WO2023246356A1 - 一种光器件、光通信设备及光交换系统 - Google Patents

一种光器件、光通信设备及光交换系统 Download PDF

Info

Publication number
WO2023246356A1
WO2023246356A1 PCT/CN2023/093408 CN2023093408W WO2023246356A1 WO 2023246356 A1 WO2023246356 A1 WO 2023246356A1 CN 2023093408 W CN2023093408 W CN 2023093408W WO 2023246356 A1 WO2023246356 A1 WO 2023246356A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
box
colloid
box body
optical device
Prior art date
Application number
PCT/CN2023/093408
Other languages
English (en)
French (fr)
Inventor
郭正伟
王彪
潘忠灵
柳贺良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023246356A1 publication Critical patent/WO2023246356A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings

Definitions

  • optical elements are usually disposed on the upper surface of an optical substrate, resulting in a larger thickness and lower integration of the optical device.
  • embodiments of the present application provide an optical device.
  • the optical device provided by the embodiment of the present application may include: a box body, an upper cover, an optical substrate and an optical element located inside the box body.
  • the optical substrate has an opening extending through the thickness direction, and the optical element is fixed on the inner wall of the opening.
  • the optical device provided by the embodiments of the present application, by arranging an opening through the thickness direction in the optical substrate and fixing the optical element to the inner wall of the opening, compared with arranging the optical element on the upper surface of the optical substrate, the light intensity can be greatly reduced.
  • the total thickness of the device improves the integration of optical devices.
  • fixing the optical element to the inner wall of the opening can reduce the impact of deformation of the optical substrate on the optical path formed by the optical element, and can also reduce the processing accuracy of the optical substrate, thereby reducing the manufacturing cost of the optical substrate.
  • optical elements are usually disposed on the upper surface of the optical substrate.
  • the total thickness of the optical substrate and the optical element is the sum of the thickness of the optical substrate and the height of the optical element, resulting in a larger total thickness of the optical device.
  • the optical element is fixed to the inner wall of the opening of the optical substrate, and no optical element is provided on the upper surface or the lower surface of the optical substrate.
  • the total thickness of the optical substrate and the optical element can be the thickness of the optical substrate. or the height of the optical element. Therefore, compared with arranging the optical element on the upper surface of the optical substrate in related technologies, the height space inside the optical device can be saved and the total thickness of the optical device can be greatly reduced. For example, the total thickness of the optical device can be reduced. to below 18mm.
  • glue can be used to attach the side of the optical element to the inner wall of the opening.
  • other methods can also be used to fix the optical element, which is not limited here.
  • fixing the optical element to the inner wall of the opening of the optical substrate light can be transmitted within the opening of the optical substrate with less loss of light, and the deformation of the optical substrate has less impact on the light, so that the light can be formed in the optical device.
  • Optical path with higher precision the inner wall of the opening can be To provide one or more optical elements, the number, shape or size of the optical elements can be set according to actual needs. During specific implementation, the shape and size of the opening can be set according to actual optical path needs, which are not limited here.
  • the material of the optical substrate includes but is not limited to aluminum silicon carbide (AlSiC) composite material, aluminum nitride (AlN) ceramic, alumina ceramic, Kovar alloy or Invar alloy, etc.
  • the thickness of the optical substrate may be less than or equal to the height of the optical element in the thickness direction of the optical substrate. In this way, the space of the inner wall of the opening can be fully utilized, resulting in a higher integration of the optical device.
  • the thickness of the optical substrate can also be greater than the maximum height of the optical element in the thickness direction of the optical substrate, which is not limited here.
  • a buffer can be set on the side of the optical substrate.
  • the buffer can be supported between the optical substrate and the inner wall of the box to play a buffering role. In this way, air pressure changes and vibrations from the outside can and other factors will not cause the optical path on the optical substrate to shift.
  • the buffering member is arranged on the side of the optical substrate, and the buffering member is not provided on the upper and lower surfaces of the optical substrate. Therefore, the buffering member does not occupy the thickness space, and the thickness of the optical device can be further reduced.
