WO2023248518A1 - 生体情報測定装置、生体情報測定装置の制御方法及びプログラム - Google Patents

生体情報測定装置、生体情報測定装置の制御方法及びプログラム Download PDF

Info

Publication number
WO2023248518A1
WO2023248518A1 PCT/JP2023/004001 JP2023004001W WO2023248518A1 WO 2023248518 A1 WO2023248518 A1 WO 2023248518A1 JP 2023004001 W JP2023004001 W JP 2023004001W WO 2023248518 A1 WO2023248518 A1 WO 2023248518A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
human body
biological information
measurement
measuring
Prior art date
Application number
PCT/JP2023/004001
Other languages
English (en)
French (fr)
Inventor
貴広 濱口
友香 田邊
健太郎 森
大 久保
佑樹 ▲高▼野
康夫 浅野
里佳 加藤
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Publication of WO2023248518A1 publication Critical patent/WO2023248518A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/276Protection against electrode failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor

Definitions

  • the present invention belongs to the technical field related to healthcare, and particularly relates to a biological information measuring device, a method and program for controlling the biological information measuring device.
  • Patent Document 1 discloses a portable electrocardiogram measuring device that has means for measuring blood pressure on an electrocardiographic waveform measuring device worn on the wrist of a human body using a belt equipped with electrodes.
  • the user can obtain information on the electrocardiogram waveform representing the electrical activity of the heart and measure blood pressure at any time, such as when feeling chest pain. .
  • electrocardiogram waveforms (and blood pressure) using so-called IV leads by simply placing the device itself, which is fixed on your arm, against your chest.
  • electrocardiographic waveforms in lead I can be measured by attaching the device to the device and touching the electrodes placed on the device body with the other (left) hand. According to these measurement methods, it is not necessary to hold the main body of the device by hand, and unnecessary force is not applied, so that it is possible to obtain a signal with less noise due to myoelectricity and the like.
  • the present invention provides a portable biological information measuring device capable of measuring blood pressure and electrocardiographic waveforms, which measures blood pressure and electrocardiographic waveforms individually or all at once using simple operations.
  • the purpose is to provide technology for
  • a biological information measuring device that is used by being attached to the wrist of a human body, Blood pressure measuring means for measuring the blood pressure of the human body; input means for receiving an instruction to start measuring biological information of the human body; an electrocardiographic waveform measuring means comprising a plurality of electrodes and for measuring an electrocardiographic waveform of the human body; electrode contact state detection means for detecting a contact state of the human body to the plurality of electrodes; position detection means for detecting the position of the device; a control means for controlling the electrocardiogram waveform measuring means and the blood pressure measuring means; It has an output means,
  • the control means includes: an electrode contact determination unit that determines whether or not the human body is in stable contact with the plurality of electrodes based on the output of the electrode contact state detection means; an electrocardiogram waveform measurement execution section that executes measurement of the electrocardiogram waveform of the human body by the electrocardiogram waveform measurement means when the judgment result of the electrode contact propriety judgment section is correct
  • a height validity determination unit that determines validity of whether or not the vehicle is present; a blood pressure measurement execution section that executes the blood pressure measurement of the human body by the blood pressure measurement means after a predetermined period of time has elapsed since the determination by the height appropriateness determination section; an electrode contact guide execution unit that outputs electrode contact guide information for guiding the human body to contact the plurality of electrodes from the output means when an operation to start blood pressure measurement of the human body is received via the input means; and,
  • This is a biological information measuring device characterized by the following.
  • measuring electrocardiographic waveforms refers to recording waveform data of electrocardiographic signals.
  • all at once includes performing simultaneously and in parallel.
  • examples of the above-mentioned blood pressure measuring means include, but are not limited to, cuffs, pressure sensors, pumps, etc. for measuring blood pressure using an oscillometric method.
  • the position detection means for example, a 3-axis acceleration sensor can be used, but other means may be used as long as it is possible to detect at least the position on the vertical axis of the device (that is, the height at which the device is located). May be used.
  • blood pressure and electrocardiogram waveforms can be measured individually with simple operations without increasing the number of operation switches in a portable biological information measuring device, and it is possible to measure only electrocardiogram waveforms or only blood pressure. It will be possible to meet the needs of those who want to do so. In addition, since it is possible to measure electrocardiogram waveforms at any time you want without the need for complicated operations, it increases the chances of detecting symptoms that disappear in a short period of time, such as paroxysmal atrial fibrillation. .
  • the blood pressure measurement execution section causes the blood pressure measurement means to measure the blood pressure of the human body after a predetermined period of time has elapsed since the determination by the height validity determination section. It may also be executed. If the wrist on which the device is attached is located at a height within a predetermined range, it means that the posture is appropriate for blood pressure measurement. It becomes possible to measure blood pressure. However, even if the determination result of the height appropriateness determination section is negative, it is possible to perform blood pressure measurement after making it possible to present information to that effect to the user.
  • the electrode contact determination unit determines whether the human body is in stable contact with the plurality of electrodes. It may also be a method for determining whether or not the above is true or not.
  • the input means that receives an instruction to start blood pressure measurement and the input means that receives an instruction to start electrocardiogram waveform measurement may be the same hardware component or may be separate components. Good too.
  • such "input means" can be, for example, an operation button provided on a biological information measuring device, but is not limited thereto.
  • the communication means functions as an input means. According to such a configuration, it is possible to prevent a malfunction (for the user) in which an electrocardiographic waveform is measured even though measurement of an electrocardiographic waveform is not intended.
  • control means is configured to determine whether both the electrode contact validity determination section and the height validity determination section are valid within a predetermined time after receiving an instruction to start blood pressure measurement of the human body via the input means.
  • the method may further include a batch measurement control unit that causes the electrocardiogram waveform measurement execution unit to perform the electrocardiogram waveform measurement and the blood pressure measurement execution unit to perform the blood pressure measurement at once. .
  • the electrocardiographic waveform measuring means further includes a storage means for at least temporarily storing an electrocardiographic signal obtained when the human body is in contact with the plurality of electrodes, and the electrocardiographic waveform measuring means is configured to store an electrocardiographic signal of the human body at least temporarily.
  • the electrocardiographic signal before the judgment result of the electrode contact judgment unit is correct is stored in the storage means, the electrocardiogram signal stored in the storage means It may also be possible to measure electrocardiographic waveforms based on .
  • the present invention can be understood as a control method for the following device. That is, It is used by being attached to the human wrist, Blood pressure measuring means for measuring the blood pressure of the human body; input means for receiving an instruction to start measuring biological information of the human body; an electrocardiographic waveform measuring means comprising a plurality of electrodes and for measuring an electrocardiographic waveform of the human body; electrode contact state detection means for detecting a contact state of the human body to the plurality of electrodes; position detection means for detecting the position of the device; A method for controlling a biological information measuring device, comprising: an output means; an electrode contact appropriateness determination step of determining whether or not the human body is in stable contact with the plurality of electrodes based on the output of the electrode contact state detection means; an electrocardiographic waveform measuring step of measuring an electrocardiographic waveform of the human body by the electrocardiographic waveform measuring means when the determination result in the electrode contact propriety determining step is valid; a blood pressure measurement start instruction receiving step of receiving an instruction to start blood pressure measurement of the human body
  • the blood pressure measurement step may be executed when the determination result of the height validity determination step is valid.
  • the control method further includes an electrocardiogram measurement start instruction receiving step of receiving an instruction to start measuring the electrocardiogram waveform of the human body via the input means, and the electrode contact propriety determining step includes It may be executed after the electrocardiogram measurement start instruction receiving step.
  • the electrocardiogram The shape measuring step and the blood pressure measuring step may be performed at once.
  • the biological information measuring device further includes a storage means for at least temporarily storing an electrocardiogram signal when the human body is in contact with the plurality of electrodes,
  • the electrocardiogram waveform measuring step if the electrocardiogram signal before the determination result of the electrode contact propriety determining section is correct is stored in the storage means, the electrocardiogram signal stored in the storage means is The electrocardiogram waveform may also be measured based on the signal.
  • the present invention can also be understood as a program for causing a biological information measuring device to execute the above control method, and a computer-readable recording medium on which such a program is non-temporarily recorded.
  • a portable biological information measuring device capable of measuring blood pressure and electrocardiographic waveforms
  • FIG. 1A is a schematic diagram showing the appearance of the biological information measuring device of Embodiment 1.
  • FIG. 1B is an explanatory diagram showing a state when the biological information measuring device of Embodiment 1 is worn.
  • FIG. 2 is a functional block diagram showing the functional configuration of the biological information measuring device according to the first embodiment.
