WO2023248272A1 - 電子顕微鏡およびその画像撮影方法 - Google Patents

電子顕微鏡およびその画像撮影方法 Download PDF

Info

Publication number
WO2023248272A1
WO2023248272A1 PCT/JP2022/024470 JP2022024470W WO2023248272A1 WO 2023248272 A1 WO2023248272 A1 WO 2023248272A1 JP 2022024470 W JP2022024470 W JP 2022024470W WO 2023248272 A1 WO2023248272 A1 WO 2023248272A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
electron
photoelectric film
passage hole
differential exhaust
Prior art date
Application number
PCT/JP2022/024470
Other languages
English (en)
French (fr)
Inventor
英郎 森下
卓 大嶋
達朗 井手
洋一 小瀬
大地 高根
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/024470 priority Critical patent/WO2023248272A1/ja
Publication of WO2023248272A1 publication Critical patent/WO2023248272A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel

Definitions

  • the present invention relates to an electron microscope as an electron beam application device equipped with an electron gun using a photoelectric film, and an image capturing method thereof.
  • a scanning electron microscope irradiates a sample with a focused electron beam (an electron beam can also be referred to as an electron beam), detects the emitted electrons, and displays the signal intensity at each irradiation point. ), it is possible to measure the surface morphology and composition distribution of a sample.
  • a high-brightness electron source is required.
  • Field emission (FE) electron sources which utilize electrons emitted by applying a strong electric field to the tip of a needle-shaped electrode, are widely used as high-brightness electron sources for SEMs.
  • the energy width of the electron beam emitted from an electron source using a photoelectric film with a high-brightness NEA surface is smaller than that of a cold cathode type FE electron source, so the energy is approximately 1 keV or less, which is especially advantageous for observing the sample electrode surface. It has the feature of providing high observation performance under the following irradiation conditions.
  • the vacuum level becomes lower than the energy level at the bottom of the conduction band of the photoelectric film.
  • GaAs gallium arsenide
  • the angular range of electrons emitted from the NEA surface of a photoelectric film composed of p-type GaAs is small, approximately 10 degrees or less, depending on the effective mass of electrons in GaAs.
  • an electron gun that uses the NEA surface of a photoelectric film made of p-type GaAs consists of a differential pumping structure with several stages, and the emitted electron beam passes through an aperture placed between the differential pumping chambers. The trajectory is adjusted accordingly. This allows the electron beam emitted from the NEA surface to be used as an electron microscope probe.
  • the electron beam passing holes of the differential exhaust aperture placed on the path of the electron beam serving as the probe are all placed at axially symmetrical positions, so that there is no space between the sample and the electron source. There exists a path through which gas molecules can pass unobstructed. In this case, gas molecules flow into the electron gun chamber from the sample chamber, which has a relatively low degree of vacuum. When gas molecules reach the vicinity of the electron emitting part of the photoelectric film, the NEA surface deteriorates due to gas adsorption to the photoelectric film.
  • the NEA surface deteriorates due to a mechanism called ion feedback, in which electrons emitted from the photoelectric film collide with gas molecules, and the gas molecules are ionized, accelerated, and collide with the photoelectric film.
  • ion feedback in which electrons emitted from the photoelectric film collide with gas molecules, and the gas molecules are ionized, accelerated, and collide with the photoelectric film.
  • electron sources using a photoelectric film in which the active layer is made of p-type GaAs have problems such as reduced brightness characteristics caused by gas molecules, unstable emission current, and shortened lifetime of the NEA surface. Become.
  • An electron microscope that is an embodiment of the present invention includes an excitation light source that generates excitation light, a photoelectric film (photocathode) formed on a transparent substrate, and a device that focuses the excitation light toward the photoelectric film.
  • a condensing lens is disposed facing the photoelectric film, and the excitation light focused by the condensing lens is transmitted through the transparent substrate of the photoelectric film and is incident, thereby collecting electrons from the photoelectric film.
  • an anode electrode that generates an electron beam and accelerates the electron beam; a first differential exhaust aperture that is disposed on the photoelectric film side and has a first passage hole; and a side closer to the sample than the first differential exhaust aperture.
  • An electron microscope is provided with a second differential exhaust aperture having a second passage hole disposed in the electron optical system and arranged axially symmetrically with respect to the electron optical system, wherein the first passage hole of the first differential exhaust aperture is a deflector arranged axisymmetrically with respect to the electron optical system, arranged between the first differential exhaust aperture and the second differential exhaust aperture, and adjusting the trajectory of the electron beam. .
  • the electron beam generated by irradiating excitation light off-axis of the anode electrode facing the photoelectric film is focused by the electrostatic lens action formed in the gap between the photoelectric film and the anode electrode, and then moves away from the axis of the anode electrode. deflected in the direction This deflected electron beam is passed through the first passage hole of the first differential exhaust aperture arranged non-axisymmetrically outside the optical axis, and then returned to the second differential exhaust aperture arranged axisymmetrically.
  • the electron beam passing through the second passage hole is used as a probe of an electron microscope.
  • the above electron gun structure is particularly useful for obtaining high spatial resolution in electron microscopes, such as the high brightness characteristics and monochromaticity of an electron source using a photoelectric film made of p-type GaA with an NEA surface.
  • Gas molecules flowing into the electron gun chamber from a vacuum chamber with a relatively low degree of vacuum can be prevented from reaching the electron emitting portion of the photoelectric film without sacrificing the above features.
  • This reduces the reduction in brightness characteristics caused by adsorption of gas molecules on the photoelectric film surface and ion feedback, stabilizes the emission current, and extends the life of the NEA surface.
  • FIG. 1 is a diagram showing a schematic configuration example of an electron gun according to a first embodiment
  • FIG. FIG. 2 is a diagram illustrating a schematic configuration example of an electron gun of a comparative example.
  • 1 is a diagram showing a schematic configuration example and potential distribution of an electron gun according to a first example
  • FIG. 1 is a diagram showing a schematic configuration diagram of a scanning electron microscope according to a first example.
  • FIG. 3 is a diagram showing temporal fluctuations in cathode voltage according to the first example.
  • 1 is a diagram schematically showing an electron beam control method according to a first embodiment
  • FIG. FIG. 3 is a diagram showing a first configuration example of a first differential exhaust throttle according to the first embodiment.
  • FIG. 7 is a diagram showing a second configuration example of the first differential exhaust throttle according to the first embodiment.
  • FIG. 7 is a diagram showing a third configuration example of the first differential exhaust throttle according to the first embodiment.
  • 7 is a graph showing the relationship between the off-axis amount of an excitation point and the deflection angle of an electron beam according to the first example.
  • FIG. 7 is a diagram showing a fourth configuration example of the first differential exhaust throttle according to the first embodiment. It is a figure which shows the 5th example of a structure of the 1st differential exhaust throttle based on 1st Example. It is a figure which shows the 6th example of a structure of the 1st differential exhaust throttle based on 1st Example.
  • FIG. 7 is a diagram schematically showing an excitation optical system and an electron gun according to a second embodiment.
  • FIG. 7 is a diagram schematically showing an excitation optical system according to a third example.
  • FIG. 7 is a diagram schematically showing an excitation optical system according to a fourth example.
  • 3 is a flowchart showing an adjustment procedure for the electron gun according to the first embodiment.
  • 3 is a flowchart showing an adjustment procedure for the electron gun according to the first embodiment.
  • FIG. 3 is a diagram illustrating a passage hole of a differential exhaust aperture of an electron gun according to a first example and a passage hole of a differential exhaust aperture of an electron gun of a comparative example.
  • 1 is a flowchart showing an image capturing method of an electron microscope according to a first embodiment.
  • FIG. 1 is a diagram showing an example of a schematic configuration of an electron gun according to a first embodiment.
  • FIG. 2 is a diagram showing a schematic configuration example of an electron gun of a comparative example.
  • FIG. 3 is a diagram showing a schematic configuration example and potential distribution of an electron gun according to the first embodiment.
  • FIG. 4 is a diagram showing a schematic configuration example of a scanning electron microscope according to the first embodiment.
  • FIG. 15 is a diagram illustrating the passage hole of the differential exhaust aperture of the electron gun according to the example and the passage hole of the differential exhaust aperture of the electron gun of the comparative example.
  • FIG. 1 shows an example of an electron gun structure according to an embodiment of the present invention.
  • a configuration in which the electron gun 10 of this embodiment is mounted on a scanning electron microscope 100 will be described.
  • a method for controlling the trajectory of the electron beam 5 emitted from the photoelectric film 1 will be mainly explained, and details of the configuration and mechanism of the excitation optical system will be shown in embodiment 2 and thereafter.
  • the electron beam 5 can be referred to as an electron beam.
  • the photoelectric film 1 is a photoelectric film whose surface has negative electron affinity (NEA).
  • the configuration of the photocathode (photocathode) used in this example is as follows: A semiconductor photoelectric film (hereinafter referred to as photoelectric film) 1 that emits electrons upon irradiation with excitation light is formed on a transparent substrate 2.
  • the photocathode will be referred to as a photoelectric film 1.
  • the electron gun 10 of this embodiment includes a photoelectric film 1 formed on a transparent substrate 2, a condenser lens 3, and an excitation optical system that focuses and irradiates excitation light 15 from an excitation light source 14 onto the photoelectric film 1.
  • the excitation optical system 4 includes an excitation light source 14, a viewing port 16, a condenser lens 3, a transparent substrate 2, and a photoelectric film 1) and a photocathode, and is arranged to face the photoelectric film 1. It is provided to maintain an extremely high vacuum around the anode electrode 6 and the photoelectric film 1 for accelerating the beam 5, and has a passage hole (first passage hole) 7A for the electron beam 5 at a non-axis symmetrical position.
  • the deflector 9 can be configured with multiple stages, and is arranged between the first differential exhaust throttle 7 and the second differential exhaust throttle 8.
  • the deflector 9 deflects the electron beam 5 that has passed through the passage hole 7A of the first differential exhaust aperture 7 onto the optical axis of the electron optical system before passing through the second differential exhaust aperture 8.
  • the controller 24 controls the electron beam 5 to pass through the passage hole 8A of the second differential exhaust throttle 8.
  • the above axis or optical axis is such that the electron optical system inside the electron microscope 100, including the electrode for extracting the electron beam 5 from the photoelectric film 1 and the lens 3 for focusing the electron beam 5, has an ideal axis-symmetrical structure.
  • This is an expression that assumes that In the actual device configuration of the electron microscope 100, due to processing precision and assembly precision of parts and members, even if each component is axially symmetrical, the axes do not necessarily all overlap on the same straight line. Therefore, it is necessary to appropriately control the trajectory of the irradiated electron beam 5 using various alignment means such as the deflector 9 to adjust the axis for a specific component.
  • the shafts to be passed through each component will be supplemented as appropriate in the description of the embodiments below.
  • FIG. 1 illustrates an electron gun 10 in which a photoelectric film 1 is placed.
  • the electron gun 10 is installed in an electron gun chamber (also referred to as a vacuum chamber) 11, and the inside of the electron gun chamber 11 is maintained at an extremely high vacuum by an evacuation equipment 13.
  • An ion pump, a non-evaporative getter pump (NEG), or the like is used as the vacuum evacuation equipment 13 for maintaining the area around the photoelectric film 1 in an extremely high vacuum.
  • the evacuation equipment 13 includes a first evacuation equipment 13a and a second evacuation equipment 13b.
  • the photoelectric film 1 is placed in a vacuum chamber 11 together with a condensing lens 3, and excitation light 15 emitted from an excitation light source 14 placed outside the vacuum chamber 11 passes through a viewing port 16 and is emitted onto the back surface of the photoelectric film 1.
  • the light is focused onto the photoelectric film 1 by the placed focusing lens 3. This focused position becomes an excitation point 17 of the photoelectric film 1, and the emitted electron beam 5 is used as a probe of the scanning electron microscope 100.
  • a continuous electron beam referred to as continuous electron beam
  • pulsed light is irradiated, the pulse width and pulse period are similar to that of the excitation light 15.
  • a pulsed electron beam (referred to as a pulsed electron beam) 5 is emitted.
  • the structure of the electron gun 10 of this embodiment is effective for both continuous electron beam and pulsed electron beam usage conditions.
  • the excitation light 15 transmitted through the transparent substrate 2 can be condensed with a large numerical aperture of 0.5 or more.
  • the condensing diameter of the excitation light 15 having the wavelength ⁇ that is condensed onto the photoelectric film 1 by the condensing lens 3 having the numerical aperture NA is approximately the same as ⁇ /NA.
  • the size of the electron emission region of the photoelectric film 1 is approximately the same as the condensing diameter of the excitation light 15.
  • the lower end of the conduction band becomes a higher energy level than the vacuum level, and the electron beam 5 excited from the valence band to the conduction band by the irradiation of the excitation light 15 becomes a photoelectric layer. It is efficiently discharged from the inside of the membrane 1 into the vacuum region.
  • the active layer of the photoelectric film 1 is p-type GaAs
  • the effective mass of electrons excited by light irradiation is as small as 0.067 times that of electrons in vacuum.
  • the angle is small, about 10 degrees or less. Due to the above factors, high brightness characteristics can be obtained.
  • the passage hole 7Ar provided in the first differential exhaust throttle 7r and the passage hole 8A provided in the second differential exhaust throttle 8 are arranged in a straight line, and the passage hole 7Ar and the passage hole 8A are both arranged in a straight line. , arranged in an axially symmetrical position.
  • the passage hole 7A provided in the first differential exhaust aperture 7 of the scanning electron microscope 100 is non-axial with respect to the central axis 7ac of the first differential exhaust aperture 7. They are placed in symmetrical positions.