  • the buffering member may include a silicone pad.
  • the buffering member may also be made of other materials with a buffering effect, which is not limited here.
  • the height of the side wall of the box in the thickness direction of the optical substrate is greater than the thickness of the optical substrate.
  • the surface and side wall of the side of the optical substrate close to the upper cover can form a first recessed structure, and the upper cover can be embedded in the first recessed structure.
  • the surface of the upper cover can be connected to the side wall.
  • the edges of the wall are flush, making the upper surface of the optical device an approximately flat surface, thereby improving the integration of the optical device.
  • the surface of the optical substrate close to the bottom cover and the side wall form a second recessed structure, and the bottom cover is embedded in the second recessed structure.
  • the thickness of the optical substrate can be greater than or equal to the maximum height of the optical element in the thickness direction of the optical substrate.
  • the optical element can not exceed the upper and lower surfaces of the optical substrate, making it easier for the optical substrate to be connected to the upper cover and the bottom cover.
  • Gluing for example, can take the form of plate-shaped upper and lower covers.
  • the height of the optical element also It can be greater than the thickness of the optical substrate, and the upper cover and/or the bottom cover can be set in a hemispherical shape to accommodate optical elements that exceed the surface of the optical substrate.
  • Buffers can also be provided on the side of the optical substrate. The buffers have a buffering effect. In this way, installing optical devices in optical communication equipment can prevent other components in the optical communication equipment from affecting the optical path of the optical substrate.
  • the optical device in the embodiment of the present application may also include: a first sensor located inside the box, and a second sensor located outside the box.
  • the first sensor is used to detect the temperature, humidity and air pressure inside the box, and output a first Detection signal
  • the second sensor is used to detect the temperature, humidity and air pressure outside the box, and output the second detection signal.
  • a processor can be provided inside or outside the box. The processor can receive the first detection signal and the second detection signal, and determine and output the life model curve according to the first detection signal and the second detection signal.
  • the optical signal pass-through structure in the embodiment of the present application can reduce the tensile stress of the optical fiber in the connecting tube and improve the reliability of the optical signal pass-through structure without affecting the hermetic sealing effect of the optical device.
  • the filling part may include solder or glue.
  • the filling part may also be made of other materials that can block water vapor, which is not limited here.
  • high-temperature tape can be attached on the outside of the connecting pipe at a position corresponding to the opening.
  • the shape of the opening in the connecting pipe can be set according to actual needs.
  • the shape of the opening can be rectangular, circular, oval, square, etc., or the shape of the opening in the connecting pipe can be set according to actual needs.
  • the number for example, the number of openings can be one, two or more, the shape and number of openings in the connecting pipe are not specified here. limited.
  • the connecting tube in order to reduce the tensile stress of the optical fiber inside the connecting tube, the connecting tube can be locally thinned so that the connecting tube has a thinned area located inside the box.
  • the diameter of the connecting tube in the thinned area is smaller than the connecting tube.
  • the optical fiber may include: a bare fiber and a coating layer.
  • the optical fiber has a bare fiber region and a coating region. The position of the bare fiber region corresponds to the position of the thinning region.
  • the coating layer wraps the bare fiber in the coating region.
  • the bare fiber region The bare fiber is not wrapped by the coating layer.
  • the optical signal penetration structure may further include: a filling part filled between the optical fiber and the connecting tube, and the filling part wraps the optical fiber in the bare fiber area and the partial coating area adjacent to the bare fiber area.
  • a filling part filled between the optical fiber and the connecting tube wraps the optical fiber in the bare fiber area and the partial coating area adjacent to the bare fiber area.
  • the optical signal penetration structure may be a single-tube structure, that is, the optical signal penetration structure may only include one connecting tube.
  • the optical signal penetration structure in the embodiment of the present application may also be a double-tube structure, that is, the optical signal penetration structure may include two connecting tubes, and the two connecting tubes in the optical signal penetration structure may be an integrated structure.
  • the optical signal penetration structure in the embodiment of the present application may also be a multi-tube integrated structure, that is, the optical signal penetration structure may include at least three connecting tubes, and each connecting tube in the optical signal penetration structure may be an integrated structure.
