JP6926499B2 - Light modulator - Google Patents

Light modulator Download PDF

Info

Publication number
JP6926499B2
JP6926499B2 JP2017019749A JP2017019749A JP6926499B2 JP 6926499 B2 JP6926499 B2 JP 6926499B2 JP 2017019749 A JP2017019749 A JP 2017019749A JP 2017019749 A JP2017019749 A JP 2017019749A JP 6926499 B2 JP6926499 B2 JP 6926499B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
optical modulator
optical
conductive regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017019749A
Other languages
Japanese (ja)
Other versions
JP2018128506A (en
Inventor
百合子 川村
百合子 川村
都築 健
健 都築
高橋 雅之
雅之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017019749A priority Critical patent/JP6926499B2/en
Publication of JP2018128506A publication Critical patent/JP2018128506A/en
Application granted granted Critical
Publication of JP6926499B2 publication Critical patent/JP6926499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光通信システムや光情報処理システムにおいて用いられる光変調器に関し、特に高速電気信号で光変調動作をさせる際の周波数特性に優れた光変調器を提供するための構造に関するものである。 The present invention relates to an optical modulator used in an optical communication system or an optical information processing system, and relates to a structure for providing an optical modulator having excellent frequency characteristics, particularly when performing an optical modulation operation with a high-speed electric signal. ..

マッハツェンダ(Mach−Zehnder,MZ)型光変調器は、入射した光を2つの光導波路に1:1の強度で分岐し、分岐した光を一定の長さ伝搬させ位相変調した後に合波して出力させる基本構造を持つ。分岐された2つの光導波路にそれぞれ設けられた位相変調部に印加される変調電気信号により、2つの光の位相を相対的に変化させることで合波されるときの光の干渉条件を変え、出力光の強度や位相を変調することができる。 A Mach-Zehnder (MZ) type light modulator branches incident light into two optical waveguides at a ratio of 1: 1 and propagates the branched light for a certain length to perform phase modulation and then joins the waves. It has a basic structure to output. The modulation electrical signal applied to the phase modulation section provided in each of the two branched optical waveguides changes the phase of the two lights to change the interference condition of the light when they are combined. The intensity and phase of the output light can be modulated.

光導波路を構成する材料としてはLiNbO3等の誘電体、InP,GaAs,Si等の半導体が用いられ、これらの光導波路近傍に配置された電極に変調電気信号を入力して光導波路に電圧を印加することで、光導波路を伝搬する光の位相を変化させる。光の位相を変化させる原理としては、LiNbO3はポッケルス効果、InP,GaAsはポッケルス効果や量子閉じ込めシュタルク効果(Quantum Confined Stark Effect: QCSE)が主に用いられ、Siではキャリアプラズマ効果が主に用いられる。 Dielectrics such as LiNbO 3 and semiconductors such as InP, GaAs, and Si are used as materials constituting the optical waveguide, and a modulated electric signal is input to electrodes arranged in the vicinity of these optical waveguides to apply a voltage to the optical waveguide. By applying it, the phase of the light propagating in the optical waveguide is changed. As the principle of changing the phase of light, LiNbO 3 mainly uses the Pockels effect, InP and GaAs mainly use the Pockels effect and the Quantum Confined Stark Effect (QCSE), and Si mainly uses the carrier plasma effect. Be done.

高速で低消費電力な光通信を行うためには、変調速度が速く、駆動電圧の低い光変調器が必要となる。10Gbps以上の高速で、数ボルトの電圧振幅での光変調を行うためには、高速の変調電気信号と光導波路を伝搬する光の速度を整合させ、伝搬させながら相互作用を行うようにする進行波電極が必要となる。進行波電極で電極の長さを数ミリメートルから数十ミリメートルにした光変調器が実用化されている。(例えば非特許文献1) In order to perform high-speed and low-power-consumption optical communication, an optical modulator having a high modulation speed and a low drive voltage is required. In order to perform optical modulation with a voltage amplitude of several volts at a high speed of 10 Gbps or more, the high-speed modulated electric signal and the speed of light propagating through the optical waveguide are matched, and the interaction is performed while propagating. A wave electrode is required. An optical modulator with a traveling wave electrode whose length is several millimeters to several tens of millimeters has been put into practical use. (For example, Non-Patent Document 1)

進行波電極の光変調器では、電極を伝搬する電気信号や導波路を伝搬する光の強度を落とさずに相互作用させることができるよう、低損失で反射の少ない電極構造および光導波路構造が求められる。 In the light modulator of a traveling wave electrode, an electrode structure and an optical waveguide structure with low loss and low reflection are required so that the electric signal propagating in the electrode and the light propagating in the waveguide can interact with each other without reducing the intensity. Be done.

また、MZ型光変調器には、光導波路をSiにより構成したSi光変調器がある。Si光変調器はSi基板の表面を熱酸化した酸化膜(BOX)層上にSiの薄膜を張り付けたSOI(Silicon on Insulator)基板から構成され、SOI層を光が導波できるようSi薄膜を細線に加工した後、p型・n型の半導体となるようドーパントを注入し、光のクラッド層となるSiO2の堆積、電極の形成等を行い作製する。このとき、光の導波路は光損失が小さくなるように設計・加工する必要があり、p型・n型のドーピング、及び電極の作製は光の損失発生を小さく抑えるとともに、高速電気信号の反射や損失を小さく抑えるように設計・加工する必要がある。 Further, the MZ type optical modulator includes a Si optical modulator in which an optical waveguide is composed of Si. The Si optical modulator is composed of an SOI (Silicon on Insulator) substrate in which a Si thin film is attached on an oxide film (BOX) layer in which the surface of the Si substrate is thermally oxidized, and the Si thin film is formed so that light can be waveguideed through the SOI layer. After processing into a thin wire, a dopant is injected so as to form a p-type / n-type semiconductor, and SiO 2 as a clad layer of light is deposited, electrodes are formed, and the like to produce the semiconductor. At this time, the light waveguide needs to be designed and processed so that the light loss is small, and the p-type / n-type doping and the fabrication of the electrodes suppress the occurrence of light loss to a small value and reflect high-speed electric signals. It is necessary to design and process so as to keep the loss and loss small.

(光導波路の断面構造)
図1に、従来のSi光変調器の基本となる光導波路の断面構造図を示す。図1では、光は紙面垂直方向に伝搬するものとしている。このSi光変調器の光導波路は、上下のSiO2クラッド層1,3に挟まれたSi層2で構成され、図1中央の光を閉じ込めるためのSi細線は、厚さに差があるリブ導波路と呼ばれる断面構造を取っている。
(Cross-sectional structure of optical waveguide)
FIG. 1 shows a cross-sectional structure diagram of an optical waveguide which is a basis of a conventional Si optical modulator. In FIG. 1, light is assumed to propagate in the direction perpendicular to the paper surface. The optical waveguide of this Si optical modulator is composed of a Si layer 2 sandwiched between upper and lower SiO 2 clad layers 1 and 3, and the thin Si wire for confining light in the center of FIG. 1 has ribs having different thicknesses. It has a cross-sectional structure called a waveguide.

図1のSi層2の中央の、厚いSi層201の部分をコアとして、周囲のSiO2クラッド層1,3との屈折率差を利用して紙面垂直方向に伝搬する光を閉じ込める光導波路7を構成する。 An optical waveguide 7 that traps light propagating in the direction perpendicular to the paper surface by utilizing the difference in refractive index from the surrounding SiO 2 clad layers 1 and 3 with the thick Si layer 201 in the center of the Si layer 2 in FIG. 1 as the core. To configure.

光変調機能を実現するため、光導波路7の両側のスラブ領域202には高濃度p型半導体層211、高濃度n型半導体層214が設けられ、更に光導波路7のコア中央部には中濃度p型半導体層212、中濃度n型半導体層213によるpn接合構造が形成されて、図1の左右両端より変調電気信号とバイアスが印加されている。中濃度p型半導体層212、中濃度n型半導体層213によるpn接合構造は、間にドーピングされていないi型(真性)半導体を挟んだpin構造としても良い。 In order to realize the optical modulation function, a high-concentration p-type semiconductor layer 211 and a high-concentration n-type semiconductor layer 214 are provided in the slab regions 202 on both sides of the optical waveguide 7, and a medium concentration is further provided in the central portion of the core of the optical waveguide 7. A pn junction structure is formed by the p-type semiconductor layer 212 and the medium-concentration n-type semiconductor layer 213, and modulated electrical signals and biases are applied from the left and right ends of FIG. The pn junction structure formed by the medium-concentration p-type semiconductor layer 212 and the medium-concentration n-type semiconductor layer 213 may be a pin structure in which an undoped i-type (intrinsic) semiconductor is sandwiched between them.