  • FIG. 3A is a first diagram showing an example of an image output by the biological information measuring device according to the first embodiment.
  • FIG. 3B is a second diagram showing an example of an image output by the biological information measuring device of the first embodiment.
  • FIG. 3C is a third diagram showing an example of an image output by the biological information measuring device of the first embodiment.
  • FIG. 3D is a fourth diagram showing an example of an image output by the biological information measuring device of the first embodiment.
  • FIG. 4 is a first flowchart showing part of the processing performed in the biological information measuring device of the first embodiment.
  • FIG. 5 is a second flowchart showing part of the processing performed in the biological information measuring device of the first embodiment.
  • FIG. 6 is a block diagram showing the functional configuration of the biological information measuring device according to the second embodiment.
  • FIG. 7 is an explanatory diagram illustrating processing performed in the biological information measuring device of the second embodiment.
  • FIG. 8 is a flowchart showing part of the processing performed in the biological information measuring device according to the second embodiment.
  • FIG. 1A is a schematic diagram showing the external configuration of a biological information measuring device 10 according to the present embodiment.
  • FIG. 1B is an explanatory diagram showing a state in which the biological information measuring device 10 according to the present embodiment is attached to the wrist T.
  • FIG. 2 is a functional block diagram showing the functional configuration of the biological information measuring device 10 according to this embodiment.
  • the biological information measuring device 10 is roughly a wristwatch-type wearable device that has a main body 11 and a belt 15, and measures blood pressure values when worn on the wrist T of a human body. and can measure electrocardiogram waveforms.
  • the main body section 11 includes a display section 133 (for example, a liquid crystal display can be adopted), operation buttons 134a and 134b, a bezel that functions as the second electrode 112, an acceleration sensor 131, and the like. Note that one of the operation buttons 134a and 134b functions as a measurement start button for starting blood pressure measurement. Further, the acceleration sensor 131 corresponds to a position detection means according to the present invention, and detects the position and orientation of the biological information measuring device 10.
  • the main body section 11 includes a control section 100, an electrocardiographic signal measurement section 110, a blood pressure measurement section 120, a power supply section 132, a display section 133, an operation section 134, a communication section 135, It includes a storage section 136 and a vibration section 137.
  • a control section 100 an electrocardiographic signal measurement section 110, a blood pressure measurement section 120, a power supply section 132, a display section 133, an operation section 134, a communication section 135, It includes a storage section 136 and a vibration section 137.
  • the belt portion 15 also includes a cuff 121 for compressing an artery in the wrist T, a curler 152 for supporting the cuff 121, a first electrode 111, and a belt 151 for fixing the biological information measuring device 10 to the wrist T.
  • the belt 151 may be made up of a main band and a tip band, and may have a shape in which the tip band is fixed by a buckle on the parent band. Any configuration is acceptable as long as it can be fixed to . For example, it is also possible to adopt a configuration in which the device is fixed using a hook-and-loop fastener.
  • the control unit 100 controls the entire biological information measurement device 10 including the electrocardiographic signal measurement unit 110, the blood pressure measurement unit 120, and the like.
  • the control unit 100 also includes functional units such as an electrode contact state determination unit 101, a blood pressure measurement posture determination unit 102, a batch measurement execution unit 105, and an information output processing unit 106. By reading and executing the information, a functional unit that controls each component of the biological information measuring device 10 and achieves these predetermined purposes is realized.
  • the control unit 100 is configured to include a processor such as a CPU (Central Processing Unit).
  • the electrocardiographic signal measurement unit 110 includes a first electrode 111, a second electrode 112, and an electrocardiographic signal measurement circuit 113, and is configured to cover the surface of the human body (specifically, the wrist of one hand and the fingers of the other hand).
  • the electrocardiographic signal of the user is measured based on the potential difference between the first electrode 111 and the second electrode 112 that are in contact with each other (so-called lead I).
  • the electrocardiographic signal measurement circuit 113 also detects the contact state of the user's skin surface with the first electrode 111 and the second electrode 112. That is, the electrocardiographic signal measurement circuit 113 in this embodiment also serves as electrode contact state detection means according to the present invention.
  • the electrocardiographic signal measurement unit 110 also includes an AD conversion circuit, an amplifier, a filter, etc. (not shown), but since these are configured using known techniques, their explanation will be omitted.
  • the blood pressure measurement unit 120 includes a cuff 121, a pressure sensor 122, and a pump 123, and measures the user's blood pressure using a so-called oscillometric method. Blood pressure measurement using the oscillometric method is a well-known technique, so a detailed explanation will be omitted.
  • the power supply section 132 is configured to include a battery (not shown) that supplies power necessary for operating the device.
  • the battery may be a secondary battery such as a lithium ion battery, or a primary battery.
  • the display unit 133 includes a display device such as a liquid crystal display, and displays various information including guide information regarding the operation of the device on the display device. Note that the display section 133 may also include an LED indicator or the like. Further, the operation unit 134 includes operation buttons 134a and 134b, and receives user input operations via these buttons. Note that the operation unit 134 can also receive input from a user operation by receiving an input signal from another electronic device via a communication unit 135, which will be described later.
  • the communication unit 135 includes an antenna for wireless communication (not shown), and performs information communication with other electronic devices such as an information processing terminal by, for example, BLE communication. Note that a terminal for wired communication may be provided.
  • the storage unit 136 includes a main storage device (not shown) such as a RAM (Random Access Memory), and stores various information such as application programs, measured electrocardiographic waveforms, blood pressure, and guide information. Further, in addition to the RAM, a long-term storage medium such as a flash memory may be provided. Also, measurement results such as electrocardiographic waveform data and measured blood pressure values are saved.
  • a main storage device such as a RAM (Random Access Memory)
  • RAM Random Access Memory
  • a long-term storage medium such as a flash memory may be provided. Also, measurement results such as electrocardiographic waveform data and measured blood pressure values are saved.
  • the vibrating section 137 includes a vibrator (not shown) made of a small motor or the like, and generates vibrations in a predetermined pattern set for each guidance content. Thereby, it is possible to notify the user of predetermined guidance information corresponding to the pattern.
  • the electrode contact state determination unit 101 determines whether the user is in stable contact with the first electrode 111 and the second electrode 112 based on the output of the electrocardiographic signal measurement circuit 113. Whether it is stable or not can be distinguished using any index, but the evaluation may also be performed using information such as baseline fluctuations in the electrocardiogram waveform and posture fluctuations of the device based on the output of the acceleration sensor 131. .
  • the blood pressure measurement posture determination unit 102 determines whether the wrist of the user wearing the device is within a predetermined range based on the output of the acceleration sensor 131. It is determined whether or not the heart is located at the same height as the heart, more specifically whether it is located at the same height as the heart. Further, it may also be determined whether the height is continuously maintained.
  • the electrocardiographic waveform measurement execution unit 103 executes the electrocardiographic waveform measurement.
  • the measurement of an electrocardiographic waveform here refers to recording the electrocardiographic signal measured by the electrocardiographic signal measurement unit 110 as waveform data. That is, in this embodiment, the electrocardiographic waveform measurement means includes the electrocardiographic waveform measurement execution section 103, the electrocardiographic signal measurement section 110, and the storage section 136.
  • the blood pressure measurement execution unit 104 controls the blood pressure measurement unit 120 to execute the blood pressure measurement of the user.
  • the batch measurement execution unit 105 sends the data to the electrode contact state determination unit 101 and the blood pressure measurement posture determination unit 102. If both of the determination results are correct, control is performed so that the blood pressure measurement unit 120 measures the blood pressure and the electrocardiogram waveform at the same time.
  • the information output processing section 106 outputs guide information related to the use of the device by displaying an image on the display section 133 and using a vibration pattern on the vibrating section 137. Specifically, for example, control is executed to output information that guides the user in the posture for measuring biological information, information that guides the user to start and end the measurement, and the like. Examples of guide images displayed on the display unit 133 are shown in FIGS. 3A to 3D.
  • FIG. 3A is a guide image that guides the user to raise and maintain the wrist on which the device is attached to the level of the heart in preparation for measurement.
  • FIG. 3B is a guide image that guides touching the second electrode 112 of the device in preparation for measurement.
  • FIG. 3C is a guide image that provides guidance that blood pressure (electrocardiogram) is being measured.
  • FIG. 3D is a guide image showing the measurement results after the measurement is completed. Note that each image may be a still image or a moving image.
  • FIGS. 4 and 5 are flowcharts illustrating processing steps when performing collective measurement of blood pressure and electrocardiogram waveforms using the biological information measuring device 10 according to the present embodiment.
  • the control unit 100 determines whether a blood pressure measurement start operation from the user has been received via the operation unit 134 (S101).
  • the acceleration sensor 131 detects the position and orientation of the device (S102), and the blood pressure measurement orientation determination unit 102 detects the position and orientation of the device based on the output of the acceleration sensor 131.