  • the number of connecting tubes in the optical signal penetration structure can be set according to actual needs, and is not limited here.
  • a protective film can be provided at the glued connection position between the optical signal penetration structure and the box body, and at the exposed position of the second colloid.
  • the second colloid is protected by the protective film, which can prevent the second colloid from aging and improve the performance of the second colloid.
  • the reliability enables the optical device to achieve a water vapor transmittance of less than 5g/m 2 /day at a temperature of 50° and a relative humidity of 100%, where g represents grams, m represents meters, and day represents days.
  • the electrical signal penetration structure passes through the second through hole, and the electrical signal penetration structure can be electrically connected to the chip inside the box body.
  • the electrical signal penetration structure is glued and sealed with the box body through a third colloid.
  • the electrical signal pass-through structure may include: a strip-shaped flexible circuit board (FPC); or the electrical signal pass-through structure may include: a strip-shaped printed circuit board (PCB).
  • FPC strip-shaped flexible circuit board
  • PCB strip-shaped printed circuit board
  • the material of the flexible circuit board may include: polyimide (PI) or liquid crystal polymer (LCP), and the material of the printed circuit board may include: polyimide or liquid crystal polymer. Due to polyimide or liquid crystal polymerization The water vapor transmittance of the object is low, so that the optical device can achieve a water vapor transmittance of less than 5g/m 2 /day under the conditions of a temperature of 50° and a relative humidity of 100%, where g represents grams and m represents Meter, day means day.
  • the flexible circuit board or printed circuit board used in the electrical signal penetration structure is multi-layered, and the glue-free hot pressing process can be used between the layers to reduce the water vapor permeability of the electrical signal penetration structure.
  • the optical device in the embodiment of the present application may also include: a fixing member, the box body includes: a side wall and a bottom cover, the electrical signal penetration structure and the third colloid wrapping the electrical signal penetration structure are fixed between the fixing member and the bottom cover, so that , can compress the third colloid to make the third colloid stronger and prevent the third colloid from falling off.
  • screw holes can be provided at both ends of the fixing member, and screws can be passed through the screw holes to be fixedly connected to the bottom cover, so that the electrical signal penetration structure and the third colloid are fixed between the fixing member and the bottom cover.
  • the fixing member may include: a first fixing part and a second fixing part connected to each other, the first fixing part and the bottom cover fixing the electrical signal penetration structure and a third colloid wrapping the electrical signal penetration structure,
  • the second fixing part fixes the third colloid adhered to the inner wall of the box.
  • the angle between the first fixing part and the second fixing part may be chamfered, so as to prevent the stress of the third colloid from being too concentrated at the position between the first fixing part and the second fixing part, causing the third colloid to be Excessive stress may cause cracking, which improves the reliability of the third colloid.
  • the edge of the second through hole can also be chamfered, that is, the angle between the inner wall of the second through hole and the inner wall of the box body is chamfered; and/or, the angle between the second through hole and the inner wall of the box body can be chamfered;
  • the angle between the outer walls of the box is chamfered, thereby preventing the third colloid from being too stressed at the edge of the second through hole, causing the third colloid to crack due to excessive stress, further improving the reliability of the third colloid. sex.
  • the third colloid is filled between the fixing member, the inner wall of the box and the bottom cover of the box, and the third colloid fills the second through hole.
  • the third colloid is provided inside the box body and in the second through hole, so that the glue and sealing effect of the electrical signal penetration structure can be better.
  • a third colloid may also be provided outside the box body.
  • a protective film can be provided at the glued connection position between the electrical signal penetration structure and the box body, as well as the exposed position of the third colloid.
  • the third colloid is protected through the protective film, which can avoid aging of the third colloid and improve the performance of the third colloid.
  • the reliability of the third colloid enables the optical device to achieve a water vapor transmittance of less than 5g/m 2 /day under the conditions of a temperature of 50° and a relative humidity of 100%, where g represents grams, m represents meters, and day Represents heaven.
