WO2023246451A1 - 光学系统及包含其的成像装置、电子设备 - Google Patents

光学系统及包含其的成像装置、电子设备 Download PDF

Info

Publication number
WO2023246451A1
WO2023246451A1 PCT/CN2023/097326 CN2023097326W WO2023246451A1 WO 2023246451 A1 WO2023246451 A1 WO 2023246451A1 CN 2023097326 W CN2023097326 W CN 2023097326W WO 2023246451 A1 WO2023246451 A1 WO 2023246451A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
nanostructure
shows
hyperlens
Prior art date
Application number
PCT/CN2023/097326
Other languages
English (en)
French (fr)
Inventor
郝成龙
谭凤泽
朱瑞
朱健
Original Assignee
深圳迈塔兰斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221596000.9U external-priority patent/CN217467326U/zh
Priority claimed from CN202210726532.8A external-priority patent/CN115032766A/zh
Application filed by 深圳迈塔兰斯科技有限公司 filed Critical 深圳迈塔兰斯科技有限公司
Publication of WO2023246451A1 publication Critical patent/WO2023246451A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present application relates to the technical field of optical imaging. Specifically, the present application relates to optical systems, imaging devices and electronic equipment including the same.
  • the optical system includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens and a seventh lens arranged in order from the object side to the image side;
  • At least one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens is a super lens.
  • the rest are aspheric refractive lenses;
  • all surfaces of the first aspherical refractive lens from the image side to the object side and the second aspherical refractive lens from the image side to the object side in the optical system include at least one aspherical surface, and the aspherical surface is The sphere contains an inflection point;
  • the optical system also meets at least the following conditions: 0.05mm ⁇ dML ⁇ 2mm ;
  • f is the focal length of the optical system
  • EPD is the entrance pupil diameter of the optical system
  • d ML is the thickness of the hyperlens
  • f ML is the focal length of the hyperlens.
  • the second lens is a super lens, and the remaining lenses are aspherical refractive lenses; and the first lens has positive refractive power, and the object-side surface of the first lens is convex; the third lens The radius of curvature of the object-side surface of the third lens is positive; the fifth lens has positive refractive power; and the radius of curvature of the object-side surface of the sixth lens is positive.
  • the first lens also satisfies:
  • R 1o is the radius of curvature of the object-side surface of the first lens
  • f 1 is the focal length of the first lens at the central wavelength of the working band.
  • the optical system also satisfies: (V 1 +V 4 )/2-V 3 >20;
  • V 1 is the Abbe number of the first lens
  • V 3 is the Abbe number of the third lens
  • V 4 is the Abbe number of the fourth lens.
  • the optical system also satisfies: 1.5 ⁇ TTL/ImgH ⁇ 1.8
  • TTL is the distance from the object side surface of the first lens to the image plane of the optical system
  • ImgH is the maximum imaging height of the optical system.
  • the fourth lens also satisfies:
  • R 4o is the radius of curvature of the object-side surface of the fourth lens
  • R 4i is the radius of curvature of the image-side surface of the fourth lens (40).
  • the radius of curvature of the image-side surface of the seventh lens is greater than zero.
  • the first lens also satisfies: 0.71 ⁇ f 1 /f ⁇ 0.98;
  • f 1 is the focal length of the first lens at the central wavelength of the working band; f is the focal length of the optical system.
  • the super lens includes a base layer and a nanostructure layer provided on at least one side of the base layer, and the number of layers of the nanostructure layer is greater than or equal to 1;
  • Each of the nanostructure layers includes periodically arranged nanostructures.
  • the arrangement period of the nanostructures in any of the nanostructure layers is greater than or equal to 0.3 ⁇ c and less than or equal to 2 ⁇ c;
  • ⁇ c is the center wavelength of the working band of the second lens.
  • the height of the nanostructure in any layer of the nanostructure layer is greater than or equal to 0.3 ⁇ c and less than or equal to 5 ⁇ c;
  • ⁇ c is the center wavelength of the working band of the second lens.
  • any layer of the nanostructure layer includes superstructure units arranged in an array
  • the superstructural unit is a close-packed pattern, and the nanostructure is provided at the vertex and/or center position of the close-packed pattern.
  • the material of the base layer has an extinction coefficient of less than 0.01 for the working band.
  • the extinction coefficient of the nanostructured material in the working band is less than 0.01.
  • the material of the base layer includes fused quartz, quartz glass, crown glass, flint glass, sapphire, crystalline silicon and amorphous silicon.
  • the amorphous silicon may be hydrogenated amorphous silicon.
  • the nanostructure material includes fused quartz, quartz glass, crown glass, flint glass, sapphire, crystalline silicon and amorphous silicon.
  • the amorphous silicon may be hydrogenated amorphous silicon.
  • the nanostructure and the base layer are made of different materials.
  • the nanostructure and the base layer are made of the same material.
  • the shape of the nanostructure is a polarization-insensitive structure.
  • the polarization-insensitive structure includes a cylindrical shape, a hollow cylindrical shape, a round hole shape, a hollow round hole shape, a square cylindrical shape, a square hole shape, a hollow square cylindrical shape and a hollow square hole shape.
  • the second lens further includes filler
  • the filler is filled between the nanostructures
  • the extinction coefficient of the filler material in the working band is less than 0.01.
  • the absolute value of the difference between the refractive index of the filler and the refractive index of the nanostructure is greater than or equal to 0.5.
  • the filler includes air, fused quartz, quartz glass, crown glass, flint glass, sapphire, crystalline silicon and amorphous silicon.
  • the amorphous silicon may be hydrogenated amorphous silicon.
  • the material of the filler is different from the material of the base layer.
  • the filler material is different from the nanostructure material.
  • the second lens further includes an anti-reflection coating
  • the antireflection film is disposed on a side of the base layer away from the nanostructure layer, and/or on a side of the nanostructure layer away from the base layer.
  • the broad spectrum phase of the superstructure unit satisfies:
  • r is the radial coordinate of the hyperlens
  • r 0 is the distance from any point on the hyperlens to the center of the hyperlens
  • is the operating wavelength of the hyperlens.
  • the metalens includes at least two nanostructure layers
  • the nanostructures in any two adjacent nanostructure layers are arranged coaxially.
  • the super lens includes at least two nanostructure layers; wherein the nanostructures in any adjacent nanostructure layer are staggered in a direction parallel to the base of the super lens.
  • phase of the hyperlens also satisfies:
  • r is the distance from the center of the hyperlens to any nanostructure; ⁇ is the operating wavelength of the hyperlens; ⁇ 0 is any phase related to the operating wavelength of the hyperlens; (x, y) is The mirror coordinates of the hyperlens, f ML is the focal length of the hyperlens; a i and bi are real coefficients.
  • the method includes:
  • Step S1 provide a layer of structural layer material on the base layer
  • Step S2 apply photoresist on the structural layer material and expose the reference structure
  • Step S3 Etch the periodically arranged nanostructures on the structural layer material according to the reference structure to form the nanostructure layer;
  • Step S4 arrange the filler between the nanostructures
  • Step S5 Trim the surface of the filler so that the surface of the filler coincides with the surface of the nanostructure.
  • the method also includes:
  • Step S6 Repeat step S1 to step S5 until the setting of all nanostructure layers is completed.
  • the device includes:
  • optical system provided in any of the above embodiments; and the photosensitive element disposed on the image plane of the optical system.
  • the device includes the imaging device provided in the above embodiment.
  • the optical system provided by the embodiments of the present application uses at least one super lens and multiple aspherical refractive lenses to form a seven-piece optical system.
  • the F number is less than 2 and the total system length is less than 6 mm, which promotes the miniaturization and miniaturization of the optical system. Lightweight.
  • the hyperlens processing method provided in the embodiments of the present application realizes a hyperlens structure of at least one nanostructure layer through layered processing, improves the aspect ratio of the nanostructure, and increases the design freedom of the hyperlens.
  • Figure 1 shows an optional structural schematic diagram of the optical system provided by the embodiment of the present application
  • Figure 2 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 3 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 4 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 5 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 6 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 7 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 8 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 9 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 10 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 11 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 12 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 13 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 14 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 15 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 16 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 17 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 18 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 19 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 20 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 21 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 22 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 23 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 24 shows another optional structural schematic diagram of the optical system provided by the embodiment of the present application.
  • Figure 25 shows an optional structural schematic diagram of the hyperlens provided by the embodiment of the present application.
  • Figure 26 shows an optional structural schematic diagram of the nanostructure in the super lens provided by the embodiment of the present application.
  • Figure 27 shows another optional structural schematic diagram of the nanostructure in the hyperlens provided by the embodiment of the present application.
  • Figure 28 shows a schematic diagram of an optional arrangement of nanostructures in the hyperlens provided by the embodiment of the present application.
  • Figure 29 shows a schematic diagram of yet another optional arrangement of nanostructures in the hyperlens provided by the embodiment of the present application.
  • Figure 30 shows a schematic diagram of yet another optional arrangement of nanostructures in the hyperlens provided by the embodiment of the present application.
  • Figure 31 shows another optional structural schematic diagram of the nanostructure in the hyperlens provided by the embodiment of the present application.
  • Figure 32 shows another optional structural schematic diagram of the nanostructure in the hyperlens provided by the embodiment of the present application.
  • Figure 33 shows another optional structural schematic diagram of the nanostructure in the hyperlens provided by the embodiment of the present application.
  • Figure 34 shows another optional structural schematic diagram of the super lens provided by the embodiment of the present application.
  • Figure 35 shows a schematic diagram of an optional arrangement of nanostructures in adjacent nanostructure layers provided by embodiments of the present application.
  • Figure 36 shows another optional structural schematic diagram of the super lens provided by the embodiment of the present application.
  • Figure 37 shows an optional phase diagram of the hyperlens provided by the embodiment of the present application.
  • Figure 38 shows an optional transmittance diagram of the hyperlens provided by the embodiment of the present application.
  • Figure 39 shows another optional phase diagram of the hyperlens provided by the embodiment of the present application.
  • Figure 40 shows another optional transmittance diagram of the hyperlens provided by the embodiment of the present application.
  • Figure 41 shows an optional flow diagram of the super lens processing method provided by the embodiment of the present application.
  • Figure 42 shows another optional flow diagram of the super lens processing method provided by the embodiment of the present application.
  • Figure 43 shows another optional flow diagram of the super lens processing method provided by the embodiment of the present application.
  • Figure 44 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 1 at different wavelengths
  • Figure 45 shows an astigmatism diagram of the optical system shown in Figure 1;
  • Figure 46 shows a distortion diagram of the optical system shown in Figure 1;
  • Figure 47 shows the broadband matching degree of the metalens in the optical system shown in Figure 1;
  • Figure 48 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 2 at different wavelengths
  • Figure 49 shows an astigmatism diagram of the optical system shown in Figure 2;
  • Figure 50 shows a distortion diagram of the optical system shown in Figure 2;
  • Figure 51 shows the broadband matching degree of the metalens in the optical system shown in Figure 2;
  • Figure 52 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 3 at different wavelengths
  • Figure 53 shows an astigmatism diagram of the optical system shown in Figure 3;
  • Figure 54 shows a distortion diagram of the optical system shown in Figure 3;
  • Figure 55 shows the broadband matching degree of the metalens in the optical system shown in Figure 3;
  • Figure 56 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 4 at different wavelengths
  • Figure 57 shows an astigmatism diagram of the optical system shown in Figure 4.
  • Figure 58 shows a distortion diagram of the optical system shown in Figure 4.
  • Figure 59 shows the broadband matching degree of the metalens in the optical system shown in Figure 4.
  • Figure 60 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 5 at different wavelengths
  • Figure 61 shows an astigmatism diagram of the optical system shown in Figure 5;
  • Figure 62 shows a distortion diagram of the optical system shown in Figure 5;
  • Figure 63 shows the broadband matching degree of the metalens in the optical system shown in Figure 5;
  • Figure 64 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 6 at different wavelengths
  • Figure 65 shows an astigmatism diagram of the optical system shown in Figure 6;
  • Figure 66 shows a distortion diagram of the optical system shown in Figure 6;
  • Figure 67 shows the broadband matching degree of the metalens in the optical system shown in Figure 6;
  • Figure 68 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 7 at different wavelengths
  • Figure 69 shows an astigmatism diagram of the optical system shown in Figure 7;
  • Figure 70 shows a distortion diagram of the optical system shown in Figure 7;
  • Figure 71 shows the broadband matching degree of the metalens in the optical system shown in Figure 7;
  • Figure 72 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 8 at different wavelengths
  • Figure 73 shows an astigmatism diagram of the optical system shown in Figure 8.
  • Figure 74 shows a distortion diagram of the optical system shown in Figure 8.
  • Figure 75 shows the broadband matching degree of the metalens in the optical system shown in Figure 8.
  • Figure 76 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 9 at different wavelengths
  • Figure 77 shows an astigmatism diagram of the optical system shown in Figure 9;
  • Figure 78 shows a distortion diagram of the optical system shown in Figure 9;
  • Figure 79 shows the broadband matching degree of the metalens in the optical system shown in Figure 9;
  • Figure 80 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 10 at different wavelengths
  • Figure 81 shows an astigmatism diagram of the optical system shown in Figure 10;
  • Figure 82 shows a distortion diagram of the optical system shown in Figure 10;
  • Figure 83 shows the broadband matching degree of the metalens in the optical system shown in Figure 10;
  • Figure 84 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 11 at different wavelengths
  • Figure 85 shows an astigmatism diagram of the optical system shown in Figure 11;
  • Figure 86 shows a distortion diagram of the optical system shown in Figure 11;
  • Figure 87 shows the broadband matching degree of the metalens in the optical system shown in Figure 11;
  • Figure 88 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 12 at different wavelengths
  • Figure 89 shows an astigmatism diagram of the optical system shown in Figure 12;
  • Figure 90 shows a distortion diagram of the optical system shown in Figure 12;
  • Figure 91 shows the broadband matching degree of the metalens in the optical system shown in Figure 12;
  • Figure 92 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 13 at different wavelengths
  • Figure 93 shows an astigmatism diagram of the optical system shown in Figure 13;
  • Figure 94 shows a distortion diagram of the optical system shown in Figure 13;
  • Figure 95 shows the broadband matching degree of the metalens in the optical system shown in Figure 13;
  • Figure 96 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 14 at different wavelengths
  • Figure 97 shows an astigmatism diagram of the optical system shown in Figure 14;
  • Figure 98 shows a distortion diagram of the optical system shown in Figure 14.
  • Figure 99 shows the broadband matching degree of the metalens in the optical system shown in Figure 14;
  • Figure 100 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 15 at different wavelengths
  • Figure 101 shows an astigmatism diagram of the optical system shown in Figure 15;
  • Figure 102 shows a distortion diagram of the optical system shown in Figure 15;
  • Figure 103 shows the broadband matching degree of the metalens in the optical system shown in Figure 15;
  • Figure 104 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 16 at different wavelengths
  • Figure 105 shows an astigmatism diagram of the optical system shown in Figure 16;
  • Figure 106 shows a distortion diagram of the optical system shown in Figure 16.
  • Figure 107 shows the broadband matching degree of the metalens in the optical system shown in Figure 16;
  • Figure 108 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 17 at different wavelengths
  • Figure 109 shows an astigmatism diagram of the optical system shown in Figure 17;
  • Figure 110 shows a distortion diagram of the optical system shown in Figure 17;
  • Figure 111 shows the broadband matching degree of the metalens in the optical system shown in Figure 17;
  • Figure 112 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 18 at different wavelengths
  • Figure 113 shows an astigmatism diagram of the optical system shown in Figure 18;
  • Figure 114 shows a distortion diagram of the optical system shown in Figure 18;
  • Figure 115 shows the broadband matching degree of the metalens in the optical system shown in Figure 18;
  • Figure 116 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 19 at different wavelengths
  • Figure 117 shows an astigmatism diagram of the optical system shown in Figure 19;
  • Figure 118 shows a distortion diagram of the optical system shown in Figure 19;
  • Figure 119 shows the broadband matching degree of the metalens in the optical system shown in Figure 19;
  • Figure 120 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 20 at different wavelengths
  • Figure 121 shows an astigmatism diagram of the optical system shown in Figure 20;
  • Figure 122 shows a distortion diagram of the optical system shown in Figure 20;
  • Figure 123 shows the broadband matching degree of the metalens in the optical system shown in Figure 20;
  • Figure 124 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 21 at different wavelengths
  • Figure 125 shows an astigmatism diagram of the optical system shown in Figure 21;
  • Figure 126 shows a distortion diagram of the optical system shown in Figure 21;
  • Figure 127 shows the broadband matching degree of the metalens in the optical system shown in Figure 21;
  • Figure 128 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 22 at different wavelengths
  • Figure 129 shows an astigmatism diagram of the optical system shown in Figure 22;
