WO2023247083A1 - Pompe à vide - Google Patents

Pompe à vide Download PDF

Info

Publication number
WO2023247083A1
WO2023247083A1 PCT/EP2023/059327 EP2023059327W WO2023247083A1 WO 2023247083 A1 WO2023247083 A1 WO 2023247083A1 EP 2023059327 W EP2023059327 W EP 2023059327W WO 2023247083 A1 WO2023247083 A1 WO 2023247083A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
transverse
inter
wall
stage
Prior art date
Application number
PCT/EP2023/059327
Other languages
English (en)
Inventor
Eric MANDALLAZ
Patrick Philippe
Original Assignee
Pfeiffer Vacuum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum filed Critical Pfeiffer Vacuum
Publication of WO2023247083A1 publication Critical patent/WO2023247083A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/30Use in a chemical vapor deposition [CVD] process or in a similar process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2280/00Arrangements for preventing or removing deposits or corrosion
    • F04C2280/02Preventing solid deposits in pumps, e.g. in vacuum pumps with chemical vapour deposition [CVD] processes

Definitions

  • the present invention relates to a vacuum pump and more particularly, to a purge conduit of said vacuum pump.
  • Dry vacuum pumps comprise one or more pumping stages in series in which a gas to be pumped circulates between suction and discharge.
  • a gas to be pumped circulates between suction and discharge.
  • These vacuum pumps are called “dry” because in operation, the rotors rotate inside the stator without any mechanical contact between them or with the stator, which allows no oil to be used in the pumping stages.
  • Certain vacuum pumps are used in processes for manufacturing semiconductors, flat screens, photovoltaic panels or coatings, in particular processes for depositing thin layers under vacuum called “HARP” (for High Aspect Ratio Process in English). notably of the CVD, PECVD, SACVD, ALD type, etc. These processes generally alternate deposition stages where process gases, such as precursors or resin vapors, are introduced into the reactor for the deposition of thin layers, with cleaning steps where active gases, such as corrosive gas species, are introduced into the reactor to clean the reactor walls.
  • process gases such as precursors or resin vapors
  • the gases used for the deposition steps can generate large quantities of by-products in solid form (powders, pastes, pieces).
  • a significant accumulation of powders on the moving parts of the vacuum pump can quickly lead to the pump stopping due to mechanical seizure. Reducing the failure rate on these powder generating processes is therefore essential.
  • Another solution consists of adapting the geometry of the vacuum pump by design to facilitate the evacuation of the powders, for example by providing transfer channels between larger pumping stages or a vertical vacuum pump.
  • Document EP1990543A1 proposes a purge fluid injection device allowing more effective purging of the rotors.
  • a purge conduit is provided in the thickness of the stator section and opens into a pumping stage.
  • the purge fluid can be brought to the temperature of the pump body before being injected inside the stage.
  • Purge fluid guide grooves can be provided in the front face of the stator slice to clean precisely and efficiently between the rotors.
  • the localized injection of the purge fluid allows the targeting of the injection in these areas, which ensures both the dilution of the contaminants and the dispersion by mechanical action of the solid and gaseous by-products likely to be deposited on the rotors.
  • An aim of the present invention is to propose a vacuum pump solving at least one of the drawbacks described above.
  • the invention relates to a dry vacuum pump comprising:
  • stator comprising at least a first and a second complementary half-shells assembling together to form at least two pumping stages mounted in series and separated axially from each other by a respective inter-stage transverse wall of the half-shells,
  • each channel opening out from a front face of the inter-stage transverse half-wall through a respective orifice in the space interior of a pumping stage
  • transverse groove formed in the inter-stage transverse half-wall at the level of an assembly surface of the half-shells, the channels being made by tubular conduits formed between an inclined plane of the transverse groove and the front face.
  • the purge conduits opening into the pumping stages from the front face facing the rotors thus make it possible to clean the profiles of the rotors by means of an injection sequenced by the rotation of the rotors, particularly in the critical zones between rotors.
  • the injection can in fact be localized at the level of the meshing zone between the rotor profiles where the volume is reduced.
  • the transverse groove formed in the inter-stage transverse half wall allows access to a tool for creating the channels by drilling. Drilling at an angle of the inter-stage transverse half-wall is possible due to the fact that the transverse groove has an inclined plane, which allows the production of holes opening into the front face, below the assembly surface, despite the low thickness of the inter-storey transverse walls.
  • the vacuum pump may also include one or more of the characteristics which are described below, taken alone or in combination.
  • the transverse groove has for example a longitudinal section in the shape of a “V”.
  • the surface of the inter-stage transverse half-wall of the other half-shell at the level of the assembly surface can be planar.
  • the purge conduit comprises for example a common conduit provided in the inter-stage transverse half-wall opening into the center of the transverse groove.
  • the orifices can be provided on a circle defined by scanning the radial end of a respective rotor.
  • the orifices can be provided at a distance of between 5mm and 15mm from the assembly surface in the direction perpendicular to the longitudinal and transverse directions.
  • the length of the channels is for example between 6mm and 14mm, such as 10mm.
  • the diameter of the tubular channels is for example between 1 mm and 3 mm, such as 2 mm.
  • the channels open for example from the front face of the inter-stage transverse half-wall of the half-shell carrying the outlets of the pumping stages.
  • This vacuum pump can have more than two pumping stages.
  • the half-shells can have several interstory transverse half-walls.
  • a purge conduit can be provided in each inter-stage transverse half-wall.
  • the assembly surface passes for example through the axes of rotation of the rotor shafts.
  • Figure 1 is a very schematic representation of an example of a vacuum pump.
  • Figure 2 shows a perspective view of a half-shell of the vacuum pump.
  • Figure 3 shows another perspective view of the half-shell of Figure 2.