  • step S104 the information output processing unit 106 outputs guide information that prompts the user to touch both the first electrode 111 and the second electrode 112 (S104).
  • the user is prompted to take a position for electrocardiographic waveform measurement by, for example, displaying the image shown in FIG. 3B on the display unit 133 or outputting a predetermined vibration pattern by the vibration unit 137.
  • the electrocardiographic signal measurement circuit 113 detects the state of contact of the human body (user) with the first electrode 111 and the second electrode 112 (S105). Then, the electrode contact state determination unit 101 determines that the user is stably attached to the first electrode 111 and the second electrode 112 within a predetermined time from the time when the operation input to start blood pressure measurement is received (from the time of determination in step S101). It is determined whether or not there is contact (S106).
  • the predetermined time can be, for example, within 10 seconds, and the time count can be performed by referring to a not-shown RTC (Real Time Clock).
  • step S106 if it is determined that the user is in stable contact with each electrode within a predetermined period of time after the operation input to start blood pressure measurement, the batch measurement execution unit 105 causes the blood pressure measurement unit 120 to Control is performed to collectively execute blood pressure measurement and electrocardiographic waveform measurement (S107).
  • step S108 the measurement of the blood pressure is finished, and the measurement of the electrocardiogram waveform (that is, the recording of waveform data) is also finished at the same time, and the measurement result is stored in the storage unit 136 (S108), and this routine is temporarily finished.
  • step S111 the blood pressure measurement execution unit 104 measures the user's blood pressure. Measurement is performed (S111).
  • the blood pressure value for example, systolic blood pressure value, diastolic blood pressure value
  • S112 the storage unit 136
  • step S101 determines whether or not the user is stably touching the first electrode 111 and the second electrode 112 based on the output of the electrocardiographic signal measurement circuit 113 (S122). .
  • the determination result of the electrode contact state determination unit 101 is negative (that is, the user is not in stable contact with the first electrode 111 and the second electrode 112), there is no possibility that there is any problem regarding the measurement of biological information. Assuming that no operation is being performed, this routine is temporarily terminated.
  • the electrocardiographic waveform measurement execution unit 103 executes electrocardiographic waveform measurement (S123).
  • the waveform data of the electrocardiographic signal for a predetermined period of time for example, 30 seconds
  • the electrocardiographic waveform is stored in the storage unit 136 (S124), and this routine is temporarily ended.
  • step S104 the information output processing unit 106 outputs the guide information, but in addition to this, the information output processing unit 106 outputs the guide information at an appropriate timing.
  • a guide image (see FIG. 3A) indicating that the wrist on which the device is attached should be raised and maintained at the level of the heart may be displayed on the display unit 133, or a predetermined vibration pattern by the vibrating unit 137 may be displayed. You can also guide them. Further, an image showing the measurement result may be displayed on the display unit 133 at the timing of step S108, step S112, step S124, etc.
  • the biological information measuring device 10 it is possible to measure blood pressure and electrocardiogram waveforms at once with a simple operation, and also measure only electrocardiogram waveforms or measure blood pressure as needed. Only measurements can be taken.
  • the electrocardiographic waveform can be measured by simply touching the second electrode 112 with the device attached, and the electrocardiographic waveform can be measured at a sudden timing. This is suitable when there is a need to perform measurements.
  • step S103 if it is determined in step S103 that the height of the device is not within the predetermined range, the process returns to step S102 and proceeds to step S104 until the condition is met.
  • step S104 information to that effect may be stored in the storage unit 136 before proceeding to step S104. That is, in this modification, when the batch measurement execution unit 105 receives an input of an instruction to start blood pressure measurement via the operation unit 134, if the determination result of the electrode contact state determination unit 101 is correct, the batch measurement execution unit 105 performs the blood pressure measurement.
  • the unit 120 performs control to collectively execute blood pressure measurement and electrocardiographic waveform measurement. By doing this, you can prevent the measurement from starting indefinitely if the correct posture is not taken, and at the same time remember that the accuracy of the measured blood pressure value is questionable, and at least make sure that the electrocardiogram is accurate. You can get the shape.
  • receiving an input of an instruction to start blood pressure measurement via the operation unit 134 triggers the electrode contact state determination process by the electrode contact state determination unit 101.
  • a trigger for determining the electrode contact state ie, starting electrocardiographic waveform measurement
  • the electrode contact state may be determined when an instruction to start electrocardiographic waveform measurement is received via the input means.
  • the "input means” in this case may be either one of the operation buttons 134a and 134b (which may be the same as the operation button for starting blood pressure measurement or may be different).
  • it may also be the communication unit 135 that receives a measurement start signal from an external electronic device.
  • the condition for starting electrocardiographic waveform measurement is that the user is in stable contact with the first electrode 111 and the second electrode 112.
  • this method it is possible to measure electrocardiographic waveforms in a stable state (that is, it is possible to measure electrocardiographic waveforms with high accuracy), but on the other hand, it is difficult to ensure that the electrodes are in stable contact.
  • a predetermined waiting time occurs for the determination.
  • when measuring an electrocardiogram waveform when an abnormality such as palpitation is felt there is a need to record the electrocardiogram waveform immediately after such an event occurs.
  • it took time to make stable contact with the two electrodes, and the blood pressure measurement alone may end up being carried out first. It will be done.
  • FIG. 6 shows a functional block diagram of the biological information measuring device 20 according to this embodiment.
  • the biological information measuring device 20 has substantially the same configuration as the biological information measuring device 10 of the first embodiment, and the function of the electrocardiogram waveform measurement execution unit 201 of the control unit 200 is different from that of the first embodiment. It's different.
  • the electrocardiogram waveform measurement execution unit 201 performs the determination by the electrode contact state determination unit 101 when electrocardiogram waveform measurement is started.
  • the waveform data of the electrocardiogram signal before the result becomes valid is also recorded (measured).
  • the electrocardiographic signal measured before starting the electrocardiographic waveform measurement is temporarily stored in the storage unit 136, and the electrocardiographic waveform measurement execution unit 201 starts the electrocardiographic waveform measurement.
  • the electrocardiographic signal temporarily stored in the storage unit 136 before the start of electrocardiographic waveform measurement is also recorded as waveform data.
  • FIG. 7 shows an explanatory diagram of such processing.
  • FIG. 7 is a timing chart showing the relationship between electrode contact detection, the satisfaction of the electrocardiographic waveform measurement start condition, the satisfaction of the blood pressure measurement start condition, and the measured electrocardiographic signal.
  • electrocardiographic signals are measured and stored in the storage unit 136 even before electrocardiographic waveform measurement is started, and the electrocardiographic waveform measurement execution unit 201 according to this modification example , when measurement of the electrocardiographic waveform is started, the electrocardiographic signal stored in the storage unit 136 is also adopted as electrocardiographic waveform data.
  • step S108 in FIG. 8 the flow of processing related to batch measurement is the same as in the first embodiment.
  • the flow of processing after only blood pressure measurement is performed is significantly different in this modification.
  • the electrocardiographic signal measurement circuit 113 detects the user's contact state with the first electrode 111 and the second electrode 112 (S221). Then, the electrode contact state determination unit 101 determines whether or not the user is stably touching the first electrode 111 and the second electrode 112 based on the output of the electrocardiographic signal measurement circuit 113 (S212). .
  • the process advances to step S112, and the blood pressure is The measurement results are stored in the storage unit 136 (S112), and the series of processing ends.
  • the electrocardiogram waveform measurement execution section 201 executes the measurement of the electrocardiogram waveform (S213). Furthermore, the electrocardiographic signal stored in the storage unit 136 and measured before it is determined that the user is in stable contact with the first electrode 111 and the second electrode 112 is used to generate the electrocardiographic signal. The electrocardiogram waveform including minutes is measured (S214). The electrocardiogram waveform data is stored in the storage unit 136 (S215), and the process then proceeds to S112.
  • the electrocardiographic waveform measurement execution unit 201 measures the electrocardiographic waveform. Execute (S123). Furthermore, the electrocardiographic signal stored in the storage unit 136 and measured before it is determined that the user is in stable contact with the first electrode 111 and the second electrode 112 is used to generate the electrocardiographic signal. The electrocardiogram waveform including minutes is measured (S221). The other processes are the same as those in the first embodiment, so the explanation will be omitted.
  • the biological information measuring device 20 configured as described above, it is possible to effectively utilize electrocardiographic signals that are measured until the result of the electrocardiographic waveform measurement start determination is released.
  • the information output processing unit 106 After it is determined in step S103 that the height of the device is within a predetermined range, the information output processing unit 106 generates guide information that prompts the user to touch the electrodes. Although the output is performed, this electrode contact guide output may be performed after step S101.
  • the guide image is displayed on the display unit 133, but the guide image may be output to an external device connected via the communication unit 135. Further, the measured biometric information may be stream-transmitted via the communication unit 135 to an external electronic device having a storage area.
  • Power supply Section 133 Disposable Section 134...Operation section 134a, 135b...Operation button 135...Communication section 136...Storage section 137...Vibration section 151...Belt 152...Cara T ⁇ wrist