  • Figure 130 shows a distortion diagram of the optical system shown in Figure 22;
  • Figure 131 shows the broadband matching degree of the metalens in the optical system shown in Figure 22;
  • Figure 132 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 23 at different wavelengths
  • Figure 133 shows an astigmatism diagram of the optical system shown in Figure 23;
  • Figure 134 shows a distortion diagram of the optical system shown in Figure 23;
  • Figure 135 shows the broadband matching degree of the metalens in the optical system shown in Figure 23;
  • Figure 136 shows a schematic diagram of the phase modulation of the metalens in the optical system shown in Figure 24 at different wavelengths
  • Figure 137 shows an astigmatism diagram of the optical system shown in Figure 24;
  • Figure 138 shows a distortion diagram of the optical system shown in Figure 24;
  • Figure 139 shows the broadband matching degree of the metalens in the optical system shown in Figure 24.
  • the reference symbols in the figure respectively indicate: 10-First lens; 20-Second lens; 30-Third lens; 40-Fourth lens; 50-Fifth lens; 60-Sixth lens; 70-Seventh lens; 80-Aperture; 90-Infrared filter; 201-basal layer; 202-nanostructure layer; 203-superstructural unit; 204-antireflection coating; 2021-nanostructure; 2022-filler; 202a-structural layer material; 205-photoresist; 206-reference structure.
  • Embodiments are described herein with reference to cross-sectional illustrations that are idealized embodiments. Thus, variations in shape from those shown in the illustrations are contemplated, for example as a result of manufacturing techniques and/or tolerances. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, regions shown or described as flat may typically have rough and/or non-linear characteristics. Furthermore, the acute angles shown can be rounded. Therefore, the regions shown in the figures are schematic in nature and their shapes are not intended to show the precise shapes of the regions and are not intended to limit the scope of the claims.
  • inventions of the present application provide an optical system, as shown in Figures 1 to 24.
  • the optical system includes a first lens 10, a second lens 20, and a third lens arranged in sequence from the object side to the image side. 30.
  • the fourth lens 40, the fifth lens 50, the sixth lens 60 and the seventh lens 70 are a super lens, and the rest are aspherical refractors. lens.
  • all surfaces of the first aspherical refractive lens from the image side to the object side and the second aspherical refractive lens from the image side to the object side in the optical system include at least one aspherical surface, and the aspherical surface includes an Inflection point.
  • the optical system at least satisfies the following formulas (1-1) to (1-3): 0.05mm ⁇ d ML ⁇ 2mm; (1-2)
  • f is the focal length of the optical system
  • EPD is the entrance pupil diameter of the optical system
  • d ML is the thickness of the hyperlens
  • f ML is the focal length of the hyperlens.
  • the optical system provided by the embodiment of the present application satisfies the foregoing arrangement, enabling the seven-lens optical system to simultaneously satisfy a large aperture (that is, a small F number) and a small total system length.
  • the ratio of the absolute value of the hyperlens focal length to the entire optical system is greater than or equal to 45, which is beneficial to enhancing the aberration correction capability of the optical system and improving the design freedom of the optical system.
  • the above-mentioned aspheric surface contains an inflection point, which is beneficial to reducing the effective radius of the first aspheric refractive lens from the image side to the object side and the second aspheric refractive lens from the image side to the object side in the optical system.
  • the volume of the optical system is reduced, making the optical system better suitable for use in compact imaging devices.
  • FIGS. 1 to 24 only show some optional structures of the optical system provided by embodiments of the present application.
  • Figures 1 to 24 only show the arrangement relationship of each lens in the optical system provided by the embodiment of the present application. The distance between the lenses in the figures is not the actual distance between the lenses.
  • the second lens 20 is a super lens, and the remaining lenses are aspherical refractive lenses.
  • the first lens 10 has positive refractive power, and the object-side surface of the first lens 10 is convex; the curvature radius of the object-side surface of the third lens 30 is positive; the fifth lens 50 has positive refractive power; and the sixth lens 10 has positive refractive power.
  • the object-side surface of lens 60 has a positive radius of curvature.
  • the optical power of the fourth lens 40 and the seventh lens 70 can be selected according to the design requirements of the optical system.
  • the fourth lens 40 satisfies formula (2):
  • R 4o is the radius of curvature of the object-side surface of the fourth lens 40
  • R 4i is the radius of curvature of the image-side surface of the fourth lens 40
  • R no and R ni are used to represent the curvature radius of the object-side surface and image-side surface of each lens in the optical system, where n is the order of the lenses along the object side to the image side, o represents the object side, and i represents the image side .
  • the radius of curvature of the image-side surface of the seventh lens 70 is greater than zero.
  • the first lens 10 also satisfies formula (3):
  • the setting that satisfies formula (3) is conducive to ensuring that the optical system has sufficient positive refractive power, which is conducive to further compressing the total system length of the optical system.
  • the optical system provided by the embodiment of the present application also satisfies formula (4): (V 1 +V 4 )/2-V 3 >20; (4)
  • V 1 is the Abbe number of the first lens ( 10 );
  • V 3 is the Abbe number of the third lens 30 ;
  • V 4 is the Abbe number of the fourth lens 40 .
  • the optical system also satisfies formula (5): 1.5 ⁇ TTL/ImgH ⁇ 1.8; (5)
  • TTL is the distance from the object-side surface of the first lens 10 to the image plane of the optical system (also referred to as the total system length, Total Tracking Length in this application);
  • ImgH is the maximum imaging height of the optical system.
  • the maximum imaging height refers to one-half of the total diagonal length of the effective sensing area of the electronic photosensitive element.
  • the first lens 10 also satisfies: 0.71 ⁇ f 1 /f ⁇ 0.98; (6)
  • f 1 is the focal length of the first lens 10 at the central wavelength of the working band; f is the focal length of the optical system.
  • the material of the aspheric refractive lens can be optical glass, such as crown glass, flint glass, quartz glass, etc.; it can also be various types of optical plastics, such as APL5514, OKP4HT wait.
  • the aspheric refractive lens is made of optical plastic.
  • Aspherical refractive lenses are made of optical plastics and can be mass-produced at low cost and in large quantities through injection molding.
  • the super lens ie, the second lens 20
  • the embodiment of the present application will be described with reference to FIGS. 25 to 43 .
  • metalens are a specific application of metasurfaces, which modulate the phase, amplitude, and polarization of incident light through periodically arranged subwavelength-sized nanostructures.
  • Figure 25 shows an optional structural schematic diagram of a hyperlens provided by an embodiment of the present application.
  • the metalens provided by the embodiment of the present application includes a base layer 201 and a nanostructure layer 202 disposed on at least one side of the base layer 201, and the number of nanostructure layers 202 is greater than or equal to 1.
  • Each of the at least one nanostructure layer 202 includes periodically arranged nanostructures 2021 .
  • the arrangement period of the nanostructures 2021 is greater than or equal to 0.3 ⁇ c and less than or equal to 2 ⁇ c ; where ⁇ c is The central wavelength of the metalens working band.
  • the height of the nanostructure 2021 in any layer of at least one nanostructure layer 202 is greater than or equal to 0.3 ⁇ c and less than or equal to 5 ⁇ c ; where ⁇ c is the super lens The center wavelength of the working band.
  • Figure 26 and 27 show perspective views of the nanostructures 2021 in any nanostructure layer 202 in the second lens 20 .
  • Figure 26 is a cylindrical structure.
  • the nanostructure 2021 in Figure 27 is a square columnar structure.
  • the super lens also includes a filler 2022, which is filled between the nanostructures 2021, and the material of the filler 2022 has an extinction coefficient of less than 0.01 in the working band.
  • filler 2022 includes air or other materials that are transparent or translucent in the operating band.
  • the absolute value of the difference between the refractive index of the material of the filler 2022 and the refractive index of the nanostructure 2021 should be greater than or equal to 0.5.
  • the filler 2022 in the nanostructure layer 202 farthest from the base layer 201 may be air.
  • At least one nanostructure layer 202 any layer of includes superstructure units 203 arranged in an array.
  • the superstructure unit 203 is a close-packed pattern, and a nanostructure 2021 is provided at the vertex and/or center position of the close-packed pattern.
  • a densely packed pattern refers to one or more patterns that can fill the entire plane without gaps or overlapping.
  • the superstructure units may be arranged in a fan shape. As shown in Figure 29, according to the embodiment of the present application, the superstructure units may be arranged in a regular hexagonal array. In addition, as shown in FIG. 30 , according to the embodiment of the present application, the superstructure units 203 may be arranged in a square array. Those skilled in the art should realize that the superstructure unit 203 included in the nanostructure layer 202 may also include other forms of array arrangements, and all such variations are covered by the scope of the present application. It can be understood that in some optional embodiments, the period of the superstructure unit 203 is greater than or equal to 0.3 ⁇ c and less than or equal to 2 ⁇ c ; where ⁇ c is the central wavelength of the working band of the superlens.
  • the broad spectrum phase of the superstructure unit 203 and the working band of the superlens provided by the embodiment of the present application also satisfy: Among them, r is the radial coordinate of the hyperlens; r 0 is any point on the hyperlens; ⁇ is the operating wavelength.
  • the nanostructure 2021 provided by the embodiment of the present application can be a polarization-independent structure, and such a structure imposes a propagation phase on the incident light.
  • the nanostructure 2021 can be a positive structure or a negative structure.
  • the shape of the nanostructure 2021 includes a cylinder, a hollow cylinder, a square prism, a hollow square prism, etc.
  • the second lens 20 provided by the embodiment of the present application includes at least two nanostructure layers 202 .
  • the nanostructures 2021 in adjacent nanostructure layers of at least two layers of nanostructures 202 are arranged coaxially.
  • the aforementioned coaxial arrangement means that the nanostructures 2021 in the two adjacent nanostructure layers 202 are arranged in the same period; or the axes of the nanostructures 2021 in the same position in the two adjacent nanostructure layers overlap.
  • the nanostructures 2021 in adjacent nanostructure layers of at least two layers of nanostructures 202 are staggered in a direction parallel to the base 201 of the hyperlens. This arrangement is conducive to breaking through the limitations of the processing technology on the aspect ratio of the nanostructures in the metalens, thereby achieving a higher degree of design freedom.
  • Figure 34 shows a perspective view of an alternative three-layer nanostructured layer. According to the embodiment of the present application, the shape, size or material of the nanostructures 2021 in adjacent nanostructure layers 202 may be the same or different.
  • a to d in FIG. 31 respectively show that the shape of the nanostructure 2021 includes a cylinder, a hollow cylinder, a square column and a hollow square column, and the nanostructure 2021 is filled with fillers 2022 around it.
  • the nanostructure 2021 is disposed at the center of the regular quadrilateral superstructure unit 203 .
  • a to d in Figure 32 respectively show that the shape of the nanostructure 2021 includes a cylinder, a hollow cylinder, a square cylinder and a hollow square cylinder, and there is no filling around the nanostructure 2021 Things 2022.
  • the nanostructure 2021 is disposed at the center of the regular quadrilateral superstructure unit 203 .
  • a to d in Figure 33 respectively show that the shape of the nanostructure 2021 includes a square pillar, a cylinder, a hollow square pillar and a hollow cylinder, and there is no filler 2022 around the nanostructure 2021 .
  • the nanostructure 2021 is disposed at the center of the regular hexagonal superstructure unit 203 .
  • e in Figure 33 to h in Figure 33 respectively show that the nanostructure 2021 is a negative nanostructure, such as a square hole pillar, a circular hole pillar, a square ring pillar, and a circular ring pillar.
  • the nanostructure 2021 is a negative structure disposed at the center of the regular hexagonal superstructure unit 203 .
  • the hyperlens provided by the embodiment of the present application further includes an anti-reflection film 204 .
  • the anti-reflection film 204 is disposed on the side of the base layer 201 away from the at least one nanostructure layer 202; or, the anti-reflection film 204 is disposed on the side of the at least one nanostructure layer 202 adjacent to the air.
  • the function of the anti-reflection coating 204 is to increase reflection and reduce reflection of incident radiation.
  • the material of the base layer 201 has an extinction coefficient of less than 0.01 in the working band.
  • the material of the base layer 201 includes fused quartz, quartz glass, crown glass, flint glass, sapphire, crystalline silicon and amorphous silicon, wherein the amorphous silicon may be hydrogenated amorphous silicon.
  • the material of the base layer 201 includes fused quartz, quartz glass, crown glass, flint glass, sapphire and alkali glass.
  • the material of the nanostructure 2021 is the same as the material of the base layer 201 .
  • the material of the nanostructure 2021 is different from the material of the base layer 201 .
  • the filler 2022 is made of the same material as the base layer 201 .
  • the material of the filler 2022 is different from the material of the base layer 201 .
  • the filler 2022 and the nanostructure 2021 are made of the same material. In some optional implementations of this application, the filler 2022 and the nanostructure 2021 are made of different materials.
  • the material of the filler 2022 is a high transmittance material in the working band, and its extinction coefficient is less than 0.01.
  • the material of the filler 2022 includes fused quartz, quartz glass, crown glass, flint glass, sapphire, crystalline silicon and amorphous silicon, wherein the amorphous silicon may be hydrogenated amorphous silicon.
  • the equivalent refractive index range of the super lens provided by the embodiment of the present application is less than 2.
  • the equivalent refractive index range is the maximum refractive index of the metalens minus its minimum refractive index.
  • the phase of the super lens provided by the embodiment of the present application also satisfies formula (7):
  • the phase of the metalens can be expressed by high-order polynomials, including odd-order polynomials and even-order polynomials.
  • the matching of the actual phase and the ideal phase of the super lens provided by the embodiment of the present application, that is, the super lens
  • the broadband phase matching degree of the mirror is given by formula (8):
  • the aspheric surface in the aspherical refractive lens of the optical system satisfies:
  • z represents the surface vector parallel to the z-axis
  • the z-axis is the optical axis of the optical system
  • c is the curvature of the aspheric center point
  • k is the quadratic surface constant
  • a ⁇ J respectively correspond to high-order coefficients.
  • the optical system provided by the embodiment of the present application further includes an aperture 80 .
  • the diaphragm 80 can be disposed on the object side or image side of any aspheric refractive lens or super lens in the optical system.
  • the diaphragm 80 helps to compress the radius of the lens downstream of the diaphragm 80 in the incident light path, thus promoting the miniaturization of the optical system.
  • the optical system provided by the embodiment of the present application further includes an infrared filter 90 .
  • the infrared filter 90 is disposed between the seventh lens 70 and the image plane of the optical system provided by the embodiment of the present application.
  • the infrared filter 90 is beneficial to filtering the radiation in the infrared band to improve the imaging quality of the optical system, and at the same time, it can also prevent the photosensitive element that cooperates with the optical system from being burned and damaged. .
  • inventions of the present application provide a super lens.
  • the super lens includes a base layer 201 and two nanostructure layers 202 disposed on the base layer 201 .
  • the first nanostructure layer and the second nanostructure layer are sequentially along the direction away from the base layer 201 .
  • the specific parameters of this metalens are shown in Table 1.
  • Figure 37 shows the phase diagram of the metalens provided in Embodiment 1.
  • the abscissa of Figure 37 is the wavelength of the incident radiation, and the ordinate is the radius of the nanostructure 2021.
  • Figure 38 shows a schematic diagram of the transmittance of the hyperlens provided in Embodiment 1.
  • the abscissa in Figure 38 is the wavelength of the incident radiation, and the ordinate is the radius of the nanostructure 2021.
  • r is the radial coordinate of the hyperlens
  • r 0 is the distance from any point on the hyperlens to the center of the hyperlens
  • is the operating wavelength of the hyperlens.
  • inventions of the present application provide a super lens.
  • the super lens includes a base layer 201 and two nanostructure layers 202 disposed on the base layer 201 . Among the two nanostructure layers 202 , the first nanostructure layer and the second nanostructure layer are sequentially along the direction away from the base layer 201 .
  • the specific parameters of the super lens are shown in Table 2.
  • Figure 39 shows the phase diagram of the metalens provided in Embodiment 2.
  • the abscissa in Figure 39 is the wavelength of the incident radiation, and the ordinate is the radius of the nanostructure 2021.
  • Figure 40 shows a schematic diagram of the transmittance of the hyperlens provided in Embodiment 2.
  • the abscissa of Figure 40 is the wavelength of the incident radiation, and the ordinate is the radius of the nanostructure 2021.
  • the broad spectrum phase response and wavelength of any super structural unit 203 in the super lens satisfy: Among them, r is the radial coordinate of the hyperlens; r 0 is the distance from any point on the hyperlens to the center of the hyperlens; ⁇ is the operating wavelength of the hyperlens.
  • embodiments of the present application also provide a super lens processing method, which is suitable for the second lens 20 provided in any embodiment of the present application. As shown in Figures 41 to 43, the method at least includes steps S1 to S5.
  • step S1 a layer of structural layer material 202a is provided on the base layer 201.
  • Step S2 apply photoresist 205 on the structural layer material 202a, and expose the reference structure 206.
  • step S3 periodically arranged nanostructures 2021 are etched on the structural layer material 202a according to the reference structure 206 to form the nanostructure layer 202.
  • Step S4 Set fillers 2022 between the nanostructures 2021.
  • Step S5 Trim the surface of the filler 2022 so that the surface of the filler 2022 coincides with the surface of the nanostructure 2021.
  • the method provided by the embodiment of this application also includes:
  • Step S6 Repeat steps S1 to S5 until all nanostructure layers are set.
  • Embodiment 3 provides an optical system, the structure of which is shown in Figure 1 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of the optical system are shown in Table 3-1. Please refer to Table 3-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 3-3-1 and Table 3-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 44 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 3. It can be seen from Figure 44 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 45 shows the astigmatism diagram of this optical system. As can be seen from Figure 45, the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 46 shows the distortion diagram of this optical system. It can be seen from Figure 46 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 47 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 3.