  • Figure 4 shows an enlarged front view of a detail of a half-inter-storey transverse wall of the half-shell of Figure 2.
  • Figure 5 shows an enlarged top view of a transverse groove of the inter-storey transverse half-wall.
  • Figure 6 shows an enlarged view along a longitudinal section plane of a channel and a transverse groove of the inter-storey transverse half-wall.
  • Figure 7 shows a partial sectional view of the half-shell of Figure 2 along a longitudinal section plane passing through the channels of the purge conduits.
  • Figure 8 shows a cross-sectional view of the half-shell of Figure 2.
  • Figure 9 shows a partial sectional view of the half-shell of Figure 2 along a longitudinal section plane passing through the common conduits of the purge conduits.
  • Figure 10 shows a schematic view of the rotors in perspective arranged in front of the front face of the inter-stage transverse half-wall in which the orifices are provided.
  • Figure 11a shows the rotors of Figure 10 in an initial angular position.
  • Figure 11b shows the rotors of Figure 10 in an angular position successive to that of Figure 11a.
  • Figure 11c shows the rotors of Figure 10 in an angular position successive to that of Figure 11b.
  • Figure 11d shows the rotors of Figure 10 in an angular position successive to that of Figure 11c.
  • a primary vacuum pump is defined as a volumetric vacuum pump, which is configured to suck up, transfer, then discharge a gas to be pumped at atmospheric pressure or beyond.
  • the primary vacuum pump rotors can be Roots or Claw type. The rotors are carried by two shafts rotated by a primary vacuum pump motor. A primary vacuum pump is also configured to be able to be started at atmospheric pressure.
  • Roots vacuum pump also called “Blower” in English or Roots compressor or “Booster” in English
  • Booster is defined as a volumetric vacuum pump configured to, using two Roots rotors, suck up, transfer then deliver a gas to be pumped.
  • the Roots vacuum pump is mounted upstream and in series with a primary vacuum pump.
  • the rotors are carried by two shafts rotated by a Roots vacuum pump motor.
  • Upstream means an element which is placed before another with respect to the direction of flow of the pumped gases.
  • downstream means an element placed after another in relation to the direction of flow of the pumped gases.
  • the arrows F in Figure 1 show the direction of flow of the pumped gases.
  • the axial direction L is defined as the longitudinal direction of the vacuum pump in which the rotor shafts extend.
  • the transverse direction T is the direction perpendicular to the axial direction L.
  • the transverse plane (T, V) is the plane perpendicular to the longitudinal plane (L, T).
  • the invention applies to any type of dry vacuum pump, that is to say comprising two or more than two pumping stages, such as comprising two to ten pumping stages.
  • This vacuum pump can be a primary vacuum pump comprising a plurality of pumping stages and configured to discharge the pumped gases at atmospheric pressure or a vacuum pump, called Roots or Roots compressor, of two to three pumping stages which use, is connected in series and upstream of a primary vacuum pump and whose discharge pressure is that obtained by the primary vacuum pump.
  • Figure 1 shows a diagram of such a vacuum pump 1.
  • the vacuum pump 1 comprises a stator 2 comprising at least a first and a second complementary half-shells 3, 4 assembling together.
  • the stator 2 can also include a first and a second end piece 5, 6 assembling at the axial ends of the half-shells 3, 4.
  • the half-shells 3, 4 of the stator 2 form at least two pumping stages T1-T6 mounted in series between a suction port 7 and a discharge port 8 of the vacuum pump 1, such as between two and ten pumping stages (six in the illustrative example).
  • the pumping stages T1-T6 are separated axially from each other by a respective inter-stage transverse wall 9 of the half-shells 3, 4.
  • the vacuum pump 1 also comprises two rotor shafts 10 configured to rotate in the pumping stages T1-T6 so that the rotors 10 drive a gas to be pumped between the suction port 7 and the discharge port 8 (figure 1).
  • the rotors have for example lobes of identical profiles, for example of the “Roots” type with two or more lobes (three in Figure 10) or of the “Claw” type or another similar principle of vacuum pump volumetric.
  • the shafts carrying the rotors are driven by a motor M located for example next to the delivery stage T6 at an axial end of the vacuum pump 1.
  • Each pumping stage receives two combined rotors 10, the pumping stages comprising a respective inlet and an outlet.
  • the rotor shafts 10 rotate in opposite directions around their respective axes of rotation, the gas sucked in from the inlet is trapped in the volume generated by the rotors 10 and the stator 2, then is driven by the rotors 10 towards the next floor.
  • the successive pumping stages T1 -T6 are connected in series one after the other by respective transfer channels 12 connecting the output of the preceding pumping stage to the inlet of the pumping stage following.
  • transfer channels 12 There are for example two transfer channels 12 for connecting an output of a pumping stage to the input of the next pumping stage, the transfer channels 12 being arranged on either side of the pumping stage. pumping.
  • the openings of the transfer half-channels 12 are visible on the half-shell 4 of Figure 2. This is the half-shell 4 in which the outlets of the pumping stages T1 -T6 are provided, here designated by second half shell.
  • the inlet of the first pumping stage T1 communicates with the suction port 7.
  • the outlet of the last pumping stage T6 communicates with the discharge port 8.
  • a pipe 11 connecting the outlet of the last pumping stage T6 and the discharge port 8 of the vacuum pump 1 is for example formed in the body of the half-shell 4 under the pumping stages T 1 -T6.
  • the axial dimensions of the rotors and the pumping chambers are for example equal or decreasing with the pumping stages, the pumping stage T1 located on the side of the suction orifice 7 receiving the rotors of the largest axial dimension and having the greatest flow rate generated.
  • These vacuum pumps are called “dry” because in operation, the rotors rotate inside the stator 2 without any mechanical contact with each other or with the stator 2, which makes it possible not to use oil in the pumping stages.
  • the half-shells 3, 4 are assembled together according to an assembly surface 13.
  • the pumping stages T1-T6, the inter-stage transverse walls 9 and the transfer channels 12 are partly formed in the first half-shell 3 and partly in the second half-shell 4.
  • a inter-stage transverse wall 9 is formed by the assembly of two inter-stage transverse half-walls 9a, 9b.
  • the assembly surface 13 passes for example through a median longitudinal plane of the dry vacuum pump 1 which contains for example the axes of rotation l-l of the rotor shafts 10.
