WO2023248490A1 - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
WO2023248490A1
WO2023248490A1 PCT/JP2022/037012 JP2022037012W WO2023248490A1 WO 2023248490 A1 WO2023248490 A1 WO 2023248490A1 JP 2022037012 W JP2022037012 W JP 2022037012W WO 2023248490 A1 WO2023248490 A1 WO 2023248490A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical modulator
waveguide
phase modulation
optical
semiconductor layer
Prior art date
Application number
PCT/JP2022/037012
Other languages
French (fr)
Japanese (ja)
Inventor
百合子 川村
雅之 高橋
祥吾 山中
健太郎 本田
陽介 雛倉
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2023248490A1 publication Critical patent/WO2023248490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure

Definitions

  • the present invention relates to a Mach-Zehnder interferometer type optical modulator used in optical communications.
  • a Mach-Zehnder interferometer type optical modulator has small wavelength dependence, has no wavelength chirp component in principle, and can operate at high speed. For this reason, it is widely used in medium and long-distance optical communication systems using a coherent method, and IMDD (direct detection direct modulation) optical communication systems for short distances of several hundred meters.
  • IMDD direct detection direct modulation
  • a Mach-Zehnder interferometer type optical modulator splits the light incident on the input optical waveguide into two optical waveguides (arm optical waveguides) with an intensity of approximately 1:1, and propagates the split light over a fixed length. It has a structure in which the signals are combined again and then output. By changing the phase of the two lights using the phase modulation region provided in the optical waveguide that is split into two, the interference conditions of the lights when they are combined are changed, and the intensity and phase of the output light are modulated. be able to.
  • dielectrics such as LiNbO 3 and semiconductors such as InP, GaAs, and Si (silicon) are used.
  • semiconductors such as InP, GaAs, and Si (silicon)
  • Non-Patent Document 1 discloses a Si Mach-Zehnder optical modulator with a modulator length of about several millimeters.
  • FIG. 1 shows the structure of a conventional traveling wave electrode type Mach-Zehnder optical modulator.
  • FIG. 1 is a perspective view of the structure of an optical waveguide and electrodes of a single-electrode Mach-Zehnder optical modulator, viewed from above.
  • FIG. 2 shows a cross section taken along II-II' in FIG.
  • the Si optical modulator 100 includes an input optical coupler (or Y-shaped splitter) 101 connected to an input optical waveguide, and one-to-two parallel first waveguides 102 that guide split input light into two. It includes a second waveguide 103 and an output optical coupler 104 that combines output light from the two waveguides and outputs it to an output optical waveguide.
  • the optical waveguide of the Si optical modulator 100 is composed of a Si layer 2 sandwiched between upper and lower SiO 2 cladding layers 1 and 3.
  • the Si waveguide for confining light has a structure called a rib waveguide with different thicknesses. That is, as shown in FIG. 2, the rib waveguide is composed of thick Si layers 151a and 151b at the center and thin slab regions 152a to 152c on both sides thereof.
  • the central thick Si layers 151a and 151b of the Si layer 2 are used as the cores of the first waveguide 102 and the second waveguide 103, respectively, and the difference in refractive index with the surrounding SiO 2 cladding layers 1 and 3 is utilized. , constitutes an optical waveguide that confines light propagating in a direction perpendicular to the plane of the paper.
  • the optical waveguide core of the Si layer 2 each has a pn junction in which the p-type semiconductor layers 105a, 105b and the n-type semiconductor layer 106 are joined at the center of the core.
  • a metal bias electrode 107 is provided on the n-type semiconductor layer 106 sandwiched between the two optical waveguides, a first high-frequency electrode 108 is provided on the p-type semiconductor layer 105a, and a first high-frequency electrode 108 is provided on the p-type semiconductor layer 105b.
  • a second high frequency electrode 109 is provided. Modulated electrical signals and bias voltages are applied via these electrodes.
  • the phase modulation region formed in the first waveguide 102 is referred to as a first modulation region 110
  • the phase modulation region formed in the second waveguide 103 is referred to as a second modulation region 111. Since these modulation regions are pn junctions, they can be regarded as capacitive pn diodes. That is, as shown in the equivalent circuit of FIG. 3, the first modulation region 110 and the second modulation region 111 are connected in series as a pn diode, and then the first high-frequency electrode 108 and the second high-frequency electrode It is loaded between 109 and 109.
  • the n-type semiconductor layer and the p-type semiconductor layer may be formed in reverse. Furthermore, the vicinity of the central thick Si layers 151a and 151b may be a low concentration region, and the side of the slab regions 152a to 152c connected to the electrodes may be a high concentration region.
  • the Si optical modulator 100 unless the pn junction is in a reverse bias state, the modulation speed will deteriorate. Therefore, a voltage is applied to the metal bias electrode 107 such that the pn junction is in a reverse bias state, no matter what bias state each of the first modulation region 110 and the second modulation region 111 is in. .
  • a differential modulated electrical signal is input to the first modulation region 110 and the second modulation region 111 from a driver amplifier connected to the first high-frequency electrode 108 and the second high-frequency electrode 109, respectively. This modulates the light.
  • the Si optical modulator 100 has a first modulation region 110 and a second modulation region 111 connected in series, and a first high-frequency electrode 108 and a second high-frequency electrode It is loaded between the electrode 109. Therefore, the differential modulated electrical signals applied to the first high-frequency electrode 108 and the second high-frequency electrode 109 are voltage-divided. In other words, if the amplitude voltage value of each differential modulator signal is X, then only a voltage of X/2 is applied to each of the first modulation region 110 and the second modulation region 111, which reduces the modulation efficiency. will deteriorate. On the other hand, when the amplitude voltage value is increased in order to improve modulation efficiency, there is a problem in that power consumption increases.
  • An object of the present invention is to provide an optical modulator with high modulation efficiency without increasing power consumption.
  • one embodiment of the present invention includes an input optical coupler, and a pair of first and second optical fibers that guide the input light branched into two by the input optical coupler.
  • a Mach-Zehnder interferometer type optical modulator including a waveguide and an output optical coupler that combines output lights of the first and second waveguides, the optical waveguides of the first and second waveguides
  • the core is made of a semiconductor layer having a pn junction and is connected to the first high frequency electrode in an optical modulator including first and second high frequency electrodes for applying a modulated electric signal and a bias voltage to the semiconductor layer.
  • phase modulation region formed in the first waveguide having a first conductivity type semiconductor layer connected to the second high frequency electrode;
  • a second waveguide formed in the second waveguide having a second conductive type semiconductor layer connected to the first high frequency electrode and a first conductive type semiconductor layer connected to the second high frequency electrode.
  • FIG. 1 is a plan view showing the structure of a conventional traveling wave electrode type Mach-Zehnder optical modulator.
  • FIG. 2 is a cross-sectional view showing the structure of a conventional traveling wave electrode type Mach-Zehnder optical modulator.
  • FIG. 3 is a diagram showing an equivalent circuit in the modulation region of a conventional traveling wave electrode type Mach-Zehnder optical modulator.
  • FIG. 4 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Embodiment 1 of the present invention;
  • FIG. 5 is a cross-sectional view showing the structure of the traveling wave electrode type Mach-Zehnder optical modulator of Example 1, FIG.
  • FIG. 6 is a cross-sectional view showing the structure of the traveling wave electrode type Mach-Zehnder optical modulator of Example 1
  • FIG. 7 is a diagram showing an equivalent circuit in the modulation region of the traveling wave electrode type Mach-Zehnder optical modulator of Example 1
  • FIG. 8 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to a second embodiment of the present invention
  • FIG. 9 is a cross-sectional view showing the structure of the traveling wave electrode type Mach-Zehnder optical modulator of Example 2
  • FIG. 10 is a diagram showing the relationship between the maximum modulation frequency bandwidth and wavelength of a modulated electrical signal;
  • FIG. 10 is a diagram showing the relationship between the maximum modulation frequency bandwidth and wavelength of a modulated electrical signal
  • FIG. 11 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Embodiment 3 of the present invention
  • FIG. 12 is a diagram showing the loss when a rib waveguide made of a silicon waveguide is bent by 90 degrees
  • FIG. 13 is a diagram showing the structure of a rib waveguide according to Example 3
  • FIG. 14 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 4 of the present invention
  • FIG. 15 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 5 of the present invention
  • FIG. 16 is a cross-sectional view showing the structure of the traveling wave electrode type Mach-Zehnder optical modulator of Example 5
  • FIG. 17 is a diagram showing an equivalent circuit in the modulation region of the traveling wave electrode type Mach-Zehnder optical modulator of Example 5
  • FIG. 18 is a diagram showing an example of application of capacitance in the traveling wave electrode type Mach-Zehnder optical modulator of Example 5
  • FIG. 19 is a diagram showing another application example of the capacitance in the traveling wave electrode type Mach-Zehnder optical modulator of Example 5
  • FIG. 20 is a diagram showing simulation results for the traveling wave electrode type Mach-Zehnder optical modulator of Example 5.
  • FIG. 4 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 1 of the present invention.
  • FIG. 4 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 200, viewed from above.
  • FIG. 5 shows a cross section taken along line V-V' in FIG.
  • FIG. 6 shows a cross section taken along VI-VI' in FIG.
  • the Si optical modulator 200 includes an input optical coupler (or Y-shaped splitter) 101 connected to an input optical waveguide, and two parallel first waveguides 102 that guide split input light into two. It includes a second waveguide 103 and an output optical coupler 104 that combines output light from the two waveguides and outputs it to an output optical waveguide.
  • the optical waveguide of the Si optical modulator 200 is composed of a Si layer 2 sandwiched between upper and lower SiO 2 cladding layers 1 and 3.
  • the Si waveguide for confining light has a structure called a rib waveguide with different thicknesses. That is, as shown in FIGS. 5 and 6, the rib waveguide is composed of thick Si layers 151a and 151b in the center and thin slab regions 152a to 152d on both sides thereof.
  • the central thick Si layers 151a and 151b of the Si layer 2 are used as the cores of the first waveguide 102 and the second waveguide 103, respectively, and the difference in refractive index with the surrounding SiO 2 cladding layers 1 and 3 is utilized.
  • the insulating layer 121 is a region in which the Si layer 2 is not doped with anything.
  • the optical waveguide core of the Si layer 2 has a pn junction in which p-type semiconductor layers 105a, 105b and n-type semiconductor layers 106a, 106b are joined at the center of the core.
  • a first high-frequency electrode 108 is provided on the p-type semiconductor layer 105a
  • a second high-frequency electrode 109 is provided on the p-type semiconductor layer 105b.
  • the n-type semiconductor layer 106a is connected to the second high-frequency electrode 109
  • the n-type semiconductor layer 106b is connected to the first high-frequency electrode 108. Modulated electrical signals and bias voltages are applied via these electrodes.
  • n-type semiconductor layers 106a, 106b and the high-frequency electrodes are connected by extending T-shaped electrodes from the first high-frequency electrode 108 and the second high-frequency electrode 109, as shown in FIG.
  • the connection is not limited to this, and may be connected in any shape.
  • the phase modulation region formed in the first waveguide 102 is referred to as a first modulation region 110
  • the phase modulation region formed in the second waveguide 103 is referred to as a second modulation region 111. Since these modulation regions are pn junctions, they can be regarded as capacitive pn diodes. That is, as shown in the equivalent circuit of FIG. 7, the first modulation region 110 is loaded between the first high-frequency electrode 108 and the second high-frequency electrode 109, and the second modulation region 111 is loaded between the It is loaded between the high frequency electrode 109 and the first high frequency electrode 108.
  • the Si optical modulator 200 as shown in the equivalent circuit of FIG. are loaded independently between them. Therefore, the differential modulated electrical signal applied to the first high-frequency electrode 108 and the second high-frequency electrode 109 is not voltage-divided, and the amplitude voltage value X of the differential modulated electrical signal is different from the first modulated region 110. It is applied to each of the second modulation regions 111. Therefore, compared to a conventional traveling wave electrode type Mach-Zehnder optical modulator, the optical modulator can be driven with twice the modulation efficiency.
  • the structure of the Si optical modulator 200 may be such that the n-type semiconductor layer and the p-type semiconductor layer are formed in reverse. Furthermore, the vicinity of the central thick Si layers 201a and 201b may be a low concentration region, and the side of the slab regions 202a to 202c connected to the electrodes may be a high concentration region. Furthermore, with regard to Example 1, the case of a Si modulator using a Si semiconductor has been described. It may be used as a semiconductor.
  • FIG. 8 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to a second embodiment of the present invention.
  • FIG. 8 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 300, viewed from above.
  • FIG. 9 shows a cross section taken along line IX-IX' in FIG. Descriptions of components common to the first embodiment will be omitted.
  • the difference from the conventional traveling wave electrode type Mach-Zehnder optical modulator is that the first modulation region 110 formed in the first waveguide 102 and the second modulation region 111 formed in the second waveguide 103 are different from the conventional traveling wave electrode type Mach-Zehnder optical modulator. , which are divided into a plurality of points along the light propagation direction and arranged alternately.
  • the first modulation region 110 and the second modulation region 111 are connected to the first high-frequency electrode 108 and the second high-frequency electrode 109 by extending T-shaped electrodes, as in the first embodiment. ing.
  • the core of the second waveguide 103 adjacent to the first modulation region 110 of the first waveguide 102 is a rib waveguide in which the Si layer 2 is not doped with anything. , acts as an insulating layer.