  • Embodiment 4 provides an optical system, the structure of which is shown in Figure 2.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 4-1. Please refer to Table 4-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 4-3-1 and Table 4-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 48 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 4. It can be seen from Figure 48 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 49 shows the astigmatism diagram of this optical system. As can be seen from Figure 49, the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 50 shows the distortion diagram of this optical system. It can be seen from Figure 50 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 51 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 4.
  • Embodiment 5 provides an optical system, the structure of which is shown in Figure 3 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 5-1. Please refer to Table 5-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 5-3-1 and Table 5-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 52 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 5. It can be seen from Figure 52 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 53 shows the astigmatism diagram of this optical system. It can be seen from Figure 53 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 54 shows the distortion diagram of this optical system. It can be seen from Figure 54 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 55 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 5.
  • Embodiment 6 provides an optical system, the structure of which is shown in Figure 4.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 6-1. Please refer to Table 6-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 6-3-1 and Table 6-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 56 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 6. It can be seen from Figure 56 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 57 shows the astigmatism diagram of this optical system. It can be seen from Figure 57 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 58 shows the distortion diagram of this optical system. It can be seen from Figure 58 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 59 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 6.
  • Embodiment 7 provides an optical system, the structure of which is shown in Figure 5 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 7-1. Please refer to Table 7-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 7-3-1 and Table 7-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 60 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 7. It can be seen from Figure 60 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 61 shows the astigmatism diagram of this optical system. It can be seen from Figure 61 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 62 shows the distortion diagram of this optical system. It can be seen from Figure 62 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 63 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 7.
  • Embodiment 8 provides an optical system, the structure of which is shown in Figure 6 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 8-1. Please refer to Table 8-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspheric coefficients of each surface of each lens in this optical system are as shown in Table 8-3-1 and As shown in Table 8-3-2, the aspheric coefficient is shown in formula (9).
  • Figure 64 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 8. It can be seen from Figure 64 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 65 shows the astigmatism diagram of this optical system. It can be seen from Figure 65 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 66 shows the distortion diagram of this optical system. It can be seen from Figure 66 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 67 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 8.
  • Embodiment 9 provides an optical system, the structure of which is shown in Figure 7 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 9-1. Please refer to Table 9-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 9-3-1 and Table 9-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 68 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 9. It can be seen from Figure 68 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 69 shows the astigmatism diagram of this optical system. It can be seen from Figure 69 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 70 shows the distortion diagram of this optical system. It can be seen from Figure 70 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 71 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 9.
  • Embodiment 10 provides an optical system, the structure of which is shown in FIG. 8 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 10-1. Please refer to Table 10-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 10-3-1 and Table 10-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 72 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 3. It can be seen from Figure 72 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 73 shows the astigmatism diagram of this optical system. It can be seen from Figure 73 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 74 shows the distortion diagram of this optical system. It can be seen from Figure 74 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 75 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 8. It can be seen from Figure 75 that the matching degree between the actual phase and the theoretical phase of the super lens in Example 8 is greater than 90%. It can be seen from the above that the optical system provided in Embodiment 8 has good imaging effect and excellent astigmatism and distortion control.
  • Embodiment 11 provides an optical system, the structure of which is shown in Figure 9.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 11-1. Please refer to Table 11-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 11-3-1 and Table 11-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 76 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 11. It can be seen from Figure 76 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 77 shows the astigmatism diagram of this optical system. It can be seen from Figure 77 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 78 shows the distortion diagram of this optical system. It can be seen from Figure 78 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 79 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 11.
  • Embodiment 12 provides an optical system, the structure of which is shown in FIG. 10 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 12-1. Please refer to Table 12-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 12-3-1 and Table 12-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 80 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 3. It can be seen from Figure 80 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 81 shows the astigmatism diagram of this optical system. It can be seen from Figure 81 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 82 shows the distortion diagram of this optical system. It can be seen from Figure 82 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 83 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 12.
  • Embodiment 13 provides an optical system, the structure of which is shown in Figure 11.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 13-1. Please refer to Table 13-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 13-3-1 and Table 13-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 84 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 3. It can be seen from Figure 84 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 85 shows the astigmatism diagram of this optical system. It can be seen from Figure 85 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 86 shows the distortion diagram of this optical system. It can be seen from Figure 86 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 87 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 13.
  • Embodiment 14 provides an optical system, the structure of which is shown in FIG. 12 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 14-1. Please refer to Table 14-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 14-3-1 and Table 14-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 88 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 12. It can be seen from Figure 88 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 89 shows the astigmatism diagram of this optical system. It can be seen from Figure 89 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 90 shows the distortion diagram of this optical system. It can be seen from Figure 90 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 91 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 14.
  • Embodiment 15 provides an optical system, the structure of which is shown in Figure 13.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, which are arranged in sequence from the object side to the image side.
  • the specific parameters of this optical system are shown in Table 15-1. Please refer to Table 15-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 15-3-1 and Table 15-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 92 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 15. It can be seen from Figure 92 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 93 shows the astigmatism diagram of this optical system. It can be seen from Figure 93 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 94 shows the distortion diagram of this optical system. It can be seen from Figure 94 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 95 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 15.
  • Embodiment 16 provides an optical system, the structure of which is shown in Figure 14.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 16-1. Please refer to Table 16-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 16-3-1 and Table 16-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 96 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 16. It can be seen from Figure 96 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 97 shows the astigmatism diagram of this optical system. It can be seen from Figure 97 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 98 shows the distortion diagram of this optical system. It can be seen from Figure 98 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 99 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 16.
  • Embodiment 17 provides an optical system, the structure of which is shown in Figure 15.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 17-1. Please refer to Table 17-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 3-3-1 and Table 17-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 100 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 17. It can be seen from Figure 100 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 101 shows the astigmatism diagram of this optical system. As can be seen from Figure 101, the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 102 shows the distortion diagram of this optical system. It can be seen from Figure 102 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 103 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 17.
  • Embodiment 18 provides an optical system, the structure of which is shown in Figure 16 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 18-1. Please refer to Table 18-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 18-3-1 and Table 18-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 104 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 18. It can be seen from Figure 104 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 105 shows the astigmatism diagram of this optical system. It can be seen from Figure 105 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 106 shows the distortion diagram of this optical system. It can be seen from Figure 106 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 107 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 18.
  • Embodiment 19 provides an optical system, the structure of which is shown in Figure 17.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 19-1. Please refer to Table 19-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 19-3-1 and Table 19-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 108 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 19. It can be seen from Figure 108 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 109 shows the astigmatism diagram of this optical system. As can be seen from Figure 109, the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 110 shows the distortion diagram of this optical system. It can be seen from Figure 110 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 111 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 19.
  • Embodiment 20 provides an optical system, the structure of which is shown in FIG. 18 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 18-1.
  • the curvature, thickness, refractive index of each surface of each lens in the optical system For parameters such as emissivity, please refer to Table 18-2.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 18-3-1 and Table 18-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 112 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 20. It can be seen from Figure 112 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 113 shows the astigmatism diagram of this optical system. It can be seen from Figure 113 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 114 shows the distortion diagram of this optical system. It can be seen from Figure 114 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 115 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 20.
  • Embodiment 21 provides an optical system, the structure of which is shown in Figure 19.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 21-1. Please refer to Table 21-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 21-3-1 and Table 21-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 116 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 21. It can be seen from Figure 116 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 117 shows the astigmatism diagram of this optical system. It can be seen from Figure 117 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 118 shows the distortion diagram of this optical system. It can be seen from Figure 118 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 119 shows the super lens in the optical system provided in Embodiment 21. Broadband matching.
  • Embodiment 22 provides an optical system, the structure of which is shown in FIG. 20 .
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 22-1. Please refer to Table 22-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 22-3-1 and Table 22-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 120 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 22. It can be seen from Figure 120 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 121 shows the astigmatism diagram of this optical system. It can be seen from Figure 121 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 122 shows the distortion diagram of this optical system. It can be seen from Figure 122 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 123 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 22.
  • Embodiment 23 provides an optical system, the structure of which is shown in Figure 21.
  • the optical system It includes a diaphragm 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60, a seventh lens 70 and an infrared lens arranged sequentially from the object side to the image side. Filter 90.
  • the specific parameters of this optical system are shown in Table 23-1. Please refer to Table 23-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 23-3-1 and Table 23-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 124 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 23. It can be seen from Figure 124 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 125 shows the astigmatism diagram of this optical system. It can be seen from Figure 125 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 126 shows the distortion diagram of this optical system. It can be seen from Figure 126 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 127 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 23.
  • Embodiment 24 provides an optical system, the structure of which is shown in Figure 22.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 24-1. Please refer to Table 24-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 24-3-1 and Table 24-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 128 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 24. It can be seen from Figure 128 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 129 shows the astigmatism diagram of this optical system. It can be seen from Figure 129 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 130 shows the distortion diagram of this optical system. It can be seen from Figure 130 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 131 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 24.
  • Embodiment 25 provides an optical system, the structure of which is shown in Figure 23.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 25-1. Please refer to Table 25-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 25-3-1 and Table 25-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 132 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 25. It can be seen from Figure 132 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 133 shows the astigmatism diagram of this optical system. It can be seen from Figure 133 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 134 shows the distortion diagram of this optical system. It can be seen from Figure 134 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 135 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 25.
  • Embodiment 26 provides an optical system, the structure of which is shown in Figure 24.
  • the optical system includes an aperture 80, a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, a sixth lens 60 and a seventh lens arranged in sequence from the object side to the image side. 70 and IR filter 90.
  • the specific parameters of this optical system are shown in Table 26-1. Please refer to Table 26-2 for the curvature, thickness, refractive index and other parameters of each surface of each lens in this optical system.
  • the aspherical coefficients of each surface of each lens in this optical system are shown in Table 26-3-1 and Table 26-3-2, and the aspherical coefficients are shown in Formula (9).
  • Figure 136 shows a schematic diagram of the phase modulation of the hyperlens at 486.13nm, 587.56nm and 656.27nm in the optical system provided in Embodiment 3. It can be seen from Figure 136 that the phase of the metalens at different wavelengths covers 0 ⁇ 2 ⁇ .
  • Figure 136 shows the astigmatism diagram of this optical system. It can be seen from Figure 137 that the astigmatism of this optical system does not exceed 0.5mm.
  • Figure 138 shows the distortion diagram of this optical system. It can be seen from Figure 138 that the distortion of this optical system within the field of view from 0 to 1 does not exceed 5%.
  • Figure 139 shows the broadband matching degree of the super lens in the optical system provided in Embodiment 26.
  • hyperlens provided by the embodiments of the present application can be processed through semiconductor technology, and has the advantages of light weight, thin thickness, simple structure and process, low cost, and high consistency in mass production.
  • the optical system uses at least one super lens and multiple aspherical refractive lenses to form a seven-piece optical system.
  • the F number is less than 2 and the total system length is less than 6 mm, which promotes optical efficiency.
  • the hyperlens processing method provided in the embodiments of the present application realizes a hyperlens structure of at least one nanostructure layer through layered processing, improves the aspect ratio of the nanostructure, and increases the design freedom of the hyperlens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请提供了一种光学系统,涉及光学成像的技术领域。该光学系统包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜;其中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中至少一个为超透镜,其余均为非球面折射透镜;并且,光学系统由像方到物方的第一个非球面折射透镜和由像方到物方的第二个非球面折射透镜的所有表面中包括至少一个非球面,且非球面包含一个反曲点;光学系统至少还满足:0.05mm≤dML≤2mm;|fML|/f≥45;f为光学系统焦距;EPD为光学系统入瞳直径;dML为超透镜厚度;fML为超透镜焦距。该光学系统同时满足大光圈和小系统总长。