図1に図示は無いが、両端の高濃度半導体層211、214に接続する金属電極を設け、金属電極よりpn接合部に、RF(高周波)の変調電気信号とともに逆バイアス電界(図1では右から左)を印加することにより光導波路コア201内部のキャリア密度を変化させ(キャリアプラズマ効果)、光導波路の屈折率を変えることで、光の位相を変調することができる。 Although not shown in FIG. 1, metal electrodes connected to the high-concentration semiconductor layers 211 and 214 at both ends are provided, and a reverse bias electric field (right in FIG. 1) is provided at the pn junction from the metal electrode together with an RF (high frequency) modulated electric signal. By applying (from left to left), the carrier density inside the optical waveguide core 201 is changed (carrier plasma effect), and by changing the refractive index of the optical waveguide, the phase of light can be modulated.

導波路寸法はコア/クラッドとなる材料の屈折率に依存するため、一意には決定できないが、図1のような光導波路コア部分201と両側のスラブ領域202を備えるリブ型シリコン導波路構造とした場合の一例を挙げると、導波路コア幅400〜600(nm)×高さ150〜300(nm)×スラブ厚50〜200(nm)×長さ数(mm)程度になる。 Since the waveguide size depends on the refractive index of the core / clad material, it cannot be uniquely determined, but it has a rib-type silicon waveguide structure having an optical waveguide core portion 201 and slab regions 202 on both sides as shown in FIG. As an example of this case, the width of the waveguide core is 400 to 600 (nm) × the height is 150 to 300 (nm) × the slab thickness is 50 to 200 (nm) × the number of lengths (mm).

(シングル電極構造のMZ型Si光変調器)
図2に、従来のシングル電極と呼ばれる構造のMZ型変調器を構成するSi光変調器の平面図を、図3に、図2のA−A’断面構造図を示す。(例えば非特許文献3参照)
(MZ type Si optical modulator with single electrode structure)
FIG. 2 shows a plan view of a Si optical modulator constituting an MZ-type modulator having a structure called a conventional single electrode, and FIG. 3 shows a cross-sectional structure diagram of AA'in FIG. (See, for example, Non-Patent Document 3)

図2の平面図では、左側からの光入力が2本の光導波路7a、7bに分岐され、進行波電極として平行配置された上下2本のRF電極5a、5bと中央のDC電極6の間を通り、RF電極5a、5bに一対の差動信号として印加される変調電気信号(RF信号、差動電気信号)により位相変調される。その後、位相変調された2つの光信号は合波して干渉結合され、右端より光出力されてシングル電極構造のMZ型Si光変調器を構成している。 In the plan view of FIG. 2, the light input from the left side is branched into two optical waveguides 7a and 7b, and between the two upper and lower RF electrodes 5a and 5b arranged in parallel as traveling wave electrodes and the central DC electrode 6. Is phase-modulated by a modulated electrical signal (RF signal, differential electrical signal) applied as a pair of differential signals to the RF electrodes 5a and 5b. After that, the two phase-modulated optical signals are combined and interfered with each other, and the light is output from the right end to form an MZ type Si optical modulator having a single electrode structure.

図3の断面構造図(図2のA−A’部分に対応)では、Si層2は、図1と同様の断面構造を持つ光導波路を左右対称に2つ並べた基本構造をしており、両側に1対の差動の変調電気信号(RF信号)を入力するための2本の高周波線路(RF電極5a、5b)と、その間に共通のバイアス電圧を印加するためのDC電極6が設けられている。 In the cross-sectional structure diagram of FIG. 3 (corresponding to the AA'part of FIG. 2), the Si layer 2 has a basic structure in which two optical waveguides having the same cross-sectional structure as that of FIG. 1 are arranged symmetrically. , Two high frequency lines (RF electrodes 5a and 5b) for inputting a pair of differential modulated electric signals (RF signals) on both sides, and a DC electrode 6 for applying a common bias voltage between them. It is provided.

2本のRF電極5a、5bの間には、DC電極6を挟んで2つの光導波路7a、7bが設けられており、前記光導波路7a、7b内にpn接合構造が左右対称に形成されている。RF電極5a、5bは、それぞれSi層2の高濃度p型半導体層211に、1または複数のビア(接続電極)を介して接続している。以下同様であるが、図2の平面図では簡便のため、ビア(接続電極)は表示していない。 Two optical waveguides 7a and 7b are provided between the two RF electrodes 5a and 5b with the DC electrode 6 interposed therebetween, and a pn junction structure is symmetrically formed in the optical waveguides 7a and 7b. There is. The RF electrodes 5a and 5b are connected to the high-concentration p-type semiconductor layer 211 of the Si layer 2 via one or a plurality of vias (connection electrodes), respectively. The same applies hereinafter, but the vias (connection electrodes) are not shown in the plan view of FIG. 2 for the sake of simplicity.

同様にDC電極6は中央の高濃度n型半導体層214に接続しており、DC電極6にRF電極5a、5bに対してプラスの電圧を印加することで、左右2つの光導波路7a、7bのpn接合部に逆バイアスを印加することができる。 Similarly, the DC electrode 6 is connected to the central high-concentration n-type semiconductor layer 214, and by applying a positive voltage to the RF electrodes 5a and 5b to the DC electrode 6, two optical waveguides 7a and 7b on the left and right are applied. A reverse bias can be applied to the pn junction of.

このようなシングル電極構造のSi光変調器では、RF電極5a、5bとDC電極6の間がpn接合の逆バイアスにより電気的に独立しており、RF電極への積極的なバイアス電圧印加が必要ではなくなる。このため、RF電極にバイアス電圧を重畳して印加させるためのバイアスティや、ドライバICとRF電極との間に設置するDCブロックのためのコンデンサなどが不要になるなど、構成が簡単にできるというメリットを持つ。 In such a Si optical modulator having a single electrode structure, the RF electrodes 5a and 5b and the DC electrode 6 are electrically independent due to the reverse bias of the pn junction, and a positive bias voltage is applied to the RF electrode. No longer needed. For this reason, it is possible to simplify the configuration, such as eliminating the need for bias tees for superimposing and applying a bias voltage on the RF electrodes and capacitors for the DC block installed between the driver IC and the RF electrodes. Has merit.

なおここでは、RF電極5a、5bがp型半導体層に、DC電極6はn型半導体層に接続する例で説明をしたが、半導体層の導電型を入れ替えてRF電極がn型半導体層に、DC電極がp型半導体層に接続していても良い。 Here, the example in which the RF electrodes 5a and 5b are connected to the p-type semiconductor layer and the DC electrode 6 is connected to the n-type semiconductor layer has been described, but the conductive type of the semiconductor layer is replaced and the RF electrode is changed to the n-type semiconductor layer. , The DC electrode may be connected to the p-type semiconductor layer.

このときDC電極6に印加するバイアス電圧は、RF電極に対してマイナスの電圧を印加することで、pn接合部を逆バイアスとすることができる。 At this time, the bias voltage applied to the DC electrode 6 can be a reverse bias at the pn junction by applying a negative voltage to the RF electrode.

以下同様であるが、一般性を失うことなく、p型半導体層またはn型半導体層を第1導電型半導体層とした場合、これに対応するn型半導体層またはp型半導体層を第2導電型半導体層ということができる。 The same applies hereinafter, but when the p-type semiconductor layer or the n-type semiconductor layer is used as the first conductive type semiconductor layer without losing generality, the corresponding n-type semiconductor layer or p-type semiconductor layer is used as the second conductive type semiconductor layer. It can be called a type semiconductor layer.

このような表記によれば、図2、図3に記載のシングル電極構造のMZ型光変調器は、1対の差動電気信号が印加される2本のRF電極と、前記2本のRF電極が接続される2つの第1導電型半導体層と、前記2つの第1導電型半導体層の間に形成され固定電位に接続された第2導電型半導体層と、前記第1および第2導電型半導体層のpn接合境界に形成された2本の光導波路とを備える光変調器であるとうことができる。 According to such a notation, the MZ type optical modulator having a single electrode structure shown in FIGS. 2 and 3 has two RF electrodes to which a pair of differential electric signals are applied and the two RFs. The two first conductive semiconductor layers to which the electrodes are connected, the second conductive semiconductor layer formed between the two first conductive semiconductor layers and connected to a fixed potential, and the first and second conductive semiconductor layers. It can be said that the optical modulator includes two optical waveguides formed at the pn junction boundary of the type semiconductor layer.

図2から図3に示される従来のシングル電極構造のMZ型光変調器では、進行波電極として作用するRF電極5a、5bは、誘電体層となる光変調器基板のSiO2クラッド層3上に、コプレーナ・ストリップ・ライン(CoPlanar Stripline: CPS線路)と呼ばれる構造で形成されている。 In the conventional MZ type optical modulator having a single electrode structure shown in FIGS. 2 to 3, the RF electrodes 5a and 5b acting as traveling wave electrodes are on the SiO 2 clad layer 3 of the optical modulator substrate which is a dielectric layer. In addition, it is formed by a structure called a Coplanar Stripline (CPS line).