  • the passage hole 8A provided in the second differential exhaust throttle 8 is provided at a position axially symmetrical with respect to the central axis 8ac of the second differential exhaust throttle 8.
  • the passage hole 7Ar provided in the first differential exhaust aperture 7r of the scanning electron microscope 100r is located at a position axially symmetrical with respect to the central axis 7ac of the first differential exhaust aperture 7. It is provided. Further, the passage hole 8A provided in the second differential exhaust throttle 8 is provided at a position axially symmetrical with respect to the central axis 8ac of the second differential exhaust throttle 8.
  • the applied voltage 19 to the photoelectric film 1 is set to V 0 ( ⁇ 0 V), and the applied voltage 20 to the anode electrode 6 is set to the ground potential (0 V), so that the energy of the electron beam 5 passing through the anode electrode 6 is , e is the elementary charge and the configuration is
  • the anode electrode 6 has multiple stages, such as a first anode electrode for controlling the electric field strength near the photoelectric film 1 and a second anode electrode for accelerating after passing through the first anode electrode.
  • the anode electrode may be configured so that different voltages can be applied.
  • any point on the photoelectric film 1 can be the excitation point 17.
  • the excitation light 15 is focused and irradiated so that the excitation point 17 on the photoelectric film 1 is off the axis of the anode electrode 6, the electron beam 5 emitted from the photoelectric film 1 is as shown in FIGS. 1 and 3.
  • the light After being focused by the convex lens action 21, the light is deflected away from the axis (center axis) 12 of the anode electrode 6 by the concave lens action 22.
  • the position of the excitation point 17 on the photoelectric film 1 is adjusted so that the electron beam 5 passes through the first differential pumping aperture 7 having a passage hole 7A at a non-axis symmetrical position.
  • the deflection angle of the electron beam 5 due to the concave lens action 22 formed near the anode electrode 6 is assumed to be ⁇ 0.
  • the deflection angle ⁇ 0 does not change even if the applied voltage 19 (V 0 ) to the photoelectric film 1 is changed.
  • the off-axis amount (di) of the excitation point 17 is defined as the distance between the position of the excitation point 17 on the photoelectric film 1 and the position of the axis 12 of the anode electrode 6.
  • the electron beam 5 deflected by the concave lens action 22 formed near the anode electrode 6 is caused to pass through the first differential pumping aperture 7 having a passage hole 7A at a non-axisymmetric position.
  • a second differential exhaust throttle 8 disposed directly below the first differential exhaust throttle 7 has a passage hole 8A at an axially symmetrical position.
  • an exhaust device exhaust pump
  • the pressure range around the sample 23 can be set to, for example, several tens of Pa to several hundreds of Pa. Gas flows from the vacuum chamber side of the sample chamber 18, which has a relatively low degree of vacuum, into the vacuum chamber (for example, the electron gun chamber 11) on the electron gun 10 side, which has a high degree of vacuum.
  • a deflector 9 is arranged between the first differential exhaust throttle 7 and the second differential exhaust throttle 8.
  • the deflector 9 (9A, 9B: see FIG. 4) deflects the electron beam 5, which has passed through the passage hole 7A arranged at a non-axisymmetric position, through the passage hole 8A of the second differential exhaust aperture 8. pass.
  • the position of the passage hole 7A is arranged in a non-axis symmetrical position, and the position of the passage hole 7A and the position of the passage hole 8A are not arranged in a straight line.
  • the electron beam 5 is conveyed to the sample 23 by deflection control by the deflector 9 without shielding the central portion where the current density is high. Therefore, the electron beam 5 emitted from the photoelectric film 1 can be used as a probe electron beam for the electron microscope 100 without impairing the high brightness characteristic of the NEA surface.
  • the probe electron beam 5 that can be used in this way has higher current stability than the configuration of the comparative example (see FIG. 2), and the gas molecules do not reach the NEA surface of the photoelectric film 1. can achieve longer service life. Further, as the life of the NEA surface of the photoelectric film 1 is extended, the frequency of surface activation treatment for regenerating the NEA surface of the photoelectric film 1 can be reduced, so that the downtime of the electron microscope 100 can be reduced.
  • a multi-stage deflector 9 (9A, 9B: see FIG. 4) used for trajectory control to deflect back the electron beam 5 that has passed through the first differential exhaust aperture 7 having a passage hole 7A at a non-axisymmetric position is a static Either electric type (electric field type) or electromagnetic type (magnetic field type) may be used.
  • electric field type electric field type
  • electromagnetic field type electromagnetic field type
  • the components mounted in the electron gun chamber 11 be made of a material that is heat resistant to 200° C. or higher and that releases less gas in an extremely high vacuum environment.
  • deflection chromatic aberration in which the amount of deflection depends on the energy of the electron beam 5, becomes a problem.
  • the adverse effects of this deflection chromatic aberration are likely to become apparent particularly under irradiation conditions where the irradiation energy of the electron beam 5 is low.
  • FIG. 5 is a diagram showing temporal fluctuations in cathode voltage according to the first example.
  • the electron lens 32 closest to the photoelectric film 1 is an electrostatic type Einzel lens.
  • the electron beam 5 scans over the sample 23 while being focused by an objective lens 34 at the final stage, and signal electrons 35 generated at each point are detected by a detector 36 to obtain an SEM image.
  • the alignment condition of the deflector 9 is the optimal alignment condition, if the cathode voltage 19 (V 0 ) is changed over time with an appropriate voltage amplitude ⁇ V (see Fig.
  • the voltage amplitude ⁇ V of the cathode voltage 19 (V 0 ) during time fluctuation is determined so that image shaking can be determined with an appropriate amount of blur on the SEM image when performing the above alignment adjustment.
  • An appropriate voltage amplitude ⁇ V is set within a range of 10% or less of the absolute value
  • FIG. 6 is a diagram schematically showing an electron beam control method according to the first embodiment.
  • the deflection angle of the electron beam 5 due to the concave lens action 22 formed between the photoelectric film 1 and the anode electrode 6 is ⁇ 0
  • the first passage hole 7A having the passage hole 7A at a non-axisymmetric position is set as ⁇ 0 .
  • the deflection angle of the electron beam 5 by the deflector 9A on the electron source (photoelectric film 1) side mounted between the differential exhaust aperture 7 and the second differential exhaust aperture 8 having a passage hole 8A in an axially symmetrical position is Let ⁇ 1 be the deflection angle of the electron beam 5 by the deflector 9B on the sample 23 side, and ⁇ 2 be the deflection angle of the electron beam 5.
  • the distance to the deflection fulcrum due to the concave lens action 22 formed between the photoelectric film 1 and the anode electrode 6 is L0 , Deflection of the electron beam 5 by a deflector 9A on the electron source (photoelectric film 1) side mounted between the first differential exhaust aperture 7 and the second differential exhaust aperture 8 having a passage hole 8A in an axially symmetrical position.
  • L 1 be the distance to the fulcrum
  • L 2 be the distance to the fulcrum where the electron beam 5 is deflected by the deflector 9B on the sample 23 side.
  • the condition that the aberration associated with the deflection is minimized corresponds to the condition that the image fluctuation of the SEM image is minimized when the cathode voltage 19 is varied over time.
  • electrostatic type deflectors are used as the deflectors 9A and 9B, the following relational expression (Formula 1) holds true under the condition that the image fluctuation of the SEM image is minimized.
  • a controller 24 which is a control device.
  • the control device 24 changes the cathode voltage applied to the photoelectric film 1 over time and controls the deflection signal of the electron beam 5 by the deflector 9 in order to adjust the image shaking caused by the time fluctuation. Note that the above-described alignment adjustment of the electron beam 5 by changing the cathode voltage 19 (V 0 ) over time is for minimizing the adverse effects of chromatic aberration caused by the deflection system, and is not an essential control.
  • the electron beam 5 only needs to be deflected in the direction in which the electron beam passage hole 7A, which is axisymmetric when viewed from the optical axis, is provided, so a deflector 9 capable of generating a dipole field is used.
  • a deflector 9 capable of generating a dipole field.
  • two stages of deflectors (9A, 9B) may be installed.
  • a situation may occur in which desired alignment conditions cannot be obtained with the two-stage dipole field due to non-axisymmetric adverse effects such as fringe fields, leakage magnetic fields, and geomagnetism on the path of the electron beam 5.
  • the deflector 9 is made of multipole electromagnetic poles with good symmetry so that multipole fields such as quadrupole fields, sextupole fields, and octupole fields can be generated. By configuring this, it is possible to obtain a sufficient degree of freedom for correcting adverse effects caused by asymmetry.
  • FIG. 7A is a diagram showing a first configuration example of the first differential exhaust throttle according to the first embodiment.
  • FIG. 7B is a diagram showing a second configuration example of the first differential exhaust throttle according to the first embodiment.
  • FIG. 7C is a diagram showing a third configuration example of the first differential exhaust throttle according to the first embodiment.
  • FIG. 8 is a graph showing the relationship between the off-axis amount of the excitation point and the deflection angle of the electron beam according to the first example.
  • the simplest configuration of the first differential exhaust throttle 7 has a single throttle hole (passing hole) 7A arranged axisymmetrically, and the center of the central axis 7ac of the first differential exhaust throttle 7 is closed. It has a peeled structure (Fig. 7A).
  • the off-axis eccentricity Lec of the aperture hole 7A is determined by the distance between the photoelectric film 1 and the anode electrode 6, the aperture diameter of the anode electrode 6, the off-axis amount di of the excitation point 17, and the mounting position of the anode electrode 6 and the off-axis aperture 7A. The distance depends on Lapt etc.
  • the trajectory of the electron beam 5 is calculated in advance in consideration of the electrode structure inside the electron gun 10, and the mounting position of the first differential exhaust aperture 7 having the passage hole 7A at a non-axisymmetric position is determined.
  • the diameter, off-axis eccentricity Lec, and off-axis amount di of the excitation point on the photoelectric film can be determined.
  • a plurality of the first differential exhaust throttles 7 having the passage holes 7A at non-axisymmetric positions may be arranged in the shape of a throttle surface.
  • FIG. 7B two off-axis throttle holes (passing holes) 7A are arranged in a non-axisymmetric arrangement
  • FIG. 7C three throttle holes (passing holes) 7A are arranged in a non-axisymmetric arrangement.
  • An example of the configuration is shown below.
  • the non-axisymmetrically arranged passage hole 7A is a circular hole, but the shape of the throttle hole is not limited to a circle as long as the necessary differential pumping performance can be obtained, and may be a rectangle or an ellipse. It may be configured as a shaped passage hole.
  • FIG. 8 shows the results of calculating the dependence on the amount of off-axis (di).
  • the distance Lapt between the mounting position of the first differential exhaust aperture 7 having the passage hole 7A arranged non-axially symmetrically with respect to the anode electrode 6 is When 100 mm, the eccentricity Lec of the off-axis throttle hole (passing hole) 7A should be about 0.45 mm, and the diameter of the diameter of the passing hole 7A is at most ⁇ 0.6 mm.
  • the first differential exhaust throttle 7 having the axisymmetrically arranged throttle hole (passing hole) 7A whose center is closed can be used as a differential exhaust throttle.
  • FIG. 9A is a diagram showing a fourth configuration example of the first differential exhaust throttle according to the first embodiment.
  • FIG. 9B is a diagram showing a fifth configuration example of the first differential exhaust throttle according to the first embodiment.
  • FIG. 9C is a diagram showing a sixth configuration example of the first differential exhaust throttle according to the first embodiment.
  • the electron beam 5 generated from the NEA surface of the photoelectric film 1 is directed in the direction of the electron beam passage hole (7A) of the first differential exhaust aperture 7 that is arranged in a non-axisymmetric manner. It is easier to use a configuration in which the second adjustment step is performed to control the deflection.
  • the structure of the first differential exhaust aperture is set to be axially symmetrical to the center (central axis 7ac), in addition to the electron beam passage holes (7A) arranged non-axisymmetrically as shown in FIGS. 9A to 9C.
  • a configuration having a passage hole (third through hole, third passage hole) 7C for the electron beam 5 emitted by the electron beam 5 can be considered.
  • a shielding member also referred to as shielding means
  • shielding means such as a shielding plate for shielding electron beams is inserted into and removed from the upper or lower part of the first differential exhaust throttle 7 in a straight direction from the atmospheric region. Use a straight line introduction machine that can be used.
  • the electron beam 5 is conveyed to the sample 23 under axially symmetrical conditions, and the centering adjustment of the electron lens and the alignment adjustment of the electron beam 5 are completed. Thereafter, a shielding plate is used to block the electron beam 5 from passing through the center aperture hole 7C arranged axially symmetrically.
  • a means for measuring the current of the electron beam 5 that has passed through the aperture hole 7C in the center may be mounted at the tip of the linear introduction device. good. In this case, the current measuring means can also be used as a shielding member for blocking the aperture hole 7C in the center.
  • FIG. 13 is a flowchart showing the adjustment procedure for the electron gun according to the first embodiment.
  • FIG. 13 shows the initial state of the aperture hole (passing hole) 7A having a non-axisymmetric arrangement, and the case where the electron beam 5 passing hole 7C is axially symmetrical in the center in addition to the non-axisymmetric aperture arrangement.
  • a flowchart of the control procedure for the electron beam 5 during adjustment is shown. Each step (S10-S17) in FIG. 13 will be explained below.
  • the excitation optical system is adjusted so that the excitation point 17 on the photoelectric film 1 is located off the axis of the anode electrode 6.
  • the position of the excitation point 17 on the photoelectric film 1 is adjusted by applying the method described in Examples 2 to 4, which will be described later.
  • the electron beam 5 passes through the passage hole 7C arranged axially symmetrically in the center, the electron beam 5 is made to reach an appropriate position at the position of the aperture hole (passing hole) 7A arranged non-axially symmetrically. Then, the optical path of the excitation optical system is adjusted.
  • FIG. 14 is a flowchart showing the adjustment procedure for the electron gun according to the first embodiment.
  • FIG. 14 shows a flowchart of the electron beam control procedure at the time of initial adjustment in the case where the aperture 7A, which is arranged non-axisymmetrically, does not have a central aperture hole.
  • Each step (S20-S27) in FIG. 14 will be explained below.