  • inventions of the present application also provide an optical communication device.
  • the optical communication device can be any device with an optical signal transceiver function.
  • Optical communication equipment may include: any of the above optical devices, a circuit board, and a casing. The optical device is located on the circuit board, and the casing wraps the circuit board and the optical device. Since the above-mentioned optical device has a high degree of integration, the optical communication equipment including the optical device also has a high degree of integration.
  • the above-mentioned optical device can be hermetically sealed using a glue sealing method, so that the cost of the above-mentioned optical device is lower, and therefore the cost of the optical communication equipment including the above-mentioned optical device is also lower.
  • inventions of the present application also provide an optical switching system.
  • the optical switching system may be a wavelength division optical cross connect (OXC) system.
  • the optical switching system may include: a first optical communication device and a second optical communication device.
  • Equipment, the first optical communication equipment is any of the above optical communication equipment, and the second optical communication equipment performs optical information exchange through the first optical communication equipment. Since the above-mentioned optical communication equipment has a high level of integration and low cost, the optical switching system including the above-mentioned optical communication equipment also has a high level of integration and low cost.
  • Figure 1 is a schematic side structural view of an optical device provided by an embodiment of the present application.
  • Figure 2 is a schematic top view of the structure of the optical substrate in the embodiment of the present application.
  • Figure 3 is a schematic side structural view of the optical substrate corresponding to Figure 2;
  • Figure 4 is a schematic three-dimensional structural diagram of an optical substrate in an embodiment of the present application.
  • Figure 5 is a schematic three-dimensional structural diagram of an optical device in an embodiment of the present application.
  • Figure 8 is a schematic three-dimensional structural diagram of the box in the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of the connecting pipe in the embodiment of the present application.
  • Figure 10 is a schematic cross-sectional view at the dotted line RR' in Figure 9;
  • Figure 11 is another structural schematic diagram of the connecting pipe in the embodiment of the present application.
  • Figure 12 is another structural schematic diagram of the connecting pipe in the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of an optical signal pass-through structure in an embodiment of the present application.
  • Figure 15 is a partial schematic diagram of an optical device in an embodiment of the present application.
  • the optical device can be an optical wavelength selective switch (WSS).
  • WSS optical wavelength selective switch
  • the optical wavelength selective switch can switch any wavelength signal input from the input port to any output port.
  • Optical devices can be used in various types of optical communication equipment, and the optical communication equipment can be any equipment with the function of transmitting and receiving optical signals.
  • the optical switching system may be a wavelength division optical cross connect (OXC) system.
  • Figure 1 is a schematic side structural view of an optical device provided in an embodiment of the present application.
  • Figure 2 is a schematic top structural view of an optical substrate in an embodiment of the present application.
  • Figure 3 is a schematic side structural view of an optical substrate corresponding to Figure 2.
  • the optical device provided by the embodiment of the present application may include: a box body 11 , an upper cover 12 , an optical substrate 13 and an optical element 14 located inside the box body 11 .
  • the optical substrate 13 has an opening Q extending through the thickness direction, and the optical element 14 is fixed on the inner wall of the opening Q.
  • optical elements are usually disposed on the upper surface of an optical substrate.
  • the optical substrate and the optical element The total thickness of is the sum of the thickness of the optical substrate and the height of the optical element, resulting in a larger overall thickness of the optical device.
  • the optical element 14 is fixed to the inner wall of the opening Q of the optical substrate 13, and the optical element 14 is not provided on the upper and lower surfaces of the optical substrate 13.
  • the optical element 14 can be
  • the total thickness of the substrate 13 and the optical element 14 is the thickness of the optical substrate 13 or the height of the optical element 14. Therefore, compared with the related art of arranging the optical element on the upper surface of the optical substrate, the height space inside the optical device can be saved. Significantly reduce the total thickness of optical devices. For example, the total thickness of optical devices can be reduced to less than 18mm.
  • glue 141 can be used to attach the side of the optical element 14 to the inner wall of the opening Q.
  • other methods can also be used to fix the optical element 14, which is not limited here.