Description

光学系统及包含其的成像装置、电子设备 技术领域
本申请涉及光学成像的技术领域,具体地,本申请涉及光学系统及包含其的成像装置、电子设备。
背景技术
随着用户的拍摄需求增长,越来越多的电子设备安装了成像装置。
由于用户对成像装置的成像质量要求越来越高,现有成像装置的光学系统难以同时满足大光圈和小系统总长的需求。
因此,亟需一种光学系统能够同时满足大光圈和小系统总长,以促进电子设备的小型化和轻型化。
发明内容
为了解决现有技术中投影系统的小型化受透镜数量及镜头体积所限制的问题,本申请实施例提供了一种光学系统。所述光学系统包括由物方到像方依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜;
其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜中的至少一个为超透镜,其余均为非球面折射透镜;
并且,所述光学系统中由像方到物方的第一个非球面折射透镜和由像方到物方的第二个非球面折射透镜的所有表面中包括至少一个非球面,且所述非球面包含一个反曲点;
所述光学系统至少还满足如下条件:

0.05mm≤dML≤2mm;
|fML|/f≥45;
f为所述光学系统的焦距;EPD为所述光学系统的入瞳直径;dML为所述超透镜的厚度;fML为所述超透镜的焦距。
可选地,所述第二透镜为超透镜,其余透镜均为非球面折射透镜;并且,所述第一透镜具有正光焦度,且所述第一透镜的物侧表面为凸面;所述第三透镜的物侧表面的曲率半径为正;所述第五透镜具有正光焦度;所述第六透镜的物侧表面的曲率半径为正。
可选地,所述第一透镜还满足:
其中,R1o为所述第一透镜的物侧表面的曲率半径;f1为所述第一透镜在工作波段中心波长的焦距。
可选地,所述光学系统还满足:
(V1+V4)/2-V3>20;
其中,V1为所述第一透镜的阿贝数;V3为所述第三透镜的阿贝数;V4为所述第四透镜的阿贝数。
可选地,所述光学系统还满足:
1.5<TTL/ImgH<1.8
其中,TTL为所述第一透镜的物侧表面到所述光学系统的像面的距离;ImgH为所述光学系统的最大成像高度。
可选地,所述第四透镜还满足:
|R4o|>R4i
其中,R4o为所述第四透镜的物侧表面的曲率半径;R4i为所述第四透镜(40)的像侧表面的曲率半径。
可选地,所述第七透镜的像侧表面的曲率半径大于零。
可选地,所述第一透镜还满足:
0.71≤f1/f≤0.98;
其中,f1为所述第一透镜在工作波段中心波长的焦距;f为所述光学系统的焦距。
可选地,所述超透镜包括基底层和设置于所述基底层至少一侧的纳米结构层,并且,所述纳米结构层的层数大于或等于1;
所述纳米结构层中的每一层均包括周期性排布的纳米结构。
可选地,所述纳米结构层中的任一层中所述纳米结构的排列周期大于或等于0.3λc,且小于或等于2λc;
其中,λc为所述第二透镜工作波段的中心波长。
可选地,所述纳米结构层的任一层中所述纳米结构的高度大于或等于0.3λc,且小于或等于5λc;
其中,λc为所述第二透镜工作波段的中心波长。
可选地,所述纳米结构层的任一层中包括阵列排布的超结构单元;
所述超结构单元为可密堆积图形,所述可密堆积图形的顶点和/或中心位置设置有所述纳米结构。
可选地,所述基底层的材料对所述工作波段的消光系数小于0.01。
可选地,所述纳米结构的材料对所述工作波段的消光系数小于0.01。
可选地,所述基底层的材料包括熔融石英、石英玻璃、冕牌玻璃、火石玻璃、蓝宝石、晶体硅和非晶硅。所述非晶硅可以是氢化非晶硅。
可选地,所述纳米结构的材料包括熔融石英、石英玻璃、冕牌玻璃、火石玻璃、蓝宝石、晶体硅和非晶硅。所述非晶硅可以是氢化非晶硅。
可选地,所述纳米结构与所述基底层的材料不同。
可选地,所述纳米结构与所述基底层的材料相同。
可选地,所述纳米结构的形状为偏振不敏感结构。
可选地,所述偏振不敏感结构包括圆柱形、中空圆柱形、圆孔形、中空圆孔形、正方柱形、正方孔形、中空正方柱形和中空正方孔形。
可选地,所述第二透镜还包括填充物;
所述填充物填充于所述纳米结构之间;
并且,所述填充物的材料对所述工作波段的消光系数小于0.01。
可选地,所述填充物的折射率与所述纳米结构的折射率的差值的绝对值大于或等于0.5。
可选地,所述填充物包括空气、熔融石英、石英玻璃、冕牌玻璃、火石玻璃、蓝宝石、晶体硅和非晶硅。所述非晶硅可以是氢化非晶硅。
可选地,所述填充物的材料与所述基底层的材料不同。
可选地,所述填充物的材料与所述纳米结构的材料不同。
可选地,所述第二透镜还包括增透膜;
所述增透膜被设置于所述基底层远离所述纳米结构层的一侧,和/或,所述纳米结构层远离所述基底层的一侧。
可选地,所述超结构单元的宽谱相位满足:
其中,r为所述超透镜径向的坐标;r0为所述超透镜上任一点到所述超透镜中心的距离;λ为所述超透镜的工作波长。
可选地,所述超透镜包括至少两层纳米结构层;
其中,任意两个相邻的纳米结构层中的纳米结构共轴设置。
可选地,所述超透镜包括至少两层纳米结构层;其中,任意相邻的纳米结构层中的纳米结构沿平行于所述超透镜的基底的方向错位排列。
可选地,所述超透镜的相位还满足:







其中,r为所述超透镜的中心到任一纳米结构的距离;λ为所述超透镜的工作波长;φ0为任一与所述超透镜工作波长相关的相位;(x,y)为超透镜镜面坐标,fML为所述超透镜的焦距;ai和bi为实数系数。
可选地,适用于上述任一实施例提供的光学系统中的所述第二透镜,所述方法包括:
步骤S1,在所述基底层上设置一层结构层材料;
步骤S2,在所述结构层材料上涂覆光刻胶,并曝光出参考结构;
步骤S3,依据所述参考结构在所述结构层材上刻蚀出周期性排列的所述纳米结构,以形成所述纳米结构层;
步骤S4,在所述纳米结构之间设置所述填充物;
步骤S5,修整所述填充物的表面,使所述填充物的表面与所述纳米结构的表面重合。
可选地,所述方法还包括:
步骤S6,重复所述步骤S 1至所述步骤S5,直至完成所有纳米结构层的设置。
可选地,所述装置包括:
上述任一实施例提供的光学系统;以及设置于所述光学系统的像面上的感光元件。
可选地,所述设备包括上述实施例提供的成像装置。
本申请实施例提供的光学系统,通过采用至少一片超透镜和多个非球面折射透镜组成七片式光学系统,同时满足了F数小于2且系统总长小于6mm,促进了光学系统的小型化和轻量化。
本申请实施例提供的超透镜加工方法,通过分层加工实现了至少一层纳米结构层的超透镜结构,提高了纳米结构的深宽比,增加了超透镜的设计自由度。
附图说明
所包括的附图用于提供本申请的进一步理解,并且被并入本说明书中构成本说明书的一部分。附图示出了本申请的实施方式,连同下面的描述一起用于说明本申请的原理。
图1示出了本申请实施例提供的光学系统的一种可选的结构示意图;
图2示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图3示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图4示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图5示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图6示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图7示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图8示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图9示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图10示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图11示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图12示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图13示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图14示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图15示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图16示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图17示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图18示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图19示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图20示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图21示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图22示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图23示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图24示出了本申请实施例提供的光学系统的又一种可选的结构示意图;
图25示出了本申请实施例提供的超透镜的一种可选的结构示意图;
图26示出了本申请实施例提供的超透镜中纳米结构的一种可选的结构示意图;
图27示出了本申请实施例提供的超透镜中纳米结构的又一种可选的结构示意图;
图28示出了本申请实施例提供的超透镜中纳米结构的一种可选的排列方式示意图;
图29示出了本申请实施例提供的超透镜中纳米结构的又一种可选的排列方式示意图;
图30示出了本申请实施例提供的超透镜中纳米结构的又一种可选的排列方式示意图;
图31示出了本申请实施例提供的超透镜中纳米结构的又一种可选的结构示意图;
图32示出了本申请实施例提供的超透镜中纳米结构的又一种可选的结构示意图;
图33示出了本申请实施例提供的超透镜中纳米结构的又一种可选的结构示意图;
图34示出了本申请实施例提供的超透镜的又一种可选的结构示意图;
图35示出了本申请实施例提供的相邻纳米结构层中纳米结构的可选的排列方式的示意图;
图36示出了本申请实施例提供的超透镜的又一种可选的结构示意图;
图37示出了本申请实施例提供的超透镜的一种可选的相位示意图;
图38示出了本申请实施例提供的超透镜的一种可选的透过率示意图;
图39示出了本申请实施例提供的超透镜的又一种可选的相位示意图;
图40示出了本申请实施例提供的超透镜的又一种可选的透过率示意图;
图41示出了本申请实施例提供的超透镜加工方法的一种可选的流程示意图;
图42示出了本申请实施例提供的超透镜加工方法的又一种可选的流程示意图;
图43示出了本申请实施例提供的超透镜加工方法的又一种可选的流程示意图;
图44示出了图1所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图45示出了图1所示的光学系统的像散图;
图46示出了图1所示的光学系统的畸变图;
图47示出了图1所示的光学系统中超透镜的宽带匹配度;
图48示出了图2所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图49示出了图2所示的光学系统的像散图;
图50示出了图2所示的光学系统的畸变图;
图51示出了图2所示的光学系统中超透镜的宽带匹配度;
图52示出了图3所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图53示出了图3所示的光学系统的像散图;
图54示出了图3所示的光学系统的畸变图;
图55示出了图3所示的光学系统中超透镜的宽带匹配度;
图56示出了图4所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图57示出了图4所示的光学系统的像散图;
图58示出了图4所示的光学系统的畸变图;
图59示出了图4所示的光学系统中超透镜的宽带匹配度;
图60示出了图5所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图61示出了图5所示的光学系统的像散图;
图62示出了图5所示的光学系统的畸变图;
图63示出了图5所示的光学系统中超透镜的宽带匹配度;
图64示出了图6所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图65示出了图6所示的光学系统的像散图;
图66示出了图6所示的光学系统的畸变图;
图67示出了图6所示的光学系统中超透镜的宽带匹配度;
图68示出了图7所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图69示出了图7所示的光学系统的像散图;
图70示出了图7所示的光学系统的畸变图;
图71示出了图7所示的光学系统中超透镜的宽带匹配度;
图72示出了图8所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图73示出了图8所示的光学系统的像散图;
图74示出了图8所示的光学系统的畸变图;
图75示出了图8所示的光学系统中超透镜的宽带匹配度;
图76示出了图9所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图77示出了图9所示的光学系统的像散图;
图78示出了图9所示的光学系统的畸变图;
图79示出了图9所示的光学系统中超透镜的宽带匹配度;
图80示出了图10所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图81示出了图10所示的光学系统的像散图;
图82示出了图10所示的光学系统的畸变图;
图83示出了图10所示的光学系统中超透镜的宽带匹配度;
图84示出了图11所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图85示出了图11所示的光学系统的像散图;
图86示出了图11所示的光学系统的畸变图;
图87示出了图11所示的光学系统中超透镜的宽带匹配度;
图88示出了图12所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图89示出了图12所示的光学系统的像散图;
图90示出了图12所示的光学系统的畸变图;
图91示出了图12所示的光学系统中超透镜的宽带匹配度;
图92示出了图13所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图93示出了图13所示的光学系统的像散图;
图94示出了图13所示的光学系统的畸变图;
图95示出了图13所示的光学系统中超透镜的宽带匹配度;
图96示出了图14所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图97示出了图14所示的光学系统的像散图;
图98示出了图14所示的光学系统的畸变图;
图99示出了图14所示的光学系统中超透镜的宽带匹配度;
图100示出了图15所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图101示出了图15所示的光学系统的像散图;
图102示出了图15所示的光学系统的畸变图;
图103示出了图15所示的光学系统中超透镜的宽带匹配度;
图104示出了图16所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图105示出了图16所示的光学系统的像散图;
图106示出了图16所示的光学系统的畸变图;
图107示出了图16所示的光学系统中超透镜的宽带匹配度;
图108示出了图17所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图109示出了图17所示的光学系统的像散图;
图110示出了图17所示的光学系统的畸变图;
图111示出了图17所示的光学系统中超透镜的宽带匹配度;
图112示出了图18所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图113示出了图18所示的光学系统的像散图;
图114示出了图18所示的光学系统的畸变图;
图115示出了图18所示的光学系统中超透镜的宽带匹配度;
图116示出了图19所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图117示出了图19所示的光学系统的像散图;
图118示出了图19所示的光学系统的畸变图;
图119示出了图19所示的光学系统中超透镜的宽带匹配度;
图120示出了图20所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图121示出了图20所示的光学系统的像散图;
图122示出了图20所示的光学系统的畸变图;
图123示出了图20所示的光学系统中超透镜的宽带匹配度;
图124示出了图21所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图125示出了图21所示的光学系统的像散图;
图126示出了图21所示的光学系统的畸变图;
图127示出了图21所示的光学系统中超透镜的宽带匹配度;
图128示出了图22所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图129示出了图22所示的光学系统的像散图;
图130示出了图22所示的光学系统的畸变图;
图131示出了图22所示的光学系统中超透镜的宽带匹配度;
图132示出了图23所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图133示出了图23所示的光学系统的像散图;
图134示出了图23所示的光学系统的畸变图;
图135示出了图23所示的光学系统中超透镜的宽带匹配度;
图136示出了图24所示的光学系统中的超透镜在不同波长处的相位调制示意图;
图137示出了图24所示的光学系统的像散图;
图138示出了图24所示的光学系统的畸变图;
图139示出了图24所示的光学系统中超透镜的宽带匹配度。
图中附图标记分别表示:
10-第一透镜;20-第二透镜;30-第三透镜;40-第四透镜;50-第五透镜;60-第
六透镜;70-第七透镜;80-光阑;90-红外滤波器;
201-基底层;202-纳米结构层;203-超结构单元;204-增透膜;
2021-纳米结构;2022-填充物;
202a-结构层材料;205-光刻胶;206-参考结构。
具体实施方式
现将在下文中参照附图更全面地描述本申请,在附图中示出了各实施方式。然而,本申请可以以许多不同的方式实施,并且不应被解释为限于本文阐述的实施方式。相反,这些实施方式被提供使得本申请将是详尽的和完整的,并且将向本领域技术人员全面传达本申请的范围。通篇相同的附图标记表示相同的部件。再者,在附图中,为了清楚地说明,部件的厚度、比率和尺寸被放大。
本文使用的术语仅用于描述具体实施方式的目的,而非旨在成为限制。除非上下文清楚地另有所指,否则如本文使用的“一”、“一个”、“该”和“至少之一”并非表示对数量的限制,而是旨在包括单数和复数二者。例如,除非上下文清楚地另有所指,否则“一个部件”的含义与“至少一个部件”相同。“至少之一”不应被解释为限制于数量“一”。“或”意指“和/或”。术语“和/或”包括相关联的列出项中的一个或更多个的任何和全部组合。
除非另有限定,否则本文使用的所有术语,包括技术术语和科学术语,具有与本领域技术人员所通常理解的含义相同的含义。如共同使用的词典中限定的术语应被解释为具有与相关的技术上下文中的含义相同的含义,并且除非在说明书中明确限定,否则不在理想化的或者过于正式的意义上将这些术语解释为具有正式的含义。
“包括”或“包含”的含义指明了性质、数量、步骤、操作、部件、部件或它们的组合,但是并未排除其他的性质、数量、步骤、操作、部件、部件或它们的组合。
本文参照作为理想化的实施方式的截面图描述了实施方式。从而,预见到作为例如制造技术和/或公差的结果的、相对于图示的形状变化。因此,本文描述的实施方式不应被解释为限于如本文示出的区域的具体形状,而是应包括因例如制造导致的形状的偏差。例如,被示出或描述为平坦的区域可以典型地具有粗糙和/或非线性特征。而且,所示出的锐角可以被倒圆。因此,图中所示的区域在本质上是示意性的,并且它们的形状并非旨在示出区域的精确形状并且并非旨在限制权利要求的范围。
在下文中,将参照附图描述根据本申请的示例性实施方式。
在光学系统的小型化进程中,使用传统塑胶透镜的光学系统由于其注塑工艺的限制,很难在厚度和大曲率方面有所突破,从而导致七片式透镜结构的光学系统在各透镜厚度、各透镜间隔和系统总长上难以突破。另一方面,塑胶透镜的可选材料只有十多种,从而限制了光学系统像差校正的自由度。目前,虽然有玻璃树脂混合镜片在一定程度上解决了色差等问题,但注塑工艺仍然极大地妨碍了光学系统的小型化和轻量化。现如今,光学系统的系统总长每缩小1毫米都要付出巨大的努力。由于成像装置中光学传感器,例如电荷耦合器件(CCD,Charge Coupled Device)和互补金属氧化物(CMOS,Complementary Metal Oxide Semiconductor)的像素越来越高,尺寸越来越大,与之匹配的光学系统越难做到同时满足大光圈与小系统总长。
第一方面,本申请实施例提供了一种光学系统,如图1至图24所示,该光学系统包括从物方到像方依次设置的第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60和第七透镜70。其中,第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60和第七透镜70中的至少一个为超透镜,其余均为非球面折射透镜。并且,该光学系统中由像方到物方的第一个非球面折射透镜和由像方到物方的第二个非球面折射透镜的所有表面中包括至少一个非球面,该非球面包含一个反曲点。光学系统至少还满足如下公式(1-1)至(1-3):