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

人体の手首に装着して用いられる生体情報測定装置であって、血圧測定手段と、入力手段と、心電波形測定手段と、電極接触状態検出手段と、位置検出手段と、制御手段と、出力手段と、を有しており、前記制御手段は、電極接触当否判定部と、心電波形測定実行部と、高さ当否判定部と、血圧測定実行部と、電極接触ガイド実行部と、を備える、ことを特徴とする、生体情報測定装置。

Description

生体情報測定装置、生体情報測定装置の制御方法及びプログラム
 本発明は、ヘルスケア関連の技術分野に属し、特に、生体情報測定装置、生体情報測定装置の制御方法及びプログラムに関する。
 近年、血圧値、心電波形などの個人の身体・健康に関する情報(以下、生体情報ともいう)を、個人が自ら日常的に測定機器によって測定し、当該測定結果を健康管理に活用することが一般的に行われるようになってきている。このことから、携帯性を重視した機器の需要が高まっており、多くの携帯型測定装置が提案され、血圧値と心電波形の両方を測定できる携帯型の機器も提案されている(例えば、特許文献1など)。
 特許文献1には、電極を備えるベルトを用いて人体の手首に装着する心電波形計測装置に血圧測定を行うための手段を有する携帯型心電計測装置が開示されている。当該発明によれば、装置を携帯することにより、ユーザーは胸部の痛みを感じた際などの任意のタイミングで、心臓の電気活動を表す心電波形の情報を得ると共に血圧を測定することができる。また、装置を手首に装着することで、腕に固定した装置本体を胸部に当てるだけでいわゆるIV誘導で心電波形(及び血圧)を測定することができこと、及び、一方(右)の腕に装置を装着し、他方(左)の手で装置本体に配置された電極を触れることにより、I誘導での心電波形の測定が可能であること、も記載されている。これらの測定方法によれば、装置本体を手で持つ必要が無く、余計な力が入らないため筋電などによるノイズが少ない信号を得ることができる。
特開2007-195693号公報
 ところで、上記特許文献1に記載の技術によれば、心電波形と血圧とを同時に測定することができるが、常に心電波形と血圧とを同時に測定するのではなく、心電波形のみ或いは血圧のみを測定したいというニーズがある。このようなニーズに対応するために、装置に心電波形と血圧それぞれの測定用スイッチを設けるとすると、最低でも2つのスイッチが必要となってしまう。そのような構成にすると製造コストが増加してしまうのみならず、手首に装着するようなウェアラブル装置においては、操作スイッチが増加することはユーザーにとっては煩雑で操作が分かりにくくなる。また、限られたスペースに多くの操作スイッチを設けようとすると、それぞれのスイッチが小さくなってしまい、この点からも操作がしづらくなる。
 上記のような問題に鑑みて、本発明は、血圧と心電波形とを測定可能な携帯型の生体情報測定装置において、簡便な操作により血圧と心電波形とを個別に又は一括して測定するための技術を提供することを目的とする。
 上記の課題を解決するため、本発明は次のような構成を採用する。即ち、
 人体の手首に装着して用いられる生体情報測定装置であって、
 前記人体の血圧を測定するための血圧測定手段と、
 前記人体の生体情報の測定を開始する指示を受け付ける入力手段と、
 複数の電極を備え、前記人体の心電波形を測定するための心電波形測定手段と、
 前記複数の電極への前記人体の接触状態を検出する電極接触状態検出手段と、
 前記装置の位置を検出する位置検出手段と、
 前記心電波形測定手段及び前記血圧測定手段を制御する制御手段と、
 出力手段と、を有しており、
 前記制御手段は、
 前記電極接触状態検出手段の出力に基づいて前記人体が前記複数の電極に安定して接触しているか否かの当否を判定する電極接触当否判定部と、
 前記電極接触当否判定部の判定結果が当である場合には、前記心電波形測定手段による前記人体の心電波形の測定を実行する心電波形測定実行部と、
 前記入力手段を介して前記人体の血圧測定を開始する指示を受け付けた場合に、前記位置検出手段の出力に基づいて前記装置を装着した前記人体の手首が所定範囲内の高さに位置しているか否かの当否を判定する高さ当否判定部と、
 前記高さ当否判定部による判定から所定時間経過後に前記血圧測定手段による前記人体の血圧測定を実行する血圧測定実行部と、
 前記入力手段を介して前記人体の血圧測定を開始する操作を受け付けた場合に、前記出力手段から前記複数の電極に人体を接触させるように案内する電極接触ガイド情報を出力させる電極接触ガイド実行部と、を備える、
 ことを特徴とする、生体情報測定装置である。
 なお、本明細書において、「心電波形の測定」とは、心電信号の波形データを記録することをいう。また、「一括して」とは、同時的に並行して行うことを含む。また、上記の血圧測定手段としては、オシロメトリック法により血圧を測定するためのカフ、圧力センサ、ポンプなどを例示することができるが、これに限られない。また、位置検出手段としては、例えば3軸加速度センサを採用することができるが、少なくとも装置の鉛直軸上の位置(即ち、装置の位置する高さ)を検出可能であれば、他の手段を用いてもよい。
 このような構成によれば、携帯型の生体情報測定装置において操作スイッチを増やすことなく、簡便な操作で血圧と心電波形を個別に測定することができ、心電波形のみ或いは血圧のみを測定したいというニーズにも応えることが可能になる。また、複雑な操作を要することなく思いついたタイミングで心電波形の測定を行うことができるため、発作性の心房細動のような短時間で消えてしまう症状を捉える機会を増加させることができる。
 また、前記血圧測定実行部は、前記高さ当否判定部の判定結果が当であった場合に、前記高さ当否判定部による判定から所定時間経過後に前記血圧測定手段による前記人体の血圧測定を実行するようにしてもよい。前記装置を装着した手首が所定範囲内の高さに位置しているということは、血圧測定のために適切な姿勢であることを意味するため、このような構成にすることで、精度の良い血圧測定を行うことが可能になる。ただし、前記高さ当否判定部の判定結果が否であった場合であっても、その旨の情報をユーザーに提示可能にしたうえで血圧測定を行うことも可能である。
 また、前記電極接触当否判定部は、前記入力手段を介して前記人体の心電波形の測定を開始する指示を受け付けた場合に、前記人体が前記複数の電極に安定して接触しているか否かの当否を判定するものであってもよい。ここで、血圧測定を開始する指示を受け付ける入力手段と、心電波形測定を開始する指示を受け付ける入力手段は、ハードウェア上は同一の構成要素であってもよいし、別個の構成であってもよい。また、このような「入力手段」は、例えば生体情報測定装置に設けられる操作ボタンなどとすることができるが、これに限られない。例えば、通信を介して他の機器から測定開始指示信号を受信した場合に測定を開始するような装置構成も想定することができ、この場合には通信手段が入力手段として機能する。このような構成によれば、心電波形の測定を意図していないにも関わらず心電波形が測定される、といった(ユーザーにとっての)誤動作を防止することができる。
 また、前記制御手段は、前記入力手段を介して前記人体の血圧測定を開始する指示を受け付けた後の所定時間内に、前記電極接触当否判定部と前記高さ当否判定部のいずれもが当の判定結果を出力した場合には、前記心電波形測定実行部による心電波形測定と前記血圧測定実行部による血圧測定とを一括して実行させる一括測定制御部、をさらに備えていてもよい。
 上記のような構成であると、簡便な操作で心電波形と血圧を一括して測定することができ、個別での測定と一括での測定をユーザーのニーズに応じて使い分けることができる。
 また、前記複数の電極に前記人体が接触していた場合における心電信号を少なくとも一時的に記憶する記憶手段をさらに有しており、前記心電波形測定手段は、前記人体の心電波形の測定を開始した場合において、前記電極接触当否判定部の判定結果が当になる以前の前記心電信号が前記記憶手段に記憶されている場合には、当該記憶手段に記憶されている心電信号に基づく心電波形の測定も行うようにしてもよい。
 心電波形計測のために、電極への接触状態が安定しているか否かを判定するためには、数秒(5秒程度)の時間を要することになる。しかしながら、動悸などの異常を感じて心電波形を測定する場合には、そのイベントが発生した時から間髪を入れず心電波形を記録したいというニーズがある。この点、上記のような構成であれば、接触状態安定の判定がなされるまでの分も(短期的に)心電信号を保持しておくことで、遡及的に心電波形として採用(測定)することが可能になる。
 また、本発明は次のような装置の制御方法としても捉えることができる。即ち、
 人体の手首に装着して用いられ、
 前記人体の血圧を測定するための血圧測定手段と、
 前記人体の生体情報の測定を開始する指示を受け付ける入力手段と、
 複数の電極を備え、前記人体の心電波形を測定するための心電波形測定手段と、
 前記複数の電極への前記人体の接触状態を検出する電極接触状態検出手段と、
 前記装置の位置を検出する位置検出手段と、
 出力手段と、を備える生体情報測定装置の制御方法であって、
 前記電極接触状態検出手段の出力に基づいて前記人体が前記複数の電極に安定して接触しているか否かの当否を判定する電極接触当否判定ステップと、
 前記電極接触当否判定ステップにおける判定結果が当である場合には、前記心電波形測定手段による前記人体の心電波形の測定を実行する心電波形測定ステップと、
 前記入力手段を介して前記人体の血圧測定を開始する指示を受け付ける血圧測定開始指示受付ステップと、
 前記血圧測定開始指示受付ステップの後に実行され、前記位置検出手段の出力に基づいて前記装置を装着した前記人体の手首が所定範囲内の高さに位置しているか否かの当否を判定する高さ当否判定ステップと、
 前記高さ当否判定ステップから所定時間経過後に前記血圧測定手段による前記人体の血圧測定を実行する血圧測定ステップと、
 前記血圧測定開始指示受付ステップの後に実行され、前記出力手段から前記複数の電極に人体を接触させるように案内する電極接触ガイド情報を出力させる電極接触ガイドステップと、を有する、
 ことを特徴とする生体情報測定装置の制御方法である。
 また、前記高さ当否判定ステップの判定結果が当であった場合に、前記血圧測定ステップを実行するのであってもよい。また、前記制御方法は、前記入力手段を介して前記人体の心電波形の測定を開始する指示を受け付ける心電測定開始指示受付ステップをさらに有しており、前記電極接触当否判定ステップは、前記心電測定開始指示受付ステップの後に実行されるのであってもよい。
 また、前記血圧測定開始指示受付ステップが実行された後の所定時間内に、前記電極接触当否判定ステップと前記高さ当否判定ステップのいずれにおいても当の判定がなされた場合には、前記心電波形測定ステップと前記血圧測定ステップとを一括して実行するものであってもよい。
 また、前記生体情報測定装置は、前記複数の電極に前記人体が接触していた場合における心電信号を少なくとも一時的に記憶する記憶手段をさらに備えており、
 前記心電波形測定ステップでは、前記電極接触当否判定部の判定結果が当になる以前の前記心電信号が前記記憶手段に記憶されている場合には、当該記憶手段に記憶されている心電信号に基づく心電波形の測定も行うようにしてもよい。
