WO2023248328A1 - 光パラメトリック増幅器 - Google Patents

光パラメトリック増幅器 Download PDF

Info

Publication number
WO2023248328A1
WO2023248328A1 PCT/JP2022/024665 JP2022024665W WO2023248328A1 WO 2023248328 A1 WO2023248328 A1 WO 2023248328A1 JP 2022024665 W JP2022024665 W JP 2022024665W WO 2023248328 A1 WO2023248328 A1 WO 2023248328A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
optical
phase matching
wavelengths
Prior art date
Application number
PCT/JP2022/024665
Other languages
English (en)
French (fr)
Inventor
拓志 風間
毅伺 梅木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/024665 priority Critical patent/WO2023248328A1/ja
Publication of WO2023248328A1 publication Critical patent/WO2023248328A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present invention relates to an optical parametric amplifier used in optical communication systems and laser devices.
  • erbium-doped fiber amplifiers In optical communication systems, erbium-doped fiber amplifiers (EDFA) are widely used to relay signals that have been attenuated by propagation through optical fibers.
  • EDFA erbium-doped fiber amplifiers
  • excitation light is incident on an erbium-doped fiber (EDF), and the incident light is amplified by stimulated emission in the EDF.
  • EDF erbium-doped fiber
  • the method used was to first convert attenuated light into an electrical signal, identify the digital signal, and then convert the electrical signal back into an optical signal.
  • many optical and electrical components are required, increasing the cost of relaying optical communications.
  • the frequency utilization efficiency defined by the ratio of transmission capacity per unit frequency band is log 2 (1+S/N) with respect to the signal-to-noise (S/N) ratio. Therefore, the upper limit of the S/N ratio determines the upper limit of the theoretical transmission capacity.
  • the S/N ratio in an optical communication receiver is proportional to the power of the optical signal under conditions where so-called shot noise becomes dominant. Therefore, in principle, it makes sense to perform transmission with high optical power in order to improve frequency utilization efficiency.
  • the wavelength bands that can be amplified by EDFAs widely used in current optical communication systems are limited to the C band (1530-1565 nm) and the L band (1565-1625 nm). Therefore, current optical communication systems are constructed on the premise of utilizing these wavelength bands. Since the transparent wavelength band of the optical fiber itself is very wide, if wavelength bands other than the C and L bands can be used, the transmission capacity of optical communication can be greatly expanded.
  • An optical amplifier such as an EDFA that uses a rare earth element as a laser medium uses transitions between the energy levels of the rare earth element, so there are a limited number of wavelength ranges that can be amplified.
  • a method of realizing optical amplification that is not subject to such limitations, there is a method of using parametric amplification using a second-order or third-order nonlinear optical medium.
  • a typical third-order nonlinear optical medium is one that utilizes four-wave mixing in an optical fiber.
  • the nonlinear optical effect of the optical fiber can also cause deterioration of the S/N ratio of the optical signal as described above. For this reason, those using a third-order nonlinear optical medium have problems as low-noise optical amplifiers.
  • Non-Patent Document 1 shows that broadband optical amplification operation is possible using difference frequency generation, which is a second-order nonlinear optical effect by PPLN.
  • difference frequency generation which is a second-order nonlinear optical effect by PPLN.
  • third-order nonlinear optical effects can be ignored, so it can be considered that there is almost no deterioration in signal quality due to nonlinear optical effects.
  • FIG. 7 shows the basic configuration of a conventional optical parametric amplifier and wavelength converter using a second-order nonlinear optical medium such as a PPLN waveguide.
  • This configuration is disclosed in Non-Patent Document 2.
  • the conventional configuration uses two second-order nonlinear optical elements 100, 101 having the same phase matching wavelength (1550 nm).
  • Secondary nonlinear optical elements 100 and 101 include PPLN waveguides 1000 and 1010, respectively.
  • a laser light source 102 used for optical communication generates fundamental wave light in the 1550 nm band.
  • the EDFA 103 amplifies the fundamental wave light in order to obtain sufficient power to obtain a nonlinear optical effect.
  • the second-order nonlinear optical element 100 is an element for second harmonic generation (SHG), and generates second harmonic light from the amplified fundamental wave light 200.
  • SHG second harmonic generation
  • the secondary nonlinear optical element 101 is an element for difference frequency generation (DFG), and uses the second harmonic light 204 output from the secondary nonlinear optical element 100 as excitation light to receive a signal input from the outside.
  • DFG difference frequency generation
  • Non-degenerate parametric amplification of light 203 is performed.
  • the DFG process also generates wavelength-converted light (idler light) according to the difference in frequency between the signal light and the pumping light.
  • the configuration of FIG. 7 functions as an optical amplifier if only the amplified signal light is extracted from the output side of the secondary nonlinear optical element 101, and functions as a wavelength converter if only the wavelength-converted light is extracted.
  • FIG. 8 is a diagram explaining the conventional optical parametric amplification process and DFG band. Although the DFG process will be explained here, the principle is the same for the optical parametric amplification process.
  • Reference numeral 200 in FIG. 8(b) indicates fundamental wave light of a single wavelength output from a single laser light source.
  • 201 shows the phase matching curve of the PPLN waveguide for SHG
  • 202 shows the phase matching curve of the PPLN waveguide for DFG
  • 203 shows the signal light
  • 205 shows the converted light.
  • the phase matching band for SHG of the PPLN waveguide is narrower than the phase matching band for DFG, but it is sufficiently wider than the linewidth of the fundamental wave light.
  • the wavelength conversion band of the PPLN waveguide will be described when the fundamental wave wavelength ⁇ 0 (frequency ⁇ 0) is 1545 nm and the pumping light wavelength ⁇ p (frequency 2 ⁇ 0) is 772.5 nm.
  • converted light is generated through the DFG process. For example, if the wavelength ⁇ s (frequency ⁇ s) of the signal light is 1540 nm, converted light with a wavelength of 1550 nm is generated by 2 ⁇ 0 ⁇ s. As shown in FIG. 8(a), converted light is generated by folding the signal light on the wavelength axis around the wavelength ⁇ 0 of the fundamental wave.
  • the same conversion efficiency can be obtained between the converted light of frequency 2 ⁇ 0 ⁇ s and the excitation light as long as formula (1) is satisfied.
  • the wavelength ⁇ s (frequency ⁇ s) of the signal light is 1539 nm
  • converted light with a wavelength of 1551 nm is generated by 2 ⁇ 0 ⁇ s.
  • the effective refractive index ns of the signal light and the effective refractive index nc of the converted light also change, but as ns increases due to material dispersion, nc decreases, so even if the wavelength of the signal light is changed, the equation ( 1) can be satisfied.
  • a parametric amplifier using a PPLN waveguide can obtain a wide wavelength conversion band as shown in FIG. 8(a).
  • the amount of increase in the effective refractive index ns of the signal light and the amount of decrease in the effective refractive index nc of the converted light are not completely the same, and the conversion efficiency gradually decreases, causing the wavelength to change.
  • the conversion band is limited.
  • the wavelength of the fundamental light 1545 nm in this example
  • the phase matching wavelength 1545 nm in this example
  • the phase matching wavelength 1545 nm in this example
  • the PPLN waveguide length is 45 mm
  • a band of approximately 60 nm can be obtained centered on the wavelength of the fundamental light.
  • Non-Patent Document 1 by detuning the phase matching wavelength and the pumping light wavelength, it is possible to change the amplification band shape, and optical amplification in an even wider band is possible. becomes.
  • optical parametric amplification using a PPLN waveguide can be expected to achieve broadband amplification, it has the following problems.
  • the signal light is amplified, but also the signal light is converted into a wavelength that is obtained by folding the signal light wavelength around the fundamental light wavelength. Therefore, if the signal light group incident on the PPLN waveguide is on both the long wave side and the short wave side with respect to the fundamental light wavelength, the converted light for the long wave side signal light is generated in the short wave side signal light wavelength band. Since the converted light for the short wave side signal light is generated in the long wave side signal light wavelength band, it is necessary to separate the signal light in advance.
  • the input signal light is separated into a short wavelength side and a long wavelength side using a wavelength demultiplexer 300, as shown in FIG. 400 in FIG. 10A indicates the signal light incident on the wavelength demultiplexer 300, 401 in FIG. 10B indicates the short wavelength signal light separated by the wavelength demultiplexer 300, and 402 in FIG. This shows the signal light on the long wavelength side separated by .
  • Secondary nonlinear optical elements 301 and 302 include PPLN waveguides 3010 and 3020, respectively.
  • 403 in FIG. 10D indicates the converted light generated by the second-order nonlinear optical element 301
  • 404 in FIG. 10E indicates the converted light generated by the second-order nonlinear optical element 302.
  • the wavelength multiplexer 303 When the wavelength multiplexer 303 combines the output light of the second-order nonlinear optical element 301 and the output light of the second-order nonlinear optical element 302, the wavelength multiplexer 303 combines the converted light output from the second-order nonlinear optical element 301 and the second-order nonlinear optical element. The converted light output from the optical element 302 is cut. In this way, only the original signal light is combined, as shown in FIG. 10F.
  • the configuration shown in FIG. 9 is required when using the entire amplification band.
  • the first problem is that since it is necessary to amplify the long-wave side signal light and the short-wave side signal light separately, two PPLN waveguides are required for amplification, which increases the number of parts and makes the configuration difficult. This is where things get complicated.
  • the second problem is that since the signal light must be separated by a wavelength demultiplexer before amplification, the noise figure of the amplifier increases by the transmission loss of the wavelength demultiplexer. If the noise figure increases, no matter how wide the band, it becomes impossible to transmit the signal over long distances while maintaining signal quality, so excessive noise in the amplifier must be suppressed as much as possible.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an optical parametric amplifier that has a simple configuration and is capable of wideband and low-noise optical amplification.
  • the first optical waveguide being made of a nonlinear optical crystal having a periodic polarization inversion structure having two polarization inversion periods ⁇ ⁇ 1 and ⁇ ⁇ 2 .
  • the refractive index of light with wavelength ⁇ 1/2 in the first optical waveguide is n ⁇ 1/2
  • the refractive index of light with wavelength ⁇ 2/2 is n ⁇ 2/2