  • the Si optical modulator 300 Similar to the first embodiment, in the Si optical modulator 300, as shown in the equivalent circuit of FIG. It is independently loaded between the two high frequency electrodes 109. Therefore, the differential modulated electrical signals applied to the first high-frequency electrode 108 and the second high-frequency electrode 109 are not voltage-divided, and compared to the conventional traveling wave electrode type Mach-Zehnder optical modulator, the optical modulation efficiency is twice as high. A modulator can be driven.
  • a method of dividing the first modulation area 110 and the second modulation area 111 will be explained.
  • the length of each divided modulation region in the light propagation direction is set to be 1/20 or less of the wavelength included in the modulated electrical signal.
  • n of the cores of the first waveguide 102 and the second waveguide 103 is set to 3.5
  • a modulated electric signal propagating through the first high-frequency electrode 108 and the second high-frequency electrode 109 is shown. shows the relationship between maximum modulation frequency bandwidth and wavelength.
  • the modulated electrical signal includes a signal of maximum 60 GHz
  • 70 ⁇ m is obtained from the relationship: speed of light x refractive index/maximum modulation frequency bandwidth/20.
  • the first high frequency electrode 108 and the second high frequency electrode 109 are traveling wave electrodes.
  • the traveling wave electrode is an electrode that matches the velocity of the modulated electrical signal and the light propagating through the optical waveguide (phase velocity matching), and interacts with the light while propagating the electrical signal.
  • One end of the traveling wave electrode is connected to a driver amplifier, and the other end is terminated by a terminating resistor, and the traveling wave electrode therebetween is configured as a high frequency line having characteristic impedance.
  • the first modulation region 110 and the second modulation region 111 are divided into 1/20 or less of the maximum wavelength of the modulated electrical signal.
  • the length of the T-shaped electrode in the light propagation direction that applies a modulated electrical signal to the n-type semiconductor layer 106 becomes a length that is not affected by frequency dependence.
  • the T-shaped electrode that applies a modulated electrical signal to the p-type semiconductor layer 105 also has the same configuration. Therefore, in addition to the effects of the first embodiment, the Si optical modulator 300 can suppress the quality deterioration of the modulated electrical signal applied to the semiconductor layer and improve the high frequency characteristics.
  • the number of first modulation regions 110 and second modulation regions 111 should be approximately the same in the light propagation direction. This is to equalize the amount of phase modulation in each of the first waveguide 102 and second waveguide 103 divided by the input optical coupler 101 in the Mach-Zehnder optical modulator. This is because modulated output light without chirp (waveform distortion) can be output.
  • FIG. 11 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 3 of the present invention.
  • FIG. 11 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 400, viewed from above. Descriptions of components common to Example 2 will be omitted.
  • the difference from the conventional traveling wave electrode type Mach-Zehnder optical modulator is that the first modulation region 110 formed in the first waveguide 102 and the second modulation region 111 formed in the second waveguide 103 are different from the conventional traveling wave electrode type Mach-Zehnder optical modulator. , are points divided into multiple parts. Furthermore, the first modulation region 110 and the second modulation region 111 are optically connected by curved rib waveguides 412 and 413, respectively.
  • the rib waveguides 412 and 413 have a structure including four 90 degree bends, and are formed of undoped insulating silicon waveguides.
  • the cross-sectional structures of the rib waveguides 312 and 313 are the same as those of the first waveguide 102 and the second waveguide 103, respectively.
  • the capacity loaded per unit length is halved. .
  • two capacitances Cpn across the pn junction of the first modulation region 110 and a capacitance Cpn across the pn junction of the second modulation region 111 are connected between the signal electrodes 108 and 109. are connected.
  • only one capacitor Cpn is connected between the signal electrodes 108 and 109.
  • the propagation speed of a high-frequency signal propagating through an optical modulator is inversely proportional to the square root of the interelectrode capacitance. becomes late.
  • the signal propagation speed can be adjusted by changing the width and spacing of the signal electrodes, it is difficult to adjust a larger capacitance than in the conventional configuration.
  • bent rib waveguides 412 and 413 are provided to serve as delay lines for optical signals, thereby effectively slowing down the propagation of the optical signals. That is, the optical signal is also delayed in accordance with the delay of the high frequency signal due to the increase in the interelectrode capacitance, so that the propagation speeds of the optical signal and the high frequency signal are made equal. Thereby, when modulating an optical signal with a high frequency signal, it is possible to prevent band deterioration due to speed mismatch between the two.
  • optical signal delay lines have been realized not by rib waveguides but by channel waveguides.
  • the channel waveguide has a rectangular cross section and can be bent at a smaller radius without loss.
  • a delay line using a channel waveguide is created in the optical modulation region formed by the rib waveguide via a rib-channel waveguide converter, and then a delay line is created using a channel waveguide via a rib-channel waveguide converter, and then a delay line is created using a channel waveguide via a rib-channel waveguide converter. It was coupled to a light modulation region formed by a waveguide.
  • This Ribou channel waveguide converter has an optical loss of about 0.2 dB per conversion, and when a large number of them are arranged in one optical modulator, the optical loss becomes a problem.
  • the first modulation region 110 and the second modulation region 111 are arranged alternately, and the rib waveguides 412 and 413 are arranged in the region where the PN junction is not arranged. is forming. Therefore, since a sufficient length in the propagation direction of the optical signal can be secured between the modulation regions, a rib waveguide with a large bending radius for low loss can be used, and a delay line with a desired amount of delay can be formed. can be provided.
  • FIG. 12 shows the loss when a rib waveguide made of a silicon waveguide is bent by 90 degrees.
  • the length of the divided modulation regions (110, 111) is set to be 1/20 or less of the wavelength included in the modulated electrical signal.
  • the length of 1/20 of the wavelength is about 100 ⁇ m.
  • bending loss increases rapidly when the bending radius becomes smaller than about 10 ⁇ m.
  • the length of the rib waveguides 412 and 413 is 80 ⁇ m with respect to the light propagation direction of the Si optical modulator 400, it is possible to arrange them between the modulation regions (110 and 111) divided as described above. can. Furthermore, an appropriate delay amount for the delay line can be set by providing a straight line portion as shown in FIG. 13 and adjusting its length Lst.
  • FIG. 14 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 4 of the present invention.
  • FIG. 14 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 500, viewed from above. Descriptions of components common to Example 2 will be omitted.
  • the difference from the conventional traveling wave electrode type Mach-Zehnder optical modulator is that the first modulation region 110 formed in the first waveguide 102 and the second modulation region 111 formed in the second waveguide 103 are different from the conventional traveling wave electrode type Mach-Zehnder optical modulator. , are points divided into multiple parts. Furthermore, the difference from the Si optical modulator 300 of Example 2 is that the divided modulation regions are not arranged alternately, but are arranged collectively on one side. As shown in FIG. 14, by providing bent portions in the first waveguide 102 and the second waveguide 103, the first modulation region 110 and the second modulation region 111 can be bent along the propagation direction of light. The layout is arranged in such a way that the
  • the configurations of the divided first high-frequency electrode 108 and second high-frequency electrode 109 are substantially the same as the Si optical modulator 300 of the second embodiment, and in addition to the effects of the first embodiment, there are also the advantages of the second embodiment. The same effects can be achieved. Furthermore, since the divided modulation regions do not have a periodic structure, there is a high degree of freedom in manufacturing design.
  • FIG. 15 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 5 of the present invention.
  • FIG. 15 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 600, viewed from above.
  • FIG. 16 shows a cross section taken along line XVI-XVI' in FIG. 15. Descriptions of components common to Example 2 will be omitted.
  • the p-type semiconductor layer 105 of the first modulation region 110 is connected to the first high-frequency electrode 108, and the n-type semiconductor layer 106 is electrically connected to the electrode 109 via the capacitor 113.
  • the p-type semiconductor layer 105 of the second modulation region 111 is connected to the second high-frequency electrode 109, and the n-type semiconductor layer 106 is electrically connected to the first high-frequency electrode 108 via the capacitor 113.
  • the electrode structure between the n-type semiconductor layer 106 and the capacitor 113 will be referred to as a node 116 for the following explanation.
  • the capacitor 113 has a structure in which the second high-frequency electrode 109 and the node 116 are opposed to each other by a predetermined distance in the light propagation direction with a predetermined interval.
  • a bias electrode 115 is connected to the node 116 via a resistor 114.
  • An external bias power supply is connected to the bias electrode 115, so that a bias voltage can be applied separately from the modulated electrical signal.
  • the bias electrode 115 is formed using a metal wiring layer below the second high frequency electrode 109.
  • the Si optical modulator 600 can further improve high frequency characteristics.
  • the PN junction may become forward biased depending on the amplitude of the modulated electrical signal. do.
  • the Si optical modulator 500 has a configuration similar to a so-called bias T, consisting of a capacitor 113 and a resistor 114, so that a bias voltage can be applied separately from the modulated electrical signal. can. With this configuration, the PN junction can always be set to forward bias, so high-speed operation is possible.
  • phase modulation efficiency with respect to the applied voltage of the Si modulator changes depending on the bias voltage of the PN junction.
  • the modulation efficiency can be further improved by operating at the bias voltage that provides the best modulation efficiency.
  • the voltage X applied to the first high frequency electrode 108 and the second high frequency electrode 109 is proportional to the reciprocal sum of the capacitance (1/Cbias+1/Cpn), and the voltage applied to Cpn involved in phase modulation is the reciprocal of the capacitance 1/Cbias. is proportional to.
  • the modulation efficiency is Cpn/(Cbias+Cpn), so in order to obtain twice the modulation efficiency as compared to the conventional traveling wave electrode type Mach-Zehnder optical modulator, Cbias should be set to the same capacitance value or more with respect to Cpn. There is a need to. For example, when Cpn per unit length is about 100 fF/mm, Cbias is set to 5 pF/mm, and the value of the resistor 114 is set to approximately 1 k ⁇ or more.
  • FIG. 18 shows an application example of the capacitor 113.
  • the length of the capacitor 113 in the light propagation direction is limited by the structure of the divided modulation regions.
  • a desired capacitance value may not be obtained simply by making the second high-frequency electrode 109 and the node 116 face each other. Therefore, it may be possible to implement it by providing an MIM (Metal-Insulator-Metal) structure using a lower wiring layer.
  • MIM Metal-Insulator-Metal
  • FIG. 19 shows another application example of the capacitor 113.
  • a pn junction connecting a p-type semiconductor layer and an n-type semiconductor layer is manufactured separately from the modulation region.
  • a desired capacitance value can also be obtained by using this pn junction as the capacitor 113.
  • FIG. 20 shows simulation results when a modulated electrical signal is applied to the Si optical modulator 500 of Example 5.
  • the above-mentioned Cpn is set to 100 fF/mm
  • Cbias is set to 5 pF/mm
  • the resistance value of the resistor 114 is set to 10 k ⁇ .
  • a differential modulated electrical signal of 30 Gbaud and an amplitude of 2 V was input to the first high frequency electrode 108 and the second high frequency electrode 109 shown in FIG.
  • FIG. 20(a) shows an eye pattern of a modulated electrical signal input from the driver amplifier to each high-frequency electrode.
  • FIG. 20(b) shows an eye pattern at the termination resistor after propagating through the high-frequency electrode.
  • FIG. 20(c) is an eye pattern of the voltage signal applied to the PN junction of the first modulation region 110.
  • FIG. 20(c) a voltage signal of approximately -2V to -4V is applied, and it is found that the device operates with reverse bias. Furthermore, since a voltage signal of about -2V to -4V is applied to the phase modulation section 111, the Mach-Zehnder optical modulator operates with an amplitude of about 4V in response to a differential input signal with an amplitude of 2V. . Furthermore, FIGS. 20(b) and 20(c) show good eye openings, and it can be seen that quality deterioration of the modulated electrical signal is suppressed. Therefore, compared to the conventional traveling wave electrode type Mach-Zehnder optical modulator, it is possible to drive the optical modulator with twice the modulation efficiency, realizing an optical modulator with high modulation efficiency without increasing power consumption. It can be seen that
  • the differential modulated electric signal applied to the first high-frequency electrode 108 and the second high-frequency electrode 109 is not voltage-divided, and is different from the conventional traveling wave electrode type Mach-Zehnder optical modulator.
  • the modulation region of the Si optical modulator of this embodiment only the polarity of the n-type semiconductor layer and the p-type semiconductor layer has been described, but the region near the thick Si layer at the center, which becomes the optical waveguide core, is a low concentration region, and the electrode
  • the side of the slab region to be connected may be a high concentration region.
  • a pin junction may be used in which an undoped i-type (intrinsic) semiconductor is sandwiched between pn junction structures.
  • the material of the modulation region can also be made of other materials such as InP. This is because even in an InP modulator, reverse bias operation can be performed using a pn junction or a pin junction.
  • the present invention can be generally used in optical communication systems. In particular, it can be applied to an optical modulator in an optical transmitter of an optical communication system.