  • By fixing the optical element 14 to the inner wall of the opening Q of the optical substrate 13 light can be transmitted within the opening Q of the optical substrate 13 with less loss of light, and the deformation of the optical substrate 13 has less impact on the light, so that A high-precision optical path can be formed within the optical device.
  • one or more optical elements 14 can be provided on the inner wall of the opening Q.
  • the number, shape or size of the optical elements 14 can be set according to actual needs.
  • the shape of the opening Q is a rectangle. Taking an example as an illustration, during specific implementation, the shape and size of the opening Q can be set according to actual optical path requirements, and are not limited here.
  • a buffer 15 can be provided on the side of the optical substrate 13, and the buffer 15 can be supported between the optical substrate 13 and the inner wall of the box 11. This plays a buffering role, so that external air pressure changes, vibrations and other factors will not cause the optical path on the optical substrate 13 to shift.
  • the buffer 15 is provided on the side of the optical substrate 13 and is not provided on the upper and lower surfaces of the optical substrate 13. Therefore, the buffer 15 does not occupy the thickness space, and the thickness of the optical device can be further reduced.
  • the buffering member 15 may include a silicone pad.
  • the buffering member 15 may also be made of other materials with a buffering effect, which is not limited here.
  • buffering members 15 can be provided on two opposite sides of the optical substrate 13.
  • buffering members 15 can be provided on the two sides of the optical substrate 13 with smaller areas. At least two buffers 15 are provided on each side.
  • buffers 15 can also be provided on one, three or more sides of the optical substrate 13 , and one, three or more buffers 15 can also be provided on one side.
  • the position of the buffers 15 can be set according to actual needs. and quantity are not limited here.
  • the height of the side wall 111 of the box in the thickness direction of the optical substrate 13 is greater than the thickness of the optical substrate 13 .
  • the surface of the optical substrate 13 close to the upper cover 12 and the side wall 111 can form a first recessed structure U1, and the upper cover 12 can be embedded in the first recessed structure U1.
  • a recessed structure U1 in this way, after the optical substrate 13 and the upper cover 12 are glued, the surface of the upper cover 12 can be flush with the edge of the side wall 111, so that the upper surface of the optical device is an approximately flat surface, thereby improving the optical device. degree of integration. And/or, taking the figure shown in FIG.
  • a buffer 15 can also be provided on the side of the optical substrate 13.
  • the buffer 15 has a buffering effect. In this way, when the optical device is installed in the optical communication equipment, the optical communication equipment can be prevented from The influence of other components on the optical path of the optical substrate 13.
  • the buffer member in the embodiment shown in FIGS. 4 and 5 reference may be made to the specific implementation of the buffer member in the embodiment shown in FIGS. 2 and 3 , and repeated details will not be described again.
  • the optical device provided by the embodiment of the present application may also include: an optical signal penetration structure 16 and an electrical signal penetration structure 17.
  • the side wall of the box body 11 is provided with Through the first through hole T1 and the second through hole T2 of the box body 11 , the optical signal through hole 16 passes through the first through hole T1 , and the electrical signal through hole 17 passes through the second through hole T2 .
  • the colloid that seals the box 11 and the upper cover 12 is called the first colloid 181
  • the colloid that seals the optical signal penetration structure 16 and the box 11 is called the second colloid 182
  • the colloid that seals the optical signal penetration structure 16 and the box 11 is called the second colloid 182
  • the colloid that seals the electrical signal penetration structure 17 and the box body 11 is called the third colloid 183 .
  • the optical device may also include: at least a covering part Colloidal protective film.
  • FIG. 6 is a schematic top view of the structure of the optical device provided by the embodiment of the present application.
  • a desiccant G can be provided inside the box 11, and the desiccant G can be adsorbed Water molecules play the role of dehumidification.
  • the water vapor content inside the optical device can be made relatively stable.
  • colloid is used to airtightly package the optical device, and a desiccant G is provided in the box, so that the optical device can meet the industry standard of keeping water vapor less than 5000 ppm within 15 years.