  • the refractive index of light with wavelength ⁇ 1 is n ⁇ 1
  • the wavelength Since there is no need for a demultiplexer, not only can the number of components be reduced, but excessive loss can also be suppressed, making it possible to amplify with the inherent noise figure of an optical parametric amplifier, enabling broadband and low-noise optical amplification. Become.
  • FIG. 1 is a block diagram showing the configuration of an optical parametric amplifier according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the operation of parametric amplification in the PPLN waveguide according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing another configuration of the optical parametric amplifier according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing another configuration of the optical parametric amplifier according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing the configuration of an optical parametric amplifier according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing the amplification band of the optical parametric amplifier according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of an optical parametric amplifier according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the operation of parametric amplification in the PPLN waveguide according to the first embodiment of the present invention.
  • FIG. 3
  • FIG. 7 is a block diagram showing the basic configuration of a conventional optical parametric amplifier and wavelength converter.
  • FIG. 8 is a diagram illustrating a conventional optical parametric amplification process and a DFG band.
  • FIG. 9 is a block diagram showing another configuration of a conventional optical parametric amplifier.
  • 10A to 10F are diagrams showing spectra of signal light, converted light, and amplified signal light in the optical parametric amplifier of FIG. 9.
  • a second-order nonlinear optical medium such as PPLN having two phase matching wavelengths ⁇ 1 and ⁇ 2 ( ⁇ 1 ⁇ 2) is used, and two second harmonics of the same wavelength as the two phase matching wavelengths ⁇ 1 and ⁇ 2 are excited.
  • ⁇ 1 ⁇ 2 phase matching wavelengths
  • a plurality of phase matching wavelengths can be realized, for example, by providing a plurality of periodic structures in multiple stages in a periodic polarization inversion structure within a PPLN waveguide.
  • a chirp-type periodic structure may be provided in which the structure gradually changes within the element from a period with a certain characteristic to another period.
  • a multi-QPM (Quasi-Phase-Matching) element that can be realized by subjecting a basic periodic structure to long-period spatial periodic phase modulation may be used.
  • FIG. 1 is a block diagram showing the configuration of an optical parametric amplifier according to this embodiment.
  • the optical parametric amplifier includes a laser light source 1 that generates fundamental wave light with a wavelength near the phase matching wavelength ⁇ 1, a laser light source 2 that generates fundamental wave light with a wavelength near the phase matching wavelength ⁇ 2, and fundamental wave lights from the laser light sources 1 and 2.
  • EDFAs 3 and 4 that amplify the fundamental wave light amplified by the EDFAs 3 and 4, a multiplexer 5 that multiplexes the fundamental wave light amplified by the EDFAs 3 and 4, and phase matching wavelengths ⁇ 1 and ⁇ 2.
  • a second-order nonlinear optical element 6 includes a PPLN waveguide 61 (second optical waveguide) that generates signal light, and a PPLN waveguide 71 (first
  • the device includes a second-order nonlinear optical element 7 having a second-order nonlinear optical element 7 (an optical waveguide), and a bandpass filter 8 whose pass band is set so as to pass a group of signal lights after parametric amplification and remove wavelength-converted light.
  • the laser light sources 1 and 2, the EDFAs 3 and 4, the multiplexer 5, and the secondary nonlinear optical element 6 constitute an excitation light generation section 10.
  • the secondary nonlinear optical element 6 includes a spatial optical system 60, a PPLN waveguide 61, and a spatial optical system 62.
  • the secondary nonlinear optical element 7 includes a spatial optical system 70, a PPLN waveguide 71, and a spatial optical system 72.
  • the spatial optical system 60 guides the light incident from the multiplexer 5 to a PPLN waveguide 61.
  • the spatial optical system 62 guides the light emitted from the PPLN waveguide 61 to the output port of the secondary nonlinear optical element 6.
  • the spatial optical system 70 multiplexes the signal light group and the excitation light and guides it to the PPLN waveguide 71 .
  • the spatial optical system 72 guides the light emitted from the PPLN waveguide 71 to the output port of the secondary nonlinear optical element 7.
  • the PPLN waveguide 61 is made of a nonlinear optical crystal (LiNbO 3 in this embodiment) having a periodic polarization structure having two polarization periods ⁇ ⁇ 1 and ⁇ ⁇ 2 .
  • PPLN waveguide 71 also has the same structure as PPLN waveguide 61.
  • n ⁇ 1/2 is the refractive index of light with wavelength ⁇ 1/2 in the PPLN waveguides 61, 71, n ⁇ 2/2 is the refractive index of light with wavelength ⁇ 2/2 in the PPLN waveguides 61, 71, n ⁇ 1 is PPLN
  • the refractive index of light with wavelength ⁇ 1 in the waveguides 61, 71, n ⁇ 2 is the refractive index of light with wavelength ⁇ 2 in the PPLN waveguides 61, 71.
  • Laser light sources 1 and 2 generate fundamental wave lights with wavelengths ⁇ 1 and ⁇ 2, respectively.
  • the EDFAs 3 and 4 amplify the fundamental light from the laser light sources 1 and 2 in order to obtain sufficient power to obtain a nonlinear optical effect.
  • the multiplexer 5 multiplexes the fundamental wave lights 21 and 22 amplified by the EDFAs 3 and 4.
  • the PPLN waveguide 61 having phase matching wavelengths ⁇ 1 and ⁇ 2 generates second harmonic light from the fundamental wave lights 21 and 22, respectively.
  • second harmonic lights 23 and 24 of two wavelengths are generated.
  • the PPLN waveguide 71 having phase matching wavelengths ⁇ 1 and ⁇ 2 performs parametric amplification of the signal light group 20 using the second harmonic lights 23 and 24 outputted from the PPLN waveguide 61 as excitation light.
  • the phase matching wavelength ⁇ 1 of the PPLN waveguides 61 and 71 is 1530 nm
  • the phase matching wavelength ⁇ 2 is 1602 nm
  • the waveguide length is 40 mm.
  • each 3 dB band is a band of approximately 70 nm.
  • the phase matching wavelengths ⁇ 1 and ⁇ 2 are set in a synthesis band where the gains of the entire group of amplified signal lights are equal.
  • 500 indicates the gain of the amplified short-wave signal light
  • 501 indicates the gain of the amplified long-wave signal light.
  • two second harmonic lights generated from two independent laser light sources 1 and 2 are used as excitation light, but in parametric amplification, the signal light is amplified while maintaining phase information. Therefore, the gain band of the signal light is obtained as a superposition of the amplification bands of the two second harmonic lights.
  • 502 indicates the gain of the entire amplified signal light group.
  • wavelength-converted light generated with the parametric amplification by the PPLN waveguide 71 is generated outside the band of the signal light.
  • 25 indicates wavelength-converted light generated for short-wave side signal light
  • 26 indicates wavelength-converted light generated for long-wave side signal light.
  • the wavelength-converted light will occur within the signal light band, so It was necessary to separate the signal light into short wavelength and long wavelength.
  • this embodiment there is no need to separate the signal lights. Therefore, only one secondary nonlinear optical element is required for parametric amplification, and the number of parts can be reduced. Furthermore, in this embodiment, a wavelength demultiplexer that separates signal light before amplification is not required, so excessive loss due to the wavelength demultiplexer does not occur, and deterioration of the noise figure of the optical parametric amplifier can be suppressed. can.
  • a flat gain can be obtained for a group of signal lights in a wavelength range of about 70 nm, and a bandpass filter 8 can be used to remove unnecessary wavelength-converted light components after parametric amplification. It can be removed with .
  • wideband amplification approximately twice the band of a conventional EDFA can be realized with a simple configuration.
  • an optical parametric amplifier is constructed using PPLN waveguides 61 and 71 having two phase matching wavelengths ⁇ 1 and ⁇ 2 at both ends of the signal light band.
  • a wavelength demultiplexer is not required, which not only reduces the number of components, but also suppresses excessive loss, which optical parametric amplifiers inherently have. Amplification with a high noise figure becomes possible, and broadband and low-noise optical amplification becomes possible.
  • the present invention aims to realize parametric amplification of signal light with a simple configuration and low noise, and does not target the use of wavelength-converted light.
  • the phase matching wavelengths ⁇ 1 and ⁇ 2 were set to 1530 nm and 1602 nm, but the present invention is not limited to these wavelengths, and any phase matching wavelengths ⁇ 1 and ⁇ 2 can be set.
  • the laser light sources 1 and 2 generate fundamental light having the same wavelength as the phase matching wavelengths ⁇ 1 and ⁇ 2, but the wavelength of the fundamental light does not have to match the phase matching wavelengths ⁇ 1 and ⁇ 2.
  • the phase matching wavelengths ⁇ 1 and ⁇ 2 may be used.
  • the wavelength of the second harmonic excitation light does not have to match ⁇ 1/2 and ⁇ 2/2, but may be in the vicinity of ⁇ 1/2 and ⁇ 2/2.
  • two second harmonic lights 23 and 24 are generated using the PPLN waveguide 61 having two phase matching wavelengths ⁇ 1 and ⁇ 2.
  • the present invention is not limited to such a configuration.
  • two secondary nonlinear optical elements 11 and 12 having different phase matching wavelengths are prepared, and second harmonic lights 23 and 24 output from the secondary nonlinear optical elements 11 and 12 are combined.
  • Secondary nonlinear optical elements 11 and 12 have PPLN waveguides 110 and 120, respectively.
  • the phase matching wavelength of the PPLN waveguide 110 (second optical waveguide) is ⁇ 1
  • the phase matching wavelength of the PPLN waveguide 120 (third optical waveguide) is ⁇ 2.
  • the laser light sources 1 and 2, the EDFAs 3 and 4, the secondary nonlinear optical elements 11 and 12, and the multiplexer 5 constitute an excitation light generation section 10a.
  • a laser light source 1b that generates second harmonic light 23 with a wavelength near ⁇ 1/2 without using the PPLN waveguides 61, 110, and 120, and a second harmonic light 23 with a wavelength near ⁇ 2/2 are provided.
  • a laser light source 2b that generates harmonic light 24 may also be used.
  • the laser light sources 1b and 2b, the EDFAs 3 and 4, and the multiplexer 5 constitute an excitation light generation section 10b.
  • FIG. 5 is a block diagram showing the configuration of the optical parametric amplifier according to this embodiment.
  • the optical parametric amplifier of this embodiment includes laser light sources 1c_1 and 1c_2 that generate fundamental wave light with a wavelength near the phase matching wavelength ⁇ 1, laser light sources 2c_1 and 2c_2 that generate fundamental wave light with a wavelength near the phase matching wavelength ⁇ 2, and EDFA3c_1, 3c_2, 4c_1, 4c_2 that amplifies the fundamental wave light from the light sources 1c_1, 1c_2, 2c_1, 2c_2, a multiplexer 5c that combines the fundamental wave light amplified by the EDFA3c_1, 3c_2, 4c_1, 4c_2, and a second-order nonlinear It includes optical elements 6 and 7 and a bandpass filter 8.
