部の密度が小さくなる。このため、放電室91601の長手方向に沿って列状に設けられた放射口91601aの開口面積が等しい場合、放電室91601の長手方向における両端部近傍に設けられた放射口91601aから放射される粒子ビームのドーズ量が、放電室91601の中央部近傍に設けられた放射口91601aから放射される粒子ビームのドーズ量に比べて小さくなってしまう。このため、基板W1、W2のX軸方向における中央部とX軸方向における両端部とで基板W1、W2のエッチング量に差異が生じてしまう。このため、図14に示すように基板W1、W2それぞれのX方向およびY方向でエッチング量の斑が生じてしまう。 By the way, in the conventional bonding apparatus as shown in FIG. 13A, the positions of the particle beam sources 161 and 162 are fixed, and the particle beams are irradiated from the outside of the substrates W1 and W2 toward the bonding surface of the substrates W1 and W2. . In this configuration, the dose amount on the side of the substrates W1, W2 closer to the particle beam sources 161, 162 is larger than the dose amount on the side far from the particle beam source. Therefore, the amount of etching on the side of the substrates W1, W2 closer to the particle beam sources 161, 162 becomes larger than the amount of etching on the side far from the particle beam sources, and the amount of etching on the side of the substrates W1, W2 closer to the particle beam sources 161, 162 becomes larger than the amount of etching on the side far from the particle beam sources. This results in a difference in the amount of etching. Furthermore, as shown in FIG. 13B, when the conventional particle beam source 9161 has a discharge chamber 91601 in the shape of a long box, the plasma generated in the discharge chamber 91601 has a high density at the center in the longitudinal direction of the discharge chamber 1601. The density at both ends in the longitudinal direction is smaller than that of . Therefore, when the opening areas of the radiation ports 91601a provided in a row along the longitudinal direction of the discharge chamber 91601 are equal, particles are emitted from the radiation ports 91601a provided near both ends in the longitudinal direction of the discharge chamber 91601. The dose of the beam is smaller than the dose of the particle beam emitted from the radiation aperture 91601a provided near the center of the discharge chamber 91601. For this reason, a difference occurs in the amount of etching of the substrates W1, W2 between the central portion of the substrates W1, W2 in the X-axis direction and the end portions of the substrates W1, W2 in the X-axis direction. Therefore, as shown in FIG. 14, uneven etching occurs in the X and Y directions of the substrates W1 and W2, respectively.
 これに対して、本実施の形態に係る接合装置では、粒子ビーム源161が、ステージ141に固定され、ステージ141における基板W1が配置される領域の外側から基板W2の接合面の一部を含む領域へ粒子ビームを放射しながら、ヘッド駆動部144が、ヘッド142を±Z方向へ移動させる。これにより、ヘッド142が±Z方向へ移動するのに伴い、基板W2の接合面における粒子ビームが照射される領域が基板W2の接合面内において移動する。従って、ヘッド142の±Z方向への移動を繰り返すことにより、基板W2のY軸方向において均一に粒子ビームを照射することができる。また、本実施の形態に係る粒子ビーム源161、162は、粒子ビームが照射される基板W1、W2の接合面に沿った方向に配列する複数の放射口1601a、1601b、1601cを有し、複数の放射口1601a、1601b、1601cそれぞれの開口面積が、複数の放射口1601a、1601b、1601cの並び方向、即ち、放電室1601の長手方向における中央部から離れた位置に配置される放射口(例えば1601c)ほど大きくなるように設定されている。これにより、複数の放射口1601a、1601b、1601cそれぞれから放射される粒子ビームのドーズ量が均一になるので、基板W1、W2のX軸方向において均一に粒子ビームを照射することができる。従って、基板W1、W2の接合面全体を均一に活性化することができる。 On the other hand, in the bonding apparatus according to the present embodiment, the particle beam source 161 is fixed to the stage 141 and includes a part of the bonding surface of the substrate W2 from outside the region of the stage 141 where the substrate W1 is arranged. The head driving unit 144 moves the head 142 in the ±Z direction while emitting the particle beam to the region. Accordingly, as the head 142 moves in the ±Z direction, the region on the bonding surface of the substrate W2 that is irradiated with the particle beam moves within the bonding surface of the substrate W2. Therefore, by repeatedly moving the head 142 in the ±Z directions, it is possible to uniformly irradiate the substrate W2 with the particle beam in the Y-axis direction. Further, the particle beam sources 161 and 162 according to the present embodiment have a plurality of radiation ports 1601a, 1601b, and 1601c arranged in a direction along the bonding surface of the substrates W1 and W2 to which the particle beam is irradiated. Radiation ports (for example 1601c). This makes the dose of the particle beam emitted from each of the plurality of radiation ports 1601a, 1601b, and 1601c uniform, so that the substrates W1 and W2 can be uniformly irradiated with the particle beam in the X-axis direction. Therefore, the entire bonding surface of the substrates W1 and W2 can be activated uniformly.