  • the electron beam 5 is used as a probe electron beam of the electron microscope 100 under the same conditions as when the first differential exhaust aperture 7 of the electron beam 5 is arranged axially symmetrically at the center and has the passage hole 7C. can be used.
  • FIG. 16 is a flowchart showing an image capturing method using an electron microscope according to the first embodiment. Therefore, as shown in FIG. 16, the image capturing method using an electron microscope is as follows: 0) Initial setting process (see Figures 13 and 14), 1) A first step of generating an electron beam 5 from the excitation point 17 of the photoelectric film 1; 2) a second step of accelerating the electron beam 5 by the anode electrode 6; 3) a third step of passing the accelerated electron beam 5 through the first passage hole 7A provided at an axisymmetric position of the first differential exhaust throttle 7; 4) The trajectory of the electron beam 5 that has passed through the first passage hole 7A is adjusted by the deflector 9, and the electron beam is directed to the second passage hole 8A provided at an axially symmetrical position of the second differential exhaust throttle 8. a fourth step of passing 5; 5) A fifth step of irradiating the sample 23 with the electron beam 5 that has passed through the second passage hole 8A to obtain an observation image.
  • Initial setting process see Figures 13 and 14
  • the initial setting process (see FIGS. 13 and 14) of the image capturing method of the electron microscope is as follows. 6) a sixth step of arranging a current measuring means under the first passage hole 7A of the first differential exhaust aperture 7 and measuring the emission current of the photoelectric film 1; 7) A seventh step of adjusting the position of the excitation point 17 of the excitation light 15 on the photoelectric film 1 so that the measured emission current is maximized; 8) An eighth step of adjusting the deflector 9 so that the electron beam 5 that has passed through the first passage hole 7A reaches the sample 23.
  • the electron gun 10 described above can reduce the adverse effects of gas molecules, so it can be used for in-situ environmentally controlled measurements of samples that require low vacuum conditions, such as biological samples such as cells, and reactions between solids and gases. It becomes possible to apply an electron source using a photoelectric film 1 having a NEA surface to an electron microscope equipped with a sample chamber 18 for the purpose of the present invention.
  • the electron gun of the present invention is mounted on a scanning electron microscope has been described, but it is also possible to apply a similar electron gun structure to electron beam application devices such as a transmission electron microscope and a scanning transmission electron microscope. .
  • FIG. 10 is a diagram showing a schematic configuration example of an excitation optical system and an electron gun according to the second embodiment.
  • Example 2 the structure of the electron gun 10 described in Example 1 is modified so that the excitation light 15 is focused on the active layer of the photoelectric film 1 so that the excitation point 17 on the photoelectric film 1 is off-axis of the anode electrode 6.
  • a configuration in which an excitation optical system 4 (see FIG. 1) for light irradiation is combined will be shown.
  • the photoelectric film 1 is placed in a vacuum chamber (electron gun chamber) 11 together with a condensing lens 3, and excitation light 15 emitted from an excitation light source 14 placed outside the vacuum chamber 11 is shaped into parallel light by a collimator lens 51. After passing through the viewing port 16, the light is focused on the active layer of the photoelectric film 1 by the focusing lens 3.
  • the excitation optical system is configured to reflect the reflected light from the photoelectric film 1 off the optical axis of the excitation optical system 4 and condense it onto the image sensor using a projection lens.
  • System 4 may also be configured. 50 indicates the optical axis of the excitation optical system 4.
  • the excitation wavelength is preferably 760 to 800 nm.
  • the condensing lens 3 is arranged near the back surface of the photoelectric film 1, which is the electron emitting surface, the excitation light 15 transmitted through the transparent substrate 2 can be condensed with a large numerical aperture of 0.5 or more.
  • the condensing diameter of excitation light of wavelength ⁇ condensed onto the photoelectric film by a condensing lens with numerical aperture NA is approximately the same as ⁇ /NA, and the optimum spot diameter is approximately ⁇ 1 ⁇ m in FWHM.
  • the electron emission region is used as a point source with a size of about ⁇ 1 ⁇ m.
  • any light source can be used as the excitation light source, such as a spatial light output or an optical fiber output, as long as it can output the intensity necessary for electron emission from the photoelectric film 1.
  • FIG. 10 shows an example of the configuration of the excitation optical system 4 for making the excitation point 17 off the axis of the anode electrode 6 on the photoelectric film 1.
  • the excitation optical system 4 includes a light source 14, a collimator lens 51, a condenser lens 3, a transparent electrode 2, a photoelectric film 1, and the like.
  • Excitation light 15 emitted from the light source 14 is shaped into parallel light by the collimator lens 51, and is focused and irradiated onto the photoelectric film 1 by the condenser lens 3.
  • the condenser lens 3 is fixed within the vacuum chamber of the electron gun 10.
  • the light source 14 and collimator lens 51 of the excitation optical system 4 are fixed to the flange of the viewing port 16 using a special holder for fixing optical elements.
  • the entire excitation optical system 4 can be positioned in any horizontal direction within the horizontal plane.
  • the distance between the condensing lens 3 and the photoelectric film 1 is adjusted so that the diameter of the focused spot on the photoelectric film 1 is minimized by adjusting the amount of rotation of the screw part 53, which is a focal length adjustment mechanism.
  • the mechanism for adjusting the position of the optical system 4 in the electron gun 10 using the photoelectric film 1 please refer to Fig. 3 of Journal of applied physics 103, 064905 (208).
  • FIG. 10 shows a configuration in which the horizontal position of the excitation optical system 4 is adjusted so that the excitation point 17 is located at a distance (off-axis amount) di from the central axis of the anode electrode 6. .
  • the position of the condenser lens 3 is adjusted so that the electron beam 5 passes through the non-axisymmetrically arranged single-hole aperture 7A shown in FIGS. 7A and 9A, and optimal excitation is achieved.
  • the electron beam 5 emitted from the NEA surface of the photoelectric film 1 is used as a probe electron beam for an electron microscope.
  • FIG. 11 is a diagram schematically showing an excitation optical system according to the third example.
  • the excitation optical system 4 (see FIG. 1) is fixed, and the excitation light 15 can be focused and irradiated on a plurality of points on the photoelectric film 1.
  • a configuration is shown in which a plurality of excitation points 17 on the photoelectric film 1 can be used without adjusting the optical path of the system 4.
  • the photoelectric film 1 is placed in the vacuum chamber 11 together with the condensing lens 3, and the excitation light 15 emitted from the excitation light source 14 placed outside the vacuum chamber 11 is shaped into parallel light by the collimator lens 51, and the viewing port 16 After passing through, the light is focused on the active layer of the photoelectric film 1 by the focusing lens 3.
  • an optical system is used to reflect the reflected light from the photoelectric film 1 off the optical axis of the excitation optical system 4 and focus it on the image sensor using a projection lens. 4 may be configured.
  • the excitation wavelength is preferably 760 to 800 nm.
  • the excitation light 15 transmitted through the transparent substrate 2 can be condensed with a large numerical aperture of 0.5 or more.
  • the condensing diameter of the excitation light 15 of wavelength ⁇ focused on the photoelectric film 1 by the condensing lens 3 of numerical aperture NA is approximately the same as ⁇ /NA, and the optimum spot diameter is approximately ⁇ 1 ⁇ m in FWHM.
  • the electron emission region is used as a point source with a size of about ⁇ 1 ⁇ m.
  • FIG. 11 shows an example of the configuration of the excitation optical system 4 for setting the excitation point 17 off the axis of the anode electrode 6 on the photoelectric film 1.
  • the excitation optical system 4 includes a light source 14, a collimator lens 51, a condenser lens 3, a transparent electrode 2, a photoelectric film 1, and the like.
  • a case will be described in which the first differential exhaust throttle 7 having a plurality of passage holes 7A is combined in an axisymmetric arrangement such as in FIGS. 7B, 7C, 9B, and 9C.
  • the excitation light source 14 is composed of a multi-core fiber 55, and the excitation light source 14 is connected to the multi-core fiber 55.
  • the condenser lens 3 is fixed in the vacuum chamber 11 by a mechanism similar to that shown in FIG. 10, and is adjusted and fixed near the center of the anode electrode 6 according to the procedure described in the second embodiment.
  • Excitation light 15 corresponding to the electron beam 5 passing through the aperture hole (passing hole) 7A arranged non-axisymmetrically passes through the off-axis of the collimator lens 51 and the condensing lens 3, and is focused on the active layer of the photoelectric film 1.
  • the off-axis amount (di) of the condensing position of the excitation light 15 is within the maximum angle of view that can be condensed by the condensing lens 3, if the configuration of the optical system 4 is an axially symmetrical optical path. It is possible to obtain light condensing characteristics comparable to that of .
  • the eccentricity Lec of the aperture hole (passing hole) 7A with a non-axisymmetric arrangement is such that the electron beam emitted from the position of the off-axis distance di of the excitation point passes through the aperture hole (passing hole) 7A with a non-axisymmetric arrangement. It is calculated based on electron trajectory calculations.
  • the control system controller 24 is used to set the deflector 9 to the electron beam 5 after passing through the aperture hole (passing hole) 7A arranged non-axisymmetrically so as to correspond to the output of the excitation light source 14.
  • Interlock control By switching the interlocking control of the output and polarization direction of the excitation light source 14 at regular intervals, the NEA surface of the photoelectric film 1 can have a long lifespan, making it possible to use it as a stable electron source for a long period of time. Become. At this time, it is possible to switch the excitation point 17 at time intervals of about nanoseconds by using a pulsed light source with a pulse width or pulse interval of about 1 nanosecond at the shortest as the excitation light source 14.
  • the emission intensity of the electron beam 5 differs depending on the excitation point 17 on the photoelectric film 1
  • the emission current of the photoelectric film 1 can be stabilized by changing the irradiation intensity of the excitation light for each excitation point 17. can be used.
  • FIG. 12 is a diagram schematically showing an excitation optical system according to the fourth example.
  • excitation light 15 is emitted to multiple points on the photoelectric film 1. This shows a configuration that can focus and irradiate light.
  • the photoelectric film 1 is placed in the vacuum chamber 11 together with the condensing lens 3, and the excitation light 15 emitted from the excitation light source 14 placed outside the vacuum chamber 11 is shaped into parallel light by the collimator lens 51, and the viewing port 16 After passing through, the light is focused on the active layer of the photoelectric film 1 by the focusing lens 3.
  • an optical system is used to reflect the reflected light from the photoelectric film 1 off the optical axis of the excitation optical system 4 and condense it onto the image sensor using a projection lens. 4 may be configured.
  • the excitation wavelength is preferably 760 to 800 nm.
  • the excitation light transmitted through the transparent substrate 2 can be condensed with a large numerical aperture of 0.5 or more.
  • the condensing diameter of the excitation light 15 of wavelength ⁇ focused on the photoelectric film 1 by the condensing lens 3 of numerical aperture NA is approximately the same as ⁇ /NA, and the optimum spot diameter is approximately ⁇ 1 ⁇ m in FWHM.
  • the electron emission region is used as a point source with a size of about ⁇ 1 ⁇ m.
  • any light source can be used as the excitation light source 14, such as a spatial light output or an optical fiber output, as long as it can output the intensity necessary for electron emission from the photoelectric film 1.
  • FIG. 12 shows an example of the configuration of the excitation optical system 4 for making the excitation point 17 off the axis of the anode electrode 6 on the photoelectric film 1.
  • the excitation optical system 4 includes a light source 14, a collimator lens 51, a condenser lens 3, a transparent electrode 2, a photoelectric film 1, and the like.
  • a case will be described in which the first differential exhaust throttle 7 having a plurality of passage holes 7A is combined in an axisymmetric arrangement such as in FIGS. 7B, 7C, 9B, and 9C.
  • an optical element (wedge prism) 56 having a wedge-shaped cross section is arranged in the region between the collimator lens 51 and the condensing lens 3. .
  • the parallel light incident on the wedge prism 56 is refracted as shown in FIG. 12 according to Snell's law.
  • the angle at which the parallel light is refracted depends on the material (refractive index) of the wedge prism 56 and the angle of inclination of the inclined surface with respect to the optical axis.
  • the refraction angle by the wedge prism 56 is determined.
  • the refracted excitation light 15 passes off-axis of the condenser lens 3 and is focused on the active layer of the photoelectric film 1. If the angle of view is within the maximum angle of view that can be condensed by the condensing lens 3, condensing characteristics comparable to those obtained when the excitation optical system 4 has an axially symmetrical optical path can be obtained.
  • the condenser lens 3 is fixed in a horizontal position near the center of the anode electrode 6 with its horizontal position adjusted. For this reason, the optical path is first adjusted without the wedge prism 56, and the position of the condenser lens 3 is adjusted to be near the center of the anode electrode 6.
  • the excitation light can be bent in any direction.
  • the wedge prism 56 is mounted on a rotating mechanism, and the electron beam 5 emitted from the off-axis excitation point of the anode electrode is passed through the non-axis symmetrically arranged aperture hole (passing hole) of the first differential exhaust aperture 7.
  • the emitted electron beam 5 can be utilized by switching the excitation point 17 on the photoelectric film 1.
  • control system controller 24 is used to control the rotation angle of the wedge prism 56 to correspond to the rotation angle of the wedge prism 56.
  • a deflector 9 is controlled in conjunction with the electron beam 5.
  • the emission intensity of the electron beam 5 differs depending on the excitation point 17 on the photoelectric film 1
  • the emission current of the photoelectric film 1 can be stabilized by changing the irradiation intensity of the excitation light for each excitation point 17. can be used.
  • Excitation point 18 ...sample chamber, 19...applied voltage to photoelectric film (cathode voltage), 20...applied voltage to anode electrode, 21...convex lens action of electrostatic lens, 22...concave lens action of electrostatic lens, 23...sample, 24...control system (control device, controller), 32...electron lens, 33...focal point of electron lens, 34...objective lens, 35...signal electron, 36...detector, 37...virtual light source, 50...optical axis of excitation optical system, 51 ... Collimator lens, 52 ... Push screw, 53 ... Screw parts, focal length adjustment mechanism, 55 ... Multicore fiber, 56 ... Wedge prism (optical element with wedge-shaped cross section)