  • the laser light sources 1 and 2, the EDFAs 3 and 4, the multiplexer 5, and the secondary nonlinear optical element 6 constitute an excitation light generation section 10c.
  • two PPLN waveguides 61 and 71 having two phase matching wavelengths ⁇ 1 and ⁇ 2 are used as in the first embodiment.
  • the phase matching wavelengths ⁇ 1 and ⁇ 2 are wavelengths at both ends of the band of the signal light to be amplified.
  • the PPLN waveguides 61 and 71 have a multi-stage periodic polarization inversion structure having two polarization inversion periods ⁇ ⁇ 1 and ⁇ ⁇ 2 .
  • the polarization inversion periods ⁇ ⁇ 1 and ⁇ ⁇ 2 satisfy the relationships of equations (2) and (3).
  • each laser light source 1c_1, 1c_2, 2c_1, and 2c_2 are used to generate fundamental wave light.
  • the EDFAs 3c_1, 3c_2, 4c_1, and 4c_2 amplify the fundamental light from the laser light sources 1c_1, 1c_2, 2c_1, and 2c_2 in order to obtain sufficient power to obtain a nonlinear optical effect.
  • the multiplexer 5c multiplexes the fundamental wave lights 30 to 33 amplified by the EDFAs 3c_1, 3c_2, 4c_1, and 4c_2.
  • the PPLN waveguide 61 having phase matching wavelengths ⁇ 1 and ⁇ 2 generates second harmonic light from the fundamental wave lights 30 to 33, respectively.
  • second harmonic lights 34 to 37 of four wavelengths are generated.
  • the laser light source 1c_1 generates fundamental wave light with a wavelength ⁇ 1_1 equal to the phase matching wavelength ⁇ 1
  • the laser light source 1c_2 generates fundamental wave light with a wavelength ⁇ 1_2 slightly detuned to the shorter wavelength side from the phase matching wavelength ⁇ 1.
  • the laser light source 2c_1 generates fundamental wave light with a wavelength ⁇ 2_1 equal to the phase matching wavelength ⁇ 2, and the laser light source 2c_2 generates fundamental wave light with a wavelength ⁇ 2_2 slightly detuned from the phase matching wavelength ⁇ 2 to the shorter wavelength side.
  • the PPLN waveguide 71 having phase matching wavelengths ⁇ 1 and ⁇ 2 performs parametric amplification of the signal light group 20 using the second harmonic lights 34 to 37 outputted from the PPLN waveguide 61 as excitation light.
  • FIG. 6 shows the amplification band in the configuration of this embodiment.
  • the phase matching wavelength ⁇ 1 of the PPLN waveguides 61 and 71 is 1520 nm, and the phase matching wavelength ⁇ 2 is 1625 nm.
  • As the PPLN waveguide 61 a 20 mm long PPLN waveguide having a band for second harmonics having a wavelength of 0.4 nm or more was used to convert four fundamental wave lights into second harmonic lights at once.
  • the amplification band of the PPLN waveguide 71 is a 3 dB band centered on the phase matching wavelength ⁇ 1 with a width of about 60 nm, as shown by 600 in FIG. 6, and is a flat band centered on the wavelength ⁇ 1. .
  • the shortwave side component of the signal light group 20 is amplified using the second harmonic light of wavelength ⁇ 1_2/2 generated from the fundamental wave light of wavelength ⁇ 1_2 as excitation light.
  • the amplification band of the PPLN waveguide 71 is wider than that in the case where the second harmonic light of wavelength ⁇ 1_1/2 is used as the pumping light, although the gain near the phase matching wavelength ⁇ 1 decreases as shown by 601 in FIG. Gains can be obtained up to.
  • the amplification band of the PPLN waveguide 71 is a 3 dB band centered on the phase matching wavelength ⁇ 2 with a width of about 60 nm, as shown by 602 in FIG. 6, and is a flat band centered on the wavelength ⁇ 2. .
  • the long-wave side component of the signal light group 20 is amplified using the second harmonic light of wavelength ⁇ 2_2/2 generated from the fundamental wave light of wavelength ⁇ 2_2 as excitation light.
  • the amplification band of the PPLN waveguide 71 is wider than that in the case where the second harmonic light of wavelength ⁇ 2_1/2 is used as the pumping light, although the gain near the phase matching wavelength ⁇ 2 decreases as shown by 603 in FIG. Gains can be obtained up to.
  • This embodiment aims to make the composite band of four second harmonic pump lights broadband and flat by utilizing the characteristics of the amplification band described above.
  • 604 indicates the gain of the entire amplified signal light group.
  • a wide amplification band with flatness within 1 dB is realized in a band with a width of more than 100 nm from wavelengths 1520 nm to 1625 nm.
  • the signal lights are generally wavelength-converted using different wavelengths of the second harmonic pump lights, so if the same signal light is converted However, the wavelength of the converted light differs for each second harmonic excitation light. Therefore, the converted lights with shifted wavelengths overlap, causing interference that destroys the original signal information.
  • the purpose of this embodiment is only parametric amplification of signal light, there is no problem as described above even if a plurality of different second harmonic pump lights are used, and the phase information of the signal is maintained. optical amplification is possible.
  • broadband optical amplification can be achieved.
  • a wavelength demultiplexer is not required, which not only reduces the number of components, but also suppresses excessive loss, which optical parametric amplifiers inherently have. Amplification with a high noise figure becomes possible, and broadband and low-noise optical amplification becomes possible.
  • a plurality of laser light sources 1c_1 and 1c_2 that generate fundamental wave light with a wavelength near ⁇ 1 and a plurality of laser light sources 2c_1 and 2c_2 that generate fundamental wave light with a wavelength near ⁇ 2 four basic light sources are provided.
  • wave light is used, a larger number of light sources may be used, and there is no need to equalize the number of light sources on the short wave side and the long wave side.
  • independent light sources are used in this embodiment, a plurality of fundamental wave lights may be generated using an optical modulator or the like.
  • the excitation light generation section having the configuration shown in FIG. 3 may be applied to this embodiment.
  • EDFA 3 a plurality of EDFAs 4 that amplify the excitation light from the laser light source 2, and a plurality of second-order nonlinear optical elements 11 that have a phase matching wavelength ⁇ 1 and generate second harmonic light from the fundamental wave light amplified by the EDFA 3.
  • a plurality of second-order nonlinear optical elements 12 having a phase matching wavelength ⁇ 2 and generating second harmonic light from the fundamental wave light amplified by the EDFA 4, and second harmonic light generated by the second-order nonlinear optical element 11.
  • a multiplexer 5 that multiplexes the second harmonic light generated by the second-order nonlinear optical element 12 may be provided.
  • the excitation light generation section having the configuration shown in FIG. 4 may be applied to this embodiment.
  • a plurality of laser light sources 1b that generate excitation light with a wavelength around ⁇ 1/2, a plurality of laser light sources 2b that generate excitation light with a wavelength around ⁇ 2/2, and excitation light from the laser light source 1b are used. It is sufficient to provide a plurality of EDFAs 3 that amplify the excitation light and a plurality of EDFAs 4 that amplify the excitation light from the laser light source 2b, and combine the excitation light amplified by the EDFAs 3 and 4 using the multiplexer 5.
  • phase matching wavelengths ⁇ 1 and ⁇ 2 were set to 1520 nm and 1625 nm, but the present invention is not limited to these wavelengths, and any phase matching wavelengths ⁇ 1 and ⁇ 2 can be set. .
  • LiNbO 3 was used as the nonlinear optical crystal constituting the optical waveguide of the second-order nonlinear optical element, but the invention is not limited to this, and LiTaO 3 or LiNb (x) Ta (1 ⁇ x) O 3 (0 ⁇ x ⁇ 1) may also be used. Furthermore, a nonlinear optical crystal in which at least one element among Mg, Zn, Sc, and In is added to LiNbO 3 , LiTaO 3 , or LiNb (x) Ta (1-x) O 3 may be used.
  • a first optical waveguide having two phase matching wavelengths ⁇ 1 and ⁇ 2 ( ⁇ 1 ⁇ 2) and configured to perform parametric amplification of a group of signal lights, and input to the first optical waveguide.
  • ⁇ 1 ⁇ si ⁇ 2 and the excitation light generation unit generates excitation light with one or more wavelengths near ⁇ 1/2 and excitation light with one or more wavelengths around ⁇ 2/2.
  • the first optical waveguide is made of a nonlinear optical crystal having a periodic polarization structure having two polarization inversion periods ⁇ ⁇ 1 and ⁇ ⁇ 2 ;
  • the refractive index of light with wavelength ⁇ 1/2 in the optical waveguide is n ⁇ 1/2
  • the refractive index of light with wavelength ⁇ 2/2 is n ⁇ 2/2
  • the refractive index of light with wavelength ⁇ 1 is n ⁇ 1
  • the refractive index of light with wavelength ⁇ 2 is n ⁇ 1
  • the pumping light generation section includes one or more first light beams configured to generate fundamental wave light having one or more wavelengths near the phase matching wavelength ⁇ 1.
  • a light source one or more second light sources configured to generate fundamental wave light of one or more wavelengths near the phase matching wavelength ⁇ 2, and the fundamental wave light generated by the first light source and the first light source.
  • a multiplexer configured to multiplex the fundamental wave light generated by the two light sources; and a multiplexer configured to multiplex the fundamental wave light generated by the two light sources; and a second optical waveguide configured to generate wave light, the second optical waveguide being made of a nonlinear optical crystal having a periodic polarization inversion structure having the polarization inversion periods ⁇ ⁇ 1 and ⁇ ⁇ 2 , Second harmonic light generated by the second optical waveguide is input to the first optical waveguide as excitation light.
  • the pumping light generation section includes one or more first light sources configured to generate pumping light having one or more wavelengths near the ⁇ 1/2. and one or more second light sources configured to generate excitation light of one or more wavelengths near ⁇ 2/2, and the excitation light generated by the first light source and the second and a multiplexer configured to multiplex the excitation light generated by the light source, and input the excitation light multiplexed by the multiplexer into the first optical waveguide.
  • the pumping light generation unit includes one or more first wavelength lights configured to generate fundamental wave light having one or more wavelengths near the phase matching wavelength ⁇ 1.
  • a light source one or more second light sources configured to generate fundamental wave light of one or more wavelengths near the phase matching wavelength ⁇ 2, and one or more second light sources having the phase matching wavelength ⁇ 1, one or more second optical waveguides configured to generate second harmonic light from the fundamental light generated by the first light source; one or more third optical waveguides configured to generate second harmonic light from the fundamental light generated by the light source; second harmonic light generated by the second optical waveguide and the third harmonic light; and a multiplexer configured to multiplex the second harmonic light generated by the optical waveguide, and the second optical waveguide has a periodic polarization inversion structure having the polarization inversion period ⁇ ⁇ 1 .
  • the third optical waveguide is made of a nonlinear optical crystal having a periodic polarization inversion structure having the polarization inversion period ⁇ ⁇ 2 , and the third optical waveguide excites the second harmonic light multiplexed by the multiplexer.
  • the light is input to the first optical waveguide as light.
  • the present invention can be applied to technology for amplifying optical signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