0.05mm≤dML≤2mm;(1-2)
|fML|/f≥45;(1-3)
f为该光学系统的焦距;EPD为该光学系统的入瞳直径;dML为超透镜的厚度;fML为超透镜的焦距。
本申请实施例提供的光学系统,通过满足前述布置方式,使七片透镜的光学系统能够同时满足大光圈(即小F数)和小系统总长。其中,超透镜焦距的绝对值与整个光学系统的比值大于或等于45有利于增强该光学系统的像差校正能力,并提高该光学系统的设计自由度。上述非球面中包含一个反曲点,有利于缩小该光学系统中由像方到物方的第一个非球面折射透镜和由像方到物方的第二个非球面折射透镜的有效半径,从而缩小该光学系统的体积,使该光学系统能更好地适用于空间紧凑的成像装置中。
上述设置可加强光学透镜系统的成像能力,让光学透镜系统能在像素尺寸、分辨率或主光线入射角度等方面与感测器相配合,并且可在透镜表面的规格上具有足够的设计自由度,以顺利达成如控制镜头大小等多种设计规格上的需求。需要说明的是,图1至图24仅示出了本申请实施例提供的光学系统的部分可选的结构。图1至图24中仅示出了本申请实施例提供的光学系统中各个透镜的排列关系,图中各透镜之间的间距并不是实际各透镜之间的间距。
进一步地,本申请实施例光学系统中,第二透镜20为超透镜,其余透镜为非球面折射透镜。并且,其中,第一透镜10具有正光焦度,且第一透镜10的物侧表面为凸面;第三透镜30的物侧表面的曲率半径为正;第五透镜50具有正光焦度;第六透镜60的物侧表面的曲率半径为正。第四透镜40和第七透镜70的光焦度可根据该光学系统的设计要求进行选择。
根据本申请的实施方式,更进一步地,第四透镜40满足公式(2):
|R4o|>R4i;(2)
其中,R4o为第四透镜40的物侧表面的曲率半径;R4i为第四透镜40的像侧表面的曲率半径。Rno和Rni用来表示该光学系统中各个透镜的物侧表面和像侧表面的曲率半径,其中,n为沿着物方到像方的透镜排列顺序,o表示物侧,i表示像侧。
根据本申请的实施方式,可选地,第七透镜70的像侧表面的曲率半径大于零。
根据本申请的实施方式,可选地,第一透镜10还满足公式(3):
其中,R1o为第一透镜10的物侧表面的曲率半径;f1为第一透镜10在工作波段中心波长的焦距。满足公式(3)的设置有利于确保该光学系统具有足够的正屈折力,从而有利于进一步压缩该光学系统的系统总长。
在一种可选的实施方式中,本申请实施例提供的光学系统还满足公式(4):
(V1+V4)/2-V3>20;(4)
其中,V1为第一透镜(10)的阿贝数;V3为第三透镜30的阿贝数;V4为第四透镜40的阿贝数。由此,可以进一步优化该光学系统对成像色差的修正。
在本申请又一种可选的实施方式中,该光学系统还满足公式(5):
1.5<TTL/ImgH<1.8;(5)
其中,TTL为第一透镜10的物侧表面到所述光学系统的像面的距离(在本申请中也称为系统总长,Total Tracking Length);ImgH为该光学系统的最大成像高度。最大成像高度是指电子感光元件的有效感测区域的对角线总长的二分之一。如此布置,有利于在光学系统的小型化以及光学系统与感光元件的匹配度上取得平衡,从而有利于降低生产难度。
更有利地,第一透镜10还满足:
0.71≤f1/f≤0.98;(6)
其中,f1为第一透镜10在工作波段中心波长的焦距;f为该光学系统的焦距。借此,可以提供足够的正屈折力并有效地减小该光学系统的系统总长。
可以理解的是,本申请实施例提供的光学系统中,非球面折射透镜的材料可以是光学玻璃,例如冕牌玻璃、火石玻璃、石英玻璃等;也可以是各类光学塑料,例如APL5514、OKP4HT等。优选地,非球面折射透镜选用光学塑料。非球面折射透镜采用光学塑料可通过注塑来低成本、大批量的实现非球面透镜量产。
接下来结合图25至图43对本申请实施例提供的超透镜(即第二透镜20)进行描述。
具体而言,超透镜为超表面的一种具体应用,超表面通过周期性排列的亚波长尺寸纳米结构对入射光的相位、幅度和偏振进行调制。
图25示出了本申请实施例提供的超透镜的一种可选的结构示意图。参见图25,本申请实施例提供的超透镜包括基底层201和设置于基底层201的至少一侧的纳米结构层202,并且纳米结构层202的层数大于或等于1。其中,前述至少一层的纳米结构层202中每一层均包括周期性排布的纳米结构2021。
根据本申请的实施方式,可选地,至少一层纳米结构层202的任一层中,纳米结构2021的排列周期大于或等于0.3λc,且小于或等于2λc;其中,λc为该超透镜工作波段的中心波长。
根据本申请的实施方式,可选地,至少一层纳米结构层202的任一层中纳米结构2021的高度大于或等于0.3λc,且小于或等于5λc;其中,λc为该超透镜工作波段的中心波长。
图26和图27示出了第二透镜20中任一层纳米结构层202中纳米结构2021的透视图。可选地,图26为圆柱形结构。可选地,图27中的纳米结构2021为正方柱形结构。可选地,如图25和图27所示,超透镜还包括填充物2022,填充物2022填充于纳米结构2021之间,并且,填充物2022的材料对工作波段的消光系数小于0.01。可选地,填充物2022包括空气或在工作波段透明或半透明的其他材料。根据本申请的实施方式,填充物2022的材料的折射率与纳米结构2021的折射率之间的差值的绝对值应大于或等于0.5。当本申请实施例提供的超透镜具有至少两层纳米结构层202时,距离基底层201最远的纳米结构层202中的填充物2022可以是空气。
本申请一些可选的实施例中,如图28至图30所示,至少一层纳米结构层202 的任意一层中包括阵列排布的超结构单元203。该超结构单元203为可密堆积图形,该可密堆积图形的顶点和/或中心位置设置有纳米结构2021。本申请实施例中,可密堆积图形指的是一种或多种可以无缝隙不重叠地填充整个平面的图形。
如图28所示,根据本申请的实施方式,超结构单元可以布置成扇形。如图29所示,根据本申请的实施方式,超结构单元可以布置成正六边形的阵列。此外,如图30所示,根据本申请的实施方式,超结构单元203可以布置成正方形的阵列。本领域技术人员应认识到,纳米结构层202中包括的超结构单元203还可以包括其他形式的阵列布置,所有这些变型方案均涵盖于本申请的范围内。可以理解的是,在一些可选的实施例中,超结构单元203的周期大于或等于0.3λc,且小于或等于2λc;其中,λc为该超透镜工作波段的中心波长。
可选地,本申请实施例提供的超结构单元203的宽谱相位与超透镜的工作波段还满足:其中,r为该超透镜沿径向的坐标;r0为该超透镜上任一点;λ为工作波长。
示例性地,本申请实施例提供的纳米结构2021可以是偏振无关结构,此类结构对入射光施加一个传播相位。根据本申请的实施方式,如图31、图32和图33所示,纳米结构2021可以是正结构,也可以是负结构。例如,纳米结构2021的形状包括圆柱、中空圆柱、正方形棱柱、中空正方形棱柱等。
更有利地,如图34所示,本申请实施例提供的第二透镜20包括至少两层纳米结构层202。可选地,如图35中的(a)所示,至少两层纳米结构202中相邻的纳米结构层中的纳米结构2021共轴排列。前述共轴排列是指相邻两层的纳米结构层202中的纳米结构2021排列周期相同;或相邻两层纳米结构层中同一位置的纳米结构2021的轴线重合。可选地,如图35中的(b)所示,至少两层纳米结构202中相邻的纳米结构层中的纳米结构2021沿平行于超透镜的基底201的方向错位排列。这种排列方式有利于突破加工工艺对超透镜中纳米结构的深宽比的限制,从而实现更高的设计自由度。图34示出了一种可选的三层纳米结构层的透视图。根据本申请的实施方式,相邻的纳米结构层202中的纳米结构2021的形状、尺寸或材料可以相同,也可以不同。
示例性地,图31中的a至图31中的d分别示出了纳米结构2021的形状包括圆柱、中空圆柱、正方形柱和中空正方形柱,且纳米结构2021周围填充有填充物2022。图31中,纳米结构2021被设置于正四边形的超结构单元203的中心位置。在本申请的可选实施例中,图32中的a至图32中的d分别示出了纳米结构2021的形状包括圆柱、中空圆柱、正方形柱和中空正方形柱,且纳米结构2021周围无填充物2022。图32中,纳米结构2021被设置于正四边形的超结构单元203的中心位置。
根据本申请的实施方式,图33中的a至图33中的d分别示出了纳米结构2021的形状包括正方形柱、圆柱、中空正方形柱和中空圆柱,且纳米结构2021的周围无填充物2022。图33中的a至图33中的d中,纳米结构2021被设置于正六边形的超结构单元203的中心位置。可选地,图33中的e至图33中的h分别示出了纳米结构2021为负纳米结构,如正方形孔柱、圆形孔柱、正方形环柱和圆形环柱。图33中的e至图33中的h中,纳米结构2021为设置于正六边形的超结构单元203中心位置的负结构。
在一种可选的实施方式中,如图36所示,本申请实施例提供的超透镜还包括增透膜204。增透膜204被设置于基底层201远离至少一层纳米结构层202的一侧;或者,增透膜204被设置于至少一层纳米结构层202与空气相邻的一侧。增透膜204的作用是对入射的辐射起到增透减反的作用。
根据本申请的实施方式,基底层201的材质为对工作波段消光系数小于0.01的 材料。例如,基底层201的材料包括熔融石英、石英玻璃、冕牌玻璃、火石玻璃、蓝宝石、晶体硅和非晶硅,其中,所述非晶硅可以是氢化非晶硅。再例如,当超透镜的工作波段为可见光波段时,基底层201的材料包括熔融石英、石英玻璃、冕牌玻璃、火石玻璃、蓝宝石和碱性玻璃。在本申请的一些实施例中,纳米结构2021的材质与基底层201的材料相同。在本申请的又一些实施例中,纳米结构2021的材质与基底层201的材料不同。可选地,填充物2022的材料与基底层201的材料相同。可选地,填充物2022的材料与基底层201的材料不同。
应理解,在本申请一些可选的实施方式中,填充物2022与纳米结构2021的材质相同。在本申请又一些可选的实施方式中,填充物2022与纳米结构2021的材质不同。示例性地,填充物2022的材料为工作波段的高透过率材料,其消光系数小于0.01。示例性地,填充物2022的材料包括熔融石英、石英玻璃、冕牌玻璃、火石玻璃、蓝宝石、晶体硅和非晶硅,其中,所述非晶硅可以是氢化非晶硅。
可选地,本申请实施例提供的超透镜的等效折射率范围小于2。等效折射率范围为超透镜的最大折射率减去其最小折射率。根据本申请的实施方式,本申请实施例提供的超透镜的相位还满足公式(7):







其中,r为超透镜的中心到任一纳米结构中心的距离;λ为超透镜的工作波长,为任一与工作波长相关的相位,(x,y)为超透镜上的坐标(在一些情况下可以理解为基底层201表面的坐标),fML为第二透镜20的焦距,ai和bi为实数系数。超透镜的相位可以用高次多项式表达,高次多项式包括奇次多项式和偶次多项式。为了不破坏超透镜相位的旋转对称性,通常只能对偶次多项式对应的相位进行优化,这大大降低了超透镜的设计自由度。而上述公式(7-1)至公式(7-8)中,公式(7-4)至公式(7-6)相比其余公式,能够对满足奇次多项式的相位进行优化而不破坏超透镜相位的旋转对称性,从而大大提高了超透镜的优化自由度。
可选地,本申请实施例提供的超透镜的实际相位与理想相位的匹配,也就是超透 镜的宽带相位匹配度由公式(8)给出:
公式(8)中λmax和λmin分别为超透镜的工作波段的上限和下限,例如λmax=700nm,λmin=400nm。分别为理论目标相位和实际数据库内相位。
更进一步地,本申请实施例提供的光学系统的非球面折射透镜中的非球面满足:
公式(9)中,z表示平行于z轴的表面矢量,z轴为该光学系统的光轴,c为非球面中心点曲率,k为二次曲面常数,A~J分别对应高阶系数。
在一种可选的实施方式中,如图1至图24所示,本申请实施例提供的光学系统还包括光阑80。光阑80可以设置在光学系统中任一非球面折射透镜或超透镜的物侧或像侧。光阑80有助于压缩入射光路上位于其下游的透镜的半径,从而促进该光学系统的小型化。
根据本申请又一些可选的实施方式,如图1至图24所示,本申请实施例提供的光学系统还包括红外滤波器90。红外滤波器90被配置于第七透镜70和本申请实施例提供光学系统的像面之间。当该光学系统的工作波段为可见光波段时,红外滤波器90有利于过滤红外波段的辐射,以提高该光学系统的成像质量,同时也能避免与该光学系统配合的感光元件被灼烧造成损坏。
实施例1
示例性地,本申请实施例提供了一种超透镜。该超透镜包括基底层201和设置于基底层201上的两层纳米结构层202。其中,两层纳米结构层202中的沿着远离基底层201的方向依次为第一纳米结构层和第二纳米结构层。该超透镜的具体参数如表1所示。图37示出了实施例1提供的超透镜的相位图,图37的横坐标为入射辐射的波长,纵坐标为纳米结构2021的半径。图38示出了实施例1提供的超透镜的透过率示意图,图38的横坐标为入射辐射的波长,纵坐标为纳米结构2021的半径。
实施例1中,超透镜中任一超结构单元203的宽谱相位相应与波长满足:
其中,r为超透镜沿径向的坐标;r0为超透镜上任一点到超透镜中心的距离;λ为超透镜的工作波长。
表1

实施例2
在又一种示例性的实施例中,本申请实施例提供了一种超透镜。该超透镜包括基底层201和设置于基底层201上的两层纳米结构层202。其中,两层纳米结构层202中的沿着远离基底层201的方向依次为第一纳米结构层和第二纳米结构层。该超透镜的具体参数如表2所示。图39示出了实施例2提供的超透镜的相位图,图39的横坐标为入射辐射的波长,纵坐标为纳米结构2021的半径。图40示出了实施例2提供的超透镜的透过率示意图,图40的横坐标为入射辐射的波长,纵坐标为纳米结构2021的半径。
实施例2中,超透镜中任一超结构单元203的宽谱相位相应与波长满足:其中,r为超透镜沿径向的坐标;r0为超透镜上任一点到超透镜中心的距离;λ为超透镜的工作波长。
表2
第二方面,本申请实施例还提供了一种超透镜的加工方法,适用于本申请任一实施例提供的第二透镜20。如图41至图43所示,该方法至少包括步骤S 1至步骤S5。
步骤S1,在基底层201上设置一层结构层材料202a。
步骤S2,在结构层材料202a上涂覆光刻胶205,并曝光出参考结构206。
步骤S3,依据参考结构206在结构层材料202a上刻蚀出周期性排列的纳米结构2021,以形成纳米结构层202。
步骤S4,在纳米结构2021之间设置填充物2022。
步骤S5,修整填充物2022的表面,使填充物2022的表面与纳米结构2021的表面重合。
可选地,如图42所示,本申请实施例提供的方法还包括:
步骤S6,重复步骤S1至步骤S5,直至完成所有纳米结构层的设置。
实施例3
示例性地,实施例3提供了一种光学系统,其结构如图1所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表3-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表3-2。该光学系统中各个透镜的各个面的非球面系数如表3-3-1和表3-3-2所示,非球面系数如公式(9)所示。
图44示出了实施例3提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图44可得,超透镜在不同波长处的相位覆盖0~2π。图45示出了该光学系统的像散图。由图45可知,该光学系统的像散不超过0.5mm。图46示出了该光学系统的畸变图。由图46可得,该光学系统的在0到1视场内的畸变不超过5%。图47示出了实施例3提供的光学系统中超透镜的宽带匹配度。由图47可知,实施例3中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例3提供的光学系统成像效果良好,像散和畸变控制优秀。
表3-1
表3-2

表3-3-1
表3-3-2
实施例4
示例性地,实施例4提供了一种光学系统,其结构如图2所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表4-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表4-2。该光学系统中各个透镜的各个面的非球面系数如表4-3-1和表4-3-2所示,非球面系数如公式(9)所示。
图48示出了实施例4提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图48可得,超透镜在不同波长处的相位覆盖0~2π。图49示出了该光学系统的像散图。由图49可知,该光学系统的像散不超过0.5mm。图50示出了该光学系统的畸变图。由图50可得,该光学系统的在0到1视场内的畸变不超过5%。图51示出了实施例4提供的光学系统中超透镜的宽带匹配度。由图51可知,实施例4中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例4提供的光学系统成像效果良好,像散和畸变控制优秀。
表4-1
表4-2
表4-3-1
表4-3-2
实施例5
示例性地,实施例5提供了一种光学系统,其结构如图3所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表5-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表5-2。该光学系统中各个透镜的各个面的非球面系数如表5-3-1和表5-3-2所示,非球面系数如公式(9)所示。
图52示出了实施例5提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图52可得,超透镜在不同波长处的相位覆盖0~2π。图53示出了该光学系统的像散图。由图53可知,该光学系统的像散不超过0.5mm。图54示出了该光学系统的畸变图。由图54可得,该光学系统的在0到1视场内的畸变不超过5%。图55示出了实施例5提供的光学系统中超透镜的宽带匹配度。由图55可知,实施例5中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例5提供的光学系统成像效果良好,像散和畸变控制优秀。 表5-1
表5-2
表5-3-1
表5-3-2
实施例6
示例性地,实施例6提供了一种光学系统,其结构如图4所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表6-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表6-2。该光学系统中各个透镜的各个面的非球面系数如表6-3-1和表6-3-2所示,非球面系数如公式(9)所示。
图56示出了实施例6提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图56可得,超透镜在不同波长处的相位覆盖0~2π。图57示出了该光学系统的像散图。由图57可知,该光学系统的像散不超过0.5mm。图58示出了该光学系统的畸变图。由图58可得,该光学系统的在0到1视场内的畸变不超过5%。图59示出了实施例6提供的光学系统中超透镜的宽带匹配度。由图59可知,实施例6中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例6提供的光学系统成像效果良好,像散和畸变控制优秀。
表6-1
表6-2

表6-3-1
表6-3-2

实施例7
示例性地,实施例7提供了一种光学系统,其结构如图5所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表7-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表7-2。该光学系统中各个透镜的各个面的非球面系数如表7-3-1和表7-3-2所示,非球面系数如公式(9)所示。
图60示出了实施例7提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图60可得,超透镜在不同波长处的相位覆盖0~2π。图61示出了该光学系统的像散图。由图61可知,该光学系统的像散不超过0.5mm。图62示出了该光学系统的畸变图。由图62可得,该光学系统的在0到1视场内的畸变不超过5%。图63示出了实施例7提供的光学系统中超透镜的宽带匹配度。由图63可知,实施例7中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例7提供的光学系统成像效果良好,像散和畸变控制优秀。
表7-1
表7-2