 本実施の形態に係る接合装置は、粒子ビームを照射できる範囲がある程度限定されることから、特に、基板W1、W2が4インチ未満のいわゆる小径基板について適用されることが好ましい。 The bonding apparatus according to the present embodiment is preferably applied to so-called small-diameter substrates in which the substrates W1 and W2 are less than 4 inches, since the range in which the particle beam can be irradiated is limited to some extent.
 また、本実施の形態に係る接合装置は、粒子ビーム源161が、ステージ141に固定され、ステージ141における基板W1が配置される領域の外側から基板W2の接合面の一部を含む領域へ粒子ビームを放射しながら、ヘッド駆動部144が、ヘッド142を±Z方向へ移動させる。これにより、ヘッド142が±Z方向へ移動するのに伴い、基板W2の接合面における粒子ビームが照射される領域が基板W2の接合面内において移動する。従って、ヘッド142の±Z方向への移動を繰り返すことにより、基板W2の接合面全体に均一に粒子ビームを照射することができ、接合面全体を均一に活性化することができる。そして、粒子ビーム源161を支持しつつ粒子ビーム源161を基板W2に対して水平な方向へ移動させるための搬送機構が不要なので、その分、装置全体の小型化を図ることができる。 In addition, in the bonding apparatus according to the present embodiment, the particle beam source 161 is fixed to the stage 141, and the particle beam source 161 is directed from outside the area of the stage 141 where the substrate W1 is placed to an area including a part of the bonding surface of the substrate W2. The head driving unit 144 moves the head 142 in the ±Z direction while emitting the beam. Accordingly, as the head 142 moves in the ±Z direction, the region on the bonding surface of the substrate W2 that is irradiated with the particle beam moves within the bonding surface of the substrate W2. Therefore, by repeatedly moving the head 142 in the ±Z directions, the entire bonding surface of the substrate W2 can be uniformly irradiated with the particle beam, and the entire bonding surface can be uniformly activated. Further, since there is no need for a transport mechanism for supporting the particle beam source 161 and moving the particle beam source 161 in a direction horizontal to the substrate W2, the overall size of the apparatus can be reduced accordingly.
 以上、本発明の実施の形態について説明したが、本発明は前述の各実施の形態の構成に限定されるものではない。例えば図15に示すように、粒子ビーム源161、162が、それぞれ、ステージ141、ヘッド142に固定されていないものであってもよい。なお、図15において、実施の形態と同様の構成については図2と同一の符号を付している。本変形例に係る接合装置は、粒子ビーム源161、162を纏めて支持し、粒子ビーム源161、162を基板W1、W2の対向方向と直交する水平方向へ移動させる水平駆動部3163を備える。本変形例に係る接合装置では、図16に示すように、粒子ビーム源161、162は、それぞれ、基板W1、W2の接合面へ粒子ビームを照射させながら矢印AR32に示すように移動していく。なお、本変形例に係る接合装置が、粒子ビーム源161、162に代えて、後述の図17に示す放電室21601を有する粒子ビーム源2161、2162を備えるものであってもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations of each of the above-described embodiments. For example, as shown in FIG. 15, particle beam sources 161 and 162 may not be fixed to stage 141 and head 142, respectively. Note that in FIG. 15, the same components as in the embodiment are given the same reference numerals as in FIG. The bonding apparatus according to this modification includes a horizontal drive unit 3163 that collectively supports the particle beam sources 161 and 162 and moves the particle beam sources 161 and 162 in a horizontal direction perpendicular to the direction in which the substrates W1 and W2 face each other. In the bonding apparatus according to this modification, as shown in FIG. 16, the particle beam sources 161 and 162 move in the direction indicated by the arrow AR32 while irradiating the bonding surfaces of the substrates W1 and W2 with particle beams, respectively. . Note that the bonding apparatus according to this modification may include particle beam sources 2161 and 2162 having a discharge chamber 21601 shown in FIG. 17, which will be described later, instead of the particle beam sources 161 and 162.
 前述の実施の形態で説明した接合装置では、粒子ビームの基板W1、W2への照射中において、粒子ビーム161、162と基板W1、W2との間の距離が変化するために、基板W1、W2へ照射される粒子ビームのドーズ量が変化しこれに伴い基板W1、W2表面のエッチングレートが変化してしまう。これに対して、本構成によれば、粒子ビーム源161、162と基板W1、W2との間の距離を一定に維持しながら粒子ビームを基板W1、W2に照射することができるので、粒子ビーム161、162の移動速度を一定としつつ、基板W1、W2に照射される粒子ビームのドーズ量を均一にできる。 In the bonding apparatus described in the above embodiment, the distance between the particle beams 161, 162 and the substrates W1, W2 changes during irradiation of the particle beams onto the substrates W1, W2. The dose of the particle beam irradiated to the substrate changes, and the etching rate of the surfaces of the substrates W1 and W2 changes accordingly. On the other hand, according to the present configuration, the particle beams can be irradiated onto the substrates W1 and W2 while maintaining a constant distance between the particle beam sources 161 and 162 and the substrates W1 and W2. While keeping the moving speeds of the particles 161 and 162 constant, the dose of the particle beam irradiated onto the substrates W1 and W2 can be made uniform.