光パラメトリック増幅器は、2つの位相整合波長λ1,λ2(λ1<λ2)を有し、信号光群20のパラメトリック増幅を行うPPLN導波路(71)と、PPLN導波路(71)に入力する励起光を生成する励起光生成部(10)とを備える。位相整合波長λ1,λ2は、信号光群の波長λsi(i=1,2,3・・・・)に対して、λ1<λsi<λ2の関係を満たす。励起光生成部(10)は、λ1/2近傍の波長の励起光と、λ2/2近傍の波長の励起光とを生成してPPLN導波路(71)に入力する。PPLN導波路(71)は、2つの分極反転周期Λλ1,Λλ2を有する周期分極反転構造を有する非線形光学結晶からなる。

Description

光パラメトリック増幅器
 本発明は、光通信システムやレーザ装置において用いられる光パラメトリック増幅器に関するものである。
 光通信システムにおいては、光ファイバを伝搬することにより減衰した信号を中継するために、エルビューム添加光ファイバ増幅器(EDFA:Erbium-Doped Fiber Amplifier)が広く用いられている。EDFAは、エルビュームを添加した光ファイバ(EDF:Erbium-Doped Fiber)に励起光を入射し、EDF中の誘導放出により入射光を増幅する。
 EDFAが実用化されるまでは、減衰した光を一旦電気信号に変換して、デジタル信号を識別した後に、再び電気信号を光信号に変換する方法が用いられてきた。この光―電気―光の変換を行うためには、多くの光部品と電気部品が必要となり、光通信の中継コストを大きなものにしてきた。
 しかし、EDFAの実用化により、光信号を光のまま増幅することが可能になり、複数の波長に別々の情報を載せて伝送する波長多重(WDM:Wavelength Division Multiplexing)の信号を一括して増幅することが可能になった。このため、光信号の増幅、中継を簡単な構成で行うことが可能になり、光中継のコストを著しく低減することができる。特に光信号を長距離伝送する光通信ネットワークは、EDFAを使用することを前提に全体のシステムが設計されていると言っても過言ではない。
 近年の情報通信技術サービスの多様化により、通信ネットワークのバックボーンを支える光通信システムには、伝送容量のさらなる増大が求められている。シャノンの通信理論によれば、単位周波数帯域あたりの伝送容量の比率で定義される周波数利用効率は、信号対雑音(S/N)比に対してlog(1+S/N)となる。このため、S/N比の上限が、原理的な伝送容量の上限を決定してしまう。光通信の受信機におけるS/N比は、いわゆるショット雑音が支配的になる条件下では、光信号のパワーに比例する。したがって、周波数利用効率を高めるためには、高い光パワーで伝送を行うことが原理的には理にかなっている。
 しかしながら、現実には光通信の伝送媒体である光ファイバには、非線形光学効果が存在する。必要以上に伝送パワーを大きくすると、非線形光学効果の影響により、かえって光信号のS/N比が劣化する現象が指摘されている。このS/N比の劣化は、非線形シャノン限界と呼ばれており、光通信システムの伝送容量の上限を制限しかねない現象として議論されている。
 上述のように非線形シャノン限界により、光通信システムにおける周波数利用効率には原理的な上限が見え始めている。通信容量をさらに増大させるためには、光通信に用いる周波数帯域を拡大することが本質的な課題となる。
 しかしながら、上述のEDFAを使用する光通信システムでは、依然として以下のような問題が存在する。現在の光通信システムで広く用いられているEDFAで増幅できる波長帯域は、Cバンド(1530-1565nm)およびLバンド(1565-1625nm)に限られている。したがって、現在の光通信システムは、これらの波長帯域の利用を前提に構築されている。光ファイバ自体の透明波長帯域は非常に広いため、C,Lバンド以外の波長帯域を用いることができれば、光通信の伝送容量の大幅拡大が可能になる。
 レーザ媒質に希土類元素を用いたEDFAのような光増幅器は、希土類元素のエネルギー準位間の遷移を用いているため、増幅できる波長域の選択肢には限りがある。このような制限を受けない光増幅を実現する方法としては、2次ないし3次の非線形光学媒質を用いたパラメトリック増幅を用いる方法がある。3次の非線形光学媒質としては、光ファイバ中の四光波混合を利用した例が代表的なものである。しかし、光ファイバの非線形光学効果は、上述のように光信号のS/N比を劣化させる原因にもなり得る。このため、3次の非線形光学媒質を用いるものは、低雑音の光増幅器としては問題がある。
 一方、2次の非線形光学媒質としては、周期分極反転ニオブ酸リチウム(PPLN:Periodically Poled Lithium Niobate)からなる光導波路を用いる例が代表的なものである。例えば非特許文献1には、PPLNによる2次の非線形光学効果である差周波発生を用いて、広帯域な光増幅動作が可能なことが示されている。PPLNを用いる方法では、3次の非線形光学効果が無視できるため、非線形光学効果による信号品質の劣化はほぼ無いと考えて良い。
 図7にPPLN導波路等の二次非線形光学媒質を用いた従来の光パラメトリック増幅器および波長変換器の基本構成を示す。この構成は非特許文献2に開示されている。従来の構成では、同一の位相整合波長(1550nm)を有する2つの二次非線形光学素子100,101を用いる。二次非線形光学素子100,101は、それぞれPPLN導波路1000,1010を備える。光通信に用いられているレーザ光源102は、1550nm帯の基本波光を生成する。EDFA103は、非線形光学効果を得るのに十分なパワーを得るために、基本波光を増幅する。二次非線形光学素子100は、第二高調波発生(SHG:Second Harmonic Generation)用の素子であり、増幅された基本波光200から第二高調波光を発生させる。
 二次非線形光学素子101は、差周波発生(DFG:Difference Frequency Generation)用の素子であり、二次非線形光学素子100から出力された第二高調波光204を励起光として、外部から入力された信号光203の非縮退パラメトリック増幅を行う。この時同時に、DFG過程により、信号光と励起光の周波数の差に応じた波長変換光(アイドラ光)も生成される。図7の構成は、二次非線形光学素子101の出力側から、増幅された信号光のみを取り出せば光増幅器として機能し、波長変換光のみを取り出せば波長変換器として機能する。
 図8は、従来の光パラメトリック増幅過程およびDFG帯域を説明する図である。ここでは、DFG過程を用いて説明するが、光パラメトリック増幅過程においても原理は同様である。図8の(b)の200は、単一のレーザ光源から出力される単一波長の基本波光を示している。図8の(a)の201はPPLN導波路のSHGに対する位相整合曲線を示し、202はPPLN導波路のDFGに対する位相整合曲線を示し、203は信号光を示し、205は変換光を示している。PPLN導波路のSHGに対する位相整合帯域は、DFGに対する位相整合帯域よりも狭いが、基本波光の線幅よりも十分広い。
 ここで、基本波の波長λ0(周波数ω0)を1545nm、励起光の波長λp(周波数2ω0)を772.5nmとした場合の、PPLN導波路の波長変換帯域について述べる。PPLN導波路に励起光および信号光を入力することで、DFG過程により、変換光が生成される。例えば信号光の波長λs(周波数ωs)を1540nmとすれば、2ω0-ωsにより、波長1550nmの変換光が生成される。図8の(a)に示すように、基本波の波長λ0を中心として信号光を波長軸上で折り返した形で変換光が生成される。
 PPLN導波路中では、励起光と信号光と変換光の3波の間で擬似位相整合条件が満たされている。つまり、導波路中の励起光、信号光、変換光の実効屈折率をそれぞれnp、ns、ncとすると、PPLN導波路は、式(1)を満たす反転周期Λの分極反転構造を有する。
 np/λp-ns/λs-nc/λc=1/Λ     ・・・(1)
 信号光の波長を変化させても、周波数2ω0-ωsの変換光と励起光との間で、式(1)を満たす限りは同じ変換効率が得られる。具体的には、例えば信号光の波長λs(周波数ωs)を1539nmとすれば、2ω0-ωsにより、波長1551nmの変換光が生成される。この時、信号光の実効屈折率nsおよび変換光の実効屈折率ncも変化するが、材料の分散によりnsが大きくなった分、ncが小さくなることで信号光の波長を変えても式(1)を満たすことができる。その結果、PPLN導波路を用いたパラメトリック増幅器は、図8の(a)に示すような広い波長変換帯域を得ることができる。
 材料の分散は線形ではないことから、信号光の実効屈折率nsの増加量と変換光の実効屈折率ncの減少量が完全に同一ではなく、徐々に変換効率が低下していくことで波長変換帯域は制限を受ける。しかし、基本波光の波長(この例では1545nm)と位相整合波長とを合わせた場合には、PPLN導波路長を45mmとすると、基本波光の波長を中心として約60nm程度の帯域を得ることができ、一般的なEDFAの帯域よりも広帯域な増幅ができる。さらには、非特許文献1に開示されているように、位相整合波長と励起光波長とを離調することで、増幅帯域形状を変えることが可能であり、さらに広い帯域での光増幅が可能となる。
 しかしながら、PPLN導波路を用いた光パラメトリック増幅は、広帯域増幅が期待できるものの、以下に述べるような課題がある。