Abstract

The present invention provides an optical modulator having high modulation efficiency without increasing power consumption. Provided is an optical modulator that is a Mach-Zehnder interferometer-type optical modulator (200) in which optical waveguide cores of first and second waveguides (102, 103) comprise semiconductor layers having a p-n junction, and includes first and second high frequency electrodes (108, 109) for applying a modulated electrical signal and a bias voltage to the semiconductor layers, the optical modulator comprising: a first phase modulation region (110) which is formed in the first waveguide and has a first conductivity type semiconductor layer (105a) connected to the first high frequency electrode (108) and a second conductivity type semiconductor layer (106a) connected to the second high frequency electrode (109); and a second phase modulation region (111) which is formed in the second waveguide (103) and has a second conductivity type semiconductor layer (106b) connected to the first high frequency electrode and a first conductivity type semiconductor layer (105b) connected to the second high frequency electrode.

Description

光変調器light modulator
 本発明は、光通信において用いられるマッハツェンダ干渉計型の光変調器に関する。 The present invention relates to a Mach-Zehnder interferometer type optical modulator used in optical communications.
 マッハツェンダ干渉計型の光変調器は、波長依存性が小さく、原理的に波長チャープ成分が無く、高速で動作することができる。このことから、コヒーレント方式を用いた中・長距離用の光通信システム、数百メートル程度の短距離用のIMDD(直接検波直接変調)方式の光通信システムなどに広く用いられている。 A Mach-Zehnder interferometer type optical modulator has small wavelength dependence, has no wavelength chirp component in principle, and can operate at high speed. For this reason, it is widely used in medium and long-distance optical communication systems using a coherent method, and IMDD (direct detection direct modulation) optical communication systems for short distances of several hundred meters.
 マッハツェンダ干渉計型の光変調器は、入力側の光導波路に入射した光を、2つの光導波路(アーム光導波路)に概ね1:1の強度で分岐し、分岐した光を一定の長さ伝播させた後に、再度合波させて出力する構造を有する。2つに分岐された光導波路に設けられた位相変調領域により、2つの光の位相を変化させることにより、合波されるときの光の干渉条件を変え、出力光の強度、位相を変調することができる。 A Mach-Zehnder interferometer type optical modulator splits the light incident on the input optical waveguide into two optical waveguides (arm optical waveguides) with an intensity of approximately 1:1, and propagates the split light over a fixed length. It has a structure in which the signals are combined again and then output. By changing the phase of the two lights using the phase modulation region provided in the optical waveguide that is split into two, the interference conditions of the lights when they are combined are changed, and the intensity and phase of the output light are modulated. be able to.
 位相変調領域の光導波路を構成する材料としては、LiNbO3等の誘電体、InP,GaAs,Si(シリコン)等の半導体が用いられる。位相変調領域の光導波路近傍に配置された電極に、変調電気信号を入力して光導波路に電圧を印加することにより、光導波路を伝搬する光の位相を変化させる。近年、小型に光回路を集積できることから、Siを光導波路材料として用いた光変調器の研究・開発が盛んに行われている。 As materials constituting the optical waveguide in the phase modulation region, dielectrics such as LiNbO 3 and semiconductors such as InP, GaAs, and Si (silicon) are used. By inputting a modulated electrical signal to an electrode placed near the optical waveguide in the phase modulation region and applying a voltage to the optical waveguide, the phase of light propagating through the optical waveguide is changed. In recent years, optical modulators using Si as an optical waveguide material have been actively researched and developed because optical circuits can be integrated in a small size.
 大容量の光通信を行うためには、高速な光変調器が必要である。広帯域なマッハツェンダ干渉計型の光変調器として、進行波電極型マッハツェンダ光変調器がある。進行波電極は、変調電気信号と光導波路を伝播する光の速度を整合(位相速度整合)させ、電気信号を伝搬させながら光と相互作用を行う電極である。例えば、非特許文献1には、長さ数ミリメートル程度の変調器長を備えるSiマッハツェンダ光変調器が開示されている。 A high-speed optical modulator is required for high-capacity optical communication. As a broadband Mach-Zehnder interferometer type optical modulator, there is a traveling wave electrode type Mach-Zehnder optical modulator. The traveling wave electrode is an electrode that matches the velocity of the modulated electrical signal and the light propagating through the optical waveguide (phase velocity matching), and interacts with the light while propagating the electrical signal. For example, Non-Patent Document 1 discloses a Si Mach-Zehnder optical modulator with a modulator length of about several millimeters.
  (進行波電極型マッハツェンダ光変調器)
 図1に、従来の進行波電極型マッハツェンダ光変調器の構造を示す。図1は、シングル電極型マッハツェンダ光変調器の光導波路と電極の構造を、上面から見た透視図である。図2は、図1のII-II’の断面を示す。Si光変調器100は、入力光導波路に接続された入力光カプラ(またはY字スプリッタ)101と、2分岐された入力光を導波する1対2本の並行する第1の導波路102と第2の導波路103と、2本の導波路から出力光を合波して出力光導波路に出力する出力光カプラ104とを備える。
(Travelling wave electrode type Mach-Zehnder optical modulator)
FIG. 1 shows the structure of a conventional traveling wave electrode type Mach-Zehnder optical modulator. FIG. 1 is a perspective view of the structure of an optical waveguide and electrodes of a single-electrode Mach-Zehnder optical modulator, viewed from above. FIG. 2 shows a cross section taken along II-II' in FIG. The Si optical modulator 100 includes an input optical coupler (or Y-shaped splitter) 101 connected to an input optical waveguide, and one-to-two parallel first waveguides 102 that guide split input light into two. It includes a second waveguide 103 and an output optical coupler 104 that combines output light from the two waveguides and outputs it to an output optical waveguide.
 Si光変調器100の光導波路は、上下のSiO2クラッド層1、3に挟まれたSi層2で構成される。光を閉じ込めるためのSi導波路は、厚さに差があるリブ導波路と呼ばれる構造である。すなわち、リブ導波路は、図2に示したように、中央部の厚いSi層151a,151bと、その両側にある薄いスラブ領域152a-152cとから構成されている。Si層2の中央の厚いSi層151a,151bを、それぞれ第1の導波路102と第2の導波路103のコアとし、周囲のSiO2クラッド層1、3との屈折率差を利用して、紙面垂直方向に伝搬する光を閉じ込める光導波路を構成する。 The optical waveguide of the Si optical modulator 100 is composed of a Si layer 2 sandwiched between upper and lower SiO 2 cladding layers 1 and 3. The Si waveguide for confining light has a structure called a rib waveguide with different thicknesses. That is, as shown in FIG. 2, the rib waveguide is composed of thick Si layers 151a and 151b at the center and thin slab regions 152a to 152c on both sides thereof. The central thick Si layers 151a and 151b of the Si layer 2 are used as the cores of the first waveguide 102 and the second waveguide 103, respectively, and the difference in refractive index with the surrounding SiO 2 cladding layers 1 and 3 is utilized. , constitutes an optical waveguide that confines light propagating in a direction perpendicular to the plane of the paper.
 Si層2の光導波路コアは、それぞれ、p型半導体層105a,105bとn型半導体層106とがコアの中央部で接合されたpn接合を有している。2本の光導波路に挟まれたn型半導体層106には、金属のバイアス電極107が設けられ、p型半導体層105aには、第1の高周波電極108が設けられ、p型半導体層105bには、第2の高周波電極109が設けられている。これらの電極を経由して、変調電気信号およびバイアス電圧が印加される。 The optical waveguide core of the Si layer 2 each has a pn junction in which the p- type semiconductor layers 105a, 105b and the n-type semiconductor layer 106 are joined at the center of the core. A metal bias electrode 107 is provided on the n-type semiconductor layer 106 sandwiched between the two optical waveguides, a first high-frequency electrode 108 is provided on the p-type semiconductor layer 105a, and a first high-frequency electrode 108 is provided on the p-type semiconductor layer 105b. A second high frequency electrode 109 is provided. Modulated electrical signals and bias voltages are applied via these electrodes.
 第1の導波路102に形成された位相変調領域を第1の変調領域110とし、第2の導波路103に形成された位相変調領域を第2の変調領域111とする。これらの変調領域は、pn接合であるため、容量性を持つpnダイオードとしてみなせる。すなわち、図3の等価回路に示すように、第1の変調領域110と第2の変調領域111は、pnダイオードとして直列に接続された上で、第1の高周波電極108と第2の高周波電極109の間に装荷されている。 The phase modulation region formed in the first waveguide 102 is referred to as a first modulation region 110, and the phase modulation region formed in the second waveguide 103 is referred to as a second modulation region 111. Since these modulation regions are pn junctions, they can be regarded as capacitive pn diodes. That is, as shown in the equivalent circuit of FIG. 3, the first modulation region 110 and the second modulation region 111 are connected in series as a pn diode, and then the first high-frequency electrode 108 and the second high-frequency electrode It is loaded between 109 and 109.
 なお、Si光変調器100の構造としては、n型半導体層とp型半導体層とをそれぞれ逆に形成してもよい。また、中央部の厚いSi層151a,151b付近を低濃度領域とし、電極に接続されるスラブ領域152a-152cの側を高濃度領域としてもよい。 Note that in the structure of the Si optical modulator 100, the n-type semiconductor layer and the p-type semiconductor layer may be formed in reverse. Furthermore, the vicinity of the central thick Si layers 151a and 151b may be a low concentration region, and the side of the slab regions 152a to 152c connected to the electrodes may be a high concentration region.
 Si光変調器100は、pn接合が逆バイアスの状態でなければ、変調速度の劣化を招く。そのため、金属のバイアス電極107は、第1の変調領域110と第2の変調領域111それぞれがどのようなバイアス状態であっても、pn接合が逆バイアス状態となるような電圧を印加されている。第1の変調領域110と第2の変調領域111に対しては、第1の高周波電極108と第2の高周波電極109のそれぞれに接続されたドライバアンプから、差動の変調電気信号を入力することにより光の変調を行う。 In the Si optical modulator 100, unless the pn junction is in a reverse bias state, the modulation speed will deteriorate. Therefore, a voltage is applied to the metal bias electrode 107 such that the pn junction is in a reverse bias state, no matter what bias state each of the first modulation region 110 and the second modulation region 111 is in. . A differential modulated electrical signal is input to the first modulation region 110 and the second modulation region 111 from a driver amplifier connected to the first high-frequency electrode 108 and the second high-frequency electrode 109, respectively. This modulates the light.
 Si光変調器100は、図3の等価回路に示したように、第1の変調領域110と第2の変調領域111とが直列に接続されて、第1の高周波電極108と第2の高周波電極109との間に装荷される。このため、第1の高周波電極108と第2の高周波電極109に加わる差動の変調電気信号は分圧されてしまう。すなわち、差動の変調器信号のそれぞれの振幅電圧値をXとすると、第1の変調領域110と第2の変調領域111のそれぞれには、X/2ずつの電圧しか印加されず、変調効率が劣化してしまう。一方、変調効率を向上させるために振幅電圧値を大きくすると、消費電力が増大するという問題があった。 As shown in the equivalent circuit of FIG. 3, the Si optical modulator 100 has a first modulation region 110 and a second modulation region 111 connected in series, and a first high-frequency electrode 108 and a second high-frequency electrode It is loaded between the electrode 109. Therefore, the differential modulated electrical signals applied to the first high-frequency electrode 108 and the second high-frequency electrode 109 are voltage-divided. In other words, if the amplitude voltage value of each differential modulator signal is X, then only a voltage of X/2 is applied to each of the first modulation region 110 and the second modulation region 111, which reduces the modulation efficiency. will deteriorate. On the other hand, when the amplitude voltage value is increased in order to improve modulation efficiency, there is a problem in that power consumption increases.
 本発明の目的は、消費電力を増大させることなく、変調効率の高い光変調器を提供することにある。 An object of the present invention is to provide an optical modulator with high modulation efficiency without increasing power consumption.
 本発明は、このような目的を達成するために、一実施態様は、入力光カプラと、前記入力光カプラにより2分岐された入力光を導波する1対2本の第1および第2の導波路と、前記第1および第2の導波路の出力光を合波する出力光カプラとを含むマッハツェンダ干渉計型の光変調器であって、前記第1および第2の導波路の光導波路コアは、pn接合を有する半導体層からなり、前記半導体層に変調電気信号およびバイアス電圧を印加するための第1および第2の高周波電極を含む光変調器において、前記第1の高周波電極に接続された第1の導電型半導体層と、前記第2の高周波電極に接続された第2の導電型半導体層とを有する前記第1の導波路に形成された第1の位相変調領域と、前記第1の高周波電極に接続された第2の導電型半導体層と、前記第2の高周波電極に接続された第1の導電型半導体層とを有する前記第2の導波路に形成された第2の位相変調領域とを備えることを特徴とする。 In order to achieve such an object, one embodiment of the present invention includes an input optical coupler, and a pair of first and second optical fibers that guide the input light branched into two by the input optical coupler. A Mach-Zehnder interferometer type optical modulator including a waveguide and an output optical coupler that combines output lights of the first and second waveguides, the optical waveguides of the first and second waveguides The core is made of a semiconductor layer having a pn junction and is connected to the first high frequency electrode in an optical modulator including first and second high frequency electrodes for applying a modulated electric signal and a bias voltage to the semiconductor layer. a first phase modulation region formed in the first waveguide having a first conductivity type semiconductor layer connected to the second high frequency electrode; A second waveguide formed in the second waveguide having a second conductive type semiconductor layer connected to the first high frequency electrode and a first conductive type semiconductor layer connected to the second high frequency electrode. A phase modulation region.