  • Sealing grooves 14 can be provided in the half-shells 3, 4 at the level of the assembly surface 13 to receive seals (not shown).
  • a first end of the half-shells 3, 4 is closed by the first end piece 5 and a second end of the half-shells 3, 4 is closed by the second end piece 6.
  • Holes 15 are well safely formed in the inter-stage transverse walls 9 of the half-shells 3, 4 separating the pumping stages T1-T6, and in the end pieces 5, 6 for the passage of the rotor shafts 10.
  • the pump vacuum 1 further comprises at least one purge conduit 16 configured to inject a purge gas such as nitrogen.
  • the purge conduit 16 comprises two channels 17, 18 formed in the thickness of an inter-stage transverse half-wall 9a of a half-shell 4 (figure 2).
  • Each channel 17, 18 opens from a front face 19 of the inter-stage transverse half-wall 9a via a respective orifice 20, 21 in the interior space of a pumping stage T 1 -T6 ( Figures 3 and 4), partly delimited by the inter-storey transverse half-wall 9a.
  • the front face 9 of the inter-stage transverse half-wall 9a arranged between the pumping stages N and N+1 is that delimiting the pumping stage N.
  • the channels are oriented so as to open towards the rear, in the opposite direction to that of flow of the pumped gases.
  • These orifices 20, 21 are advantageously provided on a circle C defined by the scanning of the radial end of a respective rotor 10 (FIG. 4), the center of the circle C being the axis of rotation l-l of the rotor 10
  • the orifices 20, 21 are for example provided at a distance d of between 5mm and 15mm from the assembly surface 13 in the direction (V) perpendicular to the longitudinal (L) and transverse (T) directions.
  • This distance d is linked to the shape of the rotors 10, it is adapted so that the injection of the purge gas results in the discharge of the meshing zone of the rotors 10.
  • the purge conduit 16 has a transverse groove 22 formed in the inter-stage transverse half-wall 9a at the level of the assembly surface 13 of the half-shells 3, 4.
  • the surface of the inter-stage transverse half-wall 9b of the other half-shell 3 at the level of the assembly surface 13 can be flat.
  • the channels 17, 18 are made by (straight) tubular conduits formed between an inclined plane 23 of the transverse groove 22 and the front face 19 ( Figures 6 and 7).
  • the plane 23 is inclined, for example over the entire groove 22, relative to the longitudinal plane (L, T) of the assembly surface 13 separating the half-shells 3, 4 for example by an angle between 30 and 60 °, such as 45°.
  • the transverse groove 22 has for example a longitudinal section in the shape of a “V”, a branch of the “V” forming the inclined plane 23 on the side of the pumping stage into which the channels 17, 18 open ( Figures 6 and 7). This V shape is easy to machine.
  • the transverse groove 22 formed in the inter-stage transverse half-wall 9a allows access to a tool for producing the channels 17, 18 by drilling. Drilling at an angle of the inter-stage transverse half-wall 9a is possible due to the fact that the transverse groove 22 has an inclined plane 23, which allows the production of orifices 20, 21 opening into the front face 19, below the assembly surface 13, despite the small thickness of the inter-stage transverse walls 9.
  • the length of the channels 17, 18, between the inclined plane 23 and the front face 19, is for example between 6mm and 14mm, such as 10mm.
  • the diameter of the tubular channels 17, 18 is for example between 1 mm and 3 mm, such as 2 mm.
  • the channels 17, 18 open for example from the front face 19 of the inter-stage transverse half-wall 9a of the half-shell 4 carrying the outlets of the pumping stages T 1 -T6, here designated by second half- shell.
  • the purge gas is thus injected on the side where the gas pressure, and therefore the risk of deposit formation, is highest.
  • the purge conduit 16 comprises for example a common conduit 24 provided in the inter-stage transverse half-wall 9a, communicating with the transverse groove 22.
  • the common conduit 24 opens for example into the center of the transverse groove 22.
  • the common conduit 24 is made by a first and a second straight conduits 24a, 24b communicating with each other.
  • the first pipe 24a extends here perpendicular to the assembly surface 13, which allows its simple production by machining from the assembly surface 13.
  • the second pipe 24b extends here perpendicular to an exterior surface, here flat, of the half-shell 4 so that it can also be easily produced by machining from the exterior surface of the stator 2.
  • a purge conduit 16 provided in the thickness of the last inter-stage transverse half-wall 9a of the vacuum pump 1 in the direction of flow of the pumped gases F, the channels 17, 18 opening into the interior space of the last pumping stage T6.
  • the last pumping stage T6 is the one where the gas pressure is the highest.
  • the half-shells 3, 4 have several inter-stage transverse half-walls 9a (five in the illustrative example) and a purge conduit 16 is provided in each inter-stage transverse half-wall. floor 9a. All the common conduits 24 thus extend for example in a respective inter-stage transverse half-wall 9a, in a vertical plane (figure 9), and emerge laterally from the stator 2 through a respective outlet orifice 25 (figure 3) . These outlet orifices 25 are connected by an external distributor (not shown) to a source of purge gas.
  • the purge gas is distributed in the purge conduits 16 of each pumping stage T1-T6, first in the common conduits 24, then in the transverse grooves 22, then the channels 16 and 17 and open from the front walls 9 into the interior space of the pumping stages T1-T6.
  • the purge conduits 16 opening into the pumping stages T1 -16 from the front face 9 facing the rotors 10 thus makes it possible to clean the profiles of the rotors 10 by means of an injection sequenced by the rotation of the rotors 10, particularly in the critical zones between rotors 10.
  • the injection can in fact be localized at the level of the meshing zone between the rotor profiles 10 where the volume is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Pompe à vide (1) sèche comportant au moins un conduit de purge (16) comportant deux canaux (17, 18) ménagés dans l'épaisseur d'une demi-paroi transversale inter-étage (9a) d'une demi-coquille (4), chaque canal (17, 18) débouchant d'une face frontale (19) de la demi-paroi transversale inter-étage (9a) par 5 un orifice (20, 21) respectif dans l'espace intérieur d'un étage de pompage (T1-T6), et une rainure transversale (22) ménagée dans la demi-paroi transversale inter-étage (9a) au niveau d'une surface d'assemblage (13) des demi-coquilles (3, 4), les canaux (17, 18) étant réalisés par des conduits tubulaires formés entre un plan incliné (23) de la rainure transversale (22) et la face frontale (19).