 上述したように、パラメトリック増幅過程においては信号光が増幅されるだけでなく、基本波光波長を中心として信号光波長を折り返した波長に変換光が発生する。したがって、PPLN導波路に入射する信号光群が基本波光波長に対して長波側と短波側の両方にある場合には、長波側の信号光に対する変換光が短波側の信号光波長帯に発生し、短波側の信号光に対する変換光が長波側の信号光波長帯に発生してしまうため、事前に信号光を分離する必要がある。
 このため、パラメトリック増幅帯域全域で信号光を増幅する場合には、図9に示すように入力信号光を波長分波器300を用いて短波側と長波側に分離する。図10Aの400は波長分波器300に入射する信号光を示し、図10Bの401は波長分波器300によって分離された短波側の信号光を示し、図10Cの402は波長分波器300によって分離された長波側の信号光を示す。
 短波側の信号光を二次非線形光学素子301に通し、長波側の信号光を二次非線形光学素子302に通すことで、増幅と変換光生成を行う。二次非線形光学素子301,302は、それぞれPPLN導波路3010,3020を備える。図10Dの403は二次非線形光学素子301によって生成された変換光を示し、図10Eの404は二次非線形光学素子302によって生成された変換光を示す。波長合波器303は、二次非線形光学素子301の出力光と二次非線形光学素子302の出力光とを合波する際に、二次非線形光学素子301から出力される変換光と二次非線形光学素子302から出力される変換光をカットする。こうして、図10Fに示すように、元の信号光のみが合波される。
 以上のように、PPLN導波路を用いた光パラメトリック増幅器は、広帯域増幅が可能であるものの、増幅帯域全域を使用する場合には図9のような構成が要求されてしまう。
 図9の構成の問題点は2点ある。第1の問題点は、長波側の信号光と短波側の信号光を別々に増幅する必要があるため、増幅に用いるPPLN導波路が2つ必要となってしまい、部品点数が増えて構成が複雑になってしまう点である。第2の問題点は、増幅前に信号光を波長分波器によって分離する必要があるため、波長分波器の透過損失分だけ増幅器の雑音指数が増えてしまう点である。雑音指数が増えてしまうと、帯域がどんなに広くても信号の品質を保ったまま遠くに信号を伝送することができなくなるため、増幅器の過剰雑音は可能な限り抑えなくてはならない。
M.H.Chou,I.Brener,K.R.Parameswaran and M.M.Fejer,"Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning",ELECTRONICS LETTERS,10th June 1999,Vol.35,No.12,pp.978-990 T.Umeki,O.Tadanaga,A.Takada,and M.Asobe,"Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides",Optics Express,Vol.19,No.7,pp.6326-6332,2011
 本発明は、上記課題を解決するためになされたもので、簡素な構成で、広帯域かつ低雑音な光増幅が可能な光パラメトリック増幅器を提供することを目的とする。
 本発明の光パラメトリック増幅器は、2つの位相整合波長λ1,λ2(λ1<λ2)を有し、信号光群のパラメトリック増幅を行うように構成された第1の光導波路と、前記第1の光導波路に入力する励起光を生成するように構成された励起光生成部とを備え、前記位相整合波長λ1,λ2は、前記信号光群の波長λsi(i=1,2,3・・・・)に対して、λ1<λsi<λ2の関係を満たすように設定され、前記励起光生成部は、λ1/2近傍の1乃至複数の波長の励起光と、λ2/2近傍の1乃至複数の波長の励起光とを生成して前記第1の光導波路に入力し、前記第1の光導波路は、2つの分極反転周期Λλ1,Λλ2を有する周期分極反転構造を有する非線形光学結晶からなり、前記第1の光導波路中の波長λ1/2の光の屈折率をnλ1/2、波長λ2/2の光の屈折率をnλ2/2、波長λ1の光の屈折率をnλ1、波長λ2の光の屈折率をnλ2としたとき、前記分極反転周期Λλ1,Λλ2は、nλ1/2/(λ1/2)-2nλ1/λ1=1/Λλ1、nλ2/2/(λ2/2)-2nλ2/λ2=1/Λλ2の関係を満たすことを特徴とするものである。
 本発明によれば、信号光帯域の両端に2つの位相整合波長λ1,λ2を有する第1の光導波路を用いて光パラメトリック増幅器を構成することにより、従来の光パラメトリック増幅器と比較して、波長分波器が不要となるため、部品点数が削減できるだけでなく、過剰な損失を抑えられるため、光パラメトリック増幅器が本来持つ雑音指数での増幅が可能となり、広帯域かつ低雑音な光増幅が可能となる。
図1は、本発明の第1の実施例に係る光パラメトリック増幅器の構成を示すブロック図である。 図2は、本発明の第1の実施例に係るPPLN導波路におけるパラメトリック増幅の動作を説明する図である。 図3は、本発明の第1の実施例に係る光パラメトリック増幅器の別の構成を示すブロック図である。 図4は、本発明の第1の実施例に係る光パラメトリック増幅器の別の構成を示すブロック図である。 図5は、本発明の第2の実施例に係る光パラメトリック増幅器の構成を示すブロック図である。 図6は、本発明の第2の実施例に係る光パラメトリック増幅器の増幅帯域を示す図である。 図7は、従来の光パラメトリック増幅器および波長変換器の基本構成を示すブロック図である。 図8は、従来の光パラメトリック増幅過程およびDFG帯域を説明する図である。 図9は、従来の光パラメトリック増幅器の別の構成を示すブロック図である。 図10A-図10Fは、図9の光パラメトリック増幅器における信号光、変換光および増幅された信号光のスペクトルを示す図である。
[第1の実施例]
 以下、本発明の実施例について図面を参照して説明する。本実施例では、2つの位相整合波長λ1,λ2(λ1<λ2)を有するPPLN等の2次非線形光学媒質を用い、2つの位相整合波長λ1,λ2と同じ波長の2つの第二高調波励起光を用いることで、信号光を短波側と長波側の2つに分波する必要がなく、過剰な光損失の無い広帯域な光増幅を実現可能な構成を提案する。複数の位相整合波長は、例えばPPLN導波路内の周期分極反転構造において複数の周期構造を多段に設けることで実現することができる。また、ある特性の周期から別の周期まで素子内で構造を徐々に変化させるチャープ型の周期構造を設けてもよい。また、基本周期構造に長周期の空間的な周期的位相変調を施すことで実現できるマルチQPM(Quasi-Phase-Matching)素子を用いてもよい。
 図1は本実施例に係る光パラメトリック増幅器の構成を示すブロック図である。光パラメトリック増幅器は、位相整合波長λ1近傍の波長の基本波光を生成するレーザ光源1と、位相整合波長λ2近傍の波長の基本波光を生成するレーザ光源2と、レーザ光源1,2からの基本波光を増幅するEDFA3,4と、EDFA3,4によって増幅された基本波光を合波する合波器5と、位相整合波長λ1,λ2を有し、合波器5の出力光から第二高調波光を発生させるPPLN導波路61(第2の光導波路)を備えた二次非線形光学素子6と、位相整合波長λ1,λ2を有し、信号光群20のパラメトリック増幅を行うPPLN導波路71(第1の光導波路)を備えた二次非線形光学素子7と、パラメトリック増幅後の信号光群を通過させ、波長変換光を除去するように通過帯域が設定されたバンドパスフィルタ8とを備えている。レーザ光源1,2とEDFA3,4と合波器5と二次非線形光学素子6とは、励起光生成部10を構成している。
 二次非線形光学素子6は、空間光学系60と、PPLN導波路61と、空間光学系62とを備える。二次非線形光学素子7は、空間光学系70と、PPLN導波路71と、空間光学系72とを備える。
 空間光学系60は、合波器5から入射した光をPPLN導波路61に導く。空間光学系62は、PPLN導波路61から出射した光を二次非線形光学素子6の出力ポートに導く。空間光学系70は、信号光群と励起光とを合波してPPLN導波路71に導く。空間光学系72は、PPLN導波路71から出射した光を二次非線形光学素子7の出力ポートに導く。
 本実施例では、2つの位相整合波長λ1,λ2(λ1<λ2)を有する2つのPPLN導波路61,71を用いている。位相整合波長λ1,λ2は、信号光群20の波長λsi(i=1,2,3・・・・)に対して、λ1<λsi<λ2の関係を満たす。すなわち、位相整合波長λ1,λ2は、信号光の帯域の両端の波長とする。
 PPLN導波路61は、2つの分極反転周期Λλ1,Λλ2を有する周期分極反転構造を有する非線形光学結晶(本実施例ではLiNbO)からなる。PPLN導波路71もPPLN導波路61と同じ構造を有する。分極反転周期Λλ1,Λλ2は、以下の関係を満たす。
 nλ1/2/(λ1/2)-2nλ1/λ1=1/Λλ1  ・・・(2)
 nλ2/2/(λ2/2)-2nλ2/λ2=1/Λλ2  ・・・(3)
 nλ1/2はPPLN導波路61,71中の波長λ1/2の光の屈折率、nλ2/2はPPLN導波路61,71中の波長λ2/2の光の屈折率、nλ1はPPLN導波路61,71中の波長λ1の光の屈折率、nλ2はPPLN導波路61,71中の波長λ2の光の屈折率である。