Abstract

軸対称な電子銃構造では相対的に低真空の真空室より流入するガス分子の一部が光電膜に到達し、NEA表面の劣化とともに放出電流の不安定化や光電膜の短寿命化が課題となる。励起光源と、透明基板上に形成された光電膜と、励起光を光電膜に集光するための集光レンズと、励起光が光電膜に集光して照射されることで発生する電子線を加速させるアノード電極と、軸外に通過孔を持ち光電膜側に配置される第1の差動排気絞りと、光軸上に通過孔を持ち試料側に配置される第2の差動排気絞りを備える電子顕微鏡であって、第1の差動排気絞りと第2の差動排気絞りの間に電子線の軌道制御用の偏向器を備える。

Description

電子顕微鏡およびその画像撮影方法
 本発明は光電膜を用いた電子銃を搭載した電子線応用装置としての電子顕微鏡およびその画像撮影方法に関する。
 集束した電子線(電子線は電子ビームと言い換えることができる)を試料に照射、走査して放出される電子を検出し、各照射点の信号強度を表示する走査電子顕微鏡(Scanning electron microscope:SEM)を用いることで、試料の表面形態や組成分布を計測することができる。SEMで高い空間分解能を得るには、高輝度な電子源が必要となる。SEM向けの高輝度電子源として、針状電極の先端に強電界を印加して放出される電子を利用する電界放出(Field emission:FE)電子源が広く利用されている。一方で近年、表面の電子親和力が負(Negative Electron Affinity:NEA)の光電膜を用いた電子源で、Schottky型FE電子源と同程度の高い輝度(~1×107 A/m2/sr/V)が報告されている(特許文献1)。
 この高輝度なNEA表面を持つ光電膜を用いた電子源より放出される電子線のエネルギー幅は冷陰極型FE電子源よりも小さいため、特に試料極表面の観察で優位なエネルギー約1 keV以下の照射条件で、高い観察性能が得られる特長を持つ。
国際公開第2021/192070号
 不純物濃度が高いp型の砒化ガリウム(GaAs)で構成される光電膜の表面にセシウムや酸素を吸着して仕事関数を下げると、真空準位が光電膜の伝導帯下端のエネルギー準位よりも低いNEA表面が得られ、ここに光照射すると光電膜の内部で励起された電子が効率よく放出される。特にp型GaAsで構成される光電膜のNEA表面より放出される電子の角度範囲はGaAs内の電子の有効質量などに依存して約10度以下と小さいため、励起光を集光して電子放出領域をφ1μm程度まで小さくしてポイントソース化することでSchottky型FE電子源と同程度の高い輝度特性が得られる。NEA表面より放出される電子線を安定的に利用するには光電膜の周囲を極高真空(典型的には10-8 Pa台以下)に維持する必要がある。このため、p型GaAsで構成される光電膜のNEA表面を利用した電子銃は数段の差動排気構造から成り、放出された電子線は差動排気室の間に配置される絞りを通過するように軌道が調整される。これにより、NEA表面より放出された電子線を電子顕微鏡のプローブとして利用することができる。
 電子顕微鏡の筐体が軸対称構造の場合、プローブとなる電子線の経路上に配置される差動排気絞りの電子線通過孔はいずれも軸対称な位置に配置され、試料と電子源の間にガス分子が遮蔽されずに通過できる経路が存在することになる。この場合、相対的に真空度の低い試料室より電子銃室にガス分子が流入する。ガス分子が光電膜の電子放出部の近傍に到達すると、光電膜へのガス吸着によりNEA表面が劣化する。また、特に放出電流が大きいエミッション条件では、光電膜より放出される電子とガス分子が衝突し、ガス分子がイオン化して加速されて光電膜に衝突するイオンフィードバックと呼ばれる機構によりNEA表面が劣化する。このように、活性層がp型GaAsで構成される光電膜を用いた電子源では、ガス分子に起因する輝度特性の低下、放出電流の不安定化、NEA表面の短寿命化などが課題となる。
 本発明の一実施の形態である電子顕微鏡は、励起光を発生させる励起光源と、透明基板上に形成された光電膜(フォトカソード)と、励起光を前記光電膜に向けて集光するための集光レンズと、前記光電膜に対向して配置され、前記集光レンズで集光された励起光が、前記光電膜の透明基板を透過して入射されることにより、前記光電膜から電子線が発生し、該電子線を加速させるアノード電極と、前記光電膜側に配置され、第1通過孔を持つ第1の差動排気絞りと、該第1の差動排気絞りよりも試料側に配置され、電子光学系に対し軸対称に配置された第2通過孔を持つ第2の差動排気絞りを備える電子顕微鏡であって、前記第1の差動排気絞りの第1通過孔は電子光学系に対し非軸対称に配置され、前記第1の差動排気絞りと第2の差動排気絞りの間に配置され、前記電子線の軌道を調整する偏向器と、で構成される。
 光電膜と対向するアノード電極の軸外に励起光を照射して発生する電子線は、光電膜とアノード電極の間隙部に形成される静電レンズ作用によって収束された後にアノード電極の軸から遠ざかる方向に偏向される。この偏向された電子線を光軸外に非軸対称に配置した第1の差動排気絞りの第1通過孔を通過させ、再び振り戻して軸対称に配置された第2の差動排気絞りの第2通過孔を通過した電子線を電子顕微鏡のプローブとして利用する。
 上記の電子銃構造とすることにより、特にNEA表面を持つp型GaAで構成される光電膜を用いた電子源が備える高輝度特性や単色性など、電子顕微鏡で高い空間分解能を得る上で有用な特長を損ねることなく、相対的に真空度の低い真空チャンバより電子銃室に流入するガス分子が光電膜の電子放出部に到達するのを阻止できる。これにより、光電膜表面へのガス分子の吸着やイオンフィードバックに起因する輝度特性の低下を軽減して放出電流を安定化するとともに、NEA表面を長寿命化できる。また、試料周囲の圧力が100 Pa程度の低真空環境で利用される電子顕微鏡に、NEA表面を持つ光電膜を用いた電子源を搭載して利用することが可能となる。以下に示す各実施例でその詳細を説明する。
第1の実施例に係る電子銃の概略構成例を示す図である。 比較例の電子銃の概略構成例を示す図である。 第1の実施例に係る電子銃の概略構成例および電位分布を示す図である。 第1の実施例に係る走査電子顕微鏡の概略構成図を示す図である。 第1の実施例に係る陰極電圧の時間変動を示す図である。 第1の実施例に係る電子線の制御方法の概略を示す図である。 第1の実施例に係る第1の差動排気絞りの第1の構成例を示す図である。 第1の実施例に係る第1の差動排気絞りの第2の構成例を示す図である。 第1の実施例に係る第1の差動排気絞りの第3の構成例を示す図である。 第1の実施例に係る励起点の離軸量と電子線の偏向角の関係を示すグラフである。 第1の実施例に係る第1の差動排気絞りの第4の構成例を示す図である。 第1の実施例に係る第1の差動排気絞りの第5の構成例を示す図である。 第1の実施例に係る第1の差動排気絞りの第6の構成例を示す図である。 第2の実施例に係る励起光学系と電子銃の概略を示す図である。 第3の実施例に係る励起光学系の概略を示す図である。 第4の実施例に係る励起光学系の概略を示す図である。 第1の実施例に係る電子銃の調整手順を示すフローチャートである。 第1の実施例に係る電子銃の調整手順を示すフローチャートである。 第1の実施例に係る電子銃の差動排気絞りの通過孔と比較例の電子銃の差動排気絞りの通過孔を説明する図である。 第1の実施例に係る電子顕微鏡の画像撮影方法を示すフローチャートである。
 以下,本発明の実施形態について,図面を用いて詳細に説明する。
 図1は、第1の実施例に係る電子銃の概略構成例を示す図である。図2は、比較例の電子銃の概略構成例を示す図である。図3は、第1の実施例に係る電子銃の概略構成例および電位分布を示す図である。図4は、第1の実施例に係る走査電子顕微鏡の概略構成例を示す図である。図15は、実施例に係る電子銃の差動排気絞りの通過孔と比較例の電子銃の差動排気絞りの通過孔を説明する図である。
 図1に本発明の実施例の電子銃構造の一例を示す。図1では本実施例の電子銃10を走査電子顕微鏡100に搭載した場合の構成について説明する。本実施例では主に光電膜1より放出された電子線5の軌道制御方法について説明し、励起光学系の構成や機構の詳細は実施例2以降に示す。電子線5は電子ビームと言い換えることができる。光電膜1は、表面の電子親和力が負(Negative Electron Affinity:NEA)の光電膜である。
 本実施例で使用されるフォトカソード(光陰極)の構成は、励起光照射により電子を放出する半導体光電膜(以下、光電膜という)1が透明基板2上に形成されているものとし、以下ではフォトカソードを光電膜1と表記する。本実施例の電子銃10は、透明基板2の上に形成された光電膜1と、集光レンズ3と、光電膜1に励起光源14の励起光15を集光して照射する励起光学系4(励起光学系4は、励起光源14,ビューイングポート16,集光レンズ3,透明基板2,光電膜1を含む)と、フォトカソードに対向して配置され、光電膜1から発生する電子線5を加速するためのアノード電極6と、光電膜1の周囲を極高真空に維持するために設けられ、電子線5の通過孔(第1通過孔)7Aを非軸対称な位置に持つ第1の差動排気絞り7と、電子線5の通過孔(第2通過孔)8Aを軸対称な位置に持つ第2の差動排気絞り8と、偏向器9と、制御装置としてのコントローラ24とを含んで構成される。
 偏向器9は、複数段により構成することが可能であり、第1の差動排気絞り7と第2の差動排気絞り8の間に配置される。偏向器9は、第1の差動排気絞り7の通過孔7Aを通過した電子線5を、第2の差動排気絞り8を通過する前に電子光学系の光軸の上に振り戻し、電子線5が第2の差動排気絞り8の通過孔8Aを通過すように、コントローラ24により制御される。
 上記の軸または光軸は、電子線5を光電膜1から引出すための電極や電子線5を集束するためのレンズ3など、電子顕微鏡100内部の電子光学系が理想的な軸対称構造となっていることを前提とする表現である。実際の電子顕微鏡100の装置構成は部品や部材の加工精度や組立精度のために、各構成要素が軸対称な構成であっても、各軸が全て同じ直線上に重なるとは限らない。このため、偏向器9など各種アライメント手段を用いて、照射電子線5の軌道を適宜制御して特定の構成物に対し軸調整が必要となる。各構成物に対し通すべき軸について、以下の実施例の説明の中で適宜補足するものとする。
 図1は光電膜1が置かれる電子銃10を図示したものである。電子銃10は、電子銃室(真空チャンバとも言う)11内に設置されており、電子銃室11の内部は、真空排気設備13によって極高真空が維持される。光電膜1の周囲を極高真空に維持するための真空排気設備13として、イオンポンプや非蒸発型ゲッターポンプ(NEG)などが利用される。真空排気設備13は、第1真空排気設備13aと第2真空排気設備13bとから構成されている。光電膜1は集光レンズ3とともに真空チャンバ11内に置かれ、真空チャンバ11外に置かれた励起光源14より放出された励起光15はビューイングポート16を通過し、光電膜1の背面に置かれた集光レンズ3によって光電膜1に集光される。この集光位置が光電膜1の励起点17となり、放出される電子線5が走査電子顕微鏡100のプローブとして利用される。この時、励起光15として光電膜1に連続光を照射すると連続的な電子線(連続電子線という)5が放出され、パルス光を照射すると励起光15と同程度のパルス幅とパルス周期のパルス的な電子線(パルス電子線という)5が放出される。本実施例の電子銃10の構造は連続電子線、パルス電子線、いずれの使用条件に対しても有効である。
 図1に示すように、電子放出面となる光電膜1の裏面近傍に集光レンズ3を配置した場合、透明基板2を透過した励起光15を0.5以上の大きい開口数で集光できる。開口数NAの集光レンズ3により光電膜1に集光された波長λの励起光15の集光径はλ/NAと同程度となる。この時、光電膜1の電子放出領域のサイズ(仮想光源径)は励起光15の集光径と同程度となる。光電膜1の表面をNEA活性化することで伝導帯の下端が真空準位よりも高いエネルギー準位となり、励起光15の照射に伴い価電子帯から伝導帯に励起された電子線5は光電膜1の内部から真空領域に効率よく放出される。特に光電膜1の活性層がp型GaAsの場合、光照射に伴い励起された電子の有効質量は真空中の電子の0.067倍と小さいため、NEA表面から真空領域に放出される際の電子放出角が約10度以内と小さくなる。以上の要因により、高い輝度特性が得られる。