Description

Description Titre de l’invention : Pompe à vide
Domaine technique de l’invention
[0001] La présente invention concerne une pompe à vide et plus particulièrement, un conduit de purge de ladite pompe à vide.
Arrière-plan technique
[0002] Les pompes à vide sèches comportent un ou plusieurs étages de pompage en série dans lesquels circule un gaz à pomper entre une aspiration et un refoulement. On distingue parmi les pompes à vide connues, celles à lobes rotatifs également connues sous le nom « Roots » ou celles à bec, également connues sous le nom « Claw ». Ces pompes à vide sont dites « sèches » car en fonctionnement, les rotors tournent à l’intérieur du stator sans aucun contact mécanique entre eux ou avec le stator, ce qui permet de ne pas utiliser d’huile dans les étages de pompage.
[0003] Certaines pompes à vide sont employées dans des procédés de fabrication de semi-conducteurs, écrans plats, panneaux photovoltaïques ou revêtements, notamment des procédés de dépôts de couches minces sous vide dits « HARP » (pour High Aspect Ratio Process en anglais) notamment de type CVD, PECVD, SACVD, ALD... Ces procédés alternent généralement des étapes de dépôt où des gaz de procédés, tels que des précurseurs ou des vapeurs de résines, sont introduits dans le réacteur pour le dépôt de couches minces, avec des étapes de nettoyage où des gaz actifs, telles que des espèces gazeuses corrosives, sont introduits dans le réacteur pour nettoyer les parois du réacteur.
[0004] Les gaz utilisés pour les étapes de dépôt peuvent générer des sous-produits en grande quantité sous forme solide (poudres, pâtes, morceaux). Une accumulation importante des poudres sur les parties mobiles de la pompe à vide peut rapidement conduire à l’arrêt de la pompe par grippage mécanique. La réduction du taux de défaillance sur ces procédés générateurs de poudre est donc essentielle.
[0005] Pour éviter que des sous-produits polymérisés polluent les dispositifs de pompage, il est connu d’utiliser des pièges dans les lignes de vide. Ces pièges séparent les sous-produits solides des gaz, par exemple par gravité ou force centrifuge ou encore par condensation ou thermolyse, et retiennent les sous-produits solides par accumulation. Un problème est que l’accumulation des poudres dans le piège augmente la probabilité de rencontre entre des espèces de nature chimique différente. Il en résulte que des réactions chimiques indésirables, telles que les réactions de polymérisation précédemment mentionnées, peuvent apparaitre et être favorisées. Également, les températures élevées de ces pièges, généralement comprises entre 140°C à 170°C, fournissent l’énergie d’activation favorisant l’apparition de ces réactions chimiques. Ces pièges doivent donc être nettoyés très régulièrement.
[0006] Une autre solution consiste à adapter par conception la géométrie de la pompe à vide pour faciliter l’évacuation des poudres, par exemple en prévoyant des canaux de transfert entre étages de pompage plus larges ou une pompe à vide verticale.
[0007] Il est également connu d’injecter un fluide de purge comme l'azote dans la pompe à vide pour diluer les gaz pompés et favoriser l’évacuation des poudres. Cette injection est en général réalisée en plusieurs points répartis le long des étages de pompage à travers des buses d’injection débouchant dans les canaux de transfert ou aux refoulements des étages de pompage.
[0008] Ces injections peuvent néanmoins s’avérer insuffisantes dans les cas où les procédés de fabrication, tels que ceux précédemment cités, sont fortement polluants et les sous-produits formés particulièrement adhérents. Des accumulations de sous- produits peuvent persister dans des zones d’engrènement entre les rotors où les jeux sont très faibles. En effet, on constate que les poudres sont entraînées et s’agglomèrent dans ces zones de rétrécissement des jeux et la compression réalisée au niveau de ces zones renforce la compacité de ces poudres les rendant encore plus dures et adhérentes.
[0009] Le document EP1990543A1 propose un dispositif d’injection de fluide de purge permettant une purge plus efficace des rotors. Pour cela, un conduit de purge est ménagé dans l’épaisseur de la tranche de stator et débouche dans un étage de pompage. Ainsi ménagé dans le corps de stator, le fluide de purge peut être mis à la température du corps de pompe avant d’être injecté à l’intérieur de l’étage. Des rainures de guidage du fluide de purge peuvent être ménagées dans la face frontale de la tranche de stator pour nettoyer précisément et efficacement entre les rotors.
L’injection localisée du fluide de purge permet le ciblage de l’injection dans ces zones, ce qui assure à la fois la dilution des contaminants et la dispersion par action mécanique des sous-produits solides et gazeux susceptibles de se déposer sur les rotors.
[0010] Cependant, si cette solution convient bien pour des pompes à vide présentant une architecture en tranche, c’est-à-dire dans lesquelles les stators sont constitués de l’assemblage axial de plusieurs tranches de stator, cette solution est difficile à réaliser dans les parois inter-étage réalisées dans des stators de pompes à vide ayant une architecture en demi-coquilles. En effet, les stators demi-coquilles permettent de réaliser des parois inter-étage très fines, plus fines que celles des stators de structure en tranche, rendant l’usinage des conduits de purge difficile à réaliser.
Résumé de l’invention
[0011] Un but de la présente invention est de proposer une pompe à vide résolvant au moins un des inconvénients décrits ci-dessus.
[0012] A cet effet, l’invention a pour objet une pompe à vide sèche comportant :
- un stator comportant au moins une première et une deuxième demi-coquilles complémentaires s’assemblant entre elles pour former au moins deux étages de pompage montés en série et séparés axialement entre eux par une paroi transversale inter-étage respective des demi-coquilles,
- deux arbres de rotors s’étendant dans la direction axiale, configurés pour tourner dans les étages de pompage, caractérisée en ce qu’elle comporte au moins un conduit de purge comportant :
- deux canaux ménagés dans l’épaisseur d’une demi-paroi transversale inter-étage d’une demi-coquille, chaque canal débouchant d’une face frontale de la demi-paroi transversale inter-étage par un orifice respectif dans l’espace intérieur d’un étage de pompage, et
- une rainure transversale ménagée dans la demi-paroi transversale inter-étage au niveau d’une surface d’assemblage des demi-coquilles, les canaux étant réalisés par des conduits tubulaires formés entre un plan incliné de la rainure transversale et la face frontale.