図4に、このようなCPS線路における高周波電気信号の伝搬の様子を概念的に示す。CPS線路では、2本の高周波電極5a、5bに一対の差動のRF電気信号V+、V−が入力され伝搬する。CPS線路を進行波として伝搬する高周波信号は、電磁気学的には高周波伝搬線路を電荷の密な部分が波のように移動する際、クーロン相互作用により差動線路の対となる電極に正負が逆の電荷が密な部分が誘起され、高周波信号と同様に移動するというモデルで理解することができる。CPS線路は、差動線路の対になる2本の電極で正と負の電荷量が釣り合う、平衡線路の一つである。 FIG. 4 conceptually shows the state of propagation of a high-frequency electric signal on such a CPS line. In the CPS line, a pair of differential RF electric signals V + and V- are input to and propagated on the two high frequency electrodes 5a and 5b. A high-frequency signal that propagates on a CPS line as a traveling wave electromagnetically has positive and negative signs on the paired electrodes of the differential line due to Coulomb interaction when a densely charged part moves like a wave on the high-frequency propagation line. It can be understood by the model that the opposite charge is induced in the dense part and moves in the same way as the high frequency signal. The CPS line is one of the balanced lines in which the positive and negative charges are balanced by two electrodes paired with the differential line.

Po Dong,Long Chen,and Young-kai Chen, "High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators", OPTICS EXPRESS Vol.20, No.6, pp.6163-6169, 12 March 2012.Po Dong, Long Chen, and Young-kai Chen, "High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators", OPTICS EXPRESS Vol.20, No.6, pp.6163-6169, 12 March 2012. R. Ding et al., "Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator", Optics. Communication, vol. 321, pp. 124-133, 7 February 2014.R. Ding et al., "Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator", Optics. Communication, vol. 321, pp. 124-133, 7 February 2014. David Patel, Samir Ghosh, Mathieu Chagnon, Alireza Samani, Venkat Veerasubramanian, Mohamed Osman, and David V. Plant, "Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator," OPTICS EXPRESS Vol.23, 14263-142871, 22 May 2015David Patel, Samir Ghosh, Mathieu Chagnon, Alireza Samani, Venkat Veerasubramanian, Mohamed Osman, and David V. Plant, "Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator," OPTICS EXPRESS Vol.23, 14263- 142871, 22 May 2015

大容量の光通信を行うためには、高速で光を変調することが可能な光変調器が必要とされている。高速な光変調を行うためには、数百kHzから数十GHzの広い周波数帯域に渡って動作可能な周波数特性が必要とされる。特に、信号のボーレート(BaudRate:変調速度)を高くして、より大容量な通信を行うためには、変調電気信号に対する光信号の信号周波数特性である、光変調帯域(EO帯域)の広帯域化が重要である。 In order to perform large-capacity optical communication, an optical modulator capable of modulating light at high speed is required. In order to perform high-speed optical modulation, a frequency characteristic capable of operating over a wide frequency band of several hundred kHz to several tens of GHz is required. In particular, in order to increase the signal baud rate (modulation rate) and perform a larger capacity communication, the optical modulation band (EO band), which is the signal frequency characteristic of the optical signal with respect to the modulated electric signal, is widened. is important.

MZ型光変調器のEO帯域を制限する要因は主に2つあり、1つは光と電気の信号伝搬速度の不一致、もう1つは高周波信号の伝搬損失である。 There are two main factors that limit the EO band of the MZ type optical modulator, one is the mismatch between the signal propagation speeds of light and electricity, and the other is the propagation loss of the high frequency signal.

MZ型光変調器では、光導波路上部に設けられた進行波型の2本のRF電極を伝搬する1対の高周波電気信号により、2本の光導波路を伝搬する光信号の位相が変調される。このため、光の信号伝搬速度と電気の信号伝搬速度が異なる場合は、変調器を光と電気が伝搬していく間に徐々に双方の位相のずれが起こってしまう。この位相ずれは、電気信号から光信号への変換効率を落としてしまう。特に、高周波数領域では、位相ずれにより顕著に変調効率が落ちてしまう。よって、RF電極の電気信号速度と光導波路の光信号速度を十分に一致させる必要がある。 In the MZ type optical modulator, the phase of the optical signal propagating through the two optical waveguides is modulated by a pair of high-frequency electric signals propagating through the two traveling wave type RF electrodes provided above the optical waveguide. .. Therefore, when the signal propagation speed of light and the signal propagation speed of electricity are different, the phase shift between the two gradually occurs while the light and electricity propagate through the modulator. This phase shift reduces the conversion efficiency from the electric signal to the optical signal. In particular, in the high frequency region, the modulation efficiency drops significantly due to the phase shift. Therefore, it is necessary to sufficiently match the electric signal speed of the RF electrode and the optical signal speed of the optical waveguide.

また、MZ型光変調器は、高周波電気信号の伝搬の観点からは上述のCPS伝送線路の一種と見ることができる。理想的な伝送線路では、損失なく高周波電気信号を伝搬することができるが、実際の線路では抵抗や散乱などで損失が発生してしまう。MZ型光変調器でも、変調電気信号がRF電極を伝搬する間に信号振幅が低減してしまうため、EO帯域を劣化させてしまう。 Further, the MZ type optical modulator can be regarded as a kind of the above-mentioned CPS transmission line from the viewpoint of propagation of high frequency electric signals. An ideal transmission line can propagate a high-frequency electric signal without loss, but an actual line causes loss due to resistance and scattering. Even in the MZ type optical modulator, the signal amplitude is reduced while the modulated electrical signal propagates through the RF electrode, which deteriorates the EO band.

(Si光変調器の分布定数回路モデル)
図5には、Si光変調器の分布定数回路モデルを示す。このモデルに基づき、MZ型Si光変調器の電気速度・伝搬損失について説明する。ここで、図5の伝送線路要素のCpnとRpnはpn接合の単位長あたりの容量と抵抗、Rtlは伝送線路の単位長あたりの抵抗、Ltlは線路の単位長あたりのインダクタンス、Ctlはpn接合以外での線路の単位長あたりのキャパシタンスである。
(Distribution constant circuit model of Si optical modulator)
FIG. 5 shows a distributed constant circuit model of the Si optical modulator. Based on this model, the electric velocity and propagation loss of the MZ type Si optical modulator will be described. Here, C pn and R pn of the transmission line element in FIG. 5 are the capacitance and resistance per unit length of the pn junction, R tl is the resistance per unit length of the transmission line, and L tl is the inductance per unit length of the line. C tl is the capacitance per unit length of the line other than the pn junction.

本モデルは、単相駆動時を表すモデルであるが、差動駆動の場合でも、差動信号に対する実効的なパラメタを抽出することで、同様のモデルで考えることができる。差動信号の電圧振幅は、図の信号線上の振幅として表される。 This model represents a single-phase drive, but even in the case of differential drive, a similar model can be considered by extracting effective parameters for the differential signal. The voltage amplitude of the differential signal is represented as the amplitude on the signal line in the figure.

本モデルを用いると、Si光変調器の高周波(RF)電気信号の減衰は、下記の式(1)で表される(非特許文献2)。 Using this model, the attenuation of the radio frequency (RF) electrical signal of the Si light modulator is represented by the following equation (1) (Non-Patent Document 2).

Figure 0006926499
Figure 0006926499

但し、 However,

Figure 0006926499
Figure 0006926499

Figure 0006926499
Figure 0006926499

Figure 0006926499
Figure 0006926499

である。 Is.

ここで、式(1)左辺のαはRF信号の減衰(伝搬損失、単位はNp/m)、fは信号周波数、式(2)のZdevは特性インピーダンス、式(3)のfrcはRC帯域、式(4)のvpは電気信号の伝搬速度である。 Here, α on the left side of equation (1) is the attenuation of the RF signal (propagation loss, unit is Np / m), f is the signal frequency, Z dev of equation (2) is the characteristic impedance, and frc of equation (3) is. The RC band, v p of equation (4), is the propagation velocity of the electric signal.

式(1)において、右辺の第1項はRF電極の抵抗Rtlによる損失、第2項はpnドーピング領域の抵抗Rpnによる損失を表している。第1項のRtlはRF電極の表皮効果のためRtl〜√fであり、fの平方根に比例するのに対し、第2項はf2に比例する。そのため、第2項が電気信号の高周波数領域での伝搬損失を律速し、EO帯域を制限する要因となってしまう。この影響を低減するには、第2項がZdevに依存していることを利用し、Zdevを低減することが有効である。 In the formula (1), the first term on the right side represents the loss due to the resistance R tl of the RF electrode, and the second term represents the loss due to the resistance R pn in the pn doping region. The R tl of the first term is R tl to √f due to the skin effect of the RF electrode, which is proportional to the square root of f, while the second term is proportional to f 2. Therefore, the second term is a factor that limits the propagation loss of the electric signal in the high frequency region and limits the EO band. To reduce this effect, the second term by utilizing the fact that depend on Z dev, it is effective to reduce the Z dev.