表7-3-1
表7-3-2
实施例8
示例性地,实施例8提供了一种光学系统,其结构如图6所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表8-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表8-2。该光学系统中各个透镜的各个面的非球面系数如表8-3-1和 表8-3-2所示,非球面系数如公式(9)所示。
图64示出了实施例8提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图64可得,超透镜在不同波长处的相位覆盖0~2π。图65示出了该光学系统的像散图。由图65可知,该光学系统的像散不超过0.5mm。图66示出了该光学系统的畸变图。由图66可得,该光学系统的在0到1视场内的畸变不超过5%。图67示出了实施例8提供的光学系统中超透镜的宽带匹配度。由图67可知,实施例8中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例8提供的光学系统成像效果良好,像散和畸变控制优秀。
表8-1
表8-2
表8-3-1

表8-3-2
实施例9
示例性地,实施例9提供了一种光学系统,其结构如图7所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表9-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表9-2。该光学系统中各个透镜的各个面的非球面系数如表9-3-1和表9-3-2所示,非球面系数如公式(9)所示。
图68示出了实施例9提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图68可得,超透镜在不同波长处的相位覆盖0~2π。图69示出了该光学系统的像散图。由图69可知,该光学系统的像散不超过0.5mm。图70示出了该光学系统的畸变图。由图70可得,该光学系统的在0到1视场内的畸变不超过5%。图71示出了实施例9提供的光学系统中超透镜的宽带匹配度。由图71可知,实施例9中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例9提供的光学系统成像效果良好,像散和畸变控制优秀。
表9-1
表9-2
表9-3-1
表9-3-2

实施例10
示例性地,实施例10提供了一种光学系统,其结构如图8所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表10-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表10-2。该光学系统中各个透镜的各个面的非球面系数如表10-3-1和表10-3-2所示,非球面系数如公式(9)所示。
图72示出了实施例3提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图72可得,超透镜在不同波长处的相位覆盖0~2π。图73示出了该光学系统的像散图。由图73可知,该光学系统的像散不超过0.5mm。图74示出了该光学系统的畸变图。由图74可得,该光学系统的在0到1视场内的畸变不超过5%。图75示出了实施例8提供的光学系统中超透镜的宽带匹配度。由图75可知,实施例8中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例8提供的光学系统成像效果良好,像散和畸变控制优秀。
表10-1
表10-2

表10-3-1
表10-3-2
实施例11
示例性地,实施例11提供了一种光学系统,其结构如图9所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表11-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表11-2。该光学系统中各个透镜的各个面的非球面系数如表11-3-1和表11-3-2所示,非球面系数如公式(9)所示。
图76示出了实施例11提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图76可得,超透镜在不同波长处的相位覆盖0~2π。图77示出了该光学系统的像散图。由图77可知,该光学系统的像散不超过0.5mm。图78示出了该光学系统的畸变图。由图78可得,该光学系统的在0到1视场内的畸变不超过5%。图79示出了实施例11提供的光学系统中超透镜的宽带匹配度。由图79可知,实施例11中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例11提供的光学系统成像效果良好,像散和畸变控制优秀。
表11-1
表11-2
表11-3-1
表10-3-2
实施例12
示例性地,实施例12提供了一种光学系统,其结构如图10所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表12-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表12-2。该光学系统中各个透镜的各个面的非球面系数如表12-3-1和表12-3-2所示,非球面系数如公式(9)所示。
图80示出了实施例3提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图80可得,超透镜在不同波长处的相位覆盖0~2π。图81示出了该光学系统的像散图。由图81可知,该光学系统的像散不超过0.5mm。图82示出了该光学系统的畸变图。由图82可得,该光学系统的在0到1视场内的畸变不超过5%。图83示出了实施例12提供的光学系统中超透镜的宽带匹配度。由图83可知,实施例12中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例12提供的光学系统成像效果良好,像散和畸变控制优秀。
表12-1
表12-2
表12-3-1

表12-3-2
实施例13
示例性地,实施例13提供了一种光学系统,其结构如图11所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表13-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表13-2。该光学系统中各个透镜的各个面的非球面系数如表13-3-1和表13-3-2所示,非球面系数如公式(9)所示。
图84示出了实施例3提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图84可得,超透镜在不同波长处的相位覆盖0~2π。图85示出了该光学系统的像散图。由图85可知,该光学系统的像散不超过0.5mm。图86示出了该光学系统的畸变图。由图86可得,该光学系统的在0到1视场内的畸变不超过5%。图87示出了实施例13提供的光学系统中超透镜的宽带匹配度。由图87可知,实施例13中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例13提供的光学系统成像效果良好,像散和畸变控制优秀。
表13-1

表13-2
表13-3-1
表13-3-2
实施例14
示例性地,实施例14提供了一种光学系统,其结构如图12所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表14-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表14-2。该光学系统中各个透镜的各个面的非球面系数如表14-3-1和表14-3-2所示,非球面系数如公式(9)所示。
图88示出了实施例12提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图88可得,超透镜在不同波长处的相位覆盖0~2π。图89示出了该光学系统的像散图。由图89可知,该光学系统的像散不超过0.5mm。图90示出了该光学系统的畸变图。由图90可得,该光学系统的在0到1视场内的畸变不超过5%。图91示出了实施例14提供的光学系统中超透镜的宽带匹配度。由图91可知,实施例14中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例14提供的光学系统成像效果良好,像散和畸变控制优秀。
表14-1
表14-2

表14-3-1
表14-3-2
实施例15
示例性地,实施例15提供了一种光学系统,其结构如图13所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、 第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表15-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表15-2。该光学系统中各个透镜的各个面的非球面系数如表15-3-1和表15-3-2所示,非球面系数如公式(9)所示。
图92示出了实施例15提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图92可得,超透镜在不同波长处的相位覆盖0~2π。图93示出了该光学系统的像散图。由图93可知,该光学系统的像散不超过0.5mm。图94示出了该光学系统的畸变图。由图94可得,该光学系统的在0到1视场内的畸变不超过5%。图95示出了实施例15提供的光学系统中超透镜的宽带匹配度。由图95可知,实施例15中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例15提供的光学系统成像效果良好,像散和畸变控制优秀。
表15-1
表15-2
表15-3-1
表15-3-2
实施例16
示例性地,实施例16提供了一种光学系统,其结构如图14所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表16-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表16-2。该光学系统中各个透镜的各个面的非球面系数如表16-3-1和表16-3-2所示,非球面系数如公式(9)所示。
图96示出了实施例16提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图96可得,超透镜在不同波长处的相位覆盖0~2π。图97示出了该光学系统的像散图。由图97可知,该光学系统的像散不超过0.5mm。图98示出了该光学系统的畸变图。由图98可得,该光学系统的在0到1视场内的畸变不超过5%。图99示出了实施16提供的光学系统中超透镜的宽带匹配度。由图99可知,实施例16中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例16提供的光学系统成像效果良好,像散和畸变控制优秀。 表16-1
表16-2
表16-3-1
表16-3-2
实施例17
示例性地,实施例17提供了一种光学系统,其结构如图15所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表17-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表17-2。该光学系统中各个透镜的各个面的非球面系数如表3-3-1和表17-3-2所示,非球面系数如公式(9)所示。
图100示出了实施例17提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图100可得,超透镜在不同波长处的相位覆盖0~2π。图101示出了该光学系统的像散图。由图101可知,该光学系统的像散不超过0.5mm。图102示出了该光学系统的畸变图。由图102可得,该光学系统的在0到1视场内的畸变不超过5%。图103示出了实施例17提供的光学系统中超透镜的宽带匹配度。由图103可知,实施例17中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例17提供的光学系统成像效果良好,像散和畸变控制优秀。
表17-1
表17-2
表17-3-1
表17-3-2

实施例18
示例性地,实施例18提供了一种光学系统,其结构如图16所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表18-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表18-2。该光学系统中各个透镜的各个面的非球面系数如表18-3-1和表18-3-2所示,非球面系数如公式(9)所示。
图104示出了实施例18提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图104可得,超透镜在不同波长处的相位覆盖0~2π。图105示出了该光学系统的像散图。由图105可知,该光学系统的像散不超过0.5mm。图106示出了该光学系统的畸变图。由图106可得,该光学系统的在0到1视场内的畸变不超过5%。图107示出了实施例18提供的光学系统中超透镜的宽带匹配度。由图107可知,实施例18中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例18提供的光学系统成像效果良好,像散和畸变控制优秀。
表18-1
表18-2

表18-3-1
表18-3-2

实施例19
示例性地,实施例19提供了一种光学系统,其结构如图17所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表19-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表19-2。该光学系统中各个透镜的各个面的非球面系数如表19-3-1和表19-3-2所示,非球面系数如公式(9)所示。
图108示出了实施例19提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图108可得,超透镜在不同波长处的相位覆盖0~2π。图109示出了该光学系统的像散图。由图109可知,该光学系统的像散不超过0.5mm。图110示出了该光学系统的畸变图。由图110可得,该光学系统的在0到1视场内的畸变不超过5%。图111示出了实施例19提供的光学系统中超透镜的宽带匹配度。由图111可知,实施例19中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例19提供的光学系统成像效果良好,像散和畸变控制优秀。
表19-1
表19-2

表19-3-1
表19-3-2
实施例20
示例性地,实施例20提供了一种光学系统,其结构如图18所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表18-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折 射率等参数请参见表18-2。该光学系统中各个透镜的各个面的非球面系数如表18-3-1和表18-3-2所示,非球面系数如公式(9)所示。
图112示出了实施例20提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图112可得,超透镜在不同波长处的相位覆盖0~2π。图113示出了该光学系统的像散图。由图113可知,该光学系统的像散不超过0.5mm。图114示出了该光学系统的畸变图。由图114可得,该光学系统的在0到1视场内的畸变不超过5%。图115示出了实施例20提供的光学系统中超透镜的宽带匹配度。由图115可知,实施例20中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例20提供的光学系统成像效果良好,像散和畸变控制优秀。
表20-1
表20-2
表20-3-1
表20-3-2
实施例21
示例性地,实施例21提供了一种光学系统,其结构如图19所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表21-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表21-2。该光学系统中各个透镜的各个面的非球面系数如表21-3-1和表21-3-2所示,非球面系数如公式(9)所示。
图116示出了实施例21提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图116可得,超透镜在不同波长处的相位覆盖0~2π。图117示出了该光学系统的像散图。由图117可知,该光学系统的像散不超过0.5mm。图118示出了该光学系统的畸变图。由图118可得,该光学系统的在0到1视场内的畸变不超过5%。图119示出了实施例21提供的光学系统中超透镜的 宽带匹配度。由图119可知,实施例21中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例21提供的光学系统成像效果良好,像散和畸变控制优秀。
表21-1
表21-2
表21-3-1
表21-3-2
实施例22
示例性地,实施例22提供了一种光学系统,其结构如图20所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表22-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表22-2。该光学系统中各个透镜的各个面的非球面系数如表22-3-1和表22-3-2所示,非球面系数如公式(9)所示。
图120示出了实施例22提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图120可得,超透镜在不同波长处的相位覆盖0~2π。图121示出了该光学系统的像散图。由图121可知,该光学系统的像散不超过0.5mm。图122示出了该光学系统的畸变图。由图122可得,该光学系统的在0到1视场内的畸变不超过5%。图123示出了实施例22提供的光学系统中超透镜的宽带匹配度。由图123可知,实施例22中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例22提供的光学系统成像效果良好,像散和畸变控制优秀。
表22-1
表22-2

表22-3-1
表22-3-2
实施例23
示例性地,实施例23提供了一种光学系统,其结构如图21所示。该光学系统 包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表23-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表23-2。该光学系统中各个透镜的各个面的非球面系数如表23-3-1和表23-3-2所示,非球面系数如公式(9)所示。
图124示出了实施例23提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图124可得,超透镜在不同波长处的相位覆盖0~2π。图125示出了该光学系统的像散图。由图125可知,该光学系统的像散不超过0.5mm。图126示出了该光学系统的畸变图。由图126可得,该光学系统的在0到1视场内的畸变不超过5%。图127示出了实施例23提供的光学系统中超透镜的宽带匹配度。由图127可知,实施例23中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例23提供的光学系统成像效果良好,像散和畸变控制优秀。
表23-1
表23-2
表23-3-1
表23-3-2
实施例24
示例性地,实施例24提供了一种光学系统,其结构如图22所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表24-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表24-2。该光学系统中各个透镜的各个面的非球面系数如表24-3-1和表24-3-2所示,非球面系数如公式(9)所示。
图128示出了实施例24提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图128可得,超透镜在不同波长处的相位覆盖0~2π。图129示出了该光学系统的像散图。由图129可知,该光学系统的像散不超过0.5mm。图130示出了该光学系统的畸变图。由图130可得,该光学系统的在0到1视场内的畸变不超过5%。图131示出了实施例24提供的光学系统中超透镜的宽带匹配度。由图131可知,实施例24中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例24提供的光学系统成像效果良好,像散和畸变控制优秀。 表24-1
表24-2
表24-3-1
表24-3-2
实施例25
示例性地,实施例25提供了一种光学系统,其结构如图23所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表25-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表25-2。该光学系统中各个透镜的各个面的非球面系数如表25-3-1和表25-3-2所示,非球面系数如公式(9)所示。
图132示出了实施例25提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图132可得,超透镜在不同波长处的相位覆盖0~2π。图133示出了该光学系统的像散图。由图133可知,该光学系统的像散不超过0.5mm。图134示出了该光学系统的畸变图。由图134可得,该光学系统的在0到1视场内的畸变不超过5%。图135示出了实施例25提供的光学系统中超透镜的宽带匹配度。由图135可知,实施例25中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例25提供的光学系统成像效果良好,像散和畸变控制优秀。
表25-1
表25-2