[0013] Les conduits de purge débouchant dans les étages de pompage depuis la face frontale faisant face aux rotors permet ainsi de nettoyer les profils des rotors au moyen d’une injection séquencée par la rotation des rotors, notamment dans les zones critiques entre rotors. L’injection peut en effet être localisée au niveau de la zone d’engrènement entre les profils de rotors où le volume est réduit.
[0014] La rainure transversale ménagée dans la demi paroi transversale inter-étage permet l’accès à un outil pour la réalisation des canaux par perçage. Le perçage en biais de la demi-paroi transversale inter-étage est possible du fait que la rainure transversale présente un plan incliné, ce qui autorise la réalisation d’orifices débouchant dans la face frontale, en dessous de la surface d’assemblage, malgré la faible épaisseur des parois transversales inter-étages.
[0015] La pompe à vide peut en outre comporter une ou plusieurs des caractéristiques qui sont décrites ci-après, prises seules ou en combinaison.
[0016] La rainure transversale présente par exemple une section longitudinale en forme de « V ». [0017] La surface de la demi-paroi transversale inter-étage de l’autre demi-coquille au niveau de la surface d’assemblage peut être plane.
[0018] Le conduit de purge comporte par exemple un conduit commun ménagé dans la demi-paroi transversale inter-étage débouchant au centre de la rainure transversale. [0019] Les orifices peuvent être ménagés sur un cercle défini par le balayage de l’extrémité radiale d’un rotor respectif.
[0020] Les orifices peuvent être ménagés à une distance comprise entre 5mm et 15mm de la surface d’assemblage dans la direction perpendiculaire aux directions longitudinales et transversales.
[0021] La longueur des canaux est par exemple comprise entre 6mm et 14mm, tel que 10mm.
[0022] Le diamètre des canaux tubulaires est par exemple compris entre 1 mm et 3mm, tel que 2mm.
[0023] Les canaux débouchent par exemple de la face frontale de la demi-paroi transversale inter-étage de la demi-coquille portant les sorties des étages de pompage. [0024] Cette pompe à vide peut comporter plus de deux étages de pompage. Dans ce cas, les demi-coquilles peuvent présenter plusieurs demi-parois transversales interétage. Un conduit de purge peut être ménagé dans chaque demi-paroi transversale inter-étage.
[0025] La surface d’assemblage passe par exemple par les axes de rotation des arbres de rotors.
Brève description des figures
[0026] D'autres avantages et caractéristiques apparaîtront à la lecture de la description suivante d'un mode de réalisation particulier de l’invention, mais nullement limitatif, ainsi que des dessins annexés sur lesquels :
[0027] [Fig. 1] La figure 1 est une représentation très schématique d’un exemple de pompe à vide.
[0028] [Fig. 2] La figure 2 montre une vue en perspective d’une demi-coquille de la pompe à vide.
[0029] [Fig. 3] La figure 3 montre une autre vue en perspective de la demi-coquille de la figure 2.
[0030] [Fig. 4] La figure 4 montre une vue de face agrandie d’un détail d’une demi- paroi transversale inter-étage de la demi-coquille de la figure 2.
[0031] [Fig. 5] La figure 5 montre une vue de dessus agrandie d’une rainure transversale de la demi-paroi transversale inter-étage. [0032] [Fig. 6] La figure 6 montre une vue agrandie selon un plan de coupe longitudinal d’un canal et d’une rainure transversale de la demi-paroi transversale inter-étage.
[0033] [Fig. 7] La figure 7 montre une vue partielle en coupe de la demi-coquille de la figure 2 selon un plan de coupe longitudinal passant par les canaux des conduits de purge.
[0034] [Fig. 8] La figure 8 montre une vue en coupe transversale de la demi-coquille de la figure 2.
[0035] [Fig. 9] La figure 9 montre une vue partielle en coupe de la demi-coquille de la figure 2 selon un plan de coupe longitudinal passant par les conduits communs des conduits de purge.
[0036] [Fig. 10] La figure 10 montre une vue schématique des rotors en perspective agencés devant la face frontale de la demi-paroi transversale inter-étage dans laquelle les orifices sont ménagés.
[0037] [Fig. 11 a] La figure 11a montre les rotors de la figure 10 dans une position angulaire initiale.
[0038] [Fig. 11 b] La figure 11b montre les rotors de la figure 10 dans une position angulaire successive à celle de la figure 11a.
[0039] [Fig. 11c] La figure 11c montre les rotors de la figure 10 dans une position angulaire successive à celle de la figure 11b.
[0040] [Fig. 11d] La figure 11d montre les rotors de la figure 10 dans une position angulaire successive à celle de la figure 11c.
[0041] Sur ces figures, les éléments identiques portent les mêmes numéros de référence.
Description détaillée
[0042] Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées ou interchangées pour fournir d'autres réalisations.
[0043] On définit par pompe à vide primaire, une pompe à vide volumétrique, qui est configurée pour aspirer, transférer, puis refouler un gaz à pomper à pression atmosphérique ou au-delà. Les rotors de la pompe à vide primaire peuvent être de type Roots ou Claw. Les rotors sont portés par deux arbres entrainés en rotation par un moteur de la pompe à vide primaire. Une pompe à vide primaire est également configurée pour pouvoir être mise en route à pression atmosphérique. [0044] On définit par pompe à vide Roots (également appelé « Blower » en anglais ou compresseur Roots ou « Booster » en anglais), une pompe à vide volumétrique configurée pour, à l’aide de deux rotors Roots, aspirer, transférer puis refouler un gaz à pomper. La pompe à vide Roots est montée en amont et en série d’une pompe à vide primaire. Les rotors sont portés par deux arbres entrainés en rotation par un moteur de la pompe à vide Roots.
[0045] On entend par « en amont », un élément qui est placé avant un autre par rapport au sens d’écoulement des gaz pompés. A contrario, on entend par « en aval », un élément placé après un autre par rapport au sens d’écoulement des gaz pompés. Les flèches F sur la figure 1 montrent le sens d’écoulement des gaz pompés.
[0046] On définit la direction axiale L comme la direction longitudinale de la pompe à vide dans laquelle s’étendent les arbres de rotor. La direction transversale T est la direction perpendiculaire à la direction axiale L. Le plan transversal (T, V) est le plan perpendiculaire au plan longitudinal (L, T).