従来のCPSシングル電極型Si光変調器でZdevを低減する設計として、RF電極の幅を広げたり、2本のRF電極の間隔を近づけたりして実効的なCtlを大きくすることが考えられる。しかし、このような設計を取ると、同時に実効的なLtlが減少してしまう。このため式(4)で表される電気速度vpが増加してしまい、光と電気の速度整合が取れなくなってしまうという課題があった。 As a design to reduce Z dev in the conventional CPS single electrode type Si optical modulator, it is considered to increase the effective C tl by widening the width of the RF electrode or reducing the distance between the two RF electrodes. Be done. However, such a design reduces the effective L tl at the same time. Therefore, there is a problem that the electric velocity v p represented by the equation (4) increases, and the velocity matching between light and electricity cannot be obtained.

また、容量装荷型変調器(非特許文献3)のような構造で速度整合を取ることができるが、電極面積が小さくなるという設計上の制約により、Zdevを低く設定するのは困難であった。 In addition, although speed matching can be achieved with a structure like a capacitively loaded modulator (Non-Patent Document 3), it is difficult to set Z dev low due to the design restriction that the electrode area is small. rice field.

本発明は、このような目的を達成するために、以下のような構成を備えることを特徴とする。 The present invention is characterized by providing the following configurations in order to achieve such an object.

(発明の構成1)
1対の差動電気信号が印加される2本のRF電極と、前記2本のRF電極が接続される2つの第1導電型半導体層と、前記2つの第1導電型半導体層の間に形成され固定電位に接続された第2導電型半導体層と、前記第1および第2導電型半導体層のpn接合境界に形成された2本の光導波路とを備える光変調器であって、
前記RF電極に沿って離隔して配置された複数の導電性領域をさらに備え、
前記複数の導電性領域は、一端が前記RF電極の下層もしくは上層に形成されて前記RF電極の一部と容量的に結合しており、前記一端と異なる他端の少なくとも一部が共通配線を介して互いに接続されており、
前記複数の導電性領域の少なくとも1つ以上が、RF電極が上層もしくは下層に配置される領域と、RF電極が上層もしくは下層に配置されない領域とを併せ持つ導電性領域であり、
前記複数の導電性領域が、RF電極に対して垂直方向に伸びる、複数の細長い電極であることを特徴とする、光変調器。
(Structure 1 of the invention)
Between the two RF electrodes to which a pair of differential electric signals are applied, the two first conductive semiconductor layers to which the two RF electrodes are connected, and the two first conductive semiconductor layers. An optical modulator comprising a second conductive semiconductor layer formed and connected to a fixed electrode, and two optical waveguides formed at the pn junction boundary of the first and second conductive semiconductor layers.
It further comprises a plurality of conductive regions spaced apart along the RF electrode.
One end of the plurality of conductive regions is formed in a lower layer or an upper layer of the RF electrode and is capacitively coupled to a part of the RF electrode, and at least a part of the other end different from the one end has common wiring. Connected to each other through
At least one or more of the plurality of conductive regions is a conductive region having both a region in which the RF electrode is arranged in the upper layer or the lower layer and a region in which the RF electrode is not arranged in the upper layer or the lower layer.
An optical modulator, wherein the plurality of conductive regions are a plurality of elongated electrodes extending in a direction perpendicular to an RF electrode.

(発明の構成
発明の構成に記載の光変調器であって、
前記複数の導電性領域は、前記2本のRF電極と多層になる部分を含めて前記2本のRF電極に挟まれる領域に形成されることを特徴とする光変調器。
(Structure 2 of the invention)
The light modulator according to the configuration 1 of the present invention.
A light modulator characterized in that the plurality of conductive regions are formed in a region sandwiched between the two RF electrodes including a portion that is multilayered with the two RF electrodes.

(発明の構成
発明の構成1または2に記載の光変調器であって、
前記複数の導電性領域は、前記2本のRF電極に挟まれる領域の外に向かって形成されることを特徴とする光変調器。
(Structure 3 of the invention)
The light modulator according to the configuration 1 or 2 of the present invention.
A light modulator characterized in that the plurality of conductive regions are formed toward the outside of a region sandwiched between the two RF electrodes.

(発明の構成
発明の構成1から3のいずれか1項に記載の光変調器であって、
前記複数の導電性領域のうち少なくとも一部が、特定の電位に接続されていることを特徴とする、光変調器。
(Structure 4 of the invention)
The light modulator according to any one of the configurations 1 to 3 of the present invention.
An optical modulator, characterized in that at least a part of the plurality of conductive regions is connected to a specific potential.

(発明の構成
発明の構成1からのいずれか1項に記載の光変調器であって、
前記複数の導電性領域の配置間隔と、高周波信号伝搬方向の長さがそれぞれ、高周波信号動作波長の1/2以下であることを特徴とする、光変調器。
(Structure 5 of the invention)
The light modulator according to any one of the configurations 1 to 4 of the present invention.
An optical modulator characterized in that the arrangement interval of the plurality of conductive regions and the length in the high-frequency signal propagation direction are each ½ or less of the high-frequency signal operating wavelength.

本発明に係る光変調器においては、RF電極と、RF電極に沿って離隔して配置された複数の導電性領域とを容量的に結合させる。この容量結合の効果により、本変調器では、光電気速度整合を取りつつ、伝送線路の容量Ctlを増加させることができるため、特性インピーダンスZdevを低減することが可能となる。これにより、高周波数領域での高周波信号の伝搬損失を低減することが可能となる。よって、高周波特性に優れた、波形品質の良い光変調器を提供することができる。 In the light modulator according to the present invention, the RF electrode and a plurality of conductive regions arranged apart from each other along the RF electrode are capacitively coupled. Due to the effect of this capacitive coupling, in this modulator, the capacitance C tl of the transmission line can be increased while maintaining the photoelectric velocity matching, so that the characteristic impedance Z dev can be reduced. This makes it possible to reduce the propagation loss of the high frequency signal in the high frequency region. Therefore, it is possible to provide an optical modulator having excellent high frequency characteristics and good waveform quality.

従来のSi光変調器の光導波路の断面構造図である。It is sectional drawing of the optical waveguide of the conventional Si light modulator. 従来のシングル電極構造のマッハツェンダ(MZ)型Si光変調器を構成するSi光変調器の平面図である。It is a top view of the Si light modulator which constitutes the Mach Zenda (MZ) type Si light modulator of the conventional single electrode structure. 図2の従来のMZ型Si光変調器の断面構造図である。It is sectional drawing of the conventional MZ type Si optical modulator of FIG. CPS線路における高周波電気信号の伝搬の様子を概念的に示した模式図である。It is a schematic diagram which conceptually showed the state of propagation of a high frequency electric signal in a CPS line. Si光変調器の分布定数回路モデルの説明図である。It is explanatory drawing of the distributed constant circuit model of a Si optical modulator. 本発明の実施例1によるMZ型光変調器の構成を示す平面図である。It is a top view which shows the structure of the MZ type optical modulator according to Example 1 of this invention. 本発明の実施例1によるMZ型光変調器の構成を示す断面図である。It is sectional drawing which shows the structure of the MZ type optical modulator according to Example 1 of this invention. 本発明の実施例1によるMZ型光変調器の、(a)減衰と(b)速度の周波数特性を従来例と対比してしめす計算結果である。This is a calculation result showing the frequency characteristics of (a) attenuation and (b) velocity of the MZ type optical modulator according to the first embodiment of the present invention in comparison with the conventional example. 本発明の実施例1によるMZ型光変調器の、(a)特性インピーダンスと(b)容量の周波数特性を従来例と対比してしめす計算結果である。This is a calculation result showing (a) the characteristic impedance and (b) the frequency characteristic of the capacitance of the MZ type optical modulator according to the first embodiment of the present invention in comparison with the conventional example. 本発明の実施例1によるMZ型光変調器の、(a)インダクタンスと(b)EO帯域の周波数特性を従来例と対比してしめす計算結果である。This is a calculation result showing (a) inductance and (b) frequency characteristics of the EO band of the MZ type optical modulator according to the first embodiment of the present invention in comparison with the conventional example. 本発明の実施例1によるMZ型光変調器の、(a)速度不整合による帯域制限と(b)伝搬損失による帯域制限の周波数特性を従来例と対比してしめす計算結果である。This is a calculation result showing the frequency characteristics of (a) band limitation due to speed mismatch and (b) band limitation due to propagation loss of the MZ type optical modulator according to the first embodiment of the present invention in comparison with the conventional example. 本発明の実施例2によるMZ型光変調器の構成を示す平面図である。It is a top view which shows the structure of the MZ type optical modulator according to Example 2 of this invention. 本発明の実施例2によるMZ型光変調器の構成を示す断面図である。It is sectional drawing which shows the structure of the MZ type optical modulator according to Example 2 of this invention. 本発明の実施例3によるMZ型光変調器の構成を示す平面図である。It is a top view which shows the structure of the MZ type optical modulator according to Example 3 of this invention. 本発明の実施例3によるMZ型光変調器の構成を示す断面図である。It is sectional drawing which shows the structure of the MZ type optical modulator according to Example 3 of this invention.