表25-3-1
表25-3-2

实施例26
示例性地,实施例26提供了一种光学系统,其结构如图24所示。该光学系统包括由物方到像方依次设置的光阑80、第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和红外滤波器90。该光学系统的具体参数如表26-1所示。该光学系统中各个透镜的各个面的曲率、厚度、折射率等参数请参见表26-2。该光学系统中各个透镜的各个面的非球面系数如表26-3-1和表26-3-2所示,非球面系数如公式(9)所示。
图136示出了实施例3提供的光学系统中超透镜在486.13nm、587.56nm和656.27nm处的相位调制示意图。由图136可得,超透镜在不同波长处的相位覆盖0~2π。图136示出了该光学系统的像散图。由图137可知,该光学系统的像散不超过0.5mm。图138示出了该光学系统的畸变图。由图138可得,该光学系统的在0到1视场内的畸变不超过5%。图139示出了实施例26提供的光学系统中超透镜的宽带匹配度。由图139可知,实施例26中超透镜的实际相位与理论相位匹配度大于90%。由上可知,实施例26提供的光学系统成像效果良好,像散和畸变控制优秀。
表26-1
表26-2
表26-3-1
表26-3-2
需要注意的是,本申请实施例提供的超透镜可以通过半导体工艺加工,具有重量轻、厚度薄、构及工艺简单、成本低及量产一致性高等优点。
综上所述,本申请实施例提供的光学系统,通过采用至少一片超透镜和多个非球面折射透镜组成七片式光学系统,同时满足了F数小于2且系统总长小于6mm,促进了光学系统的小型化和轻量化。
本申请实施例提供的超透镜加工方法,通过分层加工实现了至少一层纳米结构层的超透镜结构,提高了纳米结构的深宽比,增加了超透镜的设计自由度。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例披露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种光学系统,其特征在于,所述光学系统包括由物方到像方依次设置的第一透镜(10)、第二透镜(20)、第三透镜(30)、第四透镜(40)、第五透镜(50)、第六透镜(60)和第七透镜(70);
    其中,所述第一透镜(10)、所述第二透镜(20)、所述第三透镜(30)、所述第四透镜(40)、所述第五透镜(50)、所述第六透镜(60)和所述第七透镜(70)中的至少一个为超透镜,其余均为非球面折射透镜;
    并且,所述光学系统中由像方到物方的第一个非球面折射透镜和由像方到物方的第二个非球面折射透镜的所有表面中包括至少一个非球面,且所述非球面包含一个反曲点;
    所述光学系统至少还满足如下条件:

    0.05mm≤dML≤2mm;
    |fML|/f≥45;
    f为所述光学系统的焦距;EPD为所述光学系统的入瞳直径;dML为所述超透镜的厚度;fML为所述超透镜的焦距。
  2. 根据权利要求1所述的光学系统,其特征在于,所述第二透镜(20)为超透镜,其余透镜均为非球面折射透镜;并且,所述第一透镜(10)具有正光焦度,且所述第一透镜(10)的物侧表面为凸面;所述第三透镜(30)的物侧表面的曲率半径为正;所述第五透镜(50)具有正光焦度;所述第六透镜(60)的物侧表面的曲率半径为正。
  3. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜(10)还满足:
    其中,R1o为所述第一透镜(10)的物侧表面的曲率半径;f1为所述第一透镜(10)在工作波段中心波长的焦距。
  4. 根据权利要求1所述的光学系统,其特征在于,所述光学系统还满足:
    (V1+V4)/2-V3>20;
    其中,V1为所述第一透镜(10)的阿贝数;V3为所述第三透镜(30)的阿贝数;V4为所述第四透镜(40)的阿贝数。
  5. 根据权利要求1所述的光学系统,其特征在于,所述光学系统还满足:
    1.5<TTL/ImgH<1.8
    其中,TTL为所述第一透镜(10)的物侧表面到所述光学系统的像面的距离;ImgH为所述光学系统的最大成像高度。
  6. 根据权利要求1所述的光学系统,其特征在于,所述第四透镜(40)还满足:
    |R4o|>R4i
    其中,R4o为所述第四透镜(40)的物侧表面的曲率半径;R4i为所述第四透镜(40)的像侧表面的曲率半径。
  7. 根据权利要求1所述的光学系统,其特征在于,所述第七透镜(70)的像侧表面的曲率半径大于零。
  8. 根据权利要求1-5任一所述的光学系统,其特征在于,所述第一透镜(10)还满足:
    0.71≤f1/f≤0.98;
    其中,f1为所述第一透镜(10)在工作波段中心波长的焦距;f为所述光学系统的焦距。
  9. 根据权利要求1或2所述的光学系统,其特征在于,所述超透镜包括基底层(201)和设置于所述基底层(201)至少一侧的的纳米结构层(202),并且,所述纳米结构层(202)的层数大于或等于1;
    所述纳米结构层(202)中的每一层均包括周期性排布的纳米结构(2021)。
  10. 根据权利要求9所述的光学系统,其特征在于,所述纳米结构层(202)中的任一层中所述纳米结构(2021)的排列周期大于或等于0.3λc,且小于或等于2λc;
    其中,λc为所述第二透镜(20)工作波段的中心波长。
  11. 根据权利要求9所述的光学系统,其特征在于,所述纳米结构层(202)的任一层中所述纳米结构(2021)的高度大于或等于0.3λc,且小于或等于5λc;
    其中,λc为所述第二透镜(20)工作波段的中心波长。
  12. 根据权利要求9所述的光学系统,其特征在于,所述纳米结构层(202)的任一层中包括阵列排布的超结构单元(203);
    所述超结构单元(203)为可密堆积图形,所述可密堆积图形的顶点和/或中心位置设置有所述纳米结构(2021)。
  13. 根据权利要求9所述的光学系统,其特征在于,所述基底层(201)的材料对工作波段的消光系数小于0.01。
  14. 根据权利要求9所述的光学系统,其特征在于,所述纳米结构(2021)的材料对工作波段的消光系数小于0.01。
  15. 根据权利要求9所述的光学系统,其特征在于,所述纳米结构(2021)与所述基底层(201)的材料不同。
  16. 根据权利要求9所述的光学系统,其特征在于,所述纳米结构(2021)与所述基底层(201)的材料相同。
  17. 根据权利要求9所述的光学系统,其特征在于,所述纳米结构(2021)的形状为偏振不敏感结构。
  18. 根据权利要求9所述的光学系统,其特征在于,所述第二透镜(20)还包括填充物(2022);
    所述填充物(2022)填充于所述纳米结构(2021)之间;
    并且,所述填充物(2022)的材料对工作波段的消光系数小于0.01。
  19. 如权利要求18所述的光学系统,其特征在于,所述填充物(2022)的折射率与所述纳米结构(2021)的折射率的差值的绝对值大于或等于0.5。
  20. 根据权利要求18所述的光学系统,其特征在于,所述填充物(2022)的材料与所述基底层(201)的材料不同。
  21. 根据权利要求18所述的光学系统,其特征在于,所述填充物(2022)的材料与所述纳米结构(2021)的材料不同。
  22. 根据权利要求18所述的光学系统,其特征在于,所述第二透镜(20)还包括增透膜(204);
    所述增透膜(204)被设置于所述基底层(201)远离所述纳米结构层(202)的一侧,和/或,所述纳米结构层(202)远离所述基底层(201)的一侧。
  23. 根据权利要求12所述的光学系统,其特征在于,所述超结构单元(203)的宽谱相位满足:
    其中,r为所述超透镜径向的坐标;r0为所述超透镜上任一点到所述超透镜中心的距离;λ为所述超透镜的工作波长。
  24. 根据权利要求9中所述的光学系统,其特征在于,所述超透镜包括至少两层纳米结构层(202);
    其中,任意两个相邻的纳米结构层(202)中的纳米结构共轴设置。
  25. 如权利要求9所述的光学系统,其特征在于,所述超透镜包括至少两层纳米结构层(202);其中,任意相邻的纳米结构层(202)中的纳米结构沿平行于所述超透镜的基底的方向错位排列。
  26. 根据权利要求9所述的光学系统,其特征在于,所述超透镜的相位还满足:







    其中,r为所述超透镜的中心到任一纳米结构的距离;λ为所述超透镜的工作波长;为任一与所述超透镜工作波长相关的相位;(x,y)为超透镜镜面坐标,f2为所述超透镜的焦距;ai和bi为实数系数。
  27. 一种超透镜的加工方法,其特征在于,适用于根据权利要求18所述的光学系统中的所述第二透镜(20),所述方法包括:
    步骤S1,在所述基底层(201)上设置一层结构层材料(202a);
    步骤S2,在所述结构层材料(202a)上涂覆光刻胶(205),并曝光出参考结构(206);
    步骤S3,依据所述参考结构(206)在所述结构层材料(202a)上刻蚀出周期 性排列的所述纳米结构(2021),以形成所述纳米结构层(202);
    步骤S4,在所述纳米结构(2021)之间设置所述填充物(2022);
    步骤S5,修整所述填充物(2022)的表面,使所述填充物(2022)的表面与所述纳米结构(2021)的表面重合。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    步骤S6,重复所述步骤S1至所述步骤S5,直至完成所有纳米结构层的设置。
  29. 一种成像装置,其特征在于,所述装置包括
    根据权利要求1-26任一所述的光学系统;以及设置于所述光学系统的像面上的感光元件。
  30. 一种电子设备,其特征在于,所述设备包括如权利要求29所述的成像装置。
PCT/CN2023/097326 2022-06-24 2023-05-31 光学系统及包含其的成像装置、电子设备 WO2023246451A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221596000.9U CN217467326U (zh) 2022-06-24 2022-06-24 光学系统及包含其的成像装置、电子设备
CN202221596000.9 2022-06-24
CN202210726532.8 2022-06-24
CN202210726532.8A CN115032766A (zh) 2022-06-24 2022-06-24 光学系统及包含其的成像装置、电子设备

Publications (1)

Publication Number Publication Date
WO2023246451A1 true WO2023246451A1 (zh) 2023-12-28

Family

ID=89379121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097326 WO2023246451A1 (zh) 2022-06-24 2023-05-31 光学系统及包含其的成像装置、电子设备

Country Status (1)

Country Link
WO (1) WO2023246451A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201111A1 (en) * 2019-03-29 2020-10-08 Sony Corporation Transparent optical portion, optical device and method for manufacturing an optical device
CN112748521A (zh) * 2019-10-30 2021-05-04 三星电子株式会社 透镜组件以及包括透镜组件的电子设备
CN114217413A (zh) * 2021-12-13 2022-03-22 中国科学院光电技术研究所 一种基于超构表面的超广角宽带偏振成像系统及探测设备
CN114578513A (zh) * 2022-03-04 2022-06-03 广州立景创新科技有限公司 光学成像镜头
CN115032766A (zh) * 2022-06-24 2022-09-09 深圳迈塔兰斯科技有限公司 光学系统及包含其的成像装置、电子设备
CN217467326U (zh) * 2022-06-24 2022-09-20 深圳迈塔兰斯科技有限公司 光学系统及包含其的成像装置、电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201111A1 (en) * 2019-03-29 2020-10-08 Sony Corporation Transparent optical portion, optical device and method for manufacturing an optical device
CN112748521A (zh) * 2019-10-30 2021-05-04 三星电子株式会社 透镜组件以及包括透镜组件的电子设备
CN114217413A (zh) * 2021-12-13 2022-03-22 中国科学院光电技术研究所 一种基于超构表面的超广角宽带偏振成像系统及探测设备
CN114578513A (zh) * 2022-03-04 2022-06-03 广州立景创新科技有限公司 光学成像镜头
CN115032766A (zh) * 2022-06-24 2022-09-09 深圳迈塔兰斯科技有限公司 光学系统及包含其的成像装置、电子设备
CN217467326U (zh) * 2022-06-24 2022-09-20 深圳迈塔兰斯科技有限公司 光学系统及包含其的成像装置、电子设备

Similar Documents

Publication Publication Date Title
CN217467326U (zh) 光学系统及包含其的成像装置、电子设备
CN115032766A (zh) 光学系统及包含其的成像装置、电子设备
CN217279087U (zh) 光学系统及包含其的成像装置和电子设备
WO2019210738A1 (zh) 光学成像镜头
TWI424189B (zh) 成像光學鏡頭
CN217639612U (zh) 复合透镜及包含其的光学系统、成像装置和电子设备
WO2023207892A1 (zh) 光学系统及包含其的成像装置、电子设备
CN217467327U (zh) 光学系统及包含其的成像装置和电子设备
CN217639715U (zh) 光学系统与其中的超透镜及包含其的成像装置、电子设备
CN115016099A (zh) 光学系统及包含其的成像装置和电子设备
TWI479185B (zh) 可攜式電子裝置與其光學成像鏡頭(一)
TW200530653A (en) A three element optical system
TW201200900A (en) Wide-viewing-angle imaging lens assembly
CN114660780A (zh) 光学系统及包含其的成像装置、电子设备
CN114859447A (zh) 复合透镜及包含其的光学系统
TW201224569A (en) Optical lens system
WO2019214334A1 (zh) 摄像镜头组
TWI658288B (zh) 光學鏡頭
TW201133023A (en) Photographing optical system
CN114779437A (zh) 光学系统
WO2023246450A1 (zh) 光学系统及包含其的成像装置和电子设备
WO2023109412A1 (zh) 一种基于超构表面的超广角宽带偏振成像系统及探测设备
JP2011175028A (ja) 撮像レンズおよび撮像モジュール
TW201128218A (en) Imaging lens system
TW201348730A (zh) 攝像用光學透鏡組及其攝像裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826100

Country of ref document: EP

Kind code of ref document: A1