 実施の形態において、例えば図17に示す粒子ビーム源2161、2162のように、放電室21601が、放射方向が異なる複数種類の放射口21601a、21601b、21601cを有するものであってもよい。ここで、放射口21601a、21601b、21601cそれぞれの並び方向は、放射口21601a、21601b、21601cから放射される粒子ビームが照射される基板W1、W2の接合面と平行になる姿勢で配置されている。即ち、複数の放射口21601a、21601b、21601cは、粒子ビームが照射される基板W1、W2の接合面に沿った方向に配列している。また、複数の放射口21601a、21601b、21601cそれぞれの開口面積は、複数の放射口21601a、21601b、21601cの並び方向、即ち、放電室21601の長手方向における中央部から離れた位置に配置される放射口21601a、21601b、21601cほど放電室21601の長手方向と直交する方向から長手方向における一方の端部側への傾斜角度が大きく設定されている。具体的には、放電室21601の長手方向における中央部の領域Po21に配設される複数の放射口21601aの粒子ビームの放射軸J21は、放電室21601の長手方向と直交する方向に略平行である。また、放電室21601の長手方向で領域Po21に隣接する領域Po22に配設される複数の放射口21601bの放射軸J22は、放電室21601の長手方向に直交する方向、即ち、放射軸J21に対して角度θ21だけ傾斜している。更に、放電室21601の長手方向の両端部の領域Po23に配設される複数の放射口21601cの放射軸J23は、放電室21601の長手方向に直交する方向、即ち、放射軸J21に対して角度θ22だけ傾斜しており、角度θ22は、角度θ21よりも大きい。 In the embodiment, the discharge chamber 21601 may have a plurality of types of radiation ports 21601a, 21601b, and 21601c with different radiation directions, as in the particle beam sources 2161 and 2162 shown in FIG. 17, for example. Here, the radiation ports 21601a, 21601b, and 21601c are arranged in such a manner that the direction in which they are lined up is parallel to the joint surface of the substrates W1 and W2 to which the particle beams emitted from the radiation ports 21601a, 21601b, and 21601c are irradiated. . That is, the plurality of radiation ports 21601a, 21601b, and 21601c are arranged in a direction along the bonding surface of the substrates W1 and W2 to which the particle beam is irradiated. Further, the opening area of each of the plurality of radiation ports 21601a, 21601b, and 21601c is determined by the direction in which the plurality of radiation ports 21601a, 21601b, and 21601c are lined up, that is, the radiation arranged at a position away from the center in the longitudinal direction of the discharge chamber 21601. The openings 21601a, 21601b, and 21601c have a larger inclination angle from a direction perpendicular to the longitudinal direction of the discharge chamber 21601 toward one end in the longitudinal direction. Specifically, the radiation axis J21 of the particle beams of the plurality of radiation ports 21601a arranged in the central area Po21 in the longitudinal direction of the discharge chamber 21601 is approximately parallel to the direction orthogonal to the longitudinal direction of the discharge chamber 21601. be. Furthermore, the radiation axis J22 of the plurality of radiation ports 21601b arranged in the region Po22 adjacent to the region Po21 in the longitudinal direction of the discharge chamber 21601 is in a direction perpendicular to the longitudinal direction of the discharge chamber 21601, that is, with respect to the radiation axis J21. and is inclined by an angle θ21. Furthermore, the radiation axis J23 of the plurality of radiation ports 21601c arranged in the region Po23 at both longitudinal ends of the discharge chamber 21601 is at an angle with respect to the direction perpendicular to the longitudinal direction of the discharge chamber 21601, that is, with respect to the radiation axis J21. It is inclined by θ22, and the angle θ22 is larger than the angle θ21.