 レーザ光源1,2は、それぞれ波長λ1,λ2の基本波光を生成する。EDFA3,4は、非線形光学効果を得るのに十分なパワーを得るために、レーザ光源1,2からの基本波光を増幅する。合波器5は、EDFA3,4によって増幅された基本波光21,22を合波する。
 位相整合波長λ1,λ2を有するPPLN導波路61は、基本波光21,22からそれぞれ第二高調波光を発生させる。これにより、本実施例では、2波長の第二高調波光23,24が発生することになる。
 位相整合波長λ1,λ2を有するPPLN導波路71は、PPLN導波路61から出力された第二高調波光23,24を励起光として、信号光群20のパラメトリック増幅を行う。
 以下、PPLN導波路71におけるパラメトリック増幅の動作を図2を用いて説明する。本実施例では、PPLN導波路61,71の位相整合波長λ1を1530nm、位相整合波長λ2を1602nmとし、導波路長を40mmとする。図2の(a)に示すように、信号光群20の波長λsi(i=1,2,3・・・・)は、1530nmから1602nmまでの領域において密に並んでいるものとする。
 波長λ1,λ2の基本波光21,22から生成された第二高調波光23,24が励起光としてPPLN導波路71に入射する。波長λ1を中心とする3dB帯域と波長λ2を中心とする3dB帯域とをPPLN導波路71の増幅帯域とすると、それぞれの3dB帯域は約70nm程度の帯域である。
 信号光群20のうちの短波側の成分は、波長λ1/2=765nmの第二高調波光23を励起光として増幅される。信号光群20のうちの長波側の成分は、波長λ2/2=801nmの第二高調波光24を励起光として増幅される。これら増幅された信号光群全体の利得が等しくなるような合成帯域に位相整合波長λ1,λ2が設定されている。図2の(c)では、500は増幅された短波側の信号光の利得を示し、501は増幅された長波側の信号光の利得を示している。
 本実施例では2つの独立したレーザ光源1,2から生成された2つの第二高調波光を励起光として用いているが、パラメトリック増幅においては位相情報が保持されたまま信号光が増幅される。このため、信号光の利得帯域は、2つの第二高調波光による増幅帯域の重ね合わせとして得られる。図2の(c)では、502は増幅された信号光群全体の利得を示している。
 ここで重要になるのは、PPLN導波路71によるパラメトリック増幅に伴って発生する波長変換光が、信号光の帯域外に生成されることである。図2の(b)では、25は短波側の信号光に対して生成される波長変換光を示し、26は長波側の信号光に対して生成される波長変換光を示している。
 従来の構成のように信号光の帯域内に位相整合波長を有する二次非線形光学素子を使用する場合は、波長変換光が信号光の帯域内に発生してしまうため、干渉を避けるために事前に信号光を短波長側と長波長側に分離する必要があった。
 一方、本実施例では、信号光を分離する必要はない。このため、パラメトリック増幅を行う二次非線形光学素子は1つでよく、部品点数を削減することができる。また、本実施例では、増幅前に信号光を分離する波長分波器が不要となるため、波長分波器による過剰な損失が発生せず、光パラメトリック増幅器の雑音指数の劣化を抑えることができる。
 本実施例の光パラメトリック増幅器では、約70nmの波長範囲の信号光群に対して平坦な利得を得ることができており、パラメトリック増幅後の不要な波長変換光成分はバンドパスフィルタ8を用いることで除去することができる。その結果、本実施例では、簡易な構成で従来のEDFAの帯域の約2倍の広帯域増幅を実現することができる。
 以上のとおり、本実施例では、信号光帯域の両端に2つの位相整合波長λ1,λ2を有するPPLN導波路61,71を用いて光パラメトリック増幅器を構成している。本実施例によれば、従来の光パラメトリック増幅器と比較して、波長分波器が不要となるため、部品点数が削減できるだけでなく、過剰な損失を抑えられるために、光パラメトリック増幅器が本来持つ雑音指数での増幅が可能となり、広帯域かつ低雑音な光増幅が可能となる。
 なお、本発明は、信号光のパラメトリック増幅をシンプルな構成かつ低雑音で実現することを目的としており、波長変換光の利用を対象としていない。
 本実施例では、位相整合波長λ1,λ2を1530nm、1602nmとしたが、本発明は、これらの波長に限定されるものではなく、任意の位相整合波長λ1,λ2を設定することができる。また、本実施例では、位相整合波長λ1,λ2と同一波長の基本波光をレーザ光源1,2によって生成したが、基本波光の波長は、位相整合波長λ1,λ2と一致していなくてもよく、位相整合波長λ1,λ2の近傍であればよい。つまり、第二高調波励起光の波長は、λ1/2,λ2/2と一致していなくてもよく、λ1/2,λ2/2の近傍であればよい。
 また、本実施例では、2つの基本波光21,22を合波した後に、2つの位相整合波長λ1,λ2を有するPPLN導波路61を用いて2つの第二高調波光23,24を生成したが、本発明は、このような構成に限定されるものではない。
 例えば図3に示すように、異なる位相整合波長を有する二次非線形光学素子11,12を2つ用意し、二次非線形光学素子11,12から出力される第二高調波光23,24を合波器5によって合波する構成としてもよい。二次非線形光学素子11,12は、それぞれPPLN導波路110,120を有する。PPLN導波路110(第2の光導波路)の位相整合波長はλ1、PPLN導波路120(第3の光導波路)の位相整合波長はλ2である。この場合、レーザ光源1,2とEDFA3,4と二次非線形光学素子11,12と合波器5とは、励起光生成部10aを構成する。
 また、図4に示すようにPPLN導波路61,110,120を用いずに、λ1/2近傍の波長の第二高調波光23を生成するレーザ光源1bと、λ2/2近傍の波長の第二高調波光24を生成するレーザ光源2bとを用いてもよい。この場合、レーザ光源1b,2bとEDFA3,4と合波器5とは、励起光生成部10bを構成する。
[第2の実施例]
 次に、本発明の第2の実施例について説明する。第1の実施例では、信号光の波長域の外側に2つ位相整合波長λ1,λ2を有するPPLN導波路に対して、波長λ1,λ2の基本波光から生成した2つの第二高調波光を励起光として入力して広帯域な光パラメトリック増幅を実現していた。これに対して、本実施例は更なる広帯域化を実現する構成である。
 図5は本実施例に係る光パラメトリック増幅器の構成を示すブロック図である。本実施例の光パラメトリック増幅器は、位相整合波長λ1近傍の波長の基本波光を生成するレーザ光源1c_1,1c_2と、位相整合波長λ2近傍の波長の基本波光を生成するレーザ光源2c_1,2c_2と、レーザ光源1c_1,1c_2,2c_1,2c_2からの基本波光を増幅するEDFA3c_1,3c_2,4c_1,4c_2と、EDFA3c_1,3c_2,4c_1,4c_2によって増幅された基本波光を合波する合波器5cと、二次非線形光学素子6,7と、バンドパスフィルタ8とを備えている。レーザ光源1,2とEDFA3,4と合波器5と二次非線形光学素子6とは、励起光生成部10cを構成している。
 本実施例では、第1の実施例と同様に2つの位相整合波長λ1,λ2を有する2つのPPLN導波路61,71を用いている。位相整合波長λ1,λ2は、増幅する信号光の帯域の両端の波長とする。PPLN導波路61,71は、2つの分極反転周期Λλ1,Λλ2を有する多段構成の周期分極反転構造を有する。分極反転周期Λλ1,Λλ2は、式(2)、式(3)の関係を満たす。
 本実施例においては4つの第二高調波光を励起光として用いるため、レーザ光源1c_1,1c_2,2c_1,2c_2を4台用いて基本波光を生成する。EDFA3c_1,3c_2,4c_1,4c_2は、非線形光学効果を得るのに十分なパワーを得るために、レーザ光源1c_1,1c_2,2c_1,2c_2からの基本波光を増幅する。合波器5cは、EDFA3c_1,3c_2,4c_1,4c_2によって増幅された基本波光30~33を合波する。
 位相整合波長λ1,λ2を有するPPLN導波路61は、基本波光30~33からそれぞれ第二高調波光を発生させる。これにより、本実施例では、4波長の第二高調波光34~37が発生することになる。本実施例では、レーザ光源1c_1は位相整合波長λ1と等しい波長λ1_1の基本波光を生成し、レーザ光源1c_2は位相整合波長λ1から僅かに短波側に離調した波長λ1_2の基本波光を生成する。また、レーザ光源2c_1は位相整合波長λ2と等しい波長λ2_1の基本波光を生成し、レーザ光源2c_2は位相整合波長λ2から僅かに短波側に離調した波長λ2_2の基本波光を生成する。
 位相整合波長λ1,λ2を有するPPLN導波路71は、PPLN導波路61から出力された第二高調波光34~37を励起光として、信号光群20のパラメトリック増幅を行う。
 本実施例の構成における増幅帯域を図6に示す。本実施例では、PPLN導波路61,71の位相整合波長λ1を1520nm、位相整合波長λ2を1625nmとする。レーザ光源1c_1が生成する基本波光の波長λ1_1(=λ1)を1520nm、レーザ光源1c_2が生成する基本波光の波長λ1_2を1519.78nmとする。レーザ光源2c_1が生成する基本波光の波長λ2_1(=λ2)を1625nm、レーザ光源2c_2が生成する基本波光の波長λ2_2を1624.78nmとする。PPLN導波路61として、波長0.4nm以上の第二高調波に対する帯域を有する20mm長のPPLN導波路を用い、4つの基本波光を一括して第二高調波光に変換した。