 また、本発明は、上記の制御方法を生体情報測定装置に実行させるためのプログラム、そのようなプログラムを非一時的に記録したコンピュータ読取可能な記録媒体として捉えることもできる。
 なお、上記構成の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。
 本発明によれば、血圧と心電波形とを測定可能な携帯型の生体情報測定装置において、簡便な操作により血圧と心電波形とを個別に又は一括して測定するための技術を提供することができる。
図1Aは、実施形態1の生体情報測定装置の外観を示す概略図である。図1Bは、実施形態1の生体情報測定装置を装着した際の状態を示す説明図である。 図2は、実施形態1に係る生体情報測定装置の機能構成を示す機能ブロック図である。 図3Aは、実施形態1の生体情報測定装置において出力される画像の例を示す第1の図である。図3Bは、実施形態1の生体情報測定装置において出力される画像の例を示す第2の図である。図3Cは、実施形態1の生体情報測定装置において出力される画像の例を示す第3の図である。図3Dは、実施形態1の生体情報測定装置において出力される画像の例を示す第4の図である。 図4は、実施形態1の生体情報測定装置において行われる処理の一部を示す第1のフローチャートである。 図5は、実施形態1の生体情報測定装置において行われる処理の一部を示す第2のフローチャートである。 図6は、実施形態2に係る生体情報測定装置の機能構成を示すブロック図である。 図7は、実施形態2の生体情報測定装置において行う処理について説明する説明図である。 図8は、実施形態2に係る生体情報測定装置において行われる処理の一部を示すフローチャートである。
 <実施形態1>
 以下、本発明の具体的な実施形態について図面に基づいて説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (装置の全体構成)
 図1Aは、本実施形態に係る生体情報測定装置10の外観構成を示す概略図である。図1Bは、本実施形態に係る生体情報測定装置10を手首Tに装着した際の状態を示す説明図である。図2は、本実施形態に係る生体情報測定装置10の機能構成を示す機能ブロック図である。
 図1A、図1B、図2に示すように、生体情報測定装置10は概略、本体部11と、ベルト部15を有する腕時計型のウェアラブル装置であり、人体の手首Tに装着した状態で血圧値及び心電波形の測定を行うことができる。
 本体部11は、表示部133(例えば、液晶ディスプレイなどを採用することができる)、操作ボタン134a、134b、第2電極112として機能するベゼル、加速度センサ131などを含んで構成されている。なお、操作ボタン134a、134bのうちいずれか一方は、血圧測定を開始するための測定開始ボタンとして機能する。また、加速度センサ131は、本発明に係る位置検出手段に相当し、生体情報測定装置10の位置・姿勢を検出する。
 また、図2に示すように、本体部11はその機能構成として、制御部100、心電信号計測部110、血圧測定部120、電源部132、表示部133、操作部134、通信部135、記憶部136、振動部137、を備えている。これらの各機能構成については後述する。
 また、ベルト部15は、手首Tにある動脈を圧迫するためのカフ121、カフ121を支持するカーラ152、第1電極111、及び生体情報測定装置10を手首Tに固定するためのベルト151を備えている。ベルト151は、例えば、親側バンドと剣先側バンドとからなり、親側バンドのバックルによって剣先側バンドを固定するタイプの形状を採用することができるが、生体情報測定装置10を手首Tに適切に固定できればどのような構成であっても構わない。例えば、面ファスナーによって固定するような構成を採用することもできる。
 (本体部の機能構成)
 次に、本体部11の機能構成について説明する。制御部100は、心電信号計測部110、血圧測定部120などを含む生体情報測定装置10全体の制御を司る。また、制御部100は、電極接触状態判定部101、血圧測定姿勢判定部102、一括測定実行部105、情報出力処理部106、の各機能部を備えており、後述の記憶部136からプログラムを読み出して実行することによって、生体情報測定装置10の各構成を制御してこれらの所定の目的を果たす機能部を実現する。なお、制御部100は、ハードウェアの観点ではCPU(Central Processing Unit)などのプロセッサを含んで構成される。
 心電信号計測部110は、第1電極111、第2電極112、心電信号計測回路113を含んで構成され、人体表面(具体的には、一方の手の手首と他方の手の指)に接触した第1電極111及び第2電極112の電位差に基づいて(いわゆるI誘導で)、ユーザーの心電信号を計測する。また、心電信号計測回路113は、第1電極111と第2電極112へのユーザーの皮膚表面の接触状態も検出する。即ち、本実施形態における心電信号計測回路113は本発明に係る電極接触状態検出手段を兼ねる。なお、心電信号計測部110は、この他にも図示しないAD変換回路、アンプ、フィルタなどを含んでいるが、これらは既知の技術で構成されるため、説明は省略する。
 血圧測定部120は、カフ121、圧力センサ122、ポンプ123を含んで構成され、いわゆるオシロメトリック法によりユーザーの血圧を測定する。オシロメトリック法による血圧測定については周知の技術であるため詳細な説明は省略する。
 電源部132は、装置の稼働に必要な電力を供給するバッテリー(図示せず)を含んで構成される。バッテリーは、例えばリチウムイオンバッテリーなどの二次電池であっても良いし、一次電池としても良い。
 表示部133は、液晶ディスプレイなどの表示装置を含んで構成され、当該表示装置に装置の動作などについてのガイド情報を含む各種の情報を表示する。なお、表示部133は、その他にLEDインジケータなどを備えていてもよい。また、操作部134は、操作ボタン134a、134bを含んで構成され、これらを介してユーザーの入力操作を受け付ける。なお、操作部134は、後述の通信部135を介して他の電子機器からの入力信号を受信することによっても、ユーザー操作の入力を受け付けることができる。
 通信部135は、無線通信用のアンテナ(図示せず)を含み、例えばBLE通信により、情報処理端末などの他の電子機器と情報通信を行う。なお、有線通信のための端子を備えていてもよい。
 記憶部136は、RAM(Random Access Memory)などの主記憶装置(図示せず)を含んで構成され、アプリケーションプログラム、測定された心電波形、血圧、ガイド情報などの各種の情報を記憶する。また、RAMに加えて、例えばフラッシュメモリなどの長期記憶媒体を備えていてもよい。また、心電波形のデータや測定血圧値などの測定結果が保存される。
 振動部137は、小型モータ等からなるバイブレータ(図示せず)を含んで構成され、案内内容ごとに設定される所定のパターンで振動を生じさせる。これにより当該パターンに対応する所定の案内情報をユーザーに通知することができる。
 続けて、制御部100が備える各機能部について説明する。電極接触状態判定部101は、心電信号計測回路113の出力に基づいてユーザーが第1電極111、第2電極112に安定して接触しているか否かの判定を行う。安定か否かは、任意の指標で区別することができるが、例えば心電波形の基線変動、加速度センサ131の出力に基づく装置の姿勢変動などの情報を用いて評価を行うようにしてもよい。
 血圧測定姿勢判定部102は、操作部134を介して血圧測定を開始する指示の入力を受け付けた場合に、加速度センサ131の出力に基づいて、装置を装着した状態のユーザーの手首が所定の範囲内の高さに位置しているか否か、より具体的には心臓の高さと同程度の高さに位置しているかの当否を判定する。また、当該高さが継続して維持されているか否かについても判定するようにしてもよい。
 心電波形測定実行部103は、電極接触状態判定部101の判定結果が当である場合には、心電波形の測定を実行する。なお、ここで心電波形の測定とは、心電信号計測部110が計測した心電信号を波形データとして記録することをいう。即ち、本実施形態においては、心電波形測定手段には、心電波形測定実行部103、心電信号計測部110及び記憶部136が含まれる。
 血圧測定実行部104は、血圧測定姿勢判定部102の判定結果が当である場合には、血圧測定部120を制御してユーザーの血圧測定を実行する。
 一括測定実行部105は、操作部134を介して血圧測定を開始する操作の入力を受け付けた後の所定時間内(例えば10秒以内)に、電極接触状態判定部101及び血圧測定姿勢判定部102の判定結果がいずれも当である場合には、血圧測定部120による血圧の測定と、心電波形の測定を一括して実行する制御を行う。
 情報出力処理部106は、表示部133による画像表示や、振動部137による振動パターンにより、装置の使用に係るガイド情報を出力する。具体的には、例えば、ユーザーに生体情報の測定を行うための姿勢をガイドする情報、測定開始・終了をそれぞれ案内する情報、などを出力する制御を実行する。図3A乃至3Dに表示部133に表示されるガイド画像の一例を示す。
 図3Aは、測定準備のために、装置を装着した手首を心臓の高さまで持ち上げて維持することを案内するガイド画像である。図3Bは、測定準備のために、装置の第2電極112に触れることを案内するガイド画像である。図3Cは、血圧(心電)測定中であることを案内するガイド画像である。図3Dは、測定終了後に測定結果を示すガイド画像である。なお、各画像は静止画像であってもよいし、動画像であってもよい。
 (生体情報測定の処理)
 次に、生体情報測定装置10が生体情報の測定を実行する際の処理の流れを、図4及び図5に基づいて説明する。図4及び図5は、本実施形態に係る生体情報測定装置10を用いて血圧・心電波形の一括測定を行う際の処理の手順を示すフローチャートである。
 図4を参照して、まず、制御部100は操作部134を介して、ユーザーからの血圧測定開始操作を受け付けたか否かを判定する(S101)。ここで、血圧測定開始操作を受け付けたと判定した場合には、加速度センサ131による装置の位置・姿勢の検出が行われ(S102)、血圧測定姿勢判定部102が、加速度センサ131の出力に基づいて、生体情報測定装置10の高さが所定の範囲内にあるか否かの判定を行う(S103)。ステップS103で装置の高さが所定の範囲内ではないと判定された場合には、ステップS102に戻り、加速度センサ131の出力に基づいて、装置の高さが所定の範囲内にあるか否かの判定処理を繰り返す。
 一方、ステップS103で、装置の高さが所定の範囲内にあると判定された場合には、ステップS104に進む。ステップS104では、情報出力処理部106が、ユーザーに第1電極111及び第2電極112の両電極に接触することを促すガイド情報の出力を行う(S104)。ここでは、例えば表示部133に上述の図3Bの画像を表示する、振動部137により所定の振動パターンを出力する、などしてユーザーに心電波形測定のための体勢を取ることを促す。
 その後、心電信号計測回路113が第1電極111、第2電極112への人体(ユーザー)の接触状態を検出する(S105)。そして、電極接触状態判定部101が、血圧測定開始の操作入力があった時から(ステップS101の判定時から)所定の時間内に、ユーザーが第1電極111及び第2電極112に安定して接触しているか否かの当否を判定する(S106)。なお、所定の時間は例えば10秒以内などとすることができ、タイムカウントは図示しないRTC(Real Time Clock)を参照するなどして行うことができる。