図1は、従来の進行波電極型マッハツェンダ光変調器の構造を示す平面図、FIG. 1 is a plan view showing the structure of a conventional traveling wave electrode type Mach-Zehnder optical modulator. 図2は、従来の進行波電極型マッハツェンダ光変調器の構造を示す断面図、FIG. 2 is a cross-sectional view showing the structure of a conventional traveling wave electrode type Mach-Zehnder optical modulator. 図3は、従来の進行波電極型マッハツェンダ光変調器の変調領域における等価回路を示す図、FIG. 3 is a diagram showing an equivalent circuit in the modulation region of a conventional traveling wave electrode type Mach-Zehnder optical modulator. 図4は、本発明の実施例1にかかる進行波電極型マッハツェンダ光変調器の構造を示す平面図、FIG. 4 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Embodiment 1 of the present invention; 図5は、実施例1の進行波電極型マッハツェンダ光変調器の構造を示す断面図、FIG. 5 is a cross-sectional view showing the structure of the traveling wave electrode type Mach-Zehnder optical modulator of Example 1, 図6は、実施例1の進行波電極型マッハツェンダ光変調器の構造を示す断面図、FIG. 6 is a cross-sectional view showing the structure of the traveling wave electrode type Mach-Zehnder optical modulator of Example 1, 図7は、実施例1の進行波電極型マッハツェンダ光変調器の変調領域における等価回路を示す図、FIG. 7 is a diagram showing an equivalent circuit in the modulation region of the traveling wave electrode type Mach-Zehnder optical modulator of Example 1, 図8は、本発明の実施例2にかかる進行波電極型マッハツェンダ光変調器の構造を示す平面図、FIG. 8 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to a second embodiment of the present invention; 図9は、実施例2の進行波電極型マッハツェンダ光変調器の構造を示す断面図、FIG. 9 is a cross-sectional view showing the structure of the traveling wave electrode type Mach-Zehnder optical modulator of Example 2, 図10は、変調電気信号の最大変調周波数帯域幅と波長の関係を示す図、FIG. 10 is a diagram showing the relationship between the maximum modulation frequency bandwidth and wavelength of a modulated electrical signal; 図11は、本発明の実施例3にかかる進行波電極型マッハツェンダ光変調器の構造を示す平面図、FIG. 11 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Embodiment 3 of the present invention; 図12は、シリコン導波路からなるリブ導波路を90度曲げたときの損失を示す図、FIG. 12 is a diagram showing the loss when a rib waveguide made of a silicon waveguide is bent by 90 degrees, 図13は、実施例3にかかるリブ導波路の構造を示す図、FIG. 13 is a diagram showing the structure of a rib waveguide according to Example 3, 図14は、本発明の実施例4にかかる進行波電極型マッハツェンダ光変調器の構造を示す平面図、FIG. 14 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 4 of the present invention; 図15は、本発明の実施例5にかかる進行波電極型マッハツェンダ光変調器の構造を示す平面図、FIG. 15 is a plan view showing the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 5 of the present invention; 図16は、実施例5の進行波電極型マッハツェンダ光変調器の構造を示す断面図、FIG. 16 is a cross-sectional view showing the structure of the traveling wave electrode type Mach-Zehnder optical modulator of Example 5, 図17は、実施例5の進行波電極型マッハツェンダ光変調器の変調領域における等価回路を示す図、FIG. 17 is a diagram showing an equivalent circuit in the modulation region of the traveling wave electrode type Mach-Zehnder optical modulator of Example 5, 図18は、実施例5の進行波電極型マッハツェンダ光変調器における容量の適用例を示す図、FIG. 18 is a diagram showing an example of application of capacitance in the traveling wave electrode type Mach-Zehnder optical modulator of Example 5, 図19は、実施例5の進行波電極型マッハツェンダ光変調器における容量の他の適用例を示す図、FIG. 19 is a diagram showing another application example of the capacitance in the traveling wave electrode type Mach-Zehnder optical modulator of Example 5, 図20は、実施例5の進行波電極型マッハツェンダ光変調器におけるシミュレーション結果を示す図である。FIG. 20 is a diagram showing simulation results for the traveling wave electrode type Mach-Zehnder optical modulator of Example 5.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。なお、図面においては、同一の機能を有する部分は同一の番号を付することにより、説明の明瞭化を図っている。ただし、本発明は以下に示す実施形態の記載内容に限定されず、本明細書等において開示する発明の趣旨から逸脱することなく、形態および詳細を様々に変更し得ることは当業者にとって自明である。また、異なる実施例に係る構成は、適宜組み合わせて実施することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, parts having the same functions are given the same numbers for clarity of explanation. However, it is obvious to those skilled in the art that the present invention is not limited to the contents described in the embodiments shown below, and that the form and details can be changed in various ways without departing from the spirit of the invention disclosed in this specification etc. be. Furthermore, configurations according to different embodiments can be implemented in combination as appropriate.
 図4に、本発明の実施例1にかかる進行波電極型マッハツェンダ光変調器の構造を示す。図4は、シングル電極型マッハツェンダ光変調器200の光導波路と電極の構造を、上面から見た透視図である。図5は、図4のV-V’の断面を示す。図6は、図4のVI-VI’の断面を示す。Si光変調器200は、入力光導波路に接続された入力光カプラ(またはY字スプリッタ)101と、2分岐された入力光を導波する1対2本の並行する第1の導波路102と第2の導波路103と、2本の導波路から出力光を合波して出力光導波路に出力する出力光カプラ104とを備える。 FIG. 4 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 1 of the present invention. FIG. 4 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 200, viewed from above. FIG. 5 shows a cross section taken along line V-V' in FIG. FIG. 6 shows a cross section taken along VI-VI' in FIG. The Si optical modulator 200 includes an input optical coupler (or Y-shaped splitter) 101 connected to an input optical waveguide, and two parallel first waveguides 102 that guide split input light into two. It includes a second waveguide 103 and an output optical coupler 104 that combines output light from the two waveguides and outputs it to an output optical waveguide.
 Si光変調器200の光導波路は、上下のSiO2クラッド層1、3に挟まれたSi層2で構成される。光を閉じ込めるためのSi導波路は、厚さに差があるリブ導波路と呼ばれる構造である。すなわち、リブ導波路は、図5,6に示したように、中央部の厚いSi層151a,151bと、その両側にある薄いスラブ領域152a-152dとから構成されている。Si層2の中央の厚いSi層151a,151bを、それぞれ第1の導波路102と第2の導波路103のコアとし、周囲のSiO2クラッド層1、3との屈折率差を利用して、紙面垂直方向に伝搬する光を閉じ込める光導波路を構成する。従来の進行波電極型マッハツェンダ光変調器との相違は、第1の導波路102と第2の導波路103のコアの間のスラブ領域202b,202cが、絶縁層121で電気的に分離されている点である。絶縁層121は、Si層2に何もドーピングされていない領域である。 The optical waveguide of the Si optical modulator 200 is composed of a Si layer 2 sandwiched between upper and lower SiO 2 cladding layers 1 and 3. The Si waveguide for confining light has a structure called a rib waveguide with different thicknesses. That is, as shown in FIGS. 5 and 6, the rib waveguide is composed of thick Si layers 151a and 151b in the center and thin slab regions 152a to 152d on both sides thereof. The central thick Si layers 151a and 151b of the Si layer 2 are used as the cores of the first waveguide 102 and the second waveguide 103, respectively, and the difference in refractive index with the surrounding SiO 2 cladding layers 1 and 3 is utilized. , constitutes an optical waveguide that confines light propagating in a direction perpendicular to the plane of the paper. The difference from the conventional traveling wave electrode type Mach-Zehnder optical modulator is that the slab regions 202b and 202c between the cores of the first waveguide 102 and the second waveguide 103 are electrically separated by an insulating layer 121. This is the point. The insulating layer 121 is a region in which the Si layer 2 is not doped with anything.
 Si層2の光導波路コアは、それぞれ、p型半導体層105a,105bとn型半導体層106a,106bとがコアの中央部で接合されたpn接合を有している。p型半導体層105aには、第1の高周波電極108が設けられ、p型半導体層105bには、第2の高周波電極109が設けられている。さらに、n型半導体層106aは第2の高周波電極109に接続され、n型半導体層106bは第1の高周波電極108に接続されている。これらの電極を経由して、変調電気信号およびバイアス電圧が印加される。n型半導体層106a,106bと高周波電極との接続は、図4に示したように、第1の高周波電極108と第2の高周波電極109から丁字状の電極を延伸して接続しているが、これに限らず、任意の形状で接続すればよい。 The optical waveguide core of the Si layer 2 has a pn junction in which p- type semiconductor layers 105a, 105b and n- type semiconductor layers 106a, 106b are joined at the center of the core. A first high-frequency electrode 108 is provided on the p-type semiconductor layer 105a, and a second high-frequency electrode 109 is provided on the p-type semiconductor layer 105b. Further, the n-type semiconductor layer 106a is connected to the second high-frequency electrode 109, and the n-type semiconductor layer 106b is connected to the first high-frequency electrode 108. Modulated electrical signals and bias voltages are applied via these electrodes. The n- type semiconductor layers 106a, 106b and the high-frequency electrodes are connected by extending T-shaped electrodes from the first high-frequency electrode 108 and the second high-frequency electrode 109, as shown in FIG. However, the connection is not limited to this, and may be connected in any shape.
 第1の導波路102に形成された位相変調領域を第1の変調領域110とし、第2の導波路103に形成された位相変調領域を第2の変調領域111とする。これらの変調領域は、pn接合であるため、容量性を持つpnダイオードとしてみなせる。すなわち、図7の等価回路に示すように、第1の変調領域110は、第1の高周波電極108と第2の高周波電極109の間に装荷され、第2の変調領域111は、第2の高周波電極109と第1の高周波電極108の間に装荷されている。 The phase modulation region formed in the first waveguide 102 is referred to as a first modulation region 110, and the phase modulation region formed in the second waveguide 103 is referred to as a second modulation region 111. Since these modulation regions are pn junctions, they can be regarded as capacitive pn diodes. That is, as shown in the equivalent circuit of FIG. 7, the first modulation region 110 is loaded between the first high-frequency electrode 108 and the second high-frequency electrode 109, and the second modulation region 111 is loaded between the It is loaded between the high frequency electrode 109 and the first high frequency electrode 108.
 Si光変調器200は、図7の等価回路に示したように、第1の変調領域110と第2の変調領域111とが、それぞれ第1の高周波電極108と第2の高周波電極109との間に独立に装荷されている。このため、第1の高周波電極108と第2の高周波電極109に加わる差動の変調電気信号は分圧されず、差動の変調電気信号の振幅電圧値Xが、第1の変調領域110と第2の変調領域111のそれぞれに印加される。従って、従来の進行波電極型マッハツェンダ光変調器と比較すると、2倍の変調効率で光変調器を駆動することができる。 In the Si optical modulator 200, as shown in the equivalent circuit of FIG. are loaded independently between them. Therefore, the differential modulated electrical signal applied to the first high-frequency electrode 108 and the second high-frequency electrode 109 is not voltage-divided, and the amplitude voltage value X of the differential modulated electrical signal is different from the first modulated region 110. It is applied to each of the second modulation regions 111. Therefore, compared to a conventional traveling wave electrode type Mach-Zehnder optical modulator, the optical modulator can be driven with twice the modulation efficiency.
 なお、Si光変調器200の構造としては、n型半導体層とp型半導体層とをそれぞれ逆に形成してもよい。また、中央部の厚いSi層201a,201b付近を低濃度領域とし、電極に接続されるスラブ領域202a-202cの側を高濃度領域としてもよい。さらに、実施例1に関して、Si半導体を用いたSi変調器の場合について説明したが、第1の変調領域110と第2の変調領域111の材料を、LiNbO3等の誘電体、InP,GaAs等の半導体としてもよい。 Note that the structure of the Si optical modulator 200 may be such that the n-type semiconductor layer and the p-type semiconductor layer are formed in reverse. Furthermore, the vicinity of the central thick Si layers 201a and 201b may be a low concentration region, and the side of the slab regions 202a to 202c connected to the electrodes may be a high concentration region. Furthermore, with regard to Example 1, the case of a Si modulator using a Si semiconductor has been described. It may be used as a semiconductor.
 図8に、本発明の実施例2にかかる進行波電極型マッハツェンダ光変調器の構造を示す。図8は、シングル電極型マッハツェンダ光変調器300の光導波路と電極の構造を、上面から見た透視図である。図9は、図8のIX-IX’の断面を示す。実施例1と共通する構成要素については説明を省略する。 FIG. 8 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to a second embodiment of the present invention. FIG. 8 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 300, viewed from above. FIG. 9 shows a cross section taken along line IX-IX' in FIG. Descriptions of components common to the first embodiment will be omitted.
 従来の進行波電極型マッハツェンダ光変調器との相違は、第1の導波路102に形成された第1の変調領域110と第2の導波路103に形成された第2の変調領域111とを、光伝搬方向に沿って複数に分割し、交互に配置した点である。第1の変調領域110および第2の変調領域111と、第1の高周波電極108および第2の高周波電極109との接続は、実施例1と同様に、丁字状の電極を延伸して接続している。図9に示すように、第1の導波路102の第1の変調領域110に隣接する第2の導波路103のコアは、Si層2に何もドーピングされていないリブ導波路となっていて、絶縁層として働く。 The difference from the conventional traveling wave electrode type Mach-Zehnder optical modulator is that the first modulation region 110 formed in the first waveguide 102 and the second modulation region 111 formed in the second waveguide 103 are different from the conventional traveling wave electrode type Mach-Zehnder optical modulator. , which are divided into a plurality of points along the light propagation direction and arranged alternately. The first modulation region 110 and the second modulation region 111 are connected to the first high-frequency electrode 108 and the second high-frequency electrode 109 by extending T-shaped electrodes, as in the first embodiment. ing. As shown in FIG. 9, the core of the second waveguide 103 adjacent to the first modulation region 110 of the first waveguide 102 is a rib waveguide in which the Si layer 2 is not doped with anything. , acts as an insulating layer.
 実施例1と同様に、Si光変調器300は、図7の等価回路に示したように、第1の変調領域110と第2の変調領域111とが、それぞれ第1の高周波電極108と第2の高周波電極109との間に独立に装荷されている。従って、第1の高周波電極108と第2の高周波電極109に加わる差動の変調電気信号は分圧されず、従来の進行波電極型マッハツェンダ光変調器と比較すると、2倍の変調効率で光変調器を駆動することができる。 Similar to the first embodiment, in the Si optical modulator 300, as shown in the equivalent circuit of FIG. It is independently loaded between the two high frequency electrodes 109. Therefore, the differential modulated electrical signals applied to the first high-frequency electrode 108 and the second high-frequency electrode 109 are not voltage-divided, and compared to the conventional traveling wave electrode type Mach-Zehnder optical modulator, the optical modulation efficiency is twice as high. A modulator can be driven.