[0047] L’invention s’applique à tout type de pompe à vide sèche, c’est-à-dire comportant deux ou plus de deux étages de pompage, telle que comprenant deux à dix étages de pompage. Cette pompe à vide peut être une pompe à vide primaire comportant une pluralité d’étages de pompage et configurée pour refouler les gaz pompés à pression atmosphérique ou une pompe à vide, dite Roots ou compresseur Roots, de deux à trois étages de pompage qui en utilisation, est raccordée en série et en amont d’une pompe à vide primaire et dont la pression de refoulement est celle obtenue par la pompe à vide primaire.
[0048] La figure 1 montre un schéma d’une telle pompe à vide 1 .
[0049] La pompe à vide 1 comporte un stator 2 comportant au moins une première et une deuxième demi-coquilles 3, 4 complémentaires s’assemblant entre elles. Le stator 2 peut également comporter une première et une deuxième pièce d’extrémité 5, 6 s’assemblant aux extrémités axiales des demi-coquilles 3, 4.
[0050] Les demi-coquilles 3, 4 du stator 2 forment au moins deux étages de pompage T1-T6 montés en série entre un orifice d’aspiration 7 et un orifice de refoulement 8 de la pompe à vide 1, tel qu’entre deux et dix étages de pompage (six dans l’exemple illustratif). Les étages de pompage T1-T6 sont séparés axialement entre eux par une paroi transversale inter-étage 9 respective des demi-coquilles 3, 4.
[0051] La pompe à vide 1 comporte également deux arbres de rotors 10 configurés pour tourner dans les étages de pompage T1-T6 de sorte que les rotors 10 entrainent un gaz à pomper entre l’orifice aspiration 7 et l’orifice de refoulement 8 (figure 1). [0052] Les rotors présentent par exemple des lobes de profils identiques, par exemple de type « Roots » à deux lobes ou plus (trois sur la figure 10) ou de type « Claw » ou d’un autre principe similaire de pompe à vide volumétrique. Les arbres portant les rotors sont entrainés par un moteur M situé par exemple à côté de l’étage de refoulement T6 à une extrémité axiale de la pompe à vide 1 .
[0053] Chaque étage de pompage reçoit deux rotors 10 conjugués, les étages de pompage comprenant une entrée et une sortie respectives. Lorsque les arbres de rotors 10 tournent en sens opposés autour de leur axe de rotation respectif, le gaz aspiré depuis l’entrée est emprisonné dans le volume engendré par les rotors 10 et le stator 2, puis est entraîné par les rotors 10 vers l’étage suivant.
[0054] Les étages de pompage successifs T1 -T6 sont raccordés en série les uns à la suite des autres par des canaux de transfert 12 respectifs raccordant la sortie de l'étage de pompage qui précède à l'entrée de l'étage de pompage qui suit. Il y a par exemple deux canaux de transfert 12 pour raccorder une sortie d’un étage de pompage à l’entrée de l’étage de pompage suivant, les canaux de transfert 12 étant agencés de part et d’autre de l’étage de pompage. Les ouvertures des demi-canaux de transfert 12 sont visibles sur la demi-coquille 4 de la figure 2. Il s’agit de la demi- coquille 4 dans laquelle sont ménagées les sorties des étages de pompage T1 -T6, ici désignée par deuxième demi-coquille.
[0055] L’entrée du premier étage de pompage T1 communique avec l’orifice d’aspiration 7. La sortie du dernier étage de pompage T6 communique avec l’orifice de refoulement 8. Une canalisation 11 reliant la sortie du dernier étage de pompage T6 et l’orifice de refoulement 8 de la pompe à vide 1 est par exemple formée dans le corps de la demi-coquille 4 sous les étages de pompage T 1 -T6.
[0056] Les dimensions axiales des rotors et des chambres de pompage (et donc les débits engendrés), sont par exemple égales ou décroissantes avec les étages de pompage, l’étage de pompage T1 situé du côté de l’orifice d’aspiration 7 recevant les rotors de plus grande dimension axiale et présentant le plus grand débit engendré. [0057] Ces pompes à vide sont dites « sèches » car en fonctionnement, les rotors tournent à l’intérieur du stator 2 sans aucun contact mécanique entre eux ou avec le stator 2, ce qui permet de ne pas utiliser d’huile dans les étages de pompage.
[0058] Les demi-coquilles 3, 4 s’assemblent entre elles selon une surface d’assemblage 13. Les étages de pompage T1-T6, les parois transversales inter-étages 9 et les canaux de transfert 12 sont en partie formés dans la première demi-coquille 3 et en partie dans la deuxième demi-coquille 4. Autrement dit, plus particulièrement, une paroi transversale inter-étage 9 est formée par l’assemblage de deux demi-paroi transversales inter-étage 9a, 9b.
[0059] La surface d’assemblage 13 passe par exemple par un plan longitudinal médian de la pompe à vide 1 sèche qui contient par exemple les axes de rotation l-l des arbres de rotors 10. Des gorges d’étanchéité 14 peuvent être ménagées dans les demi- coquilles 3, 4 au niveau de la surface d’assemblage 13 pour recevoir des joints d’étanchéité (non représentés).
[0060] Une première extrémité des demi-coquilles 3, 4 est fermée par la première pièce d’extrémité 5 et une deuxième extrémité des demi-coquilles 3, 4 est fermée par la deuxième pièce d’extrémité 6. Des trous 15 sont bien sûr ménagés dans les parois transversales inter-étage 9 des demi-coquilles 3, 4 séparant les étages de pompage T1-T6, et dans les pièces d’extrémités 5, 6 pour le passage des arbres de rotors 10. [0061] La pompe à vide 1 comporte en outre au moins un conduit de purge 16 configuré pour injecter un gaz de purge comme de l’azote.
[0062] Le conduit de purge 16 comporte deux canaux 17, 18 ménagés dans l’épaisseur d’une demi-paroi transversale inter-étage 9a d’une demi-coquille 4 (figure 2).
[0063] Chaque canal 17, 18 débouche d’une face frontale 19 de la demi-paroi transversale inter-étage 9a par un orifice 20, 21 respectif dans l’espace intérieur d’un étage de pompage T 1 -T6 (figures 3 et 4), en partie délimité par la demi-paroi transversale inter-étage 9a.
[0064] La face frontale 9 de la demi-paroi transversale inter-étage 9a agencée entre les étages de pompage N et N+1 est celle délimitant l’étage de pompage N. Autrement dit, les canaux sont orientés de manière à déboucher vers l’arrière, dans le sens contraire de celui d’écoulement des gaz pompés.
[0065] Ces orifices 20, 21 sont avantageusement ménagés sur un cercle C défini par le balayage de l’extrémité radiale d’un rotor 10 respectif (figure 4), le centre du cercle C étant l’axe de rotation l-l du rotor 10. Les orifices 20, 21 sont par exemple ménagés à une distance d comprise entre 5mm et 15mm de la surface d’assemblage 13 dans la direction (V) perpendiculaire aux directions longitudinales (L) et transversales (T).