 本変形例に係る粒子ビーム源2161、2162では、放電室21601内で発生するプラズマの密度が比較的高い放電室21601の長手方向における中央部に近いところから、放電室21601の長手方向における両端部に配設された放射口21601cを通じて粒子ビームが放射される。このため、放射口21601a、21601b、21601cから放射される粒子ビームのドーズ量の差異を低減することができる。これにより、粒子ビーム源2161、2162それぞれから基板W2、W1に到達する粒子ビームのドーズ量を、基板W2、W1における粒子ビームが照射される領域P12、P22、P11、P21でX軸方向において均一にすることができる。従って、基板W1の領域P11、P21、基板W2の領域P12、P22のY軸方向において基板W1、W2のエッチングレートを均一にすることができる。 In the particle beam sources 2161 and 2162 according to this modification, the plasma generated in the discharge chamber 21601 has a relatively high density of plasma, starting from a place near the center in the longitudinal direction of the discharge chamber 21601, to both ends of the discharge chamber 21601 in the longitudinal direction. A particle beam is emitted through a radiation aperture 21601c disposed in the radiation port 21601c. Therefore, the difference in the dose of the particle beams emitted from the radiation ports 21601a, 21601b, and 21601c can be reduced. This makes the dose of the particle beams reaching the substrates W2, W1 from the particle beam sources 2161, 2162, respectively, uniform in the X-axis direction in the regions P12, P22, P11, P21 on the substrates W2, W1 where the particle beams are irradiated. It can be done. Therefore, the etching rates of the substrates W1 and W2 can be made uniform in the Y-axis direction of the regions P11 and P21 of the substrate W1 and the regions P12 and P22 of the substrate W2.
 実施の形態において、ステージ141とヘッド142との間の距離に応じて、粒子ビーム源161、162の少なくとも一方の粒子ビームの放射方向を変更する放射方向変更部(図示せず)を備えるものであってもよい。 The embodiment includes a radiation direction changing unit (not shown) that changes the radiation direction of the particle beam of at least one of the particle beam sources 161 and 162 according to the distance between the stage 141 and the head 142. There may be.
 実施の形態では、ステージ141、ヘッド142のそれぞれに固定された2つの粒子ビーム源161、162を備える例について説明したが、これに限定されるものではなく、例えば接合装置が、ステージ141に固定された1つの粒子ビーム源を備えるものであってもよいし、ヘッド142に固定された1つの粒子ビーム源を備えるものであってもよい。 In the embodiment, an example has been described in which the two particle beam sources 161 and 162 are fixed to the stage 141 and the head 142, respectively, but the present invention is not limited to this. For example, the bonding device may be fixed to the stage 141. It may include one particle beam source fixed to the head 142, or it may include one particle beam source fixed to the head 142.
 実施の形態では、ヘッド142を昇降させる例について説明したが、これに限らず、例えばヘッド142の鉛直方向への移動を規制した状態で、ステージ141を昇降させるものであってもよいし、或いは、ステージ141とヘッド142との両方が昇降するものであってもよい。 In the embodiment, an example has been described in which the head 142 is raised and lowered, but the present invention is not limited to this. For example, the stage 141 may be raised and lowered while the movement of the head 142 in the vertical direction is restricted, or , both the stage 141 and the head 142 may move up and down.
 実施の形態において、活性化処理工程において、粒子ビームを基板W1、W2の接合面に照射する例について説明したが、これに限定されるものではなく、例えばイオンガンを用いてイオンビームを基板W1、W2の接合面に照射するようにしてもよい。また、各実施の形態において、粒子ビーム源161、162が、アルゴンとともにSi粒子を基板W1、W2の接合面へ照射するものであってもよい。 In the embodiment, an example has been described in which the bonding surface of the substrates W1 and W2 is irradiated with a particle beam in the activation process, but the invention is not limited to this. For example, an ion gun is used to irradiate the ion beam onto the substrates W1 and W2. It is also possible to irradiate the joint surface of W2. Further, in each embodiment, the particle beam sources 161 and 162 may irradiate the joint surface of the substrates W1 and W2 with Si particles together with argon.
 各実施の形態では、被接合物が、基板W1、W2である例について説明したが、これに限定されるものではなく、例えば、被接合物が、チップおよび基板であってもよい。 In each embodiment, an example in which the objects to be bonded are the substrates W1 and W2 has been described, but the present invention is not limited to this, and for example, the objects to be bonded may be a chip and a substrate.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the embodiments described above are for explaining the present invention, and do not limit the scope of the present invention. That is, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the meaning of the invention equivalent thereto are considered to be within the scope of this invention.
 本出願は、2022年6月22日に出願された日本国特許出願特願2022-100457号に基づく。本明細書中に日本国特許出願特願2022-100457号の明細書、特許請求の範囲および図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2022-100457 filed on June 22, 2022. The entire specification, claims, and drawings of Japanese Patent Application No. 2022-100457 are incorporated herein by reference.
 本発明は、例えばCMOS(Complementary MOS)イメージセンサやメモリ、演算素子、MEMS(Micro Electro Mechanical Systems)の製造に好適である。 The present invention is suitable for manufacturing, for example, CMOS (Complementary MOS) image sensors, memories, arithmetic elements, and MEMS (Micro Electro Mechanical Systems).