 第1の変調領域110と第2の変調領域111を分割する方法について説明する。それぞれ分割された変調領域は、光の伝搬方向の長さが、変調電気信号に含まれる波長に対して1/20の長さ以下となるようにする。図10に、第1の導波路102と第2の導波路103のコアの屈折率n=3.5としたとき、第1の高周波電極108と第2の高周波電極109を伝搬する変調電気信号の最大変調周波数帯域幅と波長の関係を示す。例えば、変調電気信号として最大60GHzの信号を含む場合には、光速×屈折率/最大変調周波数帯域幅/20の関係から70μmが得られる。 A method of dividing the first modulation area 110 and the second modulation area 111 will be explained. The length of each divided modulation region in the light propagation direction is set to be 1/20 or less of the wavelength included in the modulated electrical signal. In FIG. 10, when the refractive index n of the cores of the first waveguide 102 and the second waveguide 103 is set to 3.5, a modulated electric signal propagating through the first high-frequency electrode 108 and the second high-frequency electrode 109 is shown. shows the relationship between maximum modulation frequency bandwidth and wavelength. For example, when the modulated electrical signal includes a signal of maximum 60 GHz, 70 μm is obtained from the relationship: speed of light x refractive index/maximum modulation frequency bandwidth/20.
 第1の高周波電極108および第2の高周波電極109は、進行波電極である。上述したように、進行波電極は、変調電気信号と光導波路を伝播する光の速度を整合(位相速度整合)させ、電気信号を伝搬させながら光と相互作用を行う電極である。進行波電極の一端はドライバアンプに接続され、他端は終端抵抗により終端され、その間の進行波電極は、特性インピーダンスを有する高周波線路として構成されている。周波数帯域幅を持った変調電気信号が、進行波電極を伝搬する際、変調電気信号の最大波長に対して1/20波長程度の長さを超えると、特性インピーダンスに大きな周波数依存性を有することになる。 The first high frequency electrode 108 and the second high frequency electrode 109 are traveling wave electrodes. As described above, the traveling wave electrode is an electrode that matches the velocity of the modulated electrical signal and the light propagating through the optical waveguide (phase velocity matching), and interacts with the light while propagating the electrical signal. One end of the traveling wave electrode is connected to a driver amplifier, and the other end is terminated by a terminating resistor, and the traveling wave electrode therebetween is configured as a high frequency line having characteristic impedance. When a modulated electrical signal with a frequency bandwidth propagates through a traveling wave electrode, if the length exceeds about 1/20 wavelength of the maximum wavelength of the modulated electrical signal, the characteristic impedance has a large frequency dependence. become.
 そこで、第1の変調領域110と第2の変調領域111とを、変調電気信号の最大波長に対して1/20以下となるように分割する。これにより、n型半導体層106に変調電気信号を印加する丁字状の電極の光の伝搬方向の長さが、周波数依存性の影響を受けない長さになる。p型半導体層105に変調電気信号を印加する丁字状の電極も同じ構成である。従って、Si光変調器300は、実施例1の効果に加えて、半導体層に印加する変調電気信号の品質劣化を抑制し、高周波特性を改善することができる。 Therefore, the first modulation region 110 and the second modulation region 111 are divided into 1/20 or less of the maximum wavelength of the modulated electrical signal. As a result, the length of the T-shaped electrode in the light propagation direction that applies a modulated electrical signal to the n-type semiconductor layer 106 becomes a length that is not affected by frequency dependence. The T-shaped electrode that applies a modulated electrical signal to the p-type semiconductor layer 105 also has the same configuration. Therefore, in addition to the effects of the first embodiment, the Si optical modulator 300 can suppress the quality deterioration of the modulated electrical signal applied to the semiconductor layer and improve the high frequency characteristics.
 第1の変調領域110と第2の変調領域111を分割する数は、光の伝搬方向に、概して同数程度配置されるべきである。これは、マッハツェンダ光変調器において入力光カプラ101により分割された第1の導波路102および第2の導波路103それぞれにおける位相変調量を均等にするためである。これにより、チャープ(波形ひずみ)のない変調された出力光を出力できるからである。 The number of first modulation regions 110 and second modulation regions 111 should be approximately the same in the light propagation direction. This is to equalize the amount of phase modulation in each of the first waveguide 102 and second waveguide 103 divided by the input optical coupler 101 in the Mach-Zehnder optical modulator. This is because modulated output light without chirp (waveform distortion) can be output.
 図11に、本発明の実施例3にかかる進行波電極型マッハツェンダ光変調器の構造を示す。図11は、シングル電極型マッハツェンダ光変調器400の光導波路と電極の構造を、上面から見た透視図である。実施例2と共通する構成要素については説明を省略する。 FIG. 11 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 3 of the present invention. FIG. 11 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 400, viewed from above. Descriptions of components common to Example 2 will be omitted.
 従来の進行波電極型マッハツェンダ光変調器との相違は、第1の導波路102に形成された第1の変調領域110と第2の導波路103に形成された第2の変調領域111とを、それぞれ複数に分割した点である。さらに、第1の変調領域110の間および第2の変調領域111の間、それぞれを屈曲したリブ導波路412,413により光学的に接続している点である。リブ導波路412,413は、90度の曲げを4個含む構造であり、ドーピングされていない絶縁性のシリコン導波路で形成されている。リブ導波路312,313の断面構造は、それぞれ第1の導波路102と第2の導波路103の断面構造と同じである。 The difference from the conventional traveling wave electrode type Mach-Zehnder optical modulator is that the first modulation region 110 formed in the first waveguide 102 and the second modulation region 111 formed in the second waveguide 103 are different from the conventional traveling wave electrode type Mach-Zehnder optical modulator. , are points divided into multiple parts. Furthermore, the first modulation region 110 and the second modulation region 111 are optically connected by curved rib waveguides 412 and 413, respectively. The rib waveguides 412 and 413 have a structure including four 90 degree bends, and are formed of undoped insulating silicon waveguides. The cross-sectional structures of the rib waveguides 312 and 313 are the same as those of the first waveguide 102 and the second waveguide 103, respectively.
 従来のSi光変調器100の領域150(図1参照)と、実施例3にかかるSi光変調器400の領域410を比較すると、単位長さあたりに装荷されている容量が半分になっている。具体的には、図1の構成では、信号電極108、109の間に、第1の変調領域110のpn接合にかかる容量Cpnと、第2の変調領域111のpn接合にかかる容量Cpnの2つが接続されている。一方、図11の構成では、信号電極108、109の間には、1つ分の容量Cpnしか接続されていないことになる。1領域あたりの容量は、図1のSi光変調器100の構成では、1/(1/Cpn+1/Cpn)=Cpn/2となるが、図11のSi光変調器400の構成ではCpnとなる。これは、単位長さあたりに2倍の容量が装荷されていることを意味する。 Comparing the region 150 of the conventional Si optical modulator 100 (see FIG. 1) with the region 410 of the Si optical modulator 400 according to the third embodiment, the capacity loaded per unit length is halved. . Specifically, in the configuration of FIG. 1, two capacitances Cpn across the pn junction of the first modulation region 110 and a capacitance Cpn across the pn junction of the second modulation region 111 are connected between the signal electrodes 108 and 109. are connected. On the other hand, in the configuration of FIG. 11, only one capacitor Cpn is connected between the signal electrodes 108 and 109. The capacity per area is 1/(1/Cpn+1/Cpn)=Cpn/2 in the configuration of the Si optical modulator 100 in FIG. 1, but becomes Cpn in the configuration of the Si optical modulator 400 in FIG. . This means that twice the capacity is loaded per unit length.
 一般的に、光変調器を伝搬する高周波信号の伝搬速度は、電極間容量の平方根に反比例するため、実施例3の構成(図11)では、従来の構成(図1)より高周波信号の伝搬が遅くなってしまう。信号電極の幅、間隔を変えて信号伝搬速度を調整することができるが、従来構成に比べて大きな容量を調整するのは困難である。 Generally, the propagation speed of a high-frequency signal propagating through an optical modulator is inversely proportional to the square root of the interelectrode capacitance. becomes late. Although the signal propagation speed can be adjusted by changing the width and spacing of the signal electrodes, it is difficult to adjust a larger capacitance than in the conventional configuration.
 そこで、実施例3では、屈曲したリブ導波路412,413を設けて光信号の遅延線とし、実効的に光信号の伝搬を遅くしている。すなわち、電極間容量の増大に伴う高周波信号の遅延に合わせて、光信号も遅延させて、光信号と高周波信号の伝搬速度を揃えている。これにより、高周波信号による光信号の変調に際して、両者の速度不整合による帯域劣化を防ぐことができる。 Therefore, in the third embodiment, bent rib waveguides 412 and 413 are provided to serve as delay lines for optical signals, thereby effectively slowing down the propagation of the optical signals. That is, the optical signal is also delayed in accordance with the delay of the high frequency signal due to the increase in the interelectrode capacitance, so that the propagation speeds of the optical signal and the high frequency signal are made equal. Thereby, when modulating an optical signal with a high frequency signal, it is possible to prevent band deterioration due to speed mismatch between the two.
 従来、このような光信号の遅延線はリブ導波路ではなく、チャネル導波路によって実現されていた。チャネル導波路は矩形断面を有し、より小さな半径で損失なく曲げることができる。具体的には、リブ導波路で形成される光変調領域に、リブ―チャネル導波路変換器を介してチャネル導波路による遅延線を作成し、再度、チャネル―リブ導波路変換器を介してリブ導波路で形成される光変調領域に結合させていた。このリブーチャネル導波路変換器は、1変換あたり0.2dB程度の光損失を有しており、1つの光変調器に多数配置すると、その光損失が課題であった。 Conventionally, such optical signal delay lines have been realized not by rib waveguides but by channel waveguides. The channel waveguide has a rectangular cross section and can be bent at a smaller radius without loss. Specifically, a delay line using a channel waveguide is created in the optical modulation region formed by the rib waveguide via a rib-channel waveguide converter, and then a delay line is created using a channel waveguide via a rib-channel waveguide converter, and then a delay line is created using a channel waveguide via a rib-channel waveguide converter. It was coupled to a light modulation region formed by a waveguide. This Ribou channel waveguide converter has an optical loss of about 0.2 dB per conversion, and when a large number of them are arranged in one optical modulator, the optical loss becomes a problem.
 しかしながら、実施例3の構成によれば、第1の変調領域110と第2の変調領域111とが交互に配置されており、PN接合が配置されていない領域に、リブ導波路412,413を形成している。従って、変調領域の間の光信号の進行方向の長さを十分に確保することができるので、低損失となる曲げ半径が大きいリブ導波路を用いることができ、所望の遅延量の遅延線を設けることができる。 However, according to the configuration of the third embodiment, the first modulation region 110 and the second modulation region 111 are arranged alternately, and the rib waveguides 412 and 413 are arranged in the region where the PN junction is not arranged. is forming. Therefore, since a sufficient length in the propagation direction of the optical signal can be secured between the modulation regions, a rib waveguide with a large bending radius for low loss can be used, and a delay line with a desired amount of delay can be formed. can be provided.
 図12に、シリコン導波路からなるリブ導波路を90度曲げたときの損失を示す。上述したように、分割された変調領域(110,111)の長さは、変調電気信号に含まれる波長に対して1/20の長さ以下となるようにしている。40GHzの変調電気信号を適用すると、波長の1/20の長さは100μm程度である。一方、図12に示したように、一般的なシリコン導波路からなるリブ導波路では、10μm程度の曲げ半径より小さくなると急激に曲げ損失が増加する。 FIG. 12 shows the loss when a rib waveguide made of a silicon waveguide is bent by 90 degrees. As described above, the length of the divided modulation regions (110, 111) is set to be 1/20 or less of the wavelength included in the modulated electrical signal. When a modulated electrical signal of 40 GHz is applied, the length of 1/20 of the wavelength is about 100 μm. On the other hand, as shown in FIG. 12, in a rib waveguide made of a general silicon waveguide, bending loss increases rapidly when the bending radius becomes smaller than about 10 μm.
 図13に、実施例3にかかるリブ導波路の構造を示す。そこで、屈曲したリブ導波路412,413は、曲げ半径R=20μmの90度の曲げ(1/4の円弧)を4つ含む構造とする。このリブ導波路の曲げ損失は、図9を参照すると、90度の曲げ4個分で0.025dB程度と十分小さな損失とすることができる。 FIG. 13 shows the structure of the rib waveguide according to Example 3. Therefore, the bent rib waveguides 412 and 413 have a structure including four 90 degree bends (1/4 arc) with a bending radius R=20 μm. Referring to FIG. 9, the bending loss of this rib waveguide can be made sufficiently small as about 0.025 dB for four 90 degree bends.
 Si光変調器400の光の伝搬方向に対して、リブ導波路412,413の長さは80μmであるので、上述したように分割された変調領域(110,111)の間に配置することができる。また、遅延線としての遅延量は、図13に示したように直線部分を設けて、その長さLstを調整することにより、適切な遅延量を設定することができる。 Since the length of the rib waveguides 412 and 413 is 80 μm with respect to the light propagation direction of the Si optical modulator 400, it is possible to arrange them between the modulation regions (110 and 111) divided as described above. can. Furthermore, an appropriate delay amount for the delay line can be set by providing a straight line portion as shown in FIG. 13 and adjusting its length Lst.
 図14に、本発明の実施例4にかかる進行波電極型マッハツェンダ光変調器の構造を示す。図14は、シングル電極型マッハツェンダ光変調器500の光導波路と電極の構造を、上面から見た透視図である。実施例2と共通する構成要素については説明を省略する。 FIG. 14 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 4 of the present invention. FIG. 14 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 500, viewed from above. Descriptions of components common to Example 2 will be omitted.
 従来の進行波電極型マッハツェンダ光変調器との相違は、第1の導波路102に形成された第1の変調領域110と第2の導波路103に形成された第2の変調領域111とを、それぞれ複数に分割した点である。さらに、実施例2のSi光変調器300との相違は、分割された変調領域を交互に配置するのではなく、それぞれ一方にまとめて配置した点にある。図14に示すように、第1の導波路102と第2の導波路103に屈曲部を設けることにより、第1の変調領域110と第2の変調領域111とを、光の伝搬方向に沿って整列された配置としている。 The difference from the conventional traveling wave electrode type Mach-Zehnder optical modulator is that the first modulation region 110 formed in the first waveguide 102 and the second modulation region 111 formed in the second waveguide 103 are different from the conventional traveling wave electrode type Mach-Zehnder optical modulator. , are points divided into multiple parts. Furthermore, the difference from the Si optical modulator 300 of Example 2 is that the divided modulation regions are not arranged alternately, but are arranged collectively on one side. As shown in FIG. 14, by providing bent portions in the first waveguide 102 and the second waveguide 103, the first modulation region 110 and the second modulation region 111 can be bent along the propagation direction of light. The layout is arranged in such a way that the