  • Figure 7 is another side structural schematic diagram of the optical device provided by the embodiment of the present application.
  • the optical device in the embodiment of the present application may also include: a first sensor 191 located inside the box 11.
  • the first sensor 191 is used to detect the temperature, humidity and air pressure inside the box 11 and output a first detection signal.
  • the second sensor 192 is used to detect the temperature, humidity and air pressure outside the box 11. air pressure, and output a second detection signal.
  • a processor can be provided inside or outside the box 11, and the processor can receive the first detection signal and the second detection signal, and determine and output the life model curve according to the first detection signal and the second detection signal, Subsequently, the life model curve or the life warning information obtained based on the life model curve can be displayed to an external display device, so that the user can understand the usage of the optical device based on the display device and monitor the life of the optical device in real time. For example, it can achieve at least Get life warning information 20 months in advance to improve the reliability of optical devices.
  • operations such as electronically controlled drying, water vapor elimination, frequency compensation or wavelength shift can be performed based on the temperature, humidity and air pressure inside and outside the box to make the performance of the optical device more stable.
  • the box body 11 and the upper cover 12 can be glued and sealed by the first colloid 181.
  • the side walls of the box body 11 and the bottom cover can be an integral structure.
  • the side walls and the bottom cover of the box body 11 can be provided separately, and the side walls and the bottom cover of the box body 11 can be glued together with colloid. Since the glue sealing process has low requirements on the box body 11 and the upper cover 12 , lower-cost materials can be used to make the box body 11 and the upper cover 12 . For example, metal materials such as stainless steel or aluminum can be used to make the box body 11 and the upper cover 12 .
  • the cover 12 can also be made of non-metallic materials such as plastic to make the box body 11 and the upper cover 12 . Moreover, the cost of the gluing and sealing process is low, which can significantly reduce the material cost and process cost of the optical device.
  • a protective film (not shown in the figure) can be provided at the glued connection position between the box body 11 and the upper cover 12 and the exposed position of the first colloid 181.
  • the first colloid 181 is protected by the protective film, which can avoid Aging of the first colloid 181 improves the reliability of the first colloid 181 and enables the optical device to achieve a water vapor transmittance of less than 5g/m 2 /day under the conditions of a temperature of 50° and a relative humidity of 100%, where, g It means grams, m means meters, and day means days.
  • the protective film may be a vacuum coating film made of organic materials or inorganic materials.
  • the protective film may be made using a plasma enhanced chemical vapor deposition (PECVD) process.
  • PECVD plasma enhanced chemical vapor deposition
  • the material of the protective film can be a highly dense organic or inorganic polymer.
  • the material of the protective film can be non-metallic materials such as Parylene.
  • the material of the protective film can also be a metal material, which is not done here. limited.
  • Figure 8 is a schematic three-dimensional structural diagram of the box in the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of the connecting tube in the embodiment of the present application.
  • the optical signal penetration structure may include: a connecting tube 161, and a through The optical fiber (not shown in the figure) of the connecting tube 161 passes through the first through hole T1.
  • the box body 11 is provided with a groove W at a position corresponding to the first through hole T1.
  • the groove W surrounds the first through hole. T1, and the groove W is located on the inner wall and/or outer wall of the box body 11. If the groove W is not provided around the first through hole T1, the stress of the box body 11 will directly act on the connecting tube 161, and the optical fiber in the connecting tube 161 will be easily damaged.
  • the groove W is provided around the first through hole T1.
  • the groove W of the through hole T1 can prevent the stress of the box body 11 from directly acting on the connecting tube 161, thereby preventing excessive stress from damaging the optical fiber in the connecting tube 161.
  • a part of the connecting pipe 161 is located inside the first through hole T1, and the other part is located inside the box 11.
  • the part of the connecting pipe 161 on the right side of the dotted line L in Figure 9 is located inside the first through hole T1.
  • the part of the connecting pipe 161 on the left side of the dotted line L is located inside the box 11 .
  • a portion of the connecting pipe 161 located inside the box body 11 is provided with an opening P.
  • the optical fiber inside the connecting tube 161 is damaged by tensile stress, which may easily cause the optical fiber to break.