Cette distance d est liée à la forme des rotors 10, elle est adaptée pour que l’injection du gaz de purge débouche au refoulement de la zone d’engrènement des rotors 10.
[0066] Mieux visible sur les figures 5 et 6, le conduit de purge 16 comporte une rainure transversale 22 ménagée dans la demi-paroi transversale inter-étage 9a au niveau de la surface d’assemblage 13 des demi-coquilles 3, 4. [0067] La surface de la demi-paroi transversale inter-étage 9b de l’autre demi-coquille 3 au niveau de la surface d’assemblage 13 peut être plane.
[0068] Les canaux 17, 18 sont réalisés par des conduits tubulaires (droits) formés entre un plan incliné 23 de la rainure transversale 22 et la face frontale 19 (figures 6 et 7). Le plan 23 est incliné, par exemple sur toute la rainure 22, par rapport au plan longitudinal (L, T) de la surface d’assemblage 13 séparant les demi-coquilles 3, 4 par exemple d’un angle compris entre 30 et 60°, tel que 45°.
[0069] La rainure transversale 22 présente par exemple une section longitudinale en forme de « V », une branche du « V » formant le plan incliné 23 du côté de l’étage de pompage dans lequel débouchent les canaux 17, 18 (figures 6 et 7). Cette forme en V est simple à usiner.
[0070] La rainure transversale 22 ménagée dans la demi-paroi transversale inter-étage 9a permet l’accès à un outil pour la réalisation des canaux 17, 18 par perçage. Le perçage en biais de la demi-paroi transversale inter-étage 9a est possible du fait que la rainure transversale 22 présente un plan incliné 23, ce qui autorise la réalisation d’orifices 20, 21 débouchant dans la face frontale 19, en dessous de la surface d’assemblage 13, malgré la faible épaisseur des parois transversales inter-étages 9. [0071] La longueur des canaux 17, 18, entre le plan incliné 23 et la face frontale 19, est par exemple comprise entre 6mm et 14mm, tel que 10mm. Le diamètre des canaux 17, 18 tubulaires est par exemple compris entre 1 mm et 3mm, tel que 2mm.
[0072] Les canaux 17, 18 débouchent par exemple de la face frontale 19 de la demi- paroi transversale inter-étage 9a de la demi-coquille 4 portant les sorties des étages de pompage T 1 -T6, ici désignée par deuxième demi-coquille. Le gaz de purge est ainsi injecté du côté où la pression des gaz, et donc le risque de formation de dépôts, est le plus élevé.
[0073] Comme mieux visible sur la vue en coupe de la figure 8, le conduit de purge 16 comporte par exemple un conduit commun 24 ménagé dans la demi-paroi transversale inter-étage 9a, communiquant avec la rainure transversale 22. Le conduit commun 24 débouche par exemple au centre de la rainure transversale 22.
[0074] Dans l’exemple illustratif, le conduit commun 24 est réalisé par une première et une seconde conduites 24a, 24b droites communiquant entre elles. La première conduite 24a s’étend ici perpendiculairement à la surface d’assemblage 13, ce qui permet sa réalisation simple par usinage à partir de la surface d’assemblage 13. La seconde conduite 24b s’étend ici perpendiculairement à une surface extérieure, ici plane, de la demi-coquille 4 de sorte à pouvoir également être facilement réalisée par usinage à partir de la surface extérieure du stator 2. On obtient ainsi par exemple un conduit commun 24 coudé s’étendant entre la rainure transversale 22 ménagée au niveau de la surface d’assemblage 13 et une surface extérieure du stator 2, par exemple située sur un côté de la pompe à vide 1 .
[0075] Il y a par exemple un conduit de purge 16 ménagé dans l’épaisseur de la dernière demi-paroi transversale inter-étage 9a de la pompe à vide 1 dans le sens d’écoulement des gaz pompés F, les canaux 17, 18 débouchant dans l’espace intérieur du dernier étage de pompage T6. Le dernier étage de pompage T6 est celui où la pression des gaz est la plus élevée.
[0076] Selon un exemple de réalisation, les demi-coquilles 3, 4 présentent plusieurs demi-paroi transversale inter-étage 9a (cinq dans l’exemple illustratif) et un conduit de purge 16 est ménagé dans chaque demi-paroi transversale inter-étage 9a. Tous les conduits communs 24 s’étendent ainsi par exemple dans une demi-paroi transversale inter-étage 9a, respective, dans un plan vertical (figure 9), et débouchent latéralement du stator 2 par un orifice de sortie 25 respectif (figure 3). Ces orifices de sortie 25 sont reliés par un distributeur externe (non représenté) à une source de gaz de purge. [0077] En fonctionnement, le gaz de purge est distribué dans les conduits de purge 16 de chaque étage de pompage T1-T6, d’abord dans les conduits communs 24, puis dans les rainures transversales 22, puis les canaux 16 et 17 et débouchent des parois frontales 9 dans l’espace intérieur des étages de pompage T1-T6.
[0078] On a représenté la rotation des rotors 10 dans un étage de pompage sur un angle de rotation total d’environ 120° de manière schématisée sur les figures successives 11a à 11d, la figure 10 montrant ces rotors 10 en perspective devant la face frontale 19 de la demi-paroi transversale inter-étage 9a dans laquelle les orifices 20, 21 sont ménagés.
[0079] Entre la figure 11 a et la figure 11 b, on voit que le gaz de purge injecté par le premier orifice 20 lèche le pourtour d’un premier rotor 10 tandis que le deuxième orifice 21 est obturé par le deuxième rotor 10. Tout le gaz injecté dans le conduit de purge 16 est donc principalement évacué par le premier orifice 20 non bouché, sur les bords du premier rotor 10. Puis, alors que la rotation des rotors 10 se poursuit (figure 11c puis figure 11 d), c’est au tour du premier orifice 20 d’être obturé par le premier rotor 10 et au deuxième orifice 21 de permettre au gaz de purge injecté dans le conduit de purge 16 de lécher le pourtour du deuxième rotor 10. Puis les rotors 10 continuent de tourner pour revenir dans une position angulaire équivalente à la position angulaire initiale de la figure 11 a. Entre les positions angulaires illustrées sur les figures 11 a à 11 d, il y a des positions pour lesquelles les rotors 10 obstruent simultanément les deux orifices 20, 21. Le gaz de purge est alors forcé à sortir à l’arrière des rotors 10, entre les rotors 10 et les faces frontales 19, ce qui permet de nettoyer les rotors 10.
[0080] Les conduits de purge 16 débouchant dans les étages de pompage T1 -16 depuis la face frontale 9 faisant face aux rotors 10 permet ainsi de nettoyer les profils des rotors 10 au moyen d’une injection séquencée par la rotation des rotors 10, notamment dans les zones critiques entre rotors 10. L’injection peut en effet être localisée au niveau de la zone d’engrènement entre les profils de rotors 10 où le volume est réduit.