 分割された第1の高周波電極108および第2の高周波電極109の構成は、実施例2のSi光変調器300と実質的に同じであり、実施例1の効果に加えて、実施例2と同じ作用効果を奏することができる。さらに、分割された変調領域が周期的な構造を持たないため、製造上の設計自由度が高い。 The configurations of the divided first high-frequency electrode 108 and second high-frequency electrode 109 are substantially the same as the Si optical modulator 300 of the second embodiment, and in addition to the effects of the first embodiment, there are also the advantages of the second embodiment. The same effects can be achieved. Furthermore, since the divided modulation regions do not have a periodic structure, there is a high degree of freedom in manufacturing design.
 図15に、本発明の実施例5にかかる進行波電極型マッハツェンダ光変調器の構造を示す。図15は、シングル電極型マッハツェンダ光変調器600の光導波路と電極の構造を、上面から見た透視図である。図16は、図15のXVI-XVI’の断面を示す。実施例2と共通する構成要素については説明を省略する。 FIG. 15 shows the structure of a traveling wave electrode type Mach-Zehnder optical modulator according to Example 5 of the present invention. FIG. 15 is a perspective view of the structure of the optical waveguide and electrodes of the single-electrode Mach-Zehnder optical modulator 600, viewed from above. FIG. 16 shows a cross section taken along line XVI-XVI' in FIG. 15. Descriptions of components common to Example 2 will be omitted.
 第1の変調領域110のp型半導体層105は第1の高周波電極108と接続され、n型半導体層106は、容量113を介して電極109と電気的に接続されている。第2の変調領域111のp型半導体層105は第2の高周波電極109と接続され、n型半導体層106は、容量113を介して第1の高周波電極108と電気的に接続されている。n型半導体層106と容量113の間の電極構造は、以下の説明のためにノード116と称する。容量113は、第2の高周波電極109とノード116とを所定間隔を空けて、光の伝搬方向に所定の長さ対向させた構造である。 The p-type semiconductor layer 105 of the first modulation region 110 is connected to the first high-frequency electrode 108, and the n-type semiconductor layer 106 is electrically connected to the electrode 109 via the capacitor 113. The p-type semiconductor layer 105 of the second modulation region 111 is connected to the second high-frequency electrode 109, and the n-type semiconductor layer 106 is electrically connected to the first high-frequency electrode 108 via the capacitor 113. The electrode structure between the n-type semiconductor layer 106 and the capacitor 113 will be referred to as a node 116 for the following explanation. The capacitor 113 has a structure in which the second high-frequency electrode 109 and the node 116 are opposed to each other by a predetermined distance in the light propagation direction with a predetermined interval.
 図15および図16の断面図においては破線で示すように、ノード116には抵抗体114を介してバイアス電極115が接続されている。バイアス電極115には、外部バイアス電源が接続され、変調電気信号とは別個にバイアス電圧を印加可能になっている。バイアス電極115は、第2の高周波電極109よりも下層の金属配線層を用いて形成されている。 As shown by the broken line in the cross-sectional views of FIGS. 15 and 16, a bias electrode 115 is connected to the node 116 via a resistor 114. An external bias power supply is connected to the bias electrode 115, so that a bias voltage can be applied separately from the modulated electrical signal. The bias electrode 115 is formed using a metal wiring layer below the second high frequency electrode 109.
 Si光変調器600は、実施例1-4の効果に加えて、さらに高周波特性を向上させることができる。Si光変調器を高速動作させるためには、第1の変調領域110および第2の変調領域111のPN接合に、常に逆バイアスを印加して動作させる必要がある。しかしながら、変調電気信号とバイアス電圧の印加を、第1の高周波電極108および第2の高周波電極109を共用して行うと、変調電気信号の振幅によっては、PN接合が順バイアスとなる状態が発生する。Si光変調器500は、図17の等価回路に示すように、容量113と抵抗体114とからなる、いわゆるバイアスTに類似した構成により、変調電気信号とは別個にバイアス電圧を印加することができる。この構成により、PN接合を常に順バイアスに設定できるので、高速動作が可能となる。 In addition to the effects of Examples 1-4, the Si optical modulator 600 can further improve high frequency characteristics. In order to operate the Si optical modulator at high speed, it is necessary to always apply a reverse bias to the PN junction of the first modulation region 110 and the second modulation region 111. However, if the modulated electrical signal and bias voltage are applied using the first high-frequency electrode 108 and the second high-frequency electrode 109 in common, the PN junction may become forward biased depending on the amplitude of the modulated electrical signal. do. As shown in the equivalent circuit of FIG. 17, the Si optical modulator 500 has a configuration similar to a so-called bias T, consisting of a capacitor 113 and a resistor 114, so that a bias voltage can be applied separately from the modulated electrical signal. can. With this configuration, the PN junction can always be set to forward bias, so high-speed operation is possible.
 また、PN接合のバイアス電圧によってSi変調器の印加電圧に対する位相の変調効率は変化する。実施例5のSi光変調器600では、PN接合に任意のバイアス電圧を印加できるため、最も変調効率の良いバイアス電圧で動作させることにより、さらに変調効率を向上させることが可能である。 Furthermore, the phase modulation efficiency with respect to the applied voltage of the Si modulator changes depending on the bias voltage of the PN junction. In the Si optical modulator 600 of Example 5, since any bias voltage can be applied to the PN junction, the modulation efficiency can be further improved by operating at the bias voltage that provides the best modulation efficiency.
  (容量113の適用例)
 容量113の具体的な容量値について例示する。所定の長さの金属電極を、所定の間隔を空けて対向させた容量113において、単位長さあたりの容量値をCbiasとする。また、第1の変調領域110および第2の変調領域111のPN接合において、光の伝搬方向の単位長さあたりの容量値をCpnと定義する。図17の等価回路において、抵抗体114が十分に大きいとき、抵抗体114に流れる電流はほぼ無視できる。第1の高周波電極108および第2の高周波電極109にかかる電圧Xは、容量の逆数和(1/Cbias+1/Cpn)に比例し、位相変調にかかわるCpnにかかる電圧は、容量の逆数1/Cbiasに比例する。
(Application example of capacity 113)
A specific capacitance value of the capacitor 113 will be illustrated. In a capacitor 113 in which metal electrodes of a predetermined length are opposed to each other with a predetermined interval, the capacitance value per unit length is defined as Cbias. Further, in the PN junction between the first modulation region 110 and the second modulation region 111, the capacitance value per unit length in the light propagation direction is defined as Cpn. In the equivalent circuit of FIG. 17, when the resistor 114 is sufficiently large, the current flowing through the resistor 114 can be almost ignored. The voltage X applied to the first high frequency electrode 108 and the second high frequency electrode 109 is proportional to the reciprocal sum of the capacitance (1/Cbias+1/Cpn), and the voltage applied to Cpn involved in phase modulation is the reciprocal of the capacitance 1/Cbias. is proportional to.
 従って、変調効率はCpn/(Cbias+Cpn)となるので、従来の進行波電極型マッハツェンダ光変調器に対して2倍の変調効率を得るためには、Cpnに対して、Cbiasを同じ容量値以上にする必要がある。例えば、単位長さあたりのCpnが100fF/mm程度である場合には、Cbiasは5pF/mmとし、抵抗体114の値はおおむね1kΩ以上とする。 Therefore, the modulation efficiency is Cpn/(Cbias+Cpn), so in order to obtain twice the modulation efficiency as compared to the conventional traveling wave electrode type Mach-Zehnder optical modulator, Cbias should be set to the same capacitance value or more with respect to Cpn. There is a need to. For example, when Cpn per unit length is about 100 fF/mm, Cbias is set to 5 pF/mm, and the value of the resistor 114 is set to approximately 1 kΩ or more.
 図18に、容量113の適用例を示す。図15から明らかなように、容量113の光の伝搬方向の長さは、分割された変調領域の構造から制限されている。第2の高周波電極109とノード116とを対向させただけでは、所望の容量値をえることができない場合がある。そこで、下層の配線層を用いた、MIM(Metal-Insulator-Metal)構造を設けることにより実装することが考えられる。図18に示すように、第2の高周波電極109とノード116とを、SiO2クラッド層3を挟んで、所定の面積対向させることにより、より大きな容量値を得ることができる。 FIG. 18 shows an application example of the capacitor 113. As is clear from FIG. 15, the length of the capacitor 113 in the light propagation direction is limited by the structure of the divided modulation regions. A desired capacitance value may not be obtained simply by making the second high-frequency electrode 109 and the node 116 face each other. Therefore, it may be possible to implement it by providing an MIM (Metal-Insulator-Metal) structure using a lower wiring layer. As shown in FIG. 18, a larger capacitance value can be obtained by arranging the second high-frequency electrode 109 and the node 116 to face each other by a predetermined area with the SiO 2 cladding layer 3 in between.
 図19に、容量113の他の適用例を示す。第1の変調領域110および第2の変調領域111を作製する際に、p型半導体層とn型半導体層とを接続したpn接合を、変調領域とは別個に作製しておく。このpn接合を容量113としてもちいて、所望の容量値を得ることもできる。 FIG. 19 shows another application example of the capacitor 113. When manufacturing the first modulation region 110 and the second modulation region 111, a pn junction connecting a p-type semiconductor layer and an n-type semiconductor layer is manufactured separately from the modulation region. A desired capacitance value can also be obtained by using this pn junction as the capacitor 113.
 図20には、実施例5のSi光変調器500において、変調電気信号を印加したときのシミュレーション結果を示す。上述したCpnを100fF/mm、Cbiasを5pF/mm、抵抗体114の抵抗値を10kΩに設定している。図15に示した第1の高周波電極108および第2の高周波電極109に、30Gbaud、振幅2Vの差動の変調電気信号を入力した。図20(a)は、ドライバアンプからそれぞれの高周波電極に入力された変調電気信号のアイパターンである。図20(b)は、高周波電極を伝搬した後、終端抵抗におけるアイパターンである。図20(c)は、第1の変調領域110のPN接合に加わる電圧信号のアイパターンである。 FIG. 20 shows simulation results when a modulated electrical signal is applied to the Si optical modulator 500 of Example 5. The above-mentioned Cpn is set to 100 fF/mm, Cbias is set to 5 pF/mm, and the resistance value of the resistor 114 is set to 10 kΩ. A differential modulated electrical signal of 30 Gbaud and an amplitude of 2 V was input to the first high frequency electrode 108 and the second high frequency electrode 109 shown in FIG. FIG. 20(a) shows an eye pattern of a modulated electrical signal input from the driver amplifier to each high-frequency electrode. FIG. 20(b) shows an eye pattern at the termination resistor after propagating through the high-frequency electrode. FIG. 20(c) is an eye pattern of the voltage signal applied to the PN junction of the first modulation region 110.
 図20(c)から明らかなように、概ね-2Vから-4Vの電圧信号が加わり、逆バイアスにより動作していることがわかる。さらに、位相変調部111でも概ね-2Vから-4Vの電圧信号が加わるため、振幅2Vの差動の入力信号に対して、マッハツェンダ光変調器としては、概ね振幅4Vで動作していることになる。また、図20(b),(c)においては、良好なアイの開口を示しており、変調電気信号の品質劣化が抑制されていることがわかる。従って、従来の進行波電極型マッハツェンダ光変調器と比較すると、2倍の変調効率で光変調器を駆動することができ、消費電力を増大させることなく、変調効率の高い光変調器を実現していることがわかる。 As is clear from FIG. 20(c), a voltage signal of approximately -2V to -4V is applied, and it is found that the device operates with reverse bias. Furthermore, since a voltage signal of about -2V to -4V is applied to the phase modulation section 111, the Mach-Zehnder optical modulator operates with an amplitude of about 4V in response to a differential input signal with an amplitude of 2V. . Furthermore, FIGS. 20(b) and 20(c) show good eye openings, and it can be seen that quality deterioration of the modulated electrical signal is suppressed. Therefore, compared to the conventional traveling wave electrode type Mach-Zehnder optical modulator, it is possible to drive the optical modulator with twice the modulation efficiency, realizing an optical modulator with high modulation efficiency without increasing power consumption. It can be seen that
 本実施形態のSi光変調器によれば、第1の高周波電極108と第2の高周波電極109に加わる差動の変調電気信号は分圧されず、従来の進行波電極型マッハツェンダ光変調器と比較すると、2倍の変調効率で光変調器を駆動することができる。従って、消費電力を増大させることなく、変調効率の高い光変調器を実現することができる。 According to the Si optical modulator of this embodiment, the differential modulated electric signal applied to the first high-frequency electrode 108 and the second high-frequency electrode 109 is not voltage-divided, and is different from the conventional traveling wave electrode type Mach-Zehnder optical modulator. By comparison, it is possible to drive an optical modulator with twice the modulation efficiency. Therefore, an optical modulator with high modulation efficiency can be realized without increasing power consumption.
 本実施形態のSi光変調器の変調領域は、n型半導体層とp型半導体層の極性についてのみ説明したが、光導波路コアとなる中央部の厚いSi層付近を低濃度領域とし、電極に接続されるスラブ領域の側を高濃度領域としてもよい。また、pn接合構造の間にドーピングされていないi型(真性)半導体を挟んだ、pin接合としても良い。 Regarding the modulation region of the Si optical modulator of this embodiment, only the polarity of the n-type semiconductor layer and the p-type semiconductor layer has been described, but the region near the thick Si layer at the center, which becomes the optical waveguide core, is a low concentration region, and the electrode The side of the slab region to be connected may be a high concentration region. Alternatively, a pin junction may be used in which an undoped i-type (intrinsic) semiconductor is sandwiched between pn junction structures.
 本実施形態では、Si半導体を用いたSi変調器について説明したが、変調領域の材料をInPなどの他の材料で構成することもできる。InP変調器においても、pn接合やpin接合を利用して、逆バイアス動作させることができるからである。 In this embodiment, a Si modulator using a Si semiconductor has been described, but the material of the modulation region can also be made of other materials such as InP. This is because even in an InP modulator, reverse bias operation can be performed using a pn junction or a pin junction.
 本発明は、一般的に光通信システムに利用することができる。特に、光通信システムの光送信器における光変調器に適用することができる。 The present invention can be generally used in optical communication systems. In particular, it can be applied to an optical modulator in an optical transmitter of an optical communication system.