  • the tensile stress of the optical fiber inside the connecting tube 161 can be reduced, the risk of optical fiber breakage can be reduced, and the reliability of the optical signal penetration structure can be improved. sex.
  • Figure 10 is a schematic cross-sectional view at the dotted line RR' in Figure 9.
  • the optical fiber 162 can include: a bare fiber 1621 and a coating layer 1622.
  • the optical fiber 162 has a bare fiber area A and a coating area B.
  • the bare fiber The position of region A corresponds to the position of opening P.
  • the coating layer 1622 wraps the bare fiber 1621 in the coating region B.
  • the bare fiber 1621 in the bare fiber region A is not wrapped by the coating layer 1622. That is to say, the bare fiber 1621 in the coating region B is not wrapped by the coating layer 1622.
  • the coating layer 1622 in the optical fiber 162 can transmit water vapor.
  • the optical fiber 162 in the bare fiber area A is not wrapped by the coating layer 1622, so that the coating layer 1622 is cut off at the bare fiber area A, so that the coating layer 1622 can be cut off. water vapor transport path.
  • the filling part 163 wraps the bare fiber area A of the optical fiber 162, and the filling part 163 wraps the wrapping areas B adjacent to both sides of the bare fiber area A.
  • the path of the coating layer 1622 transmitting water vapor to the inside of the box through the opening P can be blocked, effectively improving the airtight sealing effect of the optical device.
  • the optical signal pass-through structure in the embodiment of the present application can reduce the tensile stress of the optical fiber 162 in the connecting tube 161 and improve the reliability of the optical signal pass-through structure without affecting the hermetic sealing effect of the optical device. .
  • the filling part 163 may include solder or glue.
  • the filling part 163 may also be made of other materials that can block water vapor, which is not limited here.
  • a high-temperature tape can be attached at a position corresponding to the opening P outside the connecting pipe 161 .
  • the length of the bare fiber area A in the extending direction of the optical fiber 162 can be set to be greater than the length of the opening P in the extending direction of the optical fiber 162. In this way, the coating layer 1622 is disconnected. is longer, and the cross section of the coating layer 1622 is further away from the opening P, making it less likely that the coating layer 1622 will transmit water vapor to the inside of the box through the opening P.
  • the length of the bare fiber area A in the extension direction of the optical fiber 162 can be set to greater than 8 mm, and the length of the bare fiber area A in the extension direction of the optical fiber 162 can be set to: at least The length of the opening P in the extending direction of the optical fiber 162 is 2 mm longer.
  • the length of the bare fiber area A in the extending direction of the optical fiber 162 may also be equal to or slightly smaller than the length of the opening P in the extending direction of the optical fiber 162, which is not limited here.
  • the opening P in the connecting pipe 161 may be rectangular, and two openings P may be provided in the connecting pipe 161 .
  • Figure 11 is another structural schematic diagram of the connecting pipe in the embodiment of the present application.
  • the opening P in the connecting pipe 161 can also be circular, and can be in Six openings P are provided in the connecting pipe 161 .
  • the shape of the opening P in the connecting pipe 161 can be set according to actual needs.
  • the shape of the opening P can also be an ellipse, a square, etc., or the shape of the opening P in the connecting pipe 161 can be set according to actual needs.
  • the number of openings P for example, the number of openings P may be one, two or more, and the shape and number of openings P in the connecting pipe 161 are not limited here.
  • Figure 12 is another structural schematic diagram of the connecting tube in the embodiment of the present application. As shown in Figures 8 and 12, based on a similar principle, in order to reduce the tensile stress of the optical fiber inside the connecting tube 161, the connecting tube 161 can be partially reduced. Thin, so that the connecting tube 161 has a thinned area M located inside the box 11 , and the diameter of the connecting tube 161 in the thinned area M is smaller than the diameter of the connecting tube 161 in other areas except the thinned area M.
  • Figure 13 is a schematic cross-sectional view at the dotted line EE' in Figure 12.
  • the optical fiber 162 can include: a bare fiber 1621 and a coating layer 1622.