 ステップS106で、血圧測定開始の操作入力があった時から所定時間内にユーザーが各電極に安定して接触していると判定された場合には、一括測定実行部105が血圧測定部120による血圧の測定と心電波形の測定を一括して実行する制御を行う(S107)。
 図5を参照して、S107の処理が終了するとステップS108の処理に進む。ステップS108では、血圧の測定が終了するとともに心電波形の測定(即ち波形データの記録)も同時に終了し、当該測定結果が記憶部136に保存されて(S108)、一旦本ルーティンが終了する。
 ここで、図4に戻り、ステップS106で、ユーザーが所定時間内に各電極に安定して接触していないと判定された場合には、ステップS111に進み、血圧測定実行部104がユーザーの血圧測定を実行する(S111)。そして再び図5を参照して、血圧の測定が終了すると、当該血圧値の測定結果(例えば、収縮期血圧値、拡張期血圧値)のみが記憶部136に保存されて(S112)、一旦本ルーティンが終了する。
 一方、ステップS101で、血圧測定操作の入力が無いと判定された場合にはステップS121に進み、心電信号計測回路113が第1電極111、第2電極112への人体(ユーザー)の接触状態を検出する(S121)。そして、電極接触状態判定部101が心電信号計測回路113の出力に基づいて、ユーザーが第1電極111及び第2電極112に安定して接触しているか否かの当否を判定する(S122)。
 ここで、電極接触状態判定部101の判定結果が否(即ち、ユーザーが第1電極111及び第2電極112に安定して接触していない)である場合には、生体情報の測定に関する何らの操作も行われていないとして、一旦本ルーティンを終了する。
 一方、ステップS122で、電極接触状態判定部101の判定結果が当であった場合には、心電波形測定実行部103は心電波形の測定を実行する(S123)。これにより、所定時間(例えば30秒)分の心電信号の波形データの記録が行われ、当該心電波形のみが記憶部136に保存されて(S124)、一旦本ルーティンが終了する。
 なお、上記のルーティンは常時繰り返し実行されるようになっている。また、上記のステップS104では、情報出力処理部106によるガイド情報の出力が行われるようになっていたが、これ以外にも適宜のタイミングで情報出力処理部106によるガイド情報の出力が行われてもよい。例えば、ステップS102に先立ち、装置を装着した手首を心臓の高さまで持ち上げて維持すべきことを示すガイド画像(図3A参照)を表示部133に表示したり、振動部137による所定の振動パターンによって案内したりしてもよい。また、ステップS108、ステップS112、ステップS124等のタイミングで、測定結果を示す画像を表示部133に表示してもよい。
 以上のような本実施形態に係る生体情報測定装置10によれば、簡便な操作により血圧と心電波形との一括測定を行うことができるとともに、必要に応じて心電波形のみの測定或いは血圧のみの測定を行うことができる。特に、心電波形の計測のみを実施する場合には、装置を装着した状態で第2電極112に安定して触れるだけで心電波形の測定を行うことができ、急なタイミングで心電波形の測定を行うニーズが生じた場合などに好適である。
 (変形例1)
 なお、上記の生体情報測定処理のフローでは、ステップS103で、装置の高さが所定の範囲内ではないと判定された場合には、ステップS102に戻って、条件を満たすまでステップS104には移行しなかったが、これ以外の処理を行うことも可能である。例えば、装置の高さが所定の範囲内ではないと判定された場合には、その旨の情報を記憶部136に保存したうえで、ステップS104に進むようにしてもよい。即ち、本変形例では、一括測定実行部105は、操作部134を介して血圧測定を開始する指示の入力を受け付けた場合に電極接触状態判定部101の判定結果が当であれば、血圧測定部120による血圧の測定と心電波形の測定を一括して実行する制御を行う。このようにしておけば、正しい姿勢が取られなければいつまでも測定が開始されない、といったことを防止しつつ、測定された血圧値の精度に疑義がある旨を記憶するとともに、少なくとも精度の良い心電波形を得ることができる。
 (変形例2)
 また、上記の生体情報測定処理のフローでは、操作部134を介して血圧測定を開始する指示の入力を受け付けることが、電極接触状態判定部101による電極接触状態の判定処理のトリガーとなっていたが、電極接触状態の判定(即ち心電波形測定開始)のトリガーを、別途設けるようにしてもよい。具体的には、入力手段を介して心電波形測定を開始することの指示を受け付けた場合に、電極接触状態の判定を行うようにしてもよい。なお、この場合の「入力手段」は、操作ボタン134a、134bのうちいずれか一方(血圧測定を開始するための操作ボタンと同一であってもよいし、別であってもよい)としてもよいし、外部の電子機器からの測定開始の信号を受信する通信部135であってもよい。
 <実施形態2>
 次に、本発明に係る他の実施形態について説明する。上記の実施形態1では、ユーザーが第1電極111及び第2電極112に安定して接触していることが心電波形の測定を開始する条件となっていた。このような方法であれば、安定した状態で心電波形の測定を行うことができる(即ち精度の良い心電波形を測定できる)が、その反面、電極に安定して接触していることの判定のために所定の待ち時間が生じる。しかしながら、動悸などの異常を感じて心電波形を測定する場合には、そのようなイベントが発生した時から間髪を入れずに心電波形を記録したいというニーズがある。また、血圧測定と心電波形の測定を一括して行うつもりであったところ、2つの電極に安定して接触することに手間取り、血圧のみの測定が先に実行されてしまう、といった事態も考えられる。
 本実施形態では、上記のような問題に対応する生体情報提供装置について説明する。図6に、本本実施形態に係る生体情報測定装置20の機能ブロック図を示す。図6に示すように、生体情報測定装置20は実施形態1の生体情報測定装置10と略同様の構成であり、制御部200の心電波形測定実行部201の機能が実施形態1のそれとは異なっている。
 心電波形測定実行部201は、実施形態1の心電波形測定実行部103と同様の機能を果たすのに加えて、心電波形の測定を開始した場合において、電極接触状態判定部101の判定結果が当になる以前の心電信号の波形データも記録する(測定する)。具体的には、心電波形の測定を開始する前に計測された心電信号が記憶部136に一時的に記憶されており、心電波形測定実行部201は心電波形の測定を開始した場合には、記憶部136に一時的に記憶されている心電波形測定開始前の心電信号も波形データとして記録する処理を実行する。図7に、このような処理についての説明図を示す。
 図7は、電極接触検知と、心電波形測定開始条件の成立と、血圧測定開始条件の成立と、計測された心電信号と、の関係を示すタイミングチャートである。図7に示すように、心電波形の測定が開始されるまでの間にも心電信号が計測されて記憶部136に格納されており、本変形例に係る心電波形測定実行部201は、心電波形の測定が開始された場合には、記憶部136に格納された心電信号も心電波形データとして採用する。
 次に、生体情報測定装置20が生体情報の測定を実行する際の処理の流れを、図8に基づいて説明する。なお、生体情報測定装置20が行う処理の流れは、図4に示す部分において実施形態1の生体情報測定装置10のものと同一であるため説明を省略し、ここでは、それ以降の処理流れを図8に基づいて説明する。
 図8のステップS108に示すように、一括測定に係る処理についての流れは実施形態1の場合と同様である。一方、血圧測定のみを実行した後の処理の流れは本変形例では大きく変わっている。図4に示すステップS111の血圧測定実施の後、本変形例では、心電信号計測回路113が第1電極111、第2電極112へのユーザーの接触状態を検出する(S221)。そして、電極接触状態判定部101が心電信号計測回路113の出力に基づいて、ユーザーが第1電極111及び第2電極112に安定して接触しているか否かの当否を判定する(S212)。
 ここで、電極接触状態判定部101の判定結果が否(即ち、ユーザーが第1電極111及び第2電極112に安定して接触していない)である場合には、ステップS112に進み、血圧の測定結果を記憶部136に保存して(S112)、一連の処理を終了する。
 一方、ステップS212で、電極接触状態判定部101の判定結果が当であった場合には心電波形測定実行部201は心電波形の測定を実行する(S213)。さらに、記憶部136に格納されている、ユーザーが第1電極111及び第2電極112に安定して接触していると判定される以前に計測された心電信号を用いて、当該心電信号分を含む心電波形を測定する(S214)。心電波形データは記憶部136に保存され(S215)、よりはS112に進む。
 また、心電波形のみの測定を行う処理の流れでも、ステップS122で、電極接触状態判定部101の判定結果が当であった場合には心電波形測定実行部201は心電波形の測定を実行する(S123)。さらに、記憶部136に格納されている、ユーザーが第1電極111及び第2電極112に安定して接触していると判定される以前に計測された心電信号を用いて、当該心電信号分を含む心電波形を測定する(S221)。それ以外の処理は、実施形態1の場合と同様であるため、説明は省略する。
 以上のような構成の生体情報測定装置20によれば、心電波形の測定開始判定の結果が出るまでの間に計測された心電信号も有効に活用することが可能になる。
 <その他>
 上記実施形態の説明は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な形態には限定されない。本発明は、その技術的思想の範囲内で種々の変形及び組み合わせが可能である。例えば、上記実施形態1に記載の処理の流れでは、ステップS103で、装置の高さが所定の範囲内にあると判定された後に、情報出力処理部106がユーザーに電極接触を促すガイド情報の出力を行う流れになっていたが、この電極接触ガイド出力は、ステップS101の後に実行されるのであっても構わない。
 また、上記実施形態では表示部133にガイド画像を表示することを説明したが、通信部135を介して接続した外部の機器にガイド画像を出力するようにしてもよい。また、通信部135を介して、記憶領域を備える外部の電子機器に、測定した生体情報をストリーミング送信するようにしてもよい。
 10、20・・・生体情報測定装置
 11・・・本体部
 15・・・ベルト部
 100、200・・・制御部
 101・・・電極接触状態判定部
 102・・・血圧測定姿勢判定部
 103、201・・・心電波形測定実行部
 104・・・血圧測定実行部
 105・・・一括測定実行部
 106・・・情報出力処理部
 110・・・心電波形測定部
 111・・・第1電極
 112・・・第2電極
 113・・・心電信号計測回路
 120・・・血圧測定部
 121・・・カフ
 122・・・圧力センサ
 123・・・ポンプ
 131・・・加速度センサ
 132・・・電源部
 133・・・表示部
 134・・・操作部
 134a、135b・・・操作ボタン
 135・・・通信部
 136・・・記憶部
 137・・・振動部
 151・・・ベルト
 152・・・カーラ
 T・・・手首