120:チャンバ、121a:真空ポンプ、121b:排気管、121c:排気弁、122A、122B:ビーム源支持部、141:ステージ、142:ヘッド、143:ステージ駆動部、144:ヘッド駆動部、150:位置ずれ量測定部、161,162,2161,2162:粒子ビーム源、1411,1421:基板加熱部、1441:昇降駆動部、1441a,1445:圧力センサ、1442:XY方向駆動部、1443:回転駆動部、1444:ピエゾアクチュエータ、1601:放電室、1601a,21601a:放射口、1602:電極、J1,J2:照射軸、n1,n2:垂線、W1,W2:基板 120: chamber, 121a: vacuum pump, 121b: exhaust pipe, 121c: exhaust valve, 122A, 122B: beam source support section, 141: stage, 142: head, 143: stage drive section, 144: head drive section, 150: Positional deviation measurement unit, 161, 162, 2161, 2162: Particle beam source, 1411, 1421: Substrate heating unit, 1441: Lifting drive unit, 1441a, 1445: Pressure sensor, 1442: XY direction drive unit, 1443: Rotation drive part, 1444: Piezo actuator, 1601: Discharge chamber, 1601a, 21601a: Radiation port, 1602: Electrode, J1, J2: Irradiation axis, n1, n2: Perpendicular line, W1, W2: Substrate

Claims (16)

  1.  2つの被接合物を接合する接合装置であって、
     前記2つの被接合物のうちのいずれか一方の被接合物を保持する第1被接合物保持部と、
     前記第1被接合物保持部に対向して配置され、前記2つの被接合物のうちの他方の被接合物を保持する第2被接合物保持部と、
     前記2つの被接合物のいずれかの接合面の一部を含む領域へ粒子ビームを放射する粒子ビーム源と、を備え、
     前記粒子ビーム源は、
     粒子ビームが照射される被接合物の接合面に沿った方向に配列する複数の放射口を有し、
     前記複数の放射口それぞれの開口面積は、前記複数の放射口の並び方向における中央部から離れた位置に配置される放射口ほど大きく設定されている、
     接合装置。
    A joining device for joining two objects to be joined,
    a first workpiece holding section that holds one of the two workpieces;
    a second workpiece holding part that is disposed opposite to the first workpiece holding part and holds the other workpiece of the two workpieces;
    a particle beam source that emits a particle beam to a region including a part of the bonding surface of either of the two objects to be bonded;
    The particle beam source includes:
    It has a plurality of radiation ports arranged in a direction along the bonding surface of the object to be bonded to which the particle beam is irradiated,
    The opening area of each of the plurality of radiation ports is set to be larger as the radiation ports are arranged farther from the center in the direction in which the plurality of radiation ports are arranged.
    Bonding equipment.
  2.  2つの被接合物を接合する接合装置であって、
     前記2つの被接合物のうちのいずれか一方の被接合物を保持する第1被接合物保持部と、
     前記第1被接合物保持部に対向して配置され、前記2つの被接合物のうちの他方の被接合物を保持する第2被接合物保持部と、
     前記2つの被接合物のいずれかの接合面の一部を含む領域へ粒子ビームを放射する粒子ビーム源と、を備え、
     前記粒子ビーム源は、
     粒子ビームが照射される被接合物の接合面に沿った方向に配列する複数の放射口を有し、
     前記複数の放射口それぞれの粒子ビームの放射方向は、前記複数の放射口の並び方向における中央部から離れた位置に配置される放射口ほど前記並び方向と直交する方向から前記並び方向における一方の端部側への傾斜角度が大きく設定されている、
     接合装置。
    A joining device for joining two objects to be joined,
    a first workpiece holding section that holds one of the two workpieces;
    a second workpiece holding part that is disposed opposite to the first workpiece holding part and holds the other workpiece of the two workpieces;
    a particle beam source that emits a particle beam to a region including a part of the bonding surface of either of the two objects to be bonded;
    The particle beam source includes:
    It has a plurality of radiation ports arranged in a direction along the bonding surface of the object to be bonded to which the particle beam is irradiated,
    The emission direction of the particle beam of each of the plurality of radiation ports varies from a direction perpendicular to the direction of arrangement to one direction in the direction of arrangement of the radiation ports arranged at a position farther from the center in the direction of arrangement of the plurality of radiation ports. The angle of inclination toward the end side is set large,
    Bonding equipment.
  3.  前記粒子ビーム源を、前記2つの被接合物の対向方向と直交する水平方向へ移動させる水平駆動部を更に備える、
     請求項1または2に記載の接合装置。
    further comprising a horizontal drive unit that moves the particle beam source in a horizontal direction perpendicular to a direction in which the two objects to be welded face each other;
    The joining device according to claim 1 or 2.