 信号光群20のうちの短波側の成分は、波長λ1_1(=λ1)の基本波光から生成された波長λ1_1/2の第二高調波光を励起光として増幅される。この場合のPPLN導波路71の増幅帯域は、図6の600で示すように位相整合波長λ1を中心とする3dB帯域で約60nm程度の幅であり、波長λ1を中心とする平坦な帯域である。
 さらに、信号光群20のうちの短波側の成分は、波長λ1_2の基本波光から生成された波長λ1_2/2の第二高調波光を励起光として増幅される。この場合のPPLN導波路71の増幅帯域は、図6の601で示すように位相整合波長λ1近傍の利得が下がるものの、波長λ1_1/2の第二高調波光を励起光とする場合よりも広い帯域まで利得が得られる。
 信号光群20のうちの長波側の成分は、波長λ2_1(=λ2)の基本波光から生成された波長λ2_1/2の第二高調波光を励起光として増幅される。この場合のPPLN導波路71の増幅帯域は、図6の602で示すように位相整合波長λ2を中心とする3dB帯域で約60nm程度の幅であり、波長λ2を中心とする平坦な帯域である。
 さらに、信号光群20のうちの長波側の成分は、波長λ2_2の基本波光から生成された波長λ2_2/2の第二高調波光を励起光として増幅される。この場合のPPLN導波路71の増幅帯域は、図6の603で示すように位相整合波長λ2近傍の利得が下がるものの、波長λ2_1/2の第二高調波光を励起光とする場合よりも広い帯域まで利得が得られる。
 本実施例は、以上の増幅帯域の特性を利用して、4つの第二高調波励起光による合成帯域を広帯域かつ平坦な特性にすることを狙ったものである。図6では、604は増幅された信号光群全体の利得を示している。図6に示すとおり、本実施例では、波長1520nmから1625nmまでの幅100nmを超える帯域において1dB以内の平坦性の広帯域な増幅帯域が実現されている。
 複数の第二高調波励起光を用いてパラメトリック増幅を行う場合は、一般的にはそれぞれ異なる第二高調波励起光の波長で信号光が波長変換されるために、同じ信号光を変換した場合でも第二高調波励起光毎に変換光の波長が異なる。このため、波長のずれた変換光が重なり、元の信号情報を崩すような干渉を起こしてしまう。ただし、本実施例は、信号光のパラメトリック増幅のみを目的としているため、複数の異なる第二高調波励起光を用いていても上記のような問題はなく、信号の位相情報が保持されたままの光増幅が可能である。
 以上のとおり、本実施例では、信号光帯域の両端に2つの位相整合波長λ1,λ2を有するPPLN導波路61,71と複数の第二高調波励起光を用いることで、従来のEDFAと比べて広帯域な光増幅を実現できる。本実施例によれば、従来の光パラメトリック増幅器と比較して、波長分波器が不要となるため、部品点数が削減できるだけでなく、過剰な損失を抑えられるために、光パラメトリック増幅器が本来持つ雑音指数での増幅が可能となり、広帯域かつ低雑音な光増幅が可能となる。
 本実施例では、λ1近傍の波長の基本波光を生成する複数のレーザ光源1c_1,1c_2と、λ2近傍の波長の基本波光を生成する複数のレーザ光源2c_1,2c_2とを設けることにより、4つの基本波光を用いているが、さらに多数の光源を用いてもよく、短波側と長波側とで光源の数を揃える必要もない。また、本実施例では、独立した光源を用いているが、光変調器等を用いて複数の基本波光を生成してもよい。
 また、本実施例に、図3に示した構成の励起光生成部を適用してもよい。この場合には、λ1近傍の波長の基本波光を生成する複数のレーザ光源1と、λ2近傍の波長の基本波光を生成する複数のレーザ光源2と、レーザ光源1からの基本波光を増幅する複数のEDFA3と、レーザ光源2からの励起光を増幅する複数のEDFA4と、位相整合波長λ1を有し、EDFA3によって増幅された基本波光から第二高調波光を発生させる複数の二次非線形光学素子11と、位相整合波長λ2を有し、EDFA4によって増幅された基本波光から第二高調波光を発生させる複数の二次非線形光学素子12と、二次非線形光学素子11によって生成された第二高調波光と二次非線形光学素子12によって生成された第二高調波光とを合波する合波器5とを設けるようにすればよい。
 また、本実施例に、図4に示した構成の励起光生成部を適用してもよい。この場合には、λ1/2近傍の波長の励起光を生成する複数のレーザ光源1bと、λ2/2近傍の波長の励起光を生成する複数のレーザ光源2bと、レーザ光源1bからの励起光を増幅する複数のEDFA3と、レーザ光源2bからの励起光を増幅する複数のEDFA4とを設け、EDFA3,4によって増幅された励起光を合波器5によって合波すればよい。
 また、本実施例では、位相整合波長λ1,λ2を1520nm、1625nmとしたが、本発明は、これらの波長に限定されるものではなく、任意の位相整合波長λ1,λ2を設定することができる。
 また、第1、第2の実施例では、二次非線形光学素子の光導波路を構成する非線形光学結晶として、LiNbOを用いたが、これに限るものではなく、LiTaOまたはLiNb(x)Ta(1-x)(0≦x≦1)を用いてもよい。また、LiNbO、LiTaOまたはLiNb(x)Ta(1-x)に、Mg、Zn、Sc、Inのうち少なくとも1つの元素が添加された非線形光学結晶を用いてもよい。
 上記の実施例の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)2つの位相整合波長λ1,λ2(λ1<λ2)を有し、信号光群のパラメトリック増幅を行うように構成された第1の光導波路と、前記第1の光導波路に入力する励起光を生成するように構成された励起光生成部とを備え、前記位相整合波長λ1,λ2は、前記信号光群の波長λsi(i=1,2,3・・・・)に対して、λ1<λsi<λ2の関係を満たすように設定され、前記励起光生成部は、λ1/2近傍の1乃至複数の波長の励起光と、λ2/2近傍の1乃至複数の波長の励起光とを生成して前記第1の光導波路に入力し、前記第1の光導波路は、2つの分極反転周期Λλ1,Λλ2を有する周期分極反転構造を有する非線形光学結晶からなり、前記第1の光導波路中の波長λ1/2の光の屈折率をnλ1/2、波長λ2/2の光の屈折率をnλ2/2、波長λ1の光の屈折率をnλ1、波長λ2の光の屈折率をnλ2としたとき、前記分極反転周期Λλ1,Λλ2は、nλ1/2/(λ1/2)-2nλ1/λ1=1/Λλ1、nλ2/2/(λ2/2)-2nλ2/λ2=1/Λλ2の関係を満たす。
 (付記2)付記1記載の光パラメトリック増幅器において、前記励起光生成部は、前記位相整合波長λ1近傍の1乃至複数の波長の基本波光を生成するように構成された1乃至複数の第1の光源と、前記位相整合波長λ2近傍の1乃至複数の波長の基本波光を生成するように構成された1乃至複数の第2の光源と、前記第1の光源によって生成された基本波光と前記第2の光源によって生成された基本波光とを合波するように構成された合波器と、前記位相整合波長λ1,λ2を有し、前記合波器によって合波された基本波光から第二高調波光を発生させるように構成された第2の光導波路とから構成され、前記第2の光導波路は、前記分極反転周期Λλ1,Λλ2を有する周期分極反転構造を有する非線形光学結晶からなり、前記第2の光導波路によって生成された第二高調波光を励起光として前記第1の光導波路に入力する。
 (付記3)付記1記載の光パラメトリック増幅器において、前記励起光生成部は、前記λ1/2近傍の1乃至複数の波長の励起光を生成するように構成された1乃至複数の第1の光源と、前記λ2/2近傍の1乃至複数の波長の励起光を生成するように構成された1乃至複数の第2の光源と、前記第1の光源によって生成された励起光と前記第2の光源によって生成された励起光とを合波するように構成された合波器とから構成され、前記合波器によって合波された励起光を前記第1の光導波路に入力する。
 (付記4)付記1記載の光パラメトリック増幅器において、前記励起光生成部は、前記位相整合波長λ1近傍の1乃至複数の波長の基本波光を生成するように構成された1乃至複数の第1の光源と、前記位相整合波長λ2近傍の1乃至複数の波長の基本波光を生成するように構成された1乃至複数の第2の光源と、前記位相整合波長λ1を有し、前記1乃至複数の第1の光源によって生成された基本波光から第二高調波光を発生させるように構成された1乃至複数の第2の光導波路と、前記位相整合波長λ2を有し、前記1乃至複数の第2の光源によって生成された基本波光から第二高調波光を発生させるように構成された1乃至複数の第3の光導波路と、前記第2の光導波路によって生成された第二高調波光と前記第3の光導波路によって生成された第二高調波光とを合波するように構成された合波器とから構成され、前記第2の光導波路は、前記分極反転周期Λλ1を有する周期分極反転構造を有する非線形光学結晶からなり、前記第3の光導波路は、前記分極反転周期Λλ2を有する周期分極反転構造を有する非線形光学結晶からなり、前記合波器によって合波された第二高調波光を励起光として前記第1の光導波路に入力する。
 本発明は、光信号を増幅する技術に適用することができる。
 1,1b,1c_1,1c_2,2,2b,2c_1,2c_2…レーザ光源、3,3c_1,3c_2,4,4c_1,4c_2…EDFA、5,5c…合波器、6,7,11,12…二次非線形光学素子、8…バンドパスフィルタ、10,10a~10c…励起光生成部、60,62,70,72…空間光学系、61,71,110,120…PPLN導波路。