(実施例1)
以下、本発明の光変調器の形態について、好適例を用いて詳細に説明する。
(Example 1)
Hereinafter, the form of the optical modulator of the present invention will be described in detail with reference to preferred examples.

図6は、本発明の実施例1のMZ型光変調器構成を示す平面図である。 FIG. 6 is a plan view showing the configuration of the MZ type optical modulator according to the first embodiment of the present invention.

図6に示すように、本発明の実施例1に係る光変調器は、従来と同様なシングル電極構造のSi光変調器に、RF電極に沿って離隔して配置され、RF電極と容量的に結合して浮遊電極として作用する複数の導電性領域9a、9bを設けたことを特徴とする。導電性領域としては種々の形状のものが適用可能であるが、以下では簡単のために、導電性領域を、2本のRF電極に挟まれる領域の外に向かってRF電極に対して垂直方向に離隔して伸びる、細長い直線状の直交電極9a、9bとして、RF電極に沿って複数形成した構成を例示する。 As shown in FIG. 6, the optical modulator according to the first embodiment of the present invention is arranged separately along the RF electrode in a Si optical modulator having a single electrode structure similar to the conventional one, and is capacitively different from the RF electrode. It is characterized in that a plurality of conductive regions 9a and 9b which are coupled to and act as floating electrodes are provided. As the conductive region, various shapes can be applied, but for the sake of simplicity, the conductive region is oriented in the direction perpendicular to the RF electrode toward the outside of the region sandwiched between the two RF electrodes. As examples of elongated linear orthogonal electrodes 9a and 9b extending apart from each other, a configuration in which a plurality of elongated linear orthogonal electrodes 9a and 9b are formed along the RF electrodes is illustrated.

図6の実施例1の光変調器において、複数の直交電極9a、9bは、それぞれRF電極5a、5bの下部から光変調器の外側に向かって延在して、RF電極における信号伝搬方向(RF電極の長手方向)に垂直に配置される細長い直線状の導電性領域であり、複数の直交電極は、等長、等間隔で配置されている構成を例示した。 In the light modulator of the first embodiment of FIG. 6, the plurality of orthogonal electrodes 9a and 9b extend from the lower part of the RF electrodes 5a and 5b toward the outside of the light modulator, respectively, and the signal propagation direction in the RF electrode ( It is an elongated linear conductive region arranged perpendicular to the longitudinal direction of the RF electrode), and a plurality of orthogonal electrodes are exemplified in a configuration in which they are arranged at equal lengths and at equal intervals.

図7の実施例1の断面図にも示すように、導電性領域である直交電極9a、9bは、DC電極6と同じレベルの電極層に同じプロセスで作製される。本実施例1では、導電性領域である直交電極9a、9bはDC電極6と同じレベルに形成されているが、RF電極と容量性結合が形成できれば別のレベルの層に形成されていてもよい。 As shown in the cross-sectional view of Example 1 of FIG. 7, the orthogonal electrodes 9a and 9b, which are conductive regions, are produced in the same process on the electrode layer at the same level as the DC electrode 6. In the first embodiment, the orthogonal electrodes 9a and 9b, which are conductive regions, are formed at the same level as the DC electrode 6, but if a capacitive coupling can be formed with the RF electrode, they may be formed in a layer of another level. good.

例えば、RF電極5a、5bより上に誘電体などの絶縁層を形成して、その上層に直交電極9a、9bを配置しても本実施例1と同じ効果が得られる。但し、一般的なシリコンフォトニクスプロセスでは、最上面電極がもっとも厚い電極であるため、通常は、最上面の層には信号電極を作製する。よって、実施例1では直交電極9a、9bは、RF電極の電極層より下層に多層形成される構成が例示される。 For example, the same effect as in the first embodiment can be obtained by forming an insulating layer such as a dielectric on the RF electrodes 5a and 5b and arranging the orthogonal electrodes 9a and 9b on the layer. However, in a general silicon photonics process, since the top electrode is the thickest electrode, a signal electrode is usually formed in the top layer. Therefore, in the first embodiment, the configuration in which the orthogonal electrodes 9a and 9b are formed in multiple layers below the electrode layer of the RF electrode is exemplified.

また、このような複数の導電性領域(直交電極)は、必ずしもその全てがRF電極の下層もしくは上層に形成される必要はなく、複数の導電性領域の少なくとも1つ以上が、RF電極が上層もしくは下層に多層配置される領域と、RF電極が上層もしくは下層に配置されない領域とを併せ持つ導電性領域であれば容量性結合を形成できる。 Further, all of such a plurality of conductive regions (orthogonal electrodes) do not necessarily have to be formed in the lower layer or the upper layer of the RF electrode, and at least one or more of the plurality of conductive regions has the RF electrode in the upper layer. Alternatively, a capacitive coupling can be formed as long as it is a conductive region having both a region in which the RF electrodes are arranged in multiple layers in the lower layer and a region in which the RF electrode is not arranged in the upper layer or the lower layer.

実施例1においては、直交電極9a、9bを構成する複数の導電性領域は、おのおのDC的に独立であり、直流電気的には他の部分には接続されない浮遊電極である。また、直交電極を構成するそれぞれの直線状の電極の長さ、幅、密度等は作製可能な範囲で自由に設計することができ、例えば、長さ200μm、間隔30μm、電極幅2μmと設計できる。 In the first embodiment, the plurality of conductive regions constituting the orthogonal electrodes 9a and 9b are floating electrodes that are DC-independent and DC-electrically not connected to other parts. Further, the length, width, density, etc. of each linear electrode constituting the orthogonal electrode can be freely designed within a range that can be manufactured. For example, the length can be designed to be 200 μm, the interval to be 30 μm, and the electrode width to be 2 μm. ..

ここで、本直交電極9a、9bを構成する複数の導電性領域の、信号伝搬方向の長さ(電極幅)と電極間隔は、高周波信号のRF電極における動作波長の1/2以下となるように設計してある。これは、RF電極や、直交電極を構成する複数の導電性領域内での共振を防ぐための設計である。 Here, the length (electrode width) in the signal propagation direction and the electrode spacing of the plurality of conductive regions constituting the orthogonal electrodes 9a and 9b are set to 1/2 or less of the operating wavelength of the RF electrode of the high-frequency signal. It is designed to. This is a design for preventing resonance in a plurality of conductive regions constituting the RF electrode and the orthogonal electrode.

真空中の電磁波の伝搬速度は約3×108m/sであり、Si変調器のRF電極を伝搬する高周波信号の実効屈折率を約neff=3とすると、10GHzの高周波信号の波長は10mm、40GHzの高周波信号の波長は2.5mm程度となる。このため、各直交電極の、信号伝搬方向の長さ(電極幅)と電極間隔が、高周波信号のRF電極における波長の1/2の長さである、5mm以下であれば10GHzまで、1.25mm以下であれば40GHzの信号まで共振を起こさない光変調器を実現することができる。 Electromagnetic wave propagation velocity in a vacuum is approximately 3 × 10 8 m / s, when approximately n eff = 3 the effective refractive index of the high-frequency signal propagating through the RF electrodes of the Si modulators, wavelength of 10GHz of the high frequency signal The wavelength of the high frequency signal of 10 mm and 40 GHz is about 2.5 mm. Therefore, if the length (electrode width) and electrode spacing of each orthogonal electrode in the signal propagation direction is 1/2 of the wavelength of the RF electrode of the high-frequency signal, which is 5 mm or less, up to 10 GHz. If it is 25 mm or less, it is possible to realize an optical modulator that does not cause resonance up to a signal of 40 GHz.

ここで、本発明における、EO帯域の広帯域化という効果の発現について説明する。図7に図6の実施例1のB−B´断面図を示している。電気信号の伝搬を前述の図4の電荷モデルで考える。 Here, the manifestation of the effect of widening the EO band in the present invention will be described. FIG. 7 shows a cross-sectional view taken along the line BB'of Example 1 of FIG. Consider the propagation of electrical signals using the charge model of FIG. 4 described above.