 不純物濃度が高いp型GaAsから成る光電膜1を用いた電子源で高輝度が得られる一方、電子放出特性はNEA表面の状態に依存し、ガス分子の悪影響を受けやすい。この問題を軽減するために、各真空室に排気設備13を接続して、各真空室の隔壁に電子線5を通過させるための直径約1mm以下の絞り孔(通過孔7A、8A)を設ける差動排気構造が電子銃室11と試料室18の間に複数設けられる。試料室18の構成については、図4を参照できる。
 しかし、図2に示す比較例の電子銃10rの構造のように、電子銃室11と試料室18が一直線に配置された軸対称な電子顕微鏡100rの構造では、相対的に真空度の低い試料室18側の真空室から真空度の高い電子銃10r側の真空室(例えば、電子銃室11)にガスが流入し、差動排気絞り8、7rを通過したガス分子の一部が電子源である光電膜1の表面に到達する。差動排気絞り8、7rの絞り孔の径(例えば、直径)を小さくすることで、ガス分子の到達量を低減できるが、図2の構成にした場合は電子銃室11へのガス分子の流入に伴う悪影響を完全に排除することは難しい。
 つまり、第1の差動排気絞り7rに設けた通過孔7Arと第2の差動排気絞り8に設けた通過孔8Aとが一直線に配置されており、通過孔7Arと通過孔8Aとはともに、軸対称な位置に配置されている。
 図15に示すように、本実施例では、走査電子顕微鏡100の第1の差動排気絞り7に設けた通過孔7Aは、第1の差動排気絞り7の中心軸7acに対して非軸対称な位置に設けられている。一方、第2の差動排気絞り8に設けた通過孔8Aは、第2の差動排気絞り8の中心軸8acに対して軸対称な位置に設けられている。
 これに対して、比較例では、走査電子顕微鏡100rの第1の差動排気絞り7rに設けた通過孔7Arは、第1の差動排気絞り7の中心軸7acに対して軸対称な位置に設けられている。また、第2の差動排気絞り8に設けた通過孔8Aは、第2の差動排気絞り8の中心軸8acに対して軸対称な位置に設けられている。
 上記の課題は、光電膜1より放出される電子線5の軌道を非軸対称に制御することで回避できる。本実施例では光電膜1への印加電圧19をV0(<0 V)、アノード電極6への印加電圧20は接地電位(0 V)として、アノード電極6を通過した電子線5のエネルギーが、eを電荷素量として|eV0|となる構成について説明するが、各電極への印加電圧19,20の電圧値は上記の数値に限定されるものではない。また、アノード電極6は、光電膜1の近傍の電界強度を制御するための第1のアノード電極と、第1のアノード電極を通過後に加速するための第2のアノード電極となど、複数段のアノード電極の構成として、別々の電圧を印加できるように構成しても良い。
 光電膜1とアノード電極6の印加電圧19,20をそれぞれV0(<0 V)、0 Vとした場合、図3に示すように光電膜1の近傍に凸レンズ作用21、アノード電極6の近傍に凹レンズ作用22をもたらすレンズ電界が生じる。光電膜1は平面電子源のため、光電膜1の上の任意の点を励起点17にできる。光電膜1の上の励起点17がアノード電極6の軸外となるように励起光15を集光して照射すると、光電膜1より放出された電子線5は、図1や図3に示すように、凸レンズ作用21により集束された後に凹レンズ作用22によりアノード電極6の軸(中心軸)12から遠ざかるように偏向される。この電子線5が、非軸対称な位置に通過孔7Aを持つ第1の差動排気絞り7を通過するように光電膜1の上の励起点17の位置を調整する。アノード電極6の近傍に形成される凹レンズ作用22による電子線5の偏向角をθ0とする。アノード電極6が接地電位(0V)の場合、励起点17を固定すると光電膜1への印加電圧19(V0)を変えても偏向角θ0は変わらない。これは、電子光学の法則に従い、各電極電圧を元々のn倍となるように変更した場合に、電子線5の中心軌道が保存されるためである。励起点17の離軸量(di)は、光電膜1の上の励起点17に位置とアノード電極6の軸12の位置と間の距離とする。
 アノード電極6の近傍に形成される凹レンズ作用22により偏向された電子線5について、非軸対称な位置に通過孔7Aを持つ第1の差動排気絞り7を通過させる。第1の差動排気絞り7の直下に配置される第2の差動排気絞り8は、軸対称な位置に通過孔8Aを持つ。試料室18において、試料23の周囲の圧力範囲は、例えば、数10 Pa~数100 Paに設定できるように排気装置(排気ポンプ)が構成されている。相対的に真空度の低い試料室18の真空室側から真空度の高い電子銃10側の真空室(例えば、電子銃室11)にガスが流入する。
 図1、図4に示すように、第1の差動排気絞り7と第2の差動排気絞り8の間には偏向器9が配置される。偏向器9(9A、9B:図4参照)によって、非軸対称な位置に配置された通過孔7Aを通過した電子線5は振り戻され、第2の差動排気絞り8の通過孔8Aを通過する。このような電子銃10の構造とすることで、つまり、通過孔7Aの位置は非軸対称な位置に配置されて、通過孔7Aの位置と通過孔8Aの位置とが一直線に配置されていない構成とされているので、通過孔8Aを介して試料室18側から上方側に直線的に飛来するガス分子は第1の差動排気絞り7によって遮蔽され、光電膜1のNEA表面には到達しない。一方で、電子線5は偏向器9による偏向制御により、電流密度の大きい中心部分が遮蔽されずに試料23まで搬送される。このため、光電膜1から放出された電子線5は、NEA表面の特長である高輝度特性を損なわずに、電子顕微鏡100のプローブ電子線として利用できる。このようにして利用できるプローブ電子線5は、比較例(図2参照)の構成と比べて電流安定性が高く、ガス分子が光電膜1のNEA表面に到達しないので、光電膜1のNEA表面の長寿命化が達成できる。そして、光電膜1のNEA表面の長寿命化に伴い光電膜1のNEA表面を再生するための表面活性化処理の頻度を少なくできるため、電子顕微鏡100としてのダウンタイムを低減できる。
 非軸対称な位置に通過孔7Aを持つ第1の差動排気絞り7を通過した電子線5を振り戻す軌道制御に用いる複数段の偏向器9(9A、9B:図4参照)は、静電型(電界型)、電磁型(磁界型)どちらの方式を用いても構わない。特に活性層がp型GaAsの光電膜1を用いる場合は、光電膜1の周囲を極高真空にするために真空立上げ時に電子銃10を200℃以上の高温でベークアウトする必要がある。このため、電子銃室11内に搭載される部品は200℃以上の耐熱性があることに加え、極高真空環境でガス放出が少ない部材で構成されることが好ましい。
 ところで、電子線5を偏向制御する場合、偏向量が電子線5のエネルギーに依存する偏向色収差が問題となる。この偏向色収差の悪影響は、特に電子線5の照射エネルギーの低い照射条件で顕在化しやすい。NEA表面より放出される電子線5はエネルギー幅が小さい特長を活かすためには、偏向制御に伴う色収差が顕在化しないように偏向制御することが好ましい。偏向制御で生じる非対称性に伴う悪影響を最小限とするには、光電膜1に印加する陰極電圧19(V0)を時間変動して電子線5をアライメント制御する方法が有効である(図5参照)。
 次に、図4に示す電子顕微鏡の構成に基づき、最適なアライメント条件を得るための調整方法を以下に示す。図5は、第1の実施例に係る陰極電圧の時間変動を示す図である。
 光電膜1に最も近い電子レンズ32の集束点33で偏向色収差を最小化することを考える。本実施例では、光電膜1に最も近い電子レンズ32は静電型のアインツェルレンズを配置した場合について説明する。電子線5は最終段の対物レンズ34により集束された状態で試料23の上を走査し、各点で発生する信号電子35が検出器36によって検出されてSEM像が得られる。このようなSEM観察条件で偏向器9のアライメント条件が最適なアライメント条件となっている時に陰極電圧19(V0)を中心として適切な電圧振幅ΔVで時間変動した場合(図5参照)、観察されるSEM像は一定の周期で像ボケの状態が変わり、インフォーカスとデフォーカスの状態を繰り返す。一方、偏向器9のアライメント条件が最適条件から外れている場合は、像ボケの時間変動に加えて一方向の像揺れが観測される。この像揺れは、陰極電圧19(V0)を変えることで、照射エネルギーの異なる電子線5が試料23上の別々の場所に到達することが要因で生じる。像揺れの振幅は電子銃10の部分の偏向条件に依存し、像揺れの振幅が最小となる条件が最適な偏向器9のアライメント条件に対応する。なお、陰極電圧19(V0)の時間変動時の電圧振幅ΔVは上記のアライメント調整を実施する際にSEM像上で適度なボケ量で像揺れが判別できるように決定されるもので、陰極電圧19(V0)の絶対値|V0|の10 %以下の範囲で適切な電圧振幅ΔVが設定される。
 図6は、第1の実施例に係る電子線の制御方法の概略を示す図である。
 図6に示すように、光電膜1とアノード電極6の間に形成された凹レンズ作用22に起因する電子線5の偏向角をθ0、非軸対称な位置に通過孔7Aを持つ第1の差動排気絞り7と軸対称な位置に通過孔8Aを持つ第2の差動排気絞り8の間に搭載された電子源(光電膜1)側の偏向器9Aによる電子線5の偏向角をθ1、試料23側の偏向器9Bによる電子線5の偏向角をθ2とする。電子線5の仮想光源位置37を基準として、光電膜1とアノード電極6の間に形成された凹レンズ作用22による偏向支点までの距離をL0、非軸対称な位置に通過孔7Aを持つ第1の差動排気絞り7と軸対称な位置に通過孔8Aを持つ第2の差動排気絞り8の間に搭載された電子源(光電膜1)側の偏向器9Aによる電子線5の偏向支点までの距離をL1、試料23側の偏向器9Bによる電子線5の偏向支点までの距離をL2とする。この時、偏向に伴う収差が最小となる条件は陰極電圧19を時間変動した時にSEM像の像揺れが最小となる条件に対応する。偏向器9Aと偏向器9Bに静電型の偏向器を用いた場合、SEM像の像揺れが最小となる条件では以下の関係式(式1)が成立する。
 L0θ0+L1θ1+L2θ2 = 0      (式1)
 以上のアライメント調整は光電膜1に最も近い電子レンズ32で実施すれば、後段のアライメント調整は従来の電子顕微鏡で利用される調整方法と同様に調整することで、所望の照射性能が得られる。
 これらの制御は制御装置であるコントローラ24により実行される。制御装置24は、光電膜1に印加する陰極電圧を時間変動させ、時間変動に伴う像揺れを調整するために、偏向器9による電子線5の偏向信号を制御する。なお、以上に示した、陰極電圧19(V0)を時間変動する電子線5のアライメント調整は、偏向系に起因する色収差の悪影響を最小化するためのものであり、必須の制御ではない。特に偏向器9Aおよび偏向器9Bを通過する際の電子線5のエネルギーが大きい条件では上記の制御を行う必要はなく、電子光学系の倍率制御によって試料23上では上記の悪影響が充分に縮小される。また、偏向器9Aおよび偏向器9Bを通過する際の電子線5のエネルギーが小さい条件であっても、低倍率の観察など、偏向系に起因する悪影響が顕在化しないような観察条件で利用される場合には、上記の制御は不要である。
 理想的な電子銃10の構成では、光軸から見て非軸対称な電子線通過孔7Aが設けられる方向に電子線5を偏向制御すれば良いため、2極子場を発生できる偏向器9を複数段、最小の構成では2段の偏向器(9A、9B)を設置すれば良い。しかし実際には、電子線5の経路上でフリンジ場、漏洩磁場、地磁気などの非軸対称な悪影響を受けて2段の2極子場では所望のアライメント条件が得られない状況が発生しうる。特に光電膜1への印加電圧19(V0)を変えた場合に、|V0|が小さい条件(電子線の照射エネルギーが小さい条件)と|V0|が大きい条件(電子線の照射エネルギーが大きい条件)では非軸対称な悪影響が異なる場合が想定される。この状況を加味して最適なアライメント条件を得るために、偏向器9は4極子場、6極子場、8極子場などの多極子場を発生できるように対称性の良い多極子の電磁極で構成することにより、非対称性に起因する悪影響に対し充分な補正自由度を得ることができる。