Claims (10)

  1.  入力光カプラと、前記入力光カプラにより2分岐された入力光を導波する1対2本の第1および第2の導波路と、前記第1および第2の導波路の出力光を合波する出力光カプラとを含むマッハツェンダ干渉計型の光変調器であって、前記第1および第2の導波路の光導波路コアは、pn接合を有する半導体層からなり、前記半導体層に変調電気信号およびバイアス電圧を印加するための第1および第2の高周波電極を含む光変調器において、
     前記第1の高周波電極に接続された第1の導電型半導体層と、前記第2の高周波電極に接続された第2の導電型半導体層とを有する前記第1の導波路に形成された第1の位相変調領域と、
     前記第1の高周波電極に接続された第2の導電型半導体層と、前記第2の高周波電極に接続された第1の導電型半導体層とを有する前記第2の導波路に形成された第2の位相変調領域と
     を備えることを特徴とする光変調器。
    an input optical coupler, a pair of first and second waveguides that guide the input light branched into two by the input optical coupler, and combine the output lights of the first and second waveguides. A Mach-Zehnder interferometer type optical modulator including an output optical coupler, wherein the optical waveguide cores of the first and second waveguides are made of a semiconductor layer having a pn junction, and the semiconductor layer is provided with a modulated electrical signal. and an optical modulator including first and second high frequency electrodes for applying a bias voltage,
    A first waveguide formed in the first waveguide having a first conductive type semiconductor layer connected to the first high frequency electrode and a second conductive type semiconductor layer connected to the second high frequency electrode. 1 phase modulation region;
    a second conductive type semiconductor layer connected to the first high frequency electrode; and a first conductive type semiconductor layer connected to the second high frequency electrode. An optical modulator comprising two phase modulation regions.
  2.  前記第1および前記第2の位相変調領域は、光伝搬方向に沿って複数に分割されていることを特徴とする請求項1に記載の光変調器。 The optical modulator according to claim 1, wherein the first and second phase modulation regions are divided into a plurality of regions along the light propagation direction.
  3.  分割された第1の位相変調領域と、分割された第2の位相変調領域とが、光伝搬方向に沿って交互に配置されていることを特徴とする請求項2に記載の光変調器。 The optical modulator according to claim 2, wherein the divided first phase modulation regions and the divided second phase modulation regions are arranged alternately along the light propagation direction.
  4.  前記分割された第1の位相変調領域の間と、前記分割された第2の位相変調領域の間とは、屈曲したリブ導波路により接続されていることを特徴とする請求項3に記載の光変調器。 4. The first divided phase modulation area and the second divided phase modulation area are connected by a bent rib waveguide. light modulator.
  5.  前記リブ導波路は、絶縁性のシリコン光導波路からなり、
     前記リブ導波路の断面構造は、前記第1の導波路または前記第2の導波路の断面構造と同じであることを特徴とする請求項4に記載の光変調器。
    The rib waveguide is made of an insulating silicon optical waveguide,
    5. The optical modulator according to claim 4, wherein the rib waveguide has the same cross-sectional structure as the first waveguide or the second waveguide.
  6.  前記リブ導波路の曲げ半径は、10μm以上であることを特徴とする請求項5に記載の光変調器。 The optical modulator according to claim 5, wherein the bending radius of the rib waveguide is 10 μm or more.
  7.  分割された第1の位相変調領域が光伝搬方向に沿って配置され、前記第1および第2の光導波路の屈曲部を挟んで、分割された第2の位相変調領域が光伝搬方向に沿って配置されていることを特徴とする請求項2に記載の光変調器。 A divided first phase modulation region is arranged along the light propagation direction, and a divided second phase modulation region is arranged along the light propagation direction with the bent portions of the first and second optical waveguides in between. 3. The optical modulator according to claim 2, wherein the optical modulator is arranged as follows.
  8.  前記第1の位相変調領域と前記第2の高周波電極との間に挿入された第1の容量と、
     前記第1の位相変調領域と前記第1の容量との間に、一端が接続された第1の抵抗体と、
     前記第2の位相変調領域と前記第1の高周波電極との間に挿入された第2の容量と、
     前記第2の位相変調領域と前記第2の容量との間に、一端が接続された第2の抵抗体とをさらに備え、
     前記第1および前記第2の抵抗体の他端にバイアス電圧が印加されることを特徴とする請求項1ないし6のいずれか1項に記載の光変調器。
    a first capacitor inserted between the first phase modulation region and the second high frequency electrode;
    a first resistor having one end connected between the first phase modulation region and the first capacitor;
    a second capacitor inserted between the second phase modulation region and the first high frequency electrode;
    further comprising a second resistor having one end connected between the second phase modulation region and the second capacitor,
    7. The optical modulator according to claim 1, wherein a bias voltage is applied to the other ends of the first and second resistors.
  9.  前記第1および前記第2の容量は、前記第1および前記第2の高周波電極の下層の配線層を用いたMIM構造であることを特徴とする請求項8に記載の光変調器。 The optical modulator according to claim 8, wherein the first and second capacitors have an MIM structure using a wiring layer below the first and second high-frequency electrodes.
  10.  前記第1および前記第2の容量は、pn接合を有する半導体層からなることを特徴とする請求項8に記載の光変調器。 The optical modulator according to claim 8, wherein the first and second capacitors are made of semiconductor layers having pn junctions.
PCT/JP2022/037012 2022-06-21 2022-10-03 Optical modulator WO2023248490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/024746 WO2023248352A1 (en) 2022-06-21 2022-06-21 Optical modulator
JPPCT/JP2022/024746 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023248490A1 true WO2023248490A1 (en) 2023-12-28