  4.  2つの被接合物を接合する接合装置であって、
     前記2つの被接合物のうちのいずれか一方の被接合物を保持する第1被接合物保持部と、
     前記第1被接合物保持部に対向して配置され、前記2つの被接合物のうちの他方の被接合物を保持する第2被接合物保持部と、
     前記第1被接合物保持部に固定され、前記第1被接合物保持部における前記一方の被接合物が配置される領域の外側から前記他方の被接合物の接合面の一部を含む領域へ粒子ビームを放射する第1粒子ビーム源と、
     前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を、前記第1被接合物保持部と前記第2被接合物保持部とが互いに近づく第1方向または前記第1被接合物保持部と前記第2被接合物保持部とが離れる第2方向へ移動させる駆動部と、を備える、
     接合装置。
    A joining device for joining two objects to be joined,
    a first workpiece holding section that holds one of the two workpieces;
    a second workpiece holding part that is disposed opposite to the first workpiece holding part and holds the other workpiece of the two workpieces;
    A region that is fixed to the first workpiece holding section and includes a part of the joining surface of the other workpiece from outside the region of the first workpiece holding section where the one workpiece is arranged. a first particle beam source that emits a particle beam to
    At least one of the first workpiece holding part and the second workpiece holding part is moved in the first direction in which the first workpiece holding part and the second workpiece holding part approach each other, or in the first direction. a drive unit that moves the first workpiece holding part and the second workpiece holding part in a second direction in which they are separated;
    Bonding equipment.
  5.  前記第2被接合物保持部に固定され、前記第2被接合物保持部における前記他方が配置される領域の外側から前記第1被接合物保持部における前記一方の被接合物の接合面の一部を含む領域へ粒子ビームを放射する第2粒子ビーム源を更に備える、
     請求項4に記載の接合装置。
    The bonding surface of the one workpiece in the first workpiece holding part is fixed to the second workpiece holding part, and from the outside of the area where the other workpiece in the second workpiece holding part is arranged. further comprising a second particle beam source that emits a particle beam to a region containing the part;
    The joining device according to claim 4.
  6.  前記第1粒子ビーム源の粒子ビームの照射方向は、前記他方の被接合物の接合面の垂線に対して傾斜しており、
     前記第2粒子ビーム源の粒子ビームの照射方向は、前記一方の被接合物の接合面の垂線に対して傾斜している、
     請求項5に記載の接合装置。
    The irradiation direction of the particle beam of the first particle beam source is inclined with respect to the perpendicular to the bonding surface of the other object to be bonded,
    The irradiation direction of the particle beam of the second particle beam source is inclined with respect to the perpendicular to the bonding surface of the one object to be bonded.
    The joining device according to claim 5.
  7.  前記第1粒子ビーム源と前記第2粒子ビーム源との少なくとも一方は、粒子ビームを放射する列状に配置された複数の放射口を有し、前記複数の放射口の並び方向が前記2つの被接合物のうちの、前記放射口から放射される粒子ビームが照射される被接合物の接合面と平行になる姿勢で配置されている、
     請求項5または6に記載の接合装置。
    At least one of the first particle beam source and the second particle beam source has a plurality of radiation apertures arranged in a row for emitting particle beams, and the direction in which the plurality of radiation apertures are arranged is in line with the direction of the two radiation apertures. The particle beam emitted from the radiation port is arranged in a posture parallel to the joining surface of the object to be welded, which is irradiated with the particle beam emitted from the radiation port.
    The joining device according to claim 5 or 6.
  8.  前記第1粒子ビーム源と前記第2粒子ビーム源との少なくとも一方は、
     粒子ビームが照射される被接合物の接合面に沿った方向に配列する複数の放射口を有し、
     前記複数の放射口それぞれの開口面積は、前記複数の放射口の並び方向における中央部から離れた位置に配置される放射口ほど大きく設定されている、
     請求項5または6に記載の接合装置。
    At least one of the first particle beam source and the second particle beam source,
    It has a plurality of radiation ports arranged in a direction along the bonding surface of the object to be bonded to which the particle beam is irradiated,
    The opening area of each of the plurality of radiation ports is set to be larger as the radiation ports are arranged farther from the center in the direction in which the plurality of radiation ports are arranged.
    The joining device according to claim 5 or 6.
  9.  前記第1粒子ビーム源と前記第2粒子ビーム源との少なくとも一方は、
     粒子ビームが照射される被接合物の接合面に沿った方向に配列する複数の放射口を有し、
     前記複数の放射口それぞれの粒子ビームの放射方向は、前記複数の放射口の並び方向における中央部から離れた位置に配置される放射口ほど前記並び方向と直交する方向から前記並び方向における一方の端部側への傾斜角度が大きく設定されている、
     請求項5または6に記載の接合装置。
    At least one of the first particle beam source and the second particle beam source,
    It has a plurality of radiation ports arranged in a direction along the bonding surface of the object to be bonded to which the particle beam is irradiated,
    The emission direction of the particle beam of each of the plurality of radiation ports varies from a direction perpendicular to the direction of arrangement to one direction in the direction of arrangement of the radiation ports arranged at a position farther from the center in the direction of arrangement of the plurality of radiation ports. The angle of inclination toward the end side is set large,
    The joining device according to claim 5 or 6.