図7の実施例1の断面図において、RF電極5aに−の電荷、5bに+の電荷が与えられているとする。このとき図7右の、RF電極5bの+の電荷の作る電位を考える。直交電極9bの右端と左端の電位(電位Aと電位B)はRF電極5aからの距離を考慮すると、電位A>電位Bであり、直交電極9bの内部に電位差ができる。ここで、直交電極9bは導体であるため、内部の電位差を打ち消すように表面に電荷が誘起される。この状態は、RF電極5bと直交電極9bが上下に重なる多層部分でコンデンサを形成して容量的に結合している状態と考えることができる。 In the cross-sectional view of Example 1 of FIG. 7, it is assumed that the RF electrode 5a is given a negative charge and the RF electrode 5b is given a positive charge. At this time, consider the potential created by the positive charge of the RF electrode 5b on the right side of FIG. Considering the distance from the RF electrode 5a, the potentials (potential A and potential B) at the right and left ends of the orthogonal electrode 9b are potential A> potential B, and a potential difference is formed inside the orthogonal electrode 9b. Here, since the orthogonal electrode 9b is a conductor, an electric charge is induced on the surface so as to cancel the internal potential difference. This state can be considered to be a state in which the RF electrode 5b and the orthogonal electrode 9b form a capacitor in a multi-layered portion where they are vertically overlapped and are capacitively coupled.

同様に、図7左のRF電極5aと直交電極9aもコンデンサを形成する。このように、RF電極と直交電極の交流電気的な結合が強まることで、図5の回路モデルにおける伝送線路のキャパシタンスCtlが増加する。 Similarly, the RF electrode 5a and the orthogonal electrode 9a on the left side of FIG. 7 also form a capacitor. By strengthening the AC electrical coupling between the RF electrode and the orthogonal electrode in this way, the capacitance C tl of the transmission line in the circuit model of FIG. 5 increases.

また、直交電極9a、9bはRF電極の信号進行方向(RF電極長手方向)には分割されているため、信号電位に誘起されるリターン電流をほとんど流さない。このため、直交電極9a、9bの有無では、図5の回路モデルにおけるインダクタンスLtlの値はほとんど変化しない。 Further, since the orthogonal electrodes 9a and 9b are divided in the signal traveling direction of the RF electrode (the longitudinal direction of the RF electrode), the return current induced in the signal potential hardly flows. Therefore, the value of the inductance L tl in the circuit model of FIG. 5 hardly changes with or without the orthogonal electrodes 9a and 9b.

よって、直交電極9a、9bの存在によりCtlのみを増加させることが可能となり、式(2)で示されるZdevが低減する。前述のとおり、高周波数領域での伝搬損失はZdevの低減により低減するため、直交電極がある場合の方がEO帯域を広く設計することができる。 Therefore, the presence of the orthogonal electrodes 9a and 9b makes it possible to increase only C tl , and the Z dev represented by the equation (2) is reduced. As described above, since the propagation loss in the high frequency region is reduced by reducing Z dev , the EO band can be designed wider when there are orthogonal electrodes.

また、RF電極5a、5bの電極幅、電極間隔などの設計により、変調器のLtlを調整することで、電気信号の伝搬速度(式(4)のvp)も調整することができる。直交電極9a、9bの効果により、Ctlが増加するため、Ltlは低減する方向に設計をすることができる。この調整は式(2)よりZdevを低減する方向の調整であるため、この調整により、伝搬損失は増加しない。 Further, the propagation speed of the electric signal (v p of the equation (4)) can also be adjusted by adjusting the L tl of the modulator by designing the electrode widths of the RF electrodes 5a and 5b, the electrode spacing, and the like. Since C tl increases due to the effect of the orthogonal electrodes 9a and 9b, L tl can be designed to decrease. Since this adjustment is an adjustment in the direction of reducing Z dev from the equation (2), the propagation loss does not increase by this adjustment.

つまり、本発明によって、EO帯域を拡大すると同時に、光電気速度を整合させる設計を行うことができる。 That is, according to the present invention, it is possible to design to match the photoelectric velocity at the same time as expanding the EO band.

ここで、図8から図11に、本発明によるMZ型光変調器の直交電極9a、9bがある場合(With Cross Electrode、実線)と、従来のMZ型光変調器の直交電極が無い場合(Without Cross Electrode、点線)の設計例について、電磁界シミュレータHFSSによる種々の光変調器の特性の計算結果を対比して説明する。 Here, FIGS. 8 to 11 show the case where there are orthogonal electrodes 9a and 9b of the MZ type optical modulator according to the present invention (With Cross Electrode, solid line) and the case where there is no orthogonal electrode of the conventional MZ type optical modulator (with cross electrode). A design example of Without Cross Electrode (dotted line) will be described by comparing the calculation results of the characteristics of various optical modulators by the electromagnetic field simulator HFSS.

計算は、2つの同一設計のシングル電極Si光変調器を差動駆動する場合について、1つは直交電極9a、9b有り、もう1つは直交電極9a、9b無しとして計算を行った。また、光信号の群屈折率は3.8(光信号速度0.79×108m/s)とし、3mmの変調部を持つ変調器とした。また、直交電極は浮遊電極とした。 In the case of differentially driving two single-electrode Si optical modulators of the same design, one was calculated with orthogonal electrodes 9a and 9b, and the other was calculated without orthogonal electrodes 9a and 9b. Further, the group index of the optical signal is set to 3.8 (optical signal rate 0.79 × 10 8 m / s) , and a modulator having a modulation section of 3 mm. The orthogonal electrode was a floating electrode.

図9(b)の容量と図10(a)のインダクタンスに示すように、本発明では直交電極9a、9bの付加によって、実効的なインダクタンスを低下させることなく、実効的な容量のみを増加させることができていることがわかる。これにより、図9(a)に示すように、特性インピーダンスを低減でき、図8(a)に示すように、高周波数領域(>13GHz)での減衰を低減することができる。図8(a)において、低周波数領域(<13GHz)での減衰がやや大きくなっているが、これは式(1)第1項の増加によるものである。 As shown in the capacitance of FIG. 9B and the inductance of FIG. 10A, in the present invention, the addition of the orthogonal electrodes 9a and 9b increases only the effective capacitance without lowering the effective inductance. You can see that it is possible. As a result, as shown in FIG. 9A, the characteristic impedance can be reduced, and as shown in FIG. 8A, the attenuation in the high frequency region (> 13 GHz) can be reduced. In FIG. 8A, the attenuation in the low frequency region (<13 GHz) is slightly large, which is due to the increase in the first term of the equation (1).

EO帯域は、前述のように、光電気速度の不整合による帯域制限と伝搬損失による帯域制限によって決まるが、図11(b)に示すように、伝搬損失の低減によりEO帯域の制限を緩和することが出来ている。また、本設計では、直交電極9a、9bを付けることで、ほぼ速度整合が取れるように設計を行っている。よって、速度不整合による帯域制限も緩和することができている(図11(a)) As described above, the EO band is determined by the band limitation due to the inconsistency of the optical electric velocity and the band limitation due to the propagation loss. As shown in FIG. 11B, the limitation of the EO band is relaxed by reducing the propagation loss. I can do it. Further, in this design, by attaching orthogonal electrodes 9a and 9b, the design is made so that the speed can be almost matched. Therefore, the band limitation due to the speed mismatch can be relaxed (Fig. 11 (a)).

なお、本効果は、RF電極5a、5bの近傍に導電性領域があれば、導体内の電位差により、RF電極5a、5bと導電性領域との容量性結合が実現されることによる。よって、直交電極9a、9bの形状は直線形状ないし長方形である必要はなく、変調器の外側に向かって幅が広く、または細くなるテーパ型であったり、折れ曲がっていたり、ウエーブ形状であったり、RF電極5a、5bに対して垂直な方向から傾いた方向に伸びていたりする形状の場合でも、同様の効果を得ることが出来る。 This effect is due to the fact that if there is a conductive region in the vicinity of the RF electrodes 5a and 5b, a capacitive coupling between the RF electrodes 5a and 5b and the conductive region is realized due to the potential difference in the conductor. Therefore, the shapes of the orthogonal electrodes 9a and 9b do not have to be linear or rectangular, and may be tapered, bent, or wave-shaped so as to widen or narrow toward the outside of the modulator. The same effect can be obtained even in the case of a shape extending from a direction perpendicular to the RF electrodes 5a and 5b in a direction inclined.

なお、本実施例は単純な形状のRF電極5a、5bについて議論したが、これらも長方形である必要はなく、設計の都合によっては非特許文献3にあるような容量装荷型などの変形した電極であってもよい。 In this embodiment, RF electrodes 5a and 5b having a simple shape have been discussed, but these also do not have to be rectangular, and depending on the convenience of design, deformed electrodes such as a capacitive loading type as described in Non-Patent Document 3. It may be.

(実施例2)
図12に、本発明の実施例2によるMZ型光変調器の構成を示す平面図を示す。なお、実施例2において、実施例1中で述べた特徴について、同一機能を果たす部分には同一符号を付し、重複する説明は省略する。
(Example 2)
FIG. 12 shows a plan view showing the configuration of the MZ type optical modulator according to the second embodiment of the present invention. In the second embodiment, with respect to the features described in the first embodiment, the parts that perform the same function are designated by the same reference numerals, and duplicate description will be omitted.