Claims (5)

  1.  2つの位相整合波長λ1,λ2(λ1<λ2)を有し、信号光群のパラメトリック増幅を行うように構成された第1の光導波路と、
     前記第1の光導波路に入力する励起光を生成するように構成された励起光生成部とを備え、
     前記位相整合波長λ1,λ2は、前記信号光群の波長λsi(i=1,2,3・・・・)に対して、λ1<λsi<λ2の関係を満たすように設定され、
     前記励起光生成部は、λ1/2近傍の1乃至複数の波長の励起光と、λ2/2近傍の1乃至複数の波長の励起光とを生成して前記第1の光導波路に入力し、
     前記第1の光導波路は、2つの分極反転周期Λλ1,Λλ2を有する周期分極反転構造を有する非線形光学結晶からなり、前記第1の光導波路中の波長λ1/2の光の屈折率をnλ1/2、波長λ2/2の光の屈折率をnλ2/2、波長λ1の光の屈折率をnλ1、波長λ2の光の屈折率をnλ2としたとき、前記分極反転周期Λλ1,Λλ2は、nλ1/2/(λ1/2)-2nλ1/λ1=1/Λλ1、nλ2/2/(λ2/2)-2nλ2/λ2=1/Λλ2の関係を満たすことを特徴とする光パラメトリック増幅器。
  2.  請求項1記載の光パラメトリック増幅器において、
     前記励起光生成部は、
     前記位相整合波長λ1近傍の1乃至複数の波長の基本波光を生成するように構成された1乃至複数の第1の光源と、
     前記位相整合波長λ2近傍の1乃至複数の波長の基本波光を生成するように構成された1乃至複数の第2の光源と、
     前記第1の光源によって生成された基本波光と前記第2の光源によって生成された基本波光とを合波するように構成された合波器と、
     前記位相整合波長λ1,λ2を有し、前記合波器によって合波された基本波光から第二高調波光を発生させるように構成された第2の光導波路とから構成され、
     前記第2の光導波路は、前記分極反転周期Λλ1,Λλ2を有する周期分極反転構造を有する非線形光学結晶からなり、
     前記第2の光導波路によって生成された第二高調波光を励起光として前記第1の光導波路に入力することを特徴とする光パラメトリック増幅器。
  3.  請求項1記載の光パラメトリック増幅器において、
     前記励起光生成部は、
     前記λ1/2近傍の1乃至複数の波長の励起光を生成するように構成された1乃至複数の第1の光源と、
     前記λ2/2近傍の1乃至複数の波長の励起光を生成するように構成された1乃至複数の第2の光源と、
     前記第1の光源によって生成された励起光と前記第2の光源によって生成された励起光とを合波するように構成された合波器とから構成され、
     前記合波器によって合波された励起光を前記第1の光導波路に入力することを特徴とする光パラメトリック増幅器。
  4.  請求項1記載の光パラメトリック増幅器において、
     前記励起光生成部は、
     前記位相整合波長λ1近傍の1乃至複数の波長の基本波光を生成するように構成された1乃至複数の第1の光源と、
     前記位相整合波長λ2近傍の1乃至複数の波長の基本波光を生成するように構成された1乃至複数の第2の光源と、
     前記位相整合波長λ1を有し、前記1乃至複数の第1の光源によって生成された基本波光から第二高調波光を発生させるように構成された1乃至複数の第2の光導波路と、
     前記位相整合波長λ2を有し、前記1乃至複数の第2の光源によって生成された基本波光から第二高調波光を発生させるように構成された1乃至複数の第3の光導波路と、
     前記第2の光導波路によって生成された第二高調波光と前記第3の光導波路によって生成された第二高調波光とを合波するように構成された合波器とから構成され、
     前記第2の光導波路は、前記分極反転周期Λλ1を有する周期分極反転構造を有する非線形光学結晶からなり、
     前記第3の光導波路は、前記分極反転周期Λλ2を有する周期分極反転構造を有する非線形光学結晶からなり、
     前記合波器によって合波された第二高調波光を励起光として前記第1の光導波路に入力することを特徴とする光パラメトリック増幅器。
  5.  請求項1乃至4のいずれか1項に記載の光パラメトリック増幅器において、
     前記非線形光学結晶は、LiNbO、LiTaOまたはLiNb(x)Ta(1-x)(0≦x≦1)のいずれかの材料から構成されるか、これらの材料のいずれかにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として加えた材料から構成されることを特徴とする光パラメトリック増幅器。
PCT/JP2022/024665 2022-06-21 2022-06-21 光パラメトリック増幅器 WO2023248328A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024665 WO2023248328A1 (ja) 2022-06-21 2022-06-21 光パラメトリック増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024665 WO2023248328A1 (ja) 2022-06-21 2022-06-21 光パラメトリック増幅器

Publications (1)

Publication Number Publication Date
WO2023248328A1 true WO2023248328A1 (ja) 2023-12-28

Family

ID=89379506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024665 WO2023248328A1 (ja) 2022-06-21 2022-06-21 光パラメトリック増幅器

Country Status (1)

Country Link
WO (1) WO2023248328A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133820A (ja) * 1999-11-08 2001-05-18 Oki Electric Ind Co Ltd 波長変換装置、擬似位相整合型波長変換素子、および、擬似位相整合型波長変換素子の使用方法
JP2004020870A (ja) * 2002-06-14 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子および波長変換装置
US20050146780A1 (en) * 2002-08-30 2005-07-07 Mckinstrie Colin J. Parametric amplification using two pump waves
US20050280886A1 (en) * 2000-05-24 2005-12-22 Ming-Hsien Chou Multiple channel optical frequency mixers for all-optical signal processing
JP2015505066A (ja) * 2011-12-14 2015-02-16 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 周波数ドリフトを含むパルスの光パラメトリック増幅のための方法およびその装置
JP2020144164A (ja) * 2019-03-04 2020-09-10 日本電信電話株式会社 光信号処理装置
WO2020240697A1 (ja) * 2019-05-28 2020-12-03 日本電信電話株式会社 光信号処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133820A (ja) * 1999-11-08 2001-05-18 Oki Electric Ind Co Ltd 波長変換装置、擬似位相整合型波長変換素子、および、擬似位相整合型波長変換素子の使用方法
US20050280886A1 (en) * 2000-05-24 2005-12-22 Ming-Hsien Chou Multiple channel optical frequency mixers for all-optical signal processing
JP2004020870A (ja) * 2002-06-14 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子および波長変換装置
US20050146780A1 (en) * 2002-08-30 2005-07-07 Mckinstrie Colin J. Parametric amplification using two pump waves
JP2015505066A (ja) * 2011-12-14 2015-02-16 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 周波数ドリフトを含むパルスの光パラメトリック増幅のための方法およびその装置
JP2020144164A (ja) * 2019-03-04 2020-09-10 日本電信電話株式会社 光信号処理装置
WO2020240697A1 (ja) * 2019-05-28 2020-12-03 日本電信電話株式会社 光信号処理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI TAKAYUKI; SHIMIZU SHIMPEI; NAKAMURA MASANORI; UMEKI TAKESHI; KAZAMA TAKUSHI; KASAHARA RYOICHI; HAMAOKA FUKUTARO; NAGATAN: "Wide-Band Inline-Amplified WDM Transmission Using PPLN-Based Optical Parametric Amplifier", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 39, no. 3, 19 November 2020 (2020-11-19), USA, pages 787 - 794, XP011833297, ISSN: 0733-8724, DOI: 10.1109/JLT.2020.3039192 *
UMEKI T., KAZAMA T., KOBAYASHI T., ENBUTSU K., TADANAGA O., TAKENOUCHI H., KASAHARA R., MIYAMOTO Y.: "Towards practical implementation of optical parametric amplifiers based on PPLN waveguides", OPTICAL FIBER COMMUNICATION CONFERENCE, OSA, WASHINGTON, D.C., 1 January 2018 (2018-01-01), Washington, D.C., pages M3E.2, XP093121004, ISBN: 978-1-943580-38-5, DOI: 10.1364/OFC.2018.M3E.2 *

Similar Documents

Publication Publication Date Title
US8773753B2 (en) Optical amplifier and optical amplifying apparatus
US7164526B2 (en) Parametric amplification using two pump waves
US6101024A (en) Nonlinear fiber amplifiers used for a 1430-1530nm low-loss window in optical fibers
JP7189470B2 (ja) 光信号処理装置
JP7153271B2 (ja) 光信号処理装置
US6751421B1 (en) Optical fiber communication system employing wavelength converter for broadband transmission
JP6733407B2 (ja) 光伝送システム、光伝送方法及び複素共役光生成部
JP6348447B2 (ja) 光増幅装置およびそれを用いた光伝送システム
Gordienko et al. Unwanted four-wave mixing in fibre optical parametric amplifiers
JP2004184524A (ja) 光モジュール、光ファイバおよび光伝送システム
WO2023248328A1 (ja) 光パラメトリック増幅器
Pakarzadeh et al. Investigation of two-pump fiber optical parametric amplifiers for a broadband and flat gain with a low pump-to-signal noise transfer
US7102813B2 (en) Continuous wave pumped parallel fiber optical parametric amplifier
JP6533171B2 (ja) 光コム発生装置
JP4602923B2 (ja) 波長変換器
JP2015161827A (ja) 光増幅装置
JP7328599B2 (ja) 光増幅装置
JP4131833B2 (ja) 光増幅装置およびそれを用いた光中継伝送方式
US20240250768A1 (en) Optical amplification system, optical amplification apparatus and optical amplification method
Reshak et al. Single Brillouin frequency shifted S-band multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier in ring cavity
US20240103338A1 (en) Wavelength converter and optical transmission system
Shimizu et al. 8.375-THz optical amplification for wideband WDM transmission by optical parametric amplifier using cascaded PPLN modules with complementary gain profiles
JP2005235928A (ja) 光増幅器
Huang et al. Phase Conjugated Mode Conversion Enabled by Two-stage Cascaded Four-wave Mixing Processes
Al-Dalwash Widely fiber laser comb bandwidth based on four wave mixing process assisted by multiwavelength Brillouin erbium fiber laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947891

Country of ref document: EP

Kind code of ref document: A1