  10.  前記駆動部は、前記第1被接合物保持部と前記第2被接合物保持部との間の距離が長くなるほど移動速度が遅くなるように、前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を移動させる、
     請求項4から9のいずれか1項に記載の接合装置。
    The drive unit is configured to move the first workpiece holding part and the second workpiece holding part so that the moving speed becomes slower as the distance between the first workpiece holding part and the second workpiece holding part becomes longer. moving at least one side of the object holding section;
    The joining device according to any one of claims 4 to 9.
  11.  前記2つの被接合物の少なくとも一方は、直径6インチ以下の平面視円形の基板である、
     請求項1から10のいずれか1項に記載の接合装置。
    At least one of the two objects to be bonded is a circular substrate in plan view with a diameter of 6 inches or less,
    The joining device according to any one of claims 1 to 10.
  12.  2つの被接合物を接合する接合方法であって、
     第1被接合物保持部に、前記2つの被接合物のうちのいずれか一方の被接合物を保持させるとともに、前記第1被接合物保持部に対向して配置された第2被接合物保持部に、前記2つの被接合物のうちの他方の被接合物を保持させる被接合物保持工程と、
     粒子ビーム源から、前記2つの被接合物のいずれかの接合面の一部を含む領域へ粒子ビームを放射することにより前記接合面を活性化させる活性化工程と、を含み、
     前記粒子ビーム源は、
     粒子ビームが照射される被接合物の接合面に沿った方向に配列する複数の放射口を有し、
     前記複数の放射口それぞれの開口面積は、前記複数の放射口の並び方向における中央部から離れた位置に配置される放射口ほど大きく設定されている、
     接合方法。
    A joining method for joining two objects to be joined, the method comprising:
    A first workpiece holding section holds one of the two workpieces, and a second workpiece is disposed opposite to the first workpiece holding section. a workpiece holding step of causing the holding section to hold the other workpiece of the two workpieces;
    an activation step of activating the bonding surface by emitting a particle beam from a particle beam source to a region including a part of the bonding surface of either of the two objects to be bonded;
    The particle beam source includes:
    It has a plurality of radiation ports arranged in a direction along the bonding surface of the object to be bonded to which the particle beam is irradiated,
    The opening area of each of the plurality of radiation ports is set to be larger as the radiation ports are arranged farther from the center in the direction in which the plurality of radiation ports are arranged.
    Joining method.
  13.  2つの被接合物を接合する接合方法であって、
     第1被接合物保持部に、前記2つの被接合物のうちのいずれか一方の被接合物を保持させるとともに、前記第1被接合物保持部に対向して配置された第2被接合物保持部に、前記2つの被接合物のうちの他方の被接合物を保持させる被接合物保持工程と、
     粒子ビーム源から、前記2つの被接合物のいずれかの接合面の一部を含む領域へ粒子ビームを放射することにより前記接合面を活性化させる活性化工程と、を含み、
     前記粒子ビーム源は、
     粒子ビームが照射される被接合物の接合面に沿った方向に配列する複数の放射口を有し、
     前記複数の放射口それぞれの粒子ビームの放射方向は、前記複数の放射口の並び方向における中央部から離れた位置に配置される放射口ほど前記並び方向と直交する方向から前記並び方向における一方の端部側への傾斜角度が大きく設定されている、
     接合方法。
    A joining method for joining two objects to be joined, the method comprising:
    A first workpiece holding section holds one of the two workpieces, and a second workpiece is disposed opposite to the first workpiece holding section. a workpiece holding step of causing the holding section to hold the other workpiece of the two workpieces;
    an activation step of activating the bonding surface by emitting a particle beam from a particle beam source to a region including a part of the bonding surface of either of the two objects to be bonded;
    The particle beam source includes:
    It has a plurality of radiation ports arranged in a direction along the bonding surface of the object to be bonded to which the particle beam is irradiated,
    The emission direction of the particle beam of each of the plurality of radiation ports varies from a direction perpendicular to the direction of arrangement to one direction in the direction of arrangement of the radiation ports arranged at a position farther from the center in the direction of arrangement of the plurality of radiation ports. The angle of inclination toward the end side is set large,
    Joining method.