 次に光電膜1の直下に置かれる、非軸対称な位置に電子線通過孔7Aを持つ第1の差動排気絞り7の詳細構造を以下に示す。図7Aは、第1の実施例に係る第1の差動排気絞りの第1の構成例を示す図である。図7Bは、第1の実施例に係る第1の差動排気絞りの第2の構成例を示す図である。図7Cは、第1の実施例に係る第1の差動排気絞りの第3の構成例を示す図である。図8は、第1の実施例に係る励起点の離軸量と電子線の偏向角の関係を示すグラフである。
 第1の差動排気絞り7の最も単純な構成は、単一の絞り孔(通過孔)7Aを非軸対称に配置し、第1の差動排気絞り7の中心軸7acの中心部が塞がれた構造である(図7A)。絞り孔7Aの軸外偏心量Lecは、光電膜1とアノード電極6の電極間距離、アノード電極6の開口径、励起点17の離軸量di、アノード電極6と軸外絞り7Aの搭載位置までの距離Laptなどに依存する。このため、電子銃10内部の電極構造を考慮して事前に電子線5の軌道計算を実施し、非軸対称な位置に通過孔7Aを持つ第1の差動排気絞り7の搭載位置、絞り径、軸外偏心量Lec、光電膜上の励起点の離軸量diを決定できる。なお、非軸対称な位置に通過孔7Aを持つ第1の差動排気絞り7は絞り面状に複数配置される構造としても良い。
 図7Bには、非軸対称な配置の軸外絞り孔(通過孔)7Aが2つ配置される場合、図7Cには非軸対称な配置の絞り孔(通過孔)7Aが3つ配置される場合の構成例を示す。図7A~Cでは非軸対称な配置の通過孔7Aは円形の孔としているが、絞り孔の形状は必要な差動排気性能が得られる範囲であれば円形には限定されず、矩形や楕円形の通過孔として構成しても良い。
 例として、図1に示す電極構造について、光電膜1とアノード電極6の距離を1 mm、1.5 mm、2 mm、2.5 mmとした場合の凹レンズ作用22による偏向角θ0の、励起点17の離軸量(di)に対する依存性を計算した結果を図8に示す。アノード電極6と非軸対称な配置の通過孔7Aを持つ第1の差動排気絞り7の搭載位置の距離Laptを大きくすることで、非軸対称な配置の通過孔7Aを持つ第1の差動排気絞り7の面上の電子線5の離軸量(di)を大きくすることができる。一方、電子線5が横方向に広がるため、通過孔7Aの絞り径(平面視における通過孔7Aの円形の孔の直径)を固定している場合は絞り孔を通過できる電子線5の電流量が制限される点に注意が必要となる。典型的には、光電膜1とアノード電極6の間隙距離1 mmの場合は、アノード電極6と非軸対称な配置の通過孔7Aを持つ第1の差動排気絞り7の搭載位置の距離Laptを100 mmとすると、軸外絞り孔(通過孔)7Aの偏心量Lecは0.45 mm程度にすればよく、通過孔7Aの絞り径の直径は最大でφ0.6 mmの絞りとする。これにより、中心部が塞がれた非軸対称な配置の絞り孔(通過孔)7Aを持つ第1の差動排気絞り7を差動排気絞りとして利用することができる。
 次に、非軸対称な配置の絞り孔(通過孔)7Aを持つ第1の差動排気絞り7を有する電子顕微鏡100の調整方法について説明する。図9Aは、第1の実施例に係る第1の差動排気絞りの第4の構成例を示す図である。図9Bは、第1の実施例に係る第1の差動排気絞りの第5の構成例を示す図である。図9Cは、第1の実施例に係る第1の差動排気絞りの第6の構成例を示す図である。
 本実施例の電子銃10の構造で光電膜1のNEA表面より発生する電子線5を電子顕微鏡100のプローブ電子線として利用する場合、実用的には、まず、従来と同じように、第1の差動排気絞り7を軸対称な構成で調整する第1の調整工程の後に、電子線5を第1の差動排気絞り7の非軸対称な配置の電子線通過孔(7A)の方向に偏向制御する第2の調整工程を実施する構成とした方が使いやすい。この観点で、第1の差動排気絞りの構造を図9A~9Cのように非軸対称な配置の電子線通過孔(7A)とは別に、中心部(中心軸7ac)に軸対称な条件で放出された電子線5の通過孔(第3貫通孔、第3通過孔)7Cを持つ構成が考えられる。この構造を利用する場合、第1の差動排気絞り7の上部または下部に、電子線を遮蔽するための遮蔽板などの遮蔽部材(遮蔽手段ともいう)を大気領域から直線方向に部材を抜差しできる直線導入機を用いる。初期調整では軸対称な条件で電子線5を試料23まで搬送して電子レンズの軸出し調整や電子線5のアライメント調整を完了させる。その後に、遮蔽板により電子線5が軸対称な配置の中心部の絞り孔7Cを通過できないように塞いだ状態にする。なお、集光レンズ3がアノード電極6の中心付近となるように位置調整するために中心部の絞り孔7Cを通過した電子線5の電流計測手段を直線導入機の先端部に搭載しても良い。この場合、電流計測手段は中心部の絞り孔7Cを塞ぐための遮蔽部材として利用することもできる。
 次に、図13を用いて、非軸対称な配置の絞り孔(通過孔)7Aと通過孔7Cとを持つ第1の差動排気絞り7(図9A~図9C)を有する電子銃10の調整手順を説明する。図13は、第1の実施例に係る電子銃の調整手順を示すフローチャートである。図13には、非軸対称な配置の絞り孔(通過孔)7Aについて、非軸対称な配置の絞り以外に中心部に軸対称な配置の電子線5の通過孔7Cを持つ場合について、初期調整時の電子線5の制御手順のフローチャートが示される。以下、図13の各ステップ(S10-S17)について説明する。
 (S10):電子銃10の初期調整を開始する。
 (S11):中心部の絞り孔7Cの直下に電流計測手段を配置する。
 (S12):励起光15を光電膜1に照射し、電流計測手段で電流を計測する。
 (S13):計測電流が最大となるように光電膜1上の励起位置や励起光15の集光性を調整する。
 (S14):次に、励起光学系を調整して光電膜1上の励起点17がアノード電極6の軸外となるように制御する。光電膜1上の励起点17の位置の調整は、後述する実施例2~実施例4に記載される方法を適用するものとする。中心部の軸対称な配置の電子線5の通過孔7Cを通過させる場合を基準として、非軸対称な配置の絞り孔(通過孔)7Aの位置で電子線5が適切な位置に到達するように、励起光学系の光路が調整される。
 (S15):以上の手順に従い、非軸対称な配置の絞り孔(通過孔)7Aを通過した電子が、電子顕微鏡100の試料室18に配置した試料23まで電子線5が到達するように、偏向器9を調整する。
 (S16):電子銃と試料室の間に設けられた差動排気の絞りを通過する条件では、試料室に搭載された検出器を用いた電子顕微鏡の観察画像により、電子線が試料室に到達することを確認できる。検出信号を確認し、観察画像が良好な場合(Yes)、S17へ移行する。検出信号を確認し、観察画像が良好ではない場合(No)、S11へ移行して、S11-S15を繰り替えし、実行する。
 (S17):電子銃10の初期調整を終了する。
 次に、図14を用いて、非軸対称な配置の絞り孔(通過孔)7A(通過孔7Cを有さない)を持つ第1の差動排気絞り7(図7A~図7C)を有する電子銃10の調整手順を説明する。図14は、第1の実施例に係る電子銃の調整手順を示すフローチャートである。図14には、非軸対称な配置の絞り7Aが中心部の絞り孔を持たない場合について、初期調整時の電子線の制御手順のフローチャートが示される。以下、図14の各ステップ(S20-S27)について説明する。
 (S20):電子銃10の初期調整を開始する。
 (S21):非軸対称な配置の絞り7Aが中心部の絞り孔を持たない場合は、中心部の軸対称な配置の電子線5の通過孔7Cを通過させる場合を基準とすることができないため、非軸対称な配置の絞り孔(通過孔)7Aの直下に電流計測手段を配置する。
 (S22):励起光15を光電膜1に照射し、電流計測手段で電流を計測する。
 (S23):その計測電流が最大となるように光電膜1上の励起位置を調整する。
 (S24):電流計測手段を非軸対称配置の絞り孔7Aの下から移動させる。
 (S25):電子顕微鏡100の試料室18に配置した試料23まで電子線5が到達するように、偏向器9を調整する。
 (S26):電子銃と試料室の間に設けられた差動排気の絞りを通過する条件では、試料室に搭載された検出器を用いた電子顕微鏡の観察画像により、電子線が試料室に到達することを確認できる。検出信号を確認し、観察画像が良好な場合(Yes)、S27へ移行する。検出信号を確認し、観察画像が良好ではない場合(No)、S21へ移行して、S21-S25を繰り替えし、実行する。
 (S27):電子銃10の初期調整を終了する。
 以上により、実質的に中心部の軸対称な配置の電子線5の第1の差動排気絞り7に通過孔7Cがある場合と同様の条件で電子線5を電子顕微鏡100のプローブ電子線として利用することができる。
 図16は、第1の実施例に係る電子顕微鏡の画像撮影方法を示すフローチャートである。したがって、電子顕微鏡の画像撮影方法は、図16に示すように、以下のように、
 0)初期設定工程(図13、図14参照)と、
 1)光電膜1の励起点17から電子線5を発生させる第1のステップと、
 2)電子線5をアノード電極6により加速する第2のステップと、
 3)第1の差動排気絞り7の非軸対称な位置に設けられた第1通過孔7Aに、加速された電子線5を通過させる第3のステップと、
 4)第1通過孔7Aを通過した電子線5の軌道を偏向器9により調整して、第2の差動排気絞り8の軸対称な位置に設けられた第2通過孔8Aに、電子線5を通過させる第4のステップと、
 5)第2通過孔8Aを通過した電子線5を試料23に照射して観察画像を取得する第5のステップと、を含む。
 そして、電子顕微鏡の画像撮影方法の初期設定工程(図13、図14参照)は、以下のように、
 6)第1の差動排気絞り7の第1通過孔7Aの下に電流計測手段を配置し、光電膜1の放出電流を計測する第6のステップと、
 7)計測される放出電流が最大となるように、光電膜1上の励起光15の励起点17の位置を調整する第7のステップと、
 8)第1通過孔7Aを通過した電子線5が試料23に到達するように、偏向器9を調整する第8のステップと、を含む。
 以上で説明した電子銃10は、ガス分子の悪影響を軽減できるため、細胞などの生物系試料のように低真空条件が必要な試料や、固体とガスの反応をIn-situで環境制御計測するための試料室18を備えた電子顕微鏡に対し、NEA表面を持つ光電膜1を用いた電子源を適用することが可能となる。
 本実施例では本発明の電子銃を走査電子顕微鏡に搭載した場合について説明したが、同様の電子銃構造を透過電子顕微鏡や走査透過電子顕微鏡などの電子線応用装置に適用することも可能である。
 次に、図10を用いて、実施例2を説明する。図10は、第2の実施例に係る励起光学系と電子銃の概略構成例を示す図である。
 本実施例では、実施例1で説明した電子銃10の構造に、光電膜1上の励起点17がアノード電極6の軸外となるように、励起光15を光電膜1の活性層に集光して照射するための励起光学系4(図1参照)を組合せた構成について示す。
 光電膜1は集光レンズ3とともに真空チャンバ(電子銃室)11内に置かれ、真空チャンバ11外に置かれた励起光源14より放出された励起光15はコリメータレンズ51によって平行光に成形され、ビューイングポート16を通過後に集光レンズ3によって光電膜1の活性層に集光される。光電膜1に対する励起光15の集光状態をモニタするために、光電膜1での反射光を励起光学系4の光軸外に反射させ、投影レンズにより撮像素子に集光するように励起光学系4を構成しても良い。50は、励起光学系4の光軸を示す。