Claims (11)

  1.  人体の手首に装着して用いられる生体情報測定装置であって、
     前記人体の血圧を測定するための血圧測定手段と、
     前記人体の生体情報の測定を開始する指示を受け付ける入力手段と、
     複数の電極を備え、前記人体の心電波形を測定するための心電波形測定手段と、
     前記複数の電極への前記人体の接触状態を検出する電極接触状態検出手段と、
     前記装置の位置を検出する位置検出手段と、
     前記心電波形測定手段及び前記血圧測定手段を制御する制御手段と、
     出力手段と、を有しており、
     前記制御手段は、
     前記電極接触状態検出手段の出力に基づいて前記人体が前記複数の電極に安定して接触しているか否かの当否を判定する電極接触当否判定部と、
     前記電極接触当否判定部の判定結果が当である場合には、前記心電波形測定手段による前記人体の心電波形の測定を実行する心電波形測定実行部と、
     前記入力手段を介して前記人体の血圧測定を開始する指示を受け付けた場合に、前記位置検出手段の出力に基づいて前記装置を装着した前記人体の手首が所定範囲内の高さに位置しているか否かの当否を判定する高さ当否判定部と、
     前記高さ当否判定部による判定から所定時間経過後に前記血圧測定手段による前記人体の血圧測定を実行する血圧測定実行部と、
     前記入力手段を介して前記人体の血圧測定を開始する操作を受け付けた場合に、前記出力手段から前記複数の電極に前記人体を接触させるように案内する電極接触ガイド情報を出力させる電極接触ガイド実行部と、を備える、
     ことを特徴とする、生体情報測定装置。
  2.  前記血圧測定実行部は、前記高さ当否判定部の判定結果が当であった場合に、前記高さ当否判定部による判定から所定時間経過後に前記血圧測定手段による前記人体の血圧測定を実行する、
     ことを特徴とする、請求項1に記載の生体情報測定装置。
  3.  前記電極接触当否判定部は、前記入力手段を介して前記人体の心電波形の測定を開始する指示を受け付けた場合に、前記人体が前記複数の電極に安定して接触しているか否かの当否を判定する、
     ことを特徴とする、請求項1又は2に記載の生体情報測定装置。
  4.  前記制御手段は、
     前記入力手段を介して前記人体の血圧測定を開始する指示を受け付けた後の所定時間内に、前記電極接触当否判定部と前記高さ当否判定部のいずれもが当の判定結果を出力した場合には、前記心電波形測定実行部による心電波形測定と前記血圧測定実行部による血圧測定とを一括して実行させる一括測定制御部、をさらに備える、
     ことを特徴とする、請求項1又は2に記載の生体情報測定装置。
  5.  前記複数の電極に前記人体が接触していた場合における心電信号を少なくとも一時的に記憶する記憶手段をさらに有しており、
     前記心電波形測定手段は、前記人体の心電波形の測定を開始した場合において、前記電極接触当否判定部の判定結果が当になる以前の前記心電信号が前記記憶手段に記憶されている場合には、当該記憶手段に記憶されている心電信号に基づく心電波形の測定も行う、
     ことを特徴とする、請求項1又は2に記載の生体情報測定装置。
  6.  人体の手首に装着して用いられ、
     前記人体の血圧を測定するための血圧測定手段と、
     前記人体の生体情報の測定を開始する指示を受け付ける入力手段と、
     複数の電極を備え、前記人体の心電波形を測定するための心電波形測定手段と、
     前記複数の電極への前記人体の接触状態を検出する電極接触状態検出手段と、
     前記装置の位置を検出する位置検出手段と、
     出力手段と、を備える生体情報測定装置の制御方法であって、
     前記電極接触状態検出手段の出力に基づいて前記人体が前記複数の電極に安定して接触しているか否かの当否を判定する電極接触当否判定ステップと、
     前記電極接触当否判定ステップにおける判定結果が当である場合には、前記心電波形測定手段による前記人体の心電波形の測定を実行する心電波形測定ステップと、
     前記入力手段を介して前記人体の血圧測定を開始する指示を受け付ける血圧測定開始指示受付ステップと、
     前記血圧測定開始指示受付ステップの後に実行され、前記位置検出手段の出力に基づいて前記装置を装着した前記人体の手首が所定範囲内の高さに位置しているか否かの当否を判定する高さ当否判定ステップと、
     前記高さ当否判定ステップから所定時間経過後に前記血圧測定手段による前記人体の血圧測定を実行する血圧測定ステップと、
     前記血圧測定開始指示受付ステップの後に実行され、前記出力手段から前記複数の電極に前記人体を接触させるように案内する電極接触ガイド情報を出力させる電極接触ガイドステップと、を有する、
     ことを特徴とする、生体情報測定装置の制御方法。
  7.  前記高さ当否判定ステップの判定結果が当であった場合に、前記血圧測定ステップを実行する、
     ことを特徴とする、請求項6に記載の生体情報測定装置の制御方法。
  8.  前記入力手段を介して前記人体の心電波形の測定を開始する指示を受け付ける心電測定開始指示受付ステップをさらに有しており、
     前記電極接触当否判定ステップは、前記心電測定開始指示受付ステップの後に実行される、
     ことを特徴とする、請求項6又は7に記載の生体情報測定装置の制御方法。
  9.  前記血圧測定開始指示受付ステップが実行された後の所定時間内に、前記電極接触当否判定ステップと前記高さ当否判定ステップのいずれにおいても当の判定がなされた場合には、前記心電波形測定ステップと前記血圧測定ステップとを一括して実行する、
     ことを特徴とする、請求項6又は7に記載の生体情報測定装置の制御方法。
  10.  前記生体情報測定装置は、前記複数の電極に前記人体が接触していた場合における心電信号を少なくとも一時的に記憶する記憶手段をさらに備えており、
     前記心電波形測定ステップでは、前記電極接触当否判定ステップの判定結果が当になる以前の前記心電信号が前記記憶手段に記憶されている場合には、当該記憶手段に記憶されている心電信号に基づく心電波形の測定も行う、
     ことを特徴とする、請求項6又は7に記載の生体情報測定装置の制御方法。
  11.  請求項6に記載の制御方法の各ステップを生体情報測定装置に実行させるためのプログラム。
PCT/JP2023/004001 2022-06-23 2023-02-07 生体情報測定装置、生体情報測定装置の制御方法及びプログラム WO2023248518A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101235A JP2024002184A (ja) 2022-06-23 2022-06-23 生体情報測定装置、生体情報測定装置の制御方法及びプログラム
JP2022-101235 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023248518A1 true WO2023248518A1 (ja) 2023-12-28