Family

ID=89379332

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/024746 WO2023248352A1 (en) 2022-06-21 2022-06-21 Optical modulator
PCT/JP2022/037012 WO2023248490A1 (en) 2022-06-21 2022-10-03 Optical modulator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024746 WO2023248352A1 (en) 2022-06-21 2022-06-21 Optical modulator

Country Status (1)

Country Link
WO (2) WO2023248352A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050123242A1 (en) * 2002-01-19 2005-06-09 Bookham Technology, Plc Optical modulators operated in parallel push-pull mode
US20150043866A1 (en) * 2013-08-09 2015-02-12 Sifotonics Technologies Co., Ltd. Electro-Optic Silicon Modulator With Capacitive Loading In Both Slots Of Coplanar Waveguides
US20170285437A1 (en) * 2016-03-29 2017-10-05 Acacia Communications, Inc. Silicon modulators and related apparatus and methods
JP2018025610A (en) * 2016-08-08 2018-02-15 住友電気工業株式会社 Optical modulator
JP2018097093A (en) * 2016-12-09 2018-06-21 日本電信電話株式会社 Optical modulator
US20190324345A1 (en) * 2018-04-24 2019-10-24 Elenion Technologies, Llc Optical waveguide modulator
JP2020027204A (en) * 2018-08-14 2020-02-20 国立研究開発法人産業技術総合研究所 Optical modulator
US20210080796A1 (en) * 2019-09-17 2021-03-18 Lumentum Operations Llc Electrical-optical modulator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050123242A1 (en) * 2002-01-19 2005-06-09 Bookham Technology, Plc Optical modulators operated in parallel push-pull mode
US20150043866A1 (en) * 2013-08-09 2015-02-12 Sifotonics Technologies Co., Ltd. Electro-Optic Silicon Modulator With Capacitive Loading In Both Slots Of Coplanar Waveguides
US20170285437A1 (en) * 2016-03-29 2017-10-05 Acacia Communications, Inc. Silicon modulators and related apparatus and methods
JP2018025610A (en) * 2016-08-08 2018-02-15 住友電気工業株式会社 Optical modulator
JP2018097093A (en) * 2016-12-09 2018-06-21 日本電信電話株式会社 Optical modulator
US20190324345A1 (en) * 2018-04-24 2019-10-24 Elenion Technologies, Llc Optical waveguide modulator
JP2020027204A (en) * 2018-08-14 2020-02-20 国立研究開発法人産業技術総合研究所 Optical modulator
US20210080796A1 (en) * 2019-09-17 2021-03-18 Lumentum Operations Llc Electrical-optical modulator

Also Published As

Publication number Publication date
WO2023248352A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
US10678112B2 (en) Fully differential traveling wave series push-pull mach-zehnder modulator
CN112596277B (en) electro-optic modulator
JP6499804B2 (en) Light modulator
US10261385B2 (en) Light modulation element
JP6983908B2 (en) Semiconductor light modulator
US9008469B2 (en) Mach-zehnder optical modulator having an asymmetrically-loaded traveling wave electrode
JP6259358B2 (en) Semiconductor Mach-Zehnder type optical modulator
WO2017208526A1 (en) Optical modulator
JP6926499B2 (en) Light modulator
JP2018097093A (en) Optical modulator
JP2017173365A (en) Optical modulator
JP2019045666A (en) Semiconductor Mach-Zehnder Optical Modulator and IQ Modulator
WO2023248490A1 (en) Optical modulator
JP6823619B2 (en) Light modulator
JP6734813B2 (en) Optical transmitter
WO2023248489A1 (en) Optical modulator
JP6431493B2 (en) Light modulator
JP2015212769A (en) Semiconductor Mach-Zehnder optical modulator
JP7224368B2 (en) Mach-Zehnder optical modulator
WO2019176665A1 (en) Optical modulator
JP2019194722A (en) Semiconductor Mach-Zehnder optical modulator and IQ modulator using the same
WO2023238403A1 (en) Optical modulator
TW202409665A (en) Balanced differential modulation schemes for silicon photonic modulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948049

Country of ref document: EP

Kind code of ref document: A1