 p型GaAsから成る光電膜1を用いる場合、励起波長は760~800 nmが好ましい。電子放出面となる光電膜1の裏面近傍に集光レンズ3を配置した場合、透明基板2を透過した励起光15を0.5以上の大きい開口数で集光できる。開口数NAの集光レンズにより光電膜に集光された波長λの励起光の集光径はλ/NAと同程度となり、最適なスポット径はFWHMでφ1 μm程度となる。この時、電子放出領域のサイズはφ1 μm程度のポイントソースとして利用される。電子顕微鏡100のプローブ電子線を連続電子線として利用する場合は連続光を、パルス電子線として利用する場合はパルス光を照射する。励起光源は空間光出力、光ファイバ出力など、光電膜1からの電子放出に必要な強度を出力できる光源であれば、どのようなものでも利用可能である。
 光電膜1上のアノード電極6の軸外を励起点17とするための励起光学系4の構成例を図10に示す。励起光学系4は光源14、コリメータレンズ51、集光レンズ3、透明電極2、光電膜1などから成る。光源14より放出された励起光15はコリメータレンズ51により平行光に成形され、集光レンズ3によって光電膜1に集光して照射される。集光レンズ3は電子銃10の真空チャンバ内に固定されている。励起光学系4の光源14とコリメータレンズ51は光学素子を固定するための専用のホルダを用いてビューイングポート16のフランジに固定される。電子銃10の真空チャンバ11の最上部に設置された4方向の押しネジ52を調整することで、励起光学系4全体を水平面内の任意の水平方向に位置調整できる構成となっている。集光レンズ3と光電膜1の距離は、焦点距離の調整機構であるネジ部品53の回転量を調整することで光電膜1上の集光スポット径が最小となるように調整される。光電膜1を用いた電子銃10で、光学系4を位置調整するための機構の詳細は、Journal of applied physics 103, 064905 (208)のFig. 3を参照されたい。
 図10では、アノード電極6の中心軸から距離(離軸量)diだけ離軸した位置を励起点17するように、励起光学系4の水平方向の位置を調整した時の構成を示している。上記の調整機構を利用することで、電子線5が図7Aや図9Aに示す非軸対称な配置の単孔絞り7Aを通過するように、集光レンズ3の位置を調整して最適な励起点17に設定する。このようにして、光電膜1のNEA表面より放出された電子線5を、電子顕微鏡のプローブ電子線として利用する。
 次に、図11を用いて実施例3を説明する。図11は、第3の実施例に係る励起光学系の概略を示す図である。
 本実施例では実施例1で説明した電子銃構造について、励起光学系4(図1参照)を固定して光電膜1上の複数の点に励起光15を集光して照射でき、励起光学系4の光路を調整せずに光電膜1上の複数の励起点17を利用できる構成を示す。
 光電膜1は集光レンズ3とともに真空チャンバ11内に置かれ、真空チャンバ11外に置かれた励起光源14より放出された励起光15はコリメータレンズ51によって平行光に成形され、ビューイングポート16を通過後に集光レンズ3によって光電膜1の活性層に集光される。光電膜1に対する励起光15の集光状態をモニタするために、光電膜1での反射光を励起光学系4の光軸外に反射させ、投影レンズにより撮像素子に集光するように光学系4を構成しても良い。p型GaAsから成る光電膜1を用いる場合、励起波長は760~800 nmが好ましい。電子放出面となる光電膜1の裏面近傍に集光レンズ3を配置した場合、透明基板2を透過した励起光15を0.5以上の大きい開口数で集光できる。開口数NAの集光レンズ3により光電膜1に集光された波長λの励起光15の集光径はλ/NAと同程度となり、最適なスポット径はFWHMでφ1 μm程度となる。この時、電子放出領域のサイズはφ1 μm程度のポイントソースとして利用される。電子顕微鏡100のプローブ電子線を連続電子線として利用する場合は連続光を、パルス電子線として利用する場合はパルス光を照射する。
 光電膜1上のアノード電極6の軸外を励起点17とするための励起光学系4の構成例を図11に示す。励起光学系4は光源14、コリメータレンズ51、集光レンズ3、透明電極2、光電膜1などから成る。この構成で図7B、図7C、図9B、図9Cなど非軸対称な配置に複数の通過孔7Aを持つ第1の差動排気絞り7を組合せた場合について説明する。
 励起光源14は多心ファイバ55で構成され、励起光源14を多心ファイバ55に接続する。集光レンズ3は図10と同様の機構で真空チャンバ11内に固定されており、実施例2で説明した手順に従いアノード電極6の中心付近に位置調整して固定される。この方式の場合、非軸対称な配置の絞り孔(通過孔)7Aに対応する励起光15の光路は励起光学系4に対し非軸対称となる。非軸対称な配置の絞り孔(通過孔)7Aを通過させる電子線5に対応する励起光15はコリメータレンズ51と集光レンズ3の軸外を通り光電膜1の活性層に集光して照射されるが、励起光15の集光位置の離軸量(di)が集光レンズ3で集光できる最大画角内におさまっていれば、光学系4の構成が軸対称な光路の場合と同程度の集光特性を得ることができる。
 上記の構成により、励起光源14の出力を切替えることで、非軸対称な配置の複数の絞り7Aについて、電子線5の経路を切替えて使うことができる。多心ファイバ55のファイバ端の間隔doと、コリメータレンズ51の焦点距離fo、集光レンズ3の焦点距離fiを用いて、光電膜1上に集光される2点の励起点17の間隔diの間には以下の関係式(式2)が成り立つ。
 di  = do × fi / fo     (式2)
 非軸対称な配置の絞り孔(通過孔)7Aの偏心量Lecは、励起点の離軸量diの位置から放出された電子線が非軸対称な配置の絞り孔(通過孔)7Aを通過するように、電子軌道計算に基づき算出される。
 この時、制御系コントローラ24を用いて、励起光源14の出力に対応するように、非軸対称な配置の絞り孔(通過孔)7Aを通過した後の電子線5に対して偏向器9を連動制御する。励起光源14の出力と偏向方向の連動制御を一定期間ごとに切り替えて利用することで、光電膜1のNEA表面を長寿命化でき、長期間に渡り安定な電子源として利用することが可能となる。この時、励起光源14としてパルス幅やパルス間隔が最短で1ナノ秒程度のパルス光源を用いて、ナノ秒程度の時間間隔で励起点17を切替えることが可能である。なお、光電膜1上の励起点17に依存して電子線5の放出強度が異なる場合は、励起点17ごとに励起光の照射強度を変えることで、光電膜1の放出電流を安定化して利用することができる。
 次に、図12を用いて実施例4を説明する。図12は、第4の実施例に係る励起光学系の概略を示す図である。
 本実施例では実施例1で説明した電子銃構造について、励起光学系4(図1参照)の光路上に配置した光学素子を利用して、光電膜1上の複数の点に励起光15を集光して照射できる構成を示す。
 光電膜1は集光レンズ3とともに真空チャンバ11内に置かれ、真空チャンバ11外に置かれた励起光源14より放出された励起光15はコリメータレンズ51によって平行光に成形され、ビューイングポート16を通過後に集光レンズ3によって光電膜1の活性層に集光される。光電膜1に対する励起光15の集光状態をモニタするために、光電膜1での反射光を励起光学系4の光軸外に反射させ、投影レンズによって撮像素子に集光するように光学系4を構成しても良い。p型GaAsから成る光電膜1を用いる場合、励起波長は760~800 nmが好ましい。電子放出面となる光電膜1の裏面近傍に集光レンズ3を配置した場合、透明基板2を透過した励起光を0.5以上の大きい開口数で集光できる。開口数NAの集光レンズ3により光電膜1に集光された波長λの励起光15の集光径はλ/NAと同程度となり、最適なスポット径はFWHMでφ1 μm程度となる。この時、電子放出領域のサイズはφ1 μm程度のポイントソースとして利用される。電子顕微鏡100のプローブ電子線を連続電子線として利用する場合は連続光を、パルス電子線として利用する場合はパルス光を照射する。励起光源14は空間光出力、光ファイバ出力など、光電膜1からの電子放出に必要な強度を出力できる光源であれば、どのようなものでも利用可能である。
 光電膜1上のアノード電極6の軸外を励起点17とするための励起光学系4の構成例を図12に示す。励起光学系4は光源14、コリメータレンズ51、集光レンズ3、透明電極2、光電膜1などから成る。この構成で図7B、図7C、図9B、図9Cなど非軸対称な配置に複数の通過孔7Aを持つ第1の差動排気絞り7を組合せた場合について説明する。
 本実施例では励起光15を励起光学系14の光軸外に曲げるために、コリメータレンズ51と集光レンズ3の間の領域に、断面がくさび形状の光学素子(ウェッジプリズム)56を配置する。ウェッジプリズム56に入射した平行光はスネルの法則に従い、図12のように屈折する。平行光が屈折する角度はウェッジプリズム56の材質(屈折率)や光軸に対する傾斜面の傾斜角度に依存する。このため、光電膜1のNEA表面で発生した電子線5が第1の差動排気絞り7の非軸対称な配置の絞り孔(通過孔)7Aを通過できる励起点の離軸量diに基づき、ウェッジプリズム56による屈折角は決定される。
 実施例3と同様に、屈折した励起光15は集光レンズ3の軸外を通り光電膜1の活性層に集光して照射されるが、励起光15の集光位置の離軸量diが集光レンズ3で集光できる最大画角内におさまっていれば、励起光学系4の構成が軸対称な光路の場合と同程度の集光特性を得ることができる。
 実施例3と同様に、集光レンズ3はアノード電極6の中心付近に水平位置が調整され固定されることが好ましい。このため、はじめにウェッジプリズム56がない状態で光路を調整し、集光レンズ3がアノード電極6の中心付近となるように位置を調整する。
 ウェッジプリズム56を励起光学系4の光軸のまわりに回転することで、励起光を任意の方向に曲げることができる。このため、ウェッジプリズム56を回転機構に搭載し、アノード電極の軸外の励起点から放出された電子線5が第1の差動排気絞り7の非軸対称な配置の絞り孔(通過孔)7Aを通過できるように、ウェッジプリズム56の回転角を制御することで、光電膜1上の励起点17を切替えて放出される電子線5を利用することができる。
 この時、制御系コントローラ24を用いて、ウェッジプリズム56の回転角に対応するように、第1の差動排気絞り7の非軸対称な配置の絞り孔(通過孔)7Aを通過した後の電子線5に対して偏向器9を連動制御する。ウェッジプリズム56の回転角と対応する偏向方向の連動制御を一定期間ごとに切り替えて利用することで、光電膜1のNEA表面を長寿命化でき、長期間に渡り安定な電子源として利用することが可能となる。この時、励起光源14としてパルス幅やパルス間隔が最短で1ナノ秒程度のパルス光源を用いて、ナノ秒程度の時間間隔で励起点17を切替えることが可能である。なお、光電膜1上の励起点17に依存して電子線5の放出強度が異なる場合は、励起点17ごとに励起光の照射強度を変えることで、光電膜1の放出電流を安定化して利用することができる。
 以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は、上記実施形態および実施例に限定されるものではなく、種々変更可能であることはいうまでもない。
 1…光電膜、2…透明基板、3…集光レンズ、4…光学系、励起光学系、5…電子、電子線、6…アノード電極、7…第1の差動排気絞り、7A…非軸対称な配置の絞りの電子線通過孔(第1通過孔)、7B…絞り板の中心部、7C…絞り板の中心部の電子線通過孔(第3通過孔)、8…第2の差動排気絞り、8A…軸対称な配置の絞りの電子線通過孔(第2通過孔)、9…複数段の偏向器、9A…上側偏向器、9B…下側偏向器、10…電子銃、11…電子銃室、12…アノード電極の軸、13…排気系(イオンポンプ、NEGポンプ)、14…光源、励起光源、15…励起光、16…ビューイングポート、17…励起点、18…試料室、19…光電膜の印加電圧(陰極電圧)、20…アノード電極の印加電圧、21…静電レンズの凸レンズ作用、22…静電レンズの凹レンズ作用、23…試料、24…制御系(制御装置、コントローラ)、32…電子レンズ、33…電子レンズの集束点、34…対物レンズ、35…信号電子、36…検出器、37…仮想光源、50…励起光学系の光軸、51…コリメータレンズ、52…押しネジ、53…ネジ部品、焦点距離の調整機構、55…多心ファイバ、56…ウェッジプリズム(断面がくさび形状の光学素子)