  14.  2つの被接合物のうちのいずれか一方の被接合物を第1被接合物保持部に保持させ、前記2つの被接合物のうちの他方の被接合物を、前記第1被接合物保持部に対向して配置された第2被接合物保持部に保持させた状態で、前記第1被接合物保持部に固定された第1粒子ビーム源が、前記第1被接合物保持部における前記一方の被接合物が配置される領域の外側から前記第2被接合物保持部における前記他方の被接合物の接合面の一部を含む領域へ粒子ビームを照射しながら、前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を、前記第1被接合物保持部と前記第2被接合物保持部とが互いに近づく第1方向または前記第1被接合物保持部と前記第2被接合物保持部とが離れる第2方向へ移動させることにより、前記2つの被接合物それぞれの接合面を活性化させる活性化工程と、
     接合面が活性化された前記2つの被接合物の接合面同士を接触させることにより、前記2つの被接合物同士を接合する接合工程と、を含む、
     接合方法。
    One of the two objects to be welded is held by the first object holder, and the other of the two objects is held by the first object holder. A first particle beam source fixed to the first workpiece holding part is held by a second workpiece holding part disposed opposite to the first workpiece holding part. The first object to be welded is irradiated with a particle beam from outside the area where the one object to be welded is placed to a region of the second object holder that includes a part of the bonding surface of the other object to be welded. At least one of the bonded object holding section and the second bonded object holding section is moved in a first direction in which the first bonded object holding section and the second bonded object holding section approach each other or the first bonded object. an activation step of activating the bonding surfaces of the two objects to be bonded by moving the holding section and the second object holding section in a second direction where they separate;
    a bonding step of bonding the two objects to be bonded by bringing the bonding surfaces of the two objects to be bonded whose bonding surfaces have been activated into contact with each other;
    Joining method.
  15.  前記接合工程において、前記第2被接合物保持部に固定された第2粒子ビーム源が、前記第2被接合物保持部における前記他方の被接合物が配置される領域の外側から前記一方の被接合物の接合面の一部を含む領域へ粒子ビームを照射しながら、前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を、前記第1方向または前記第2方向へ移動させる、
     請求項14に記載の接合方法。
    In the bonding step, a second particle beam source fixed to the second object holder is configured to beam the one object from outside the region of the second object holder where the other object is arranged. At least one of the first workpiece holding section and the second workpiece holding section is moved in the first direction or the second workpiece holding section while irradiating a particle beam onto a region including a part of the joining surface of the workpiece move in two directions,
    The joining method according to claim 14.
  16.  前記2つの被接合物の少なくとも一方は、直径6インチ以下の平面視円形の基板である、
     請求項14または15に記載の接合方法。
    At least one of the two objects to be bonded is a circular substrate in plan view with a diameter of 6 inches or less,
    The joining method according to claim 14 or 15.
PCT/JP2023/022858 2022-06-22 2023-06-21 Joining device and joining method WO2023249035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100457 2022-06-22
JP2022100457 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023249035A1 true WO2023249035A1 (en) 2023-12-28

Family

ID=89379958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022858 WO2023249035A1 (en) 2022-06-22 2023-06-21 Joining device and joining method

Country Status (1)

Country Link
WO (1) WO2023249035A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173247A (en) * 2013-10-16 2015-10-01 須賀 唯知 Substrate surface processing device and method, method for bonding substrate, and substrate joining body
JP2018201022A (en) * 2014-04-25 2018-12-20 須賀 唯知 Substrate bonding apparatus and substrate bonding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173247A (en) * 2013-10-16 2015-10-01 須賀 唯知 Substrate surface processing device and method, method for bonding substrate, and substrate joining body
JP2018201022A (en) * 2014-04-25 2018-12-20 須賀 唯知 Substrate bonding apparatus and substrate bonding method

Similar Documents

Publication Publication Date Title
JP6448848B2 (en) Substrate bonding method
JP6617227B2 (en) Substrate bonding apparatus and substrate bonding method
JP6448656B2 (en) Substrate bonding method and substrate bonding apparatus
JP3751972B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, SURFACE ACTIVATION DEVICE, AND JOINING DEVICE PROVIDED WITH THIS DEVICE
JP4695014B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
US7645681B2 (en) Bonding method, device produced by this method, and bonding device
US11837444B2 (en) Substrate joining method, substrate joining system and method for controlling hydrophilic treatment device
JP2005294824A (en) Ultrasonic joining method and ultrasonic joining device in vacuum
JP6429179B2 (en) Substrate bonding apparatus and substrate bonding method
JP5789798B2 (en) Joining method and joining system
WO2005055293A1 (en) Bonding method, device formed by such method, surface activating unit and bonding apparatus comprising such unit
WO2020044579A1 (en) Bonding system and bonding method
WO2013061628A1 (en) Room temperature bonding apparatus
JP3820409B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
WO2023249035A1 (en) Joining device and joining method
JP2005142537A (en) Longitudinal vibration bonding method and device
TW202410112A (en) Joining device and joining method
JP6864310B2 (en) Wafer bonding method and substrate bonding equipment
JP2006073780A (en) Normal-temperature joint method, equipment, and device
JP7268931B2 (en) Bonding method, substrate bonding apparatus, and substrate bonding system
WO2023182255A1 (en) Joining system and joining method
WO2022210839A1 (en) Bonding system and bonding method
WO2024062516A1 (en) Substrate bonding system and substrate bonding method
JP2023018531A (en) Substrate bonding system and substrate bonding method
TW202414616A (en) Substrate bonding system and substrate bonding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827218

Country of ref document: EP

Kind code of ref document: A1