Family

ID=89379369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004001 WO2023248518A1 (ja) 2022-06-23 2023-02-07 生体情報測定装置、生体情報測定装置の制御方法及びプログラム

Country Status (2)

Country Link
JP (1) JP2024002184A (ja)
WO (1) WO2023248518A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120283583A1 (en) * 2011-05-02 2012-11-08 Izmail Batkin Apparatus and method for electrocardiogram-assisted blood pressure measurement
JP3214887U (ja) * 2015-01-26 2018-02-15 周常安CHOU, Chang−An 心血管の健康モニタリング装置
WO2020039829A1 (ja) * 2018-08-21 2020-02-27 オムロンヘルスケア株式会社 測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120283583A1 (en) * 2011-05-02 2012-11-08 Izmail Batkin Apparatus and method for electrocardiogram-assisted blood pressure measurement
JP3214887U (ja) * 2015-01-26 2018-02-15 周常安CHOU, Chang−An 心血管の健康モニタリング装置
WO2020039829A1 (ja) * 2018-08-21 2020-02-27 オムロンヘルスケア株式会社 測定装置

Also Published As

Publication number Publication date
JP2024002184A (ja) 2024-01-11

Similar Documents

Publication Publication Date Title
EP3566036B1 (en) Blood pressure measurement system using force resistive sensor array
TWI322680B (en) An ear-type blood-pressure meter and a method of processing in the ear-type blood-pressure meter
US20060195020A1 (en) Methods, systems, and apparatus for measuring a pulse rate
JP6676499B2 (ja) 疲労度判定装置、疲労度判定方法、疲労度判定プログラム、及び、生体情報測定装置
US20210145363A1 (en) Measuring device
US10898135B2 (en) Biometric information measurement device, biometric information management method, and biometric information management program
KR20060045089A (ko) 혈류 변화 측정 센서, 심박수 산출 방법 및 그 휴대용 장치
CN107334467A (zh) 血压检测手表
CN109833037B (zh) 一种监测血压状态的设备和计算机可读存储介质
WO2023248518A1 (ja) 生体情報測定装置、生体情報測定装置の制御方法及びプログラム
KR20090107873A (ko) 생체복합센서
WO2022228191A1 (zh) 腕式可穿戴设备及腕式可穿戴设备的控制方法
WO2023248525A1 (ja) 生体情報測定装置、生体情報測定装置の制御方法及びプログラム
WO2023248522A1 (ja) 生体情報測定装置、生体情報測定装置の制御方法及びプログラム
JP2006026210A (ja) 携帯型健康管理装置
WO2024042749A1 (ja) 生体情報測定装置
KR101030443B1 (ko) 에어셀을 이용한 맥박 측정 장치
WO2023248519A1 (ja) 生体情報測定装置、生体情報処理システム、生体情報測定装置及び情報処理端末の制御方法
JP2021108972A (ja) 生体情報計測装置
RU2806847C1 (ru) Устройство для мониторинга состояния и физической работоспособности пользователя экзоскелета верхних конечностей
RU2810817C1 (ru) Устройство для мониторинга состояния и физической работоспособности пользователя экзоскелета нижних конечностей
RU14824U1 (ru) Устройство для проведения психофизиологических исследований
JP2009219540A (ja) 血圧計
TW201927240A (zh) 心理狀態感測方法、可攜式電子裝置及電腦可讀取的記錄媒體
JP2021078596A (ja) 心電計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825373

Country of ref document: EP

Kind code of ref document: A1