Claims (12)

  1.  励起光を発生させる励起光源と、
     透明基板と光電膜を有するフォトカソードと、
     前記励起光を前記フォトカソードに向けて集光する集光レンズと、
     前記フォトカソードに対向して配置され、前記集光レンズで集光された励起光が、前記フォトカソードの透明基板を透過して入射されることにより、前記フォトカソードの前記光電膜の励起点から電子線が発生し、前記電子線を加速させるアノード電極と、
     前記フォトカソードの側に配置され、電子光学系に対し非軸対称に配置された第1通過孔を持つ第1の差動排気絞りと、
     該第1の差動排気絞りよりも試料の側に配置され、電子光学系に対し軸対称に配置された第2通過孔を持つ第2の差動排気絞りと、
     前記第1の差動排気絞りと前記第2の差動排気絞りの間に配置され、前記電子線の軌道を調整する偏向器と、を備えることを特徴とする電子顕微鏡。
  2.  前記フォトカソードに印加する陰極電圧を時間変動させ、該時間変動に伴う像揺れを調整するために、前記偏向器による前記電子線の偏向信号を制御する制御装置を備えることを特徴とする請求項1に記載の電子顕微鏡。
  3.  前記光電膜は,表面の電子親和力が負の半導体であることを特徴とする,請求項2に記載の電子顕微鏡。
  4.  前記励起光源と前記集光レンズと前記光電膜とを含む励起光学系の水平方向の位置を調整する調整機構を具備することを特徴とする、請求項2または請求項3に記載の電子顕微鏡。
  5.  多心ファイバを有し、
     前記多心ファイバに接続された前記励起光源の出力によって、前記光電膜上の前記励起点を切り替えることを特徴とする、請求項2または請求項3に記載の電子顕微鏡。
  6.  前記制御装置は、前記励起光源の出力と、前記偏向器による前記電子線の偏向方向を連動して制御することを特徴とする、請求項5に記載の電子顕微鏡。
  7.  前記第1の差動排気絞りは、電子光学系に対して軸対称な配置の第3通過孔を持つことを特徴とする、請求項2または請求項3に記載の電子顕微鏡。
  8.  前記第1の差動排気絞りの前記第3通過孔を遮蔽する遮蔽手段を備えることを特徴とする、請求項7に記載の電子顕微鏡。
  9.  前記遮蔽手段は、電流計測手段を有することを特徴とする、請求項8に記載の電子顕微鏡。
  10.  前記試料が配置される試料室を有し、
     前記試料の周囲の圧力範囲は数10Pa~数100Paに設定できることを特徴とする、請求項2または請求項3に記載の電子顕微鏡。
  11.  光電膜の励起点から電子線を発生させる第1のステップと、
     前記電子線をアノード電極により加速する第2のステップと、
     第1の差動排気絞りの非軸対称な位置に設けられた第1通過孔に、前記加速された前記電子線を通過させる第3のステップと、
     前記第1通過孔を通過した前記電子線の軌道を偏向器により調整して、第2の差動排気絞りの軸対称な位置に設けられた第2通過孔に、前記電子線を通過させる第4のステップと、
     前記第2通過孔を通過したら前記電子線を試料に照射して観察画像を取得する第5のステップと、を有する、電子顕微鏡の画像撮影方法。
  12.  請求項11において、さらに、
     前記第1の差動排気絞りの前記第1通過孔の下に電流計測手段を配置し、前記光電膜の放出電流を計測する第6のステップと、
     計測される放出電流が最大となるように、前記光電膜の前記励起点の位置を調整する第7のステップと、
     前記第1通過孔を通過した前記電子線が前記試料に到達するように前記偏向器を調整する第8のステップと、を含む初期設定工程を有する、電子顕微鏡の画像撮影方法。
PCT/JP2022/024470 2022-06-20 2022-06-20 電子顕微鏡およびその画像撮影方法 WO2023248272A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024470 WO2023248272A1 (ja) 2022-06-20 2022-06-20 電子顕微鏡およびその画像撮影方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024470 WO2023248272A1 (ja) 2022-06-20 2022-06-20 電子顕微鏡およびその画像撮影方法

Publications (1)

Publication Number Publication Date
WO2023248272A1 true WO2023248272A1 (ja) 2023-12-28

Family

ID=89379566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024470 WO2023248272A1 (ja) 2022-06-20 2022-06-20 電子顕微鏡およびその画像撮影方法

Country Status (1)

Country Link
WO (1) WO2023248272A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003426A (ja) * 2009-06-19 2011-01-06 Jeol Ltd 電子顕微鏡
JP2011014244A (ja) * 2009-06-30 2011-01-20 Hitachi High-Technologies Corp 荷電粒子銃及び荷電粒子線装置
JP2011029185A (ja) * 2009-07-24 2011-02-10 Carl Zeiss Nts Gmbh 絞りユニットを有する粒子ビーム装置および粒子ビーム装置のビーム電流を調整する方法
WO2019221119A1 (ja) * 2018-05-17 2019-11-21 株式会社Photo electron Soul フォトカソードを搭載した電子銃の入射軸合わせ方法、コンピュータプログラム、および、フォトカソードを搭載した電子銃
JP2020537287A (ja) * 2017-10-10 2020-12-17 ケーエルエー コーポレイション 電子ビーム生成および測定
WO2021192070A1 (ja) * 2020-03-25 2021-09-30 株式会社日立ハイテク 電子銃及び電子顕微鏡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003426A (ja) * 2009-06-19 2011-01-06 Jeol Ltd 電子顕微鏡
JP2011014244A (ja) * 2009-06-30 2011-01-20 Hitachi High-Technologies Corp 荷電粒子銃及び荷電粒子線装置
JP2011029185A (ja) * 2009-07-24 2011-02-10 Carl Zeiss Nts Gmbh 絞りユニットを有する粒子ビーム装置および粒子ビーム装置のビーム電流を調整する方法
JP2020537287A (ja) * 2017-10-10 2020-12-17 ケーエルエー コーポレイション 電子ビーム生成および測定
WO2019221119A1 (ja) * 2018-05-17 2019-11-21 株式会社Photo electron Soul フォトカソードを搭載した電子銃の入射軸合わせ方法、コンピュータプログラム、および、フォトカソードを搭載した電子銃
WO2021192070A1 (ja) * 2020-03-25 2021-09-30 株式会社日立ハイテク 電子銃及び電子顕微鏡

Similar Documents

Publication Publication Date Title
US9425022B2 (en) Monochromator and charged particle apparatus including the same
KR101276198B1 (ko) 전자 칼럼용 다중극 렌즈
JP6389569B2 (ja) モノクロメーターおよびこれを備えた荷電粒子線装置
US10446361B2 (en) Aberration correction method, aberration correction system, and charged particle beam apparatus
JPH06111745A (ja) 電子光学鏡筒および走査電子顕微鏡
US8895922B2 (en) Electron beam apparatus
WO2015050201A1 (ja) 荷電粒子線の傾斜補正方法および荷電粒子線装置
US20040173746A1 (en) Method and system for use in the monitoring of samples with a charged particles beam
US4963823A (en) Electron beam measuring instrument
JP3867048B2 (ja) モノクロメータ及びそれを用いた走査電子顕微鏡
JP2004527885A (ja) 粒子ビーム装置のための偏向システム
WO2023248272A1 (ja) 電子顕微鏡およびその画像撮影方法
JP2007287495A (ja) 2レンズ光学系走査型収差補正集束イオンビーム装置及び3レンズ光学系走査型収差補正集束イオンビーム装置及び2レンズ光学系投影型収差補正イオン・リソグラフィー装置並びに3レンズ光学系投影型収差補正イオン・リソグラフィー装置
TW202349435A (zh) 藉由光電陰極薄膜以產生多個電子束
US20140224997A1 (en) Ultra-miniaturized electron optical microcolumn
JP7349011B2 (ja) 電子銃及び電子顕微鏡
JP2003513407A (ja) 改良された熱電界放出の整列
TWI807604B (zh) 帶電粒子束設備、掃描電子顯微鏡和操作帶電粒子束設備的方法
JP7406009B2 (ja) 電子銃および電子線応用装置
JP7481378B2 (ja) 収差補正装置および電子顕微鏡
US20230197399A1 (en) Electron microscope, electron source for electron microscope, and methods of operating an electron microscope
JP2000133181A (ja) 荷電粒子線装置
KR101818080B1 (ko) 나노구조 팁의 전자빔의 밀도를 향상시키는 전자방출원을 구비한 초소형전자칼럼
KR20170113491A (ko) 모노크로미터 및 이를 구비한 전자선 손실분광 장치
JP2004247321A (ja) 走査形電子顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947836

Country of ref document: EP

Kind code of ref document: A1