Claims

REVENDICATIONS
[Revendication 1] Pompe à vide (1) sèche comportant :
- un stator (2) comportant au moins une première et une deuxième demi-coquilles (3, 4) complémentaires s’assemblant entre elles pour former au moins deux étages de pompage (T1-T6) montés en série et séparés axialement entre eux par une paroi transversale inter-étage (9) respective des demi-coquilles (3, 4),
- deux arbres de rotors (10) s’étendant dans la direction axiale, configurés pour tourner dans les étages de pompage (T 1 -T6), caractérisée en ce qu’elle comporte au moins un conduit de purge (16) comportant :
- deux canaux (17, 18) ménagés dans l’épaisseur d’une demi-paroi transversale inter-étage (9a) d’une demi-coquille (4), chaque canal (17, 18) débouchant d’une face frontale (19) de la demi-paroi transversale inter-étage (9a) par un orifice (20, 21 ) respectif dans l’espace intérieur d’un étage de pompage (T1-T6), et
- une rainure transversale (22) ménagée dans la demi-paroi transversale interétage (9a) au niveau d’une surface d’assemblage (13) des demi-coquilles (3, 4), les canaux (17, 18) étant réalisés par des conduits tubulaires formés entre un plan incliné (23) de la rainure transversale (22) et la face frontale (19).
[Revendication 2] Pompe à vide (1) selon la revendication 1 , caractérisée en ce que la rainure transversale (22) présente une section longitudinale en forme de « V ».
[Revendication 3] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que la surface de la demi-paroi transversale inter-étage (9b) de l’autre demi-coquille (3) au niveau de la surface d’assemblage (13) est plane.
[Revendication 4] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que le conduit de purge (16) comporte un conduit commun (24) ménagé dans la demi-paroi transversale inter-étage (9a) débouchant au centre de la rainure transversale (22).
[Revendication 5] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que les orifices (20, 21) sont ménagés sur un cercle (C) défini par le balayage de l’extrémité radiale d’un rotor (10) respectif.
[Revendication 6] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que les orifices (20, 21) sont ménagés à une distance (d) comprise entre 5mm et 15mm de la surface d’assemblage (13) dans la direction (V) perpendiculaire aux directions longitudinales (L) et transversales (T).
[Revendication 7] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que la longueur des canaux (17, 18) est comprise entre 6mm et 14mm, tel que 10mm.
[Revendication 8] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que le diamètre des canaux (17, 18) tubulaires est compris entre 1 mm et 3mm, tel que 2mm.
[Revendication 9] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que les canaux (17, 18) débouchent de la face frontale (19) de la demi-paroi transversale inter-étage (9a) de la demi-coquille (4) portant les sorties des étages de pompage (T 1 -T6).
[Revendication 10] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que les demi-coquilles (3, 4) présentent plusieurs demi-parois transversales inter-étage (9a), un conduit de purge (16) étant ménagé dans chaque demi-paroi transversale inter-étage (9a).
[Revendication 11] Pompe à vide (1) selon l’une des revendications précédentes, caractérisée en ce que la surface d’assemblage (13) passe par les axes de rotation (l-l) des arbres de rotors (10).
PCT/EP2023/059327 2022-06-22 2023-04-07 Pompe à vide WO2023247083A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2206188A FR3137139A1 (fr) 2022-06-22 2022-06-22 Pompe à vide
FRFR2206188 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023247083A1 true WO2023247083A1 (fr) 2023-12-28

Family

ID=82942334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/059327 WO2023247083A1 (fr) 2022-06-22 2023-04-07 Pompe à vide

Country Status (2)

Country Link
FR (1) FR3137139A1 (fr)
WO (1) WO2023247083A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990543A1 (fr) 2007-05-11 2008-11-12 Alcatel Lucent Pompe à vide sèche
EP3628870A1 (fr) * 2018-09-27 2020-04-01 Pfeiffer Vacuum Pompe à vide primaire de type sèche et procédé de contrôle de l'injection d'un gaz de purge
WO2021219307A1 (fr) * 2020-04-29 2021-11-04 Pfeiffer Vacuum Pompe à vide primaire et installation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990543A1 (fr) 2007-05-11 2008-11-12 Alcatel Lucent Pompe à vide sèche
EP3628870A1 (fr) * 2018-09-27 2020-04-01 Pfeiffer Vacuum Pompe à vide primaire de type sèche et procédé de contrôle de l'injection d'un gaz de purge
WO2021219307A1 (fr) * 2020-04-29 2021-11-04 Pfeiffer Vacuum Pompe à vide primaire et installation

Also Published As

Publication number Publication date
FR3137139A1 (fr) 2023-12-29

Similar Documents

Publication Publication Date Title
EP2798223B1 (fr) Adaptateur pour pompes à vide et dispositif de pompage associé
WO2020229163A1 (fr) Pompe à vide primaire sèche
CA2605947C (fr) Canal de transition entre deux etages de turbine
FR2994217A1 (fr) Rampe d'injection modulaire a double circuit
WO2014060656A1 (fr) Trompe a jet pour depressuriser des enceintes de lubrification d'une turbomachine a doubles injecteurs independants
EP3607228A1 (fr) Rouet pour un porte-satellites de reducteur de vitesse a train epicycloïdal de turbomachine
FR2962772A1 (fr) Machine a fluide de type roots
FR3065040A1 (fr) Groupe de pompage et utilisation
FR3107933A1 (fr) Pompe à vide sèche et procédé de fabrication
FR3084429A1 (fr) Dispositif du type reducteur ou differentiel pour une turbomachine d'aeronef
WO2010130923A1 (fr) Pompe centrifuge a double echappement
WO2023247083A1 (fr) Pompe à vide
FR3112174A1 (fr) Pompe à vide sèche
EP2376789B1 (fr) Pompe a dispositif d'equilibrage axial.
EP1990543A1 (fr) Pompe à vide sèche
WO2020178042A1 (fr) Pompe à vide turbomoléculaire et procédé de purge
FR3134435A1 (fr) Pompe à vide
EP2769096B1 (fr) Dispositif de pompage et de traitement des gaz
FR3137720A1 (fr) Dispositif de recuperation d’huile pour une turbomachine
FR3106630A1 (fr) Pompe à vide sèche
WO2021008834A1 (fr) Groupe de pompage
FR3107575A1 (fr) Pompe à vide sèche
EP3990753A1 (fr) Support de palier de sortie de turbomachine
EP3129658A1 (fr) Dispositif de transfert de fluide et procede de fabrication de celui-ci
EP3891399A1 (fr) Groupe de pompage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23717925

Country of ref document: EP

Kind code of ref document: A1