図12に示すように、本発明の実施例2に係る光変調器は、従来と同様なシングル電極構造のSi光変調器と、実施例1と同様な構造の直交電極9a、9bと、複数の直交電極9a、9bをRF電極から離れた端部において互いに電気的に接続するバス電極10a、10bとで構成される。 As shown in FIG. 12, the light modulators according to the second embodiment of the present invention include a plurality of Si optical modulators having a single electrode structure similar to the conventional one and orthogonal electrodes 9a and 9b having the same structure as the first embodiment. Is composed of bus electrodes 10a and 10b that electrically connect the orthogonal electrodes 9a and 9b of the above to each other at an end portion away from the RF electrode.

図6の実施例1で説明した直交電極9a、9bを構成する複数の導電性領域は、それぞれ独立した浮遊電極であったが、本実施例2においては、図13の断面図に示すように、直交電極9a、9bは、直交電極9a、9bのRF電極から離れた側の端部の上部に作製されたバス電極10a、10bを介して、バイアス電位に接続されている。ここでバイアス電位とは、DC電極6にバイアスのため印加される特定の電位である。 The plurality of conductive regions constituting the orthogonal electrodes 9a and 9b described in the first embodiment of FIG. 6 were independent floating electrodes, but in the second embodiment, as shown in the cross-sectional view of FIG. The orthogonal electrodes 9a and 9b are connected to the bias potential via bus electrodes 10a and 10b formed on the upper portion of the end portion of the orthogonal electrodes 9a and 9b on the side away from the RF electrode. Here, the bias potential is a specific potential applied to the DC electrode 6 for bias.

図13に、実施例2図12のC−C´の断面図を示している。バス電極10a、10bは、RF電極5a、5bと同じ電極層に同じプロセスで作製され、直交電極9a、9bとはRF電極から離れた側の端部において、短いビア(接続電極)で接続される。図12の平面図では、図の簡便のためビアは表示していない。 FIG. 13 shows a cross-sectional view of CC ′ of FIG. 12 of Example 2. The bus electrodes 10a and 10b are formed in the same electrode layer as the RF electrodes 5a and 5b by the same process, and are connected to the orthogonal electrodes 9a and 9b by short vias (connection electrodes) at the ends on the side away from the RF electrodes. NS. In the plan view of FIG. 12, vias are not displayed for the sake of simplicity.

本実施例2では、RF電極5a、5bと同じレベルの電極層を用いてバス電極10a、10bを実現しているが、別の導電性を持つ層を用いて作製してもよい。バス電極はビアを介し、直交電極を構成する複数の導電性領域に接続されている。バス電極は長方形である必要はなく、分割されていてもよい。分割する場合は、すべてのバス電極がバイアス電位に接続されている必要がある。 In the second embodiment, the bus electrodes 10a and 10b are realized by using the electrode layers at the same level as the RF electrodes 5a and 5b, but they may be manufactured by using a layer having another conductivity. The bus electrode is connected to a plurality of conductive regions constituting the orthogonal electrode via vias. The bus electrodes do not have to be rectangular and may be split. When splitting, all bus electrodes must be connected to the bias potential.

実施例1の浮遊した直交電極9a、9bにおいては、直交電極に誘起される電荷量は、直交電極9a、9bの右端と左端の電位差に比例する。したがって、Ctlを増加させたい場合は、直交電極を長くする必要がある。しかし、このとき変調器のフットプリント(平面サイズ)が大きくなってしまうという課題がある。 In the floating orthogonal electrodes 9a and 9b of Example 1, the amount of charge induced in the orthogonal electrodes is proportional to the potential difference between the right end and the left end of the orthogonal electrodes 9a and 9b. Therefore, if it is desired to increase C tl , it is necessary to lengthen the orthogonal electrode. However, at this time, there is a problem that the footprint (planar size) of the modulator becomes large.

本実施例2では、直交電極を構成する複数の導電性領域がバス電極10a、10bによってバイアス電位に接続されている。この場合、直交電極内の右端と左端の電位差は信号電位の絶対値と等しくなり、実施例1よりも大きな電位差をつけることができる。この電位差によって、より多くの電荷を誘起することができるため、本実施例2では、直交電極長が短い場合にも、十分なCtl増加効果を得ることが出来る。 In the second embodiment, a plurality of conductive regions constituting the orthogonal electrodes are connected to the bias potential by the bus electrodes 10a and 10b. In this case, the potential difference between the right end and the left end in the orthogonal electrode becomes equal to the absolute value of the signal potential, and a larger potential difference than in Example 1 can be obtained. Since more charges can be induced by this potential difference, in the second embodiment, a sufficient C tl increase effect can be obtained even when the orthogonal electrode length is short.

なお、本実施例2では、バス電極10a、10bによって、それぞれの側の全ての直交電極9a、9bが接続される例を説明したが、全ての直交電極を接続する必要はなく、必要に応じ少なくとも一部の直交電極(導電性領域)のみバス電極に接続する構成でもよい。またバス電極が2本である必要はなく、複数の配線でそれぞれの直交電極9a、9bが接続されていても、同様の効果を得ることができる。また、本実施例2では全ての直交電極をバイアス電位に接続したが、必要に応じ複数の導電性領域(直交電極)の少なくとも一部を別々の、任意の特定の電位に接続しても、同様の効果を得ることができる。 In the second embodiment, an example in which all the orthogonal electrodes 9a and 9b on each side are connected by the bus electrodes 10a and 10b has been described, but it is not necessary to connect all the orthogonal electrodes, and it is necessary. At least a part of the orthogonal electrodes (conductive regions) may be connected to the bus electrodes. Further, it is not necessary to have two bus electrodes, and the same effect can be obtained even if the respective orthogonal electrodes 9a and 9b are connected by a plurality of wirings. Further, in the second embodiment, all the orthogonal electrodes are connected to the bias potentials, but if necessary, at least a part of the plurality of conductive regions (orthogonal electrodes) may be connected to different, arbitrary specific potentials. A similar effect can be obtained.

(実施例3)
図14の平面図、および図15のD−D’断面図に示す本発明の実施例3は、実施例2と同様に直交電極がバイアス電位に接続されているMZ型光変調器の実施例である。実施例2との違いは、実施例3では2本のRF電極の間に位置するバイアス駆動用のDC電極6を、そのまま部分的に複数個所で枝状に信号伝搬方向に垂直に延長(拡幅)して複数の直交電極9a、9bとして利用する点である。このため、図14の平面図において2本のRF電極5a、5bの間の、2本のRF電極と重なり多層になる部分を含めて2本のRF電極に挟まれる領域に複数の直交電極9a、9bが形成されることとなる。
(Example 3)
Example 3 of the present invention shown in the plan view of FIG. 14 and the cross-sectional view of DD'of FIG. 15 is an example of an MZ type optical modulator in which an orthogonal electrode is connected to a bias potential as in Example 2. Is. The difference from the second embodiment is that in the third embodiment, the DC electrode 6 for bias driving, which is located between the two RF electrodes, is partially extended (widened) vertically in the signal propagation direction in a branch shape at a plurality of places as it is. ), And it is used as a plurality of orthogonal electrodes 9a and 9b. Therefore, in the plan view of FIG. 14, a plurality of orthogonal electrodes 9a are formed in a region sandwiched between the two RF electrodes, including a portion between the two RF electrodes 5a and 5b that overlaps the two RF electrodes and forms a multilayer. , 9b will be formed.

実施例3の図14,15では、他の実施例に合わせて直交電極9a、9bは2つの電極として記述しているが、DC電極6をそのまま延長(拡幅)して構成された電極であるため、電気的には同電位であり、DC電極6を含め一体の電極として構成されていてもよい。 In FIGS. 14 and 15 of the third embodiment, the orthogonal electrodes 9a and 9b are described as two electrodes according to the other embodiments, but the DC electrode 6 is an electrode formed by extending (widening) the DC electrode 6 as it is. Therefore, they have the same electric potential and may be configured as an integral electrode including the DC electrode 6.

実施例1と2では、光導波路の近傍に直交電極が配置されないため動作が安定するというメリットがある一方で、直交電極が2本のRF電極の外側に向かって延在するため、光変調器全体の平面サイズ(フットプリント)が大型化する可能性があった。この実施例3では、直交電極が2本のRF電極の間に形成され外に広がらないので小型化に有利である。 In Examples 1 and 2, since the orthogonal electrodes are not arranged in the vicinity of the optical waveguide, there is an advantage that the operation is stable, but since the orthogonal electrodes extend toward the outside of the two RF electrodes, the light modulator There was a possibility that the overall flat size (footprint) would increase. In the third embodiment, the orthogonal electrode is formed between the two RF electrodes and does not spread to the outside, which is advantageous for miniaturization.

図15の実施例3の断面図にも示すように、このような構造の直交電極9a、9bであっても、RF電極5a、5bに沿って離隔して配置され、RF電極と容量的に結合する複数の導電性領域であるということができる。 As shown in the cross-sectional view of Example 3 of FIG. 15, even orthogonal electrodes 9a and 9b having such a structure are arranged apart from each other along the RF electrodes 5a and 5b, and are capacitively different from the RF electrodes. It can be said that there are a plurality of conductive regions to be bonded.

したがって、実施例1,2と同様に、実施例3においても伝送線路のキャパシタンスCtlを増加させることができ、Zdevが低減でき、高周波数領域での伝搬損失も低減するため、EO帯域を広く設計することができる。 Therefore, as in Examples 1 and 2, in Example 3, the capacitance C tl of the transmission line can be increased, Z dev can be reduced, and the propagation loss in the high frequency region is also reduced, so that the EO band can be increased. Can be widely designed.

以上述べたように本発明に係る光変調器においては、高周波数領域での光変調効率を上げることが可能となる。このため、光変調器の周波数応答特性の劣化による、高速変調時の波形品質の劣化などの悪影響を改善することができ、高周波特性に優れた、波形品質の良い、光変調器を提供することが可能となる。 As described above, in the optical modulator according to the present invention, it is possible to increase the optical modulation efficiency in the high frequency region. Therefore, it is possible to improve adverse effects such as deterioration of waveform quality during high-speed modulation due to deterioration of the frequency response characteristics of the optical modulator, and provide an optical modulator having excellent high-frequency characteristics and good waveform quality. Is possible.

1,3 SiO2クラッド層
2 Si層
201 光導波路コア部分
202 スラブ領域
211 高濃度p型半導体層
212 中濃度p型半導体層
213 中濃度n型半導体層
214 高濃度n型半導体層
5a、5b RF電極
6 DC電極
7、7a、7b 光導波路
9a、9b 直交電極(導電性領域)
10a、10b バス電極
1,3 SiO2 clad layer 2 Si layer 201 Optical waveguide core part 202 Slab region 211 High-concentration p-type semiconductor layer 212 Medium-concentration p-type semiconductor layer 213 Medium-concentration n-type semiconductor layer 214 High-concentration n-type semiconductor layer 5a, 5b RF electrodes 6 DC electrodes 7, 7a, 7b Optical waveguides 9a, 9b Orthogonal electrodes (conductive region)
10a, 10b bus electrodes

Claims (5)

1対の差動電気信号が印加される2本のRF電極と、前記2本のRF電極が接続される2つの第1導電型半導体層と、前記2つの第1導電型半導体層の間に形成され固定電位に接続された第2導電型半導体層と、前記第1および第2導電型半導体層のpn接合境界に形成された2本の光導波路とを備える光変調器であって、
前記RF電極に沿って離隔して配置された複数の導電性領域をさらに備え、
前記複数の導電性領域は、一端が前記RF電極の下層もしくは上層に形成されて前記RF電極の一部と容量的に結合しており、前記一端と異なる他端の少なくとも一部が共通配線を介して互いに接続されており、
前記複数の導電性領域の少なくとも1つ以上が、RF電極が上層もしくは下層に配置される領域と、RF電極が上層もしくは下層に配置されない領域とを併せ持つ導電性領域であり、
前記複数の導電性領域が、RF電極に対して垂直方向に伸びる、複数の細長い電極であることを特徴とする、光変調器。
Between the two RF electrodes to which a pair of differential electric signals are applied, the two first conductive semiconductor layers to which the two RF electrodes are connected, and the two first conductive semiconductor layers. An optical modulator comprising a second conductive semiconductor layer formed and connected to a fixed electrode, and two optical waveguides formed at the pn junction boundary of the first and second conductive semiconductor layers.
It further comprises a plurality of conductive regions spaced apart along the RF electrode.
One end of the plurality of conductive regions is formed in a lower layer or an upper layer of the RF electrode and is capacitively coupled to a part of the RF electrode, and at least a part of the other end different from the one end has common wiring. Connected to each other through
At least one or more of the plurality of conductive regions is a conductive region having both a region in which the RF electrode is arranged in the upper layer or the lower layer and a region in which the RF electrode is not arranged in the upper layer or the lower layer.
An optical modulator, wherein the plurality of conductive regions are a plurality of elongated electrodes extending in a direction perpendicular to an RF electrode.
請求項1に記載の光変調器であって、
前記複数の導電性領域は、前記2本のRF電極と多層になる部分を含めて前記2本のRF電極に挟まれる領域に形成されることを特徴とする光変調器。
The optical modulator according to claim 1.
A light modulator characterized in that the plurality of conductive regions are formed in a region sandwiched between the two RF electrodes including a portion that is multilayered with the two RF electrodes.
請求項1または2に記載の光変調器であって、
前記複数の導電性領域は、前記2本のRF電極に挟まれる領域の外に向かって形成されることを特徴とする光変調器。
The light modulator according to claim 1 or 2.
A light modulator characterized in that the plurality of conductive regions are formed toward the outside of a region sandwiched between the two RF electrodes.
請求項1から3のいずれか1項に記載の光変調器であって、
前記複数の導電性領域のうち少なくとも一部が、特定の電位に接続されていることを特徴とする、光変調器。
The optical modulator according to any one of claims 1 to 3.
An optical modulator, characterized in that at least a part of the plurality of conductive regions is connected to a specific potential.
請求項1からのいずれか1項に記載の光変調器であって、
前記複数の導電性領域の配置間隔と、高周波信号伝搬方向の長さがそれぞれ、高周波信号動作波長の1/2以下であることを特徴とする、光変調器。
The optical modulator according to any one of claims 1 to 4.
An optical modulator characterized in that the arrangement interval of the plurality of conductive regions and the length in the high-frequency signal propagation direction are each ½ or less of the high-frequency signal operating wavelength.
JP2017019749A 2017-02-06 2017-02-06 Light modulator Active JP6926499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019749A JP6926499B2 (en) 2017-02-06 2017-02-06 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019749A JP6926499B2 (en) 2017-02-06 2017-02-06 Light modulator

Publications (2)

Publication Number Publication Date
JP2018128506A JP2018128506A (en) 2018-08-16
JP6926499B2 true JP6926499B2 (en) 2021-08-25

Family

ID=63172783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019749A Active JP6926499B2 (en) 2017-02-06 2017-02-06 Light modulator

Country Status (1)

Country Link
JP (1) JP6926499B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181076A (en) * 2019-04-25 2020-11-05 日本電信電話株式会社 Optical circuit for centering, and method of optical centering
CN112379538B (en) * 2020-11-17 2023-05-09 中国电子科技集团公司第三十八研究所 Coplanar stripline traveling wave electrode and silicon-based Mach-Zehnder modulator
WO2023238399A1 (en) * 2022-06-10 2023-12-14 日本電信電話株式会社 Optical modulator
WO2023248360A1 (en) * 2022-06-21 2023-12-28 日本電信電話株式会社 Optical modulator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914407A (en) * 1988-06-07 1990-04-03 Board Of Regents, University Of Texas System Crosstie overlay slow-wave structure and components made thereof for monolithic integrated circuits and optical modulators
US5150436A (en) * 1991-09-06 1992-09-22 The University Of British Columbia Slow-wave electrode structure
CN101937135B (en) * 2009-07-01 2011-12-07 中国科学院半导体研究所 Electrode structure for improving speed and efficiency of MZI (Math-Zehnder Interferometer) electro-optic modulator
JP5853026B2 (en) * 2011-10-26 2016-02-09 株式会社フジクラ Optical element and Mach-Zehnder type optical waveguide element
US9036953B2 (en) * 2013-03-04 2015-05-19 Rwth Aachen University Electro-optical modulator based on carrier depletion or carrier accumulation in semiconductors with advanced electrode configuration
JP6259358B2 (en) * 2013-12-03 2018-01-10 日本電信電話株式会社 Semiconductor Mach-Zehnder type optical modulator
JP6348880B2 (en) * 2015-06-05 2018-06-27 日本電信電話株式会社 Semiconductor Mach-Zehnder optical modulator

Also Published As

Publication number Publication date
JP2018128506A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6586223B2 (en) Light modulator
JP6499804B2 (en) Light modulator
US7082237B2 (en) Optical modulators operated in parallel push-pull mode
US10197884B2 (en) Sub-volt drive 100 GHz bandwidth electro-optic modulator
US9008469B2 (en) Mach-zehnder optical modulator having an asymmetrically-loaded traveling wave electrode
JP6926499B2 (en) Light modulator
JP6781618B2 (en) Light modulator
JP2003322831A (en) Semiconductor mach-zehnder optical modulator
JP6348880B2 (en) Semiconductor Mach-Zehnder optical modulator
JP6823619B2 (en) Light modulator
JP6734813B2 (en) Optical transmitter
JP7224368B2 (en) Mach-Zehnder optical modulator
JP6353474B2 (en) Light modulator
WO2023248490A1 (en) Optical modulator
WO2023248489A1 (en) Optical modulator
WO2023238399A1 (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6926499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150