  • the optical fiber 162 has a bare fiber area A and a coating area B.
  • the bare fiber The position of area A corresponds to the position of thinning area M.
  • the coating layer 1622 wraps the bare fiber 1621 in the coating area B.
  • the bare fiber 1621 in the bare fiber area A is not wrapped by the coating layer 1622.
  • the optical signal penetration structure may also include: a filling part 163, which is filled between the optical fiber 162 and the connecting tube 161, and the filling part 163 wraps the bare fiber area A and the partial covering area B adjacent to the bare fiber area A. of optical fiber.
  • the optical signal pass-through structure shown in Figures 12 and 13 can also reduce the tensile stress of the optical fiber 162 in the connecting tube 161 and improve the reliability of the optical signal pass-through structure without affecting the hermetic sealing effect of the optical device.
  • the specific principles are similar to those of the embodiment shown in FIGS. 9 and 10 , and repeated details will not be described again.
  • the optical signal penetration structure shown in FIGS. 9 to 13 is a single-tube structure, that is, the optical signal penetration structure may only include one connecting tube.
  • Figure 14 is a schematic structural diagram of the optical signal penetration structure in the embodiment of the present application. As shown in Figure 14, the optical signal penetration structure in the embodiment of the present application can also be a double-tube structure, that is, the optical signal penetration structure can include two connecting tubes. 161. The two connecting tubes 161 in the optical signal penetration structure can be an integral structure. Alternatively, the optical signal penetration structure in the embodiment of the present application may also be a multi-tube integrated structure, that is, the optical signal penetration structure may include at least three connecting tubes, and each connecting tube in the optical signal penetration structure may be an integrated structure. During specific implementation, the number of connecting tubes in the optical signal penetration structure can be set according to actual needs, and is not limited here.
  • the optical signal penetration structure 16 is glued and sealed with the box body 11 through a second colloid 182 .
  • the second colloid 182 can be provided inside the box body 11 , and the second colloid 182 is wrapped in the box body 11 The interior is close to part of the optical signal penetration structure 16 of the box 11 , and the second colloid 182 is bonded to the inner wall of the box 11 . Since the water vapor content inside the box 11 is low, the second colloid 182 inside the box 11 is not easy to age. Therefore, providing the second colloid 182 inside the box 11 can make the glue sealing effect better and make the optical device more reliable. Higher sex.
  • a second glue 182 can also be provided outside the box 11 and/or inside the first through hole T1.
  • a protective film can be provided at the glued connection position between the optical signal penetration structure and the box body, and at the exposed position of the second colloid. The second colloid is protected by the protective film, which can prevent the second colloid from aging and improve the performance of the second colloid.
  • the protective film may be a vacuum coating film made of organic materials or inorganic materials.
  • the protective film may be made using a plasma enhanced chemical vapor deposition (PECVD) process.
  • PECVD plasma enhanced chemical vapor deposition
  • the material of the protective film can be a highly dense organic or inorganic polymer.
  • the material of the protective film can be non-metallic materials such as Parylene.
  • the material of the protective film can also be a metal material, which is not done here. limited.
  • FIG 15 is a partial schematic diagram of the optical device in the embodiment of the present application.
  • the electrical signal penetration structure 17 passes through the second through hole T2.
  • the electrical signal penetration structure 17 can be electrically connected to the chip 20 inside the box 11.
  • the electrical signal penetration structure 17 is glued and sealed with the box body 11 through a third colloid 183 .
  • the electrical signal pass-through structure 17 may include: a strip-shaped flexible circuit board (FPC); or the electrical signal pass-through structure 17 may include: a strip-shaped printed circuit board (PCB).
  • FPC strip-shaped flexible circuit board
  • PCB strip-shaped printed circuit board
  • the material of the flexible circuit board may include: polyimide (PI) or liquid crystal polymer (LCP), and the material of the printed circuit board may include: polyimide or liquid crystal polymer. Due to polyimide or liquid crystal polymerization The water vapor transmittance of the object is low, so that the optical device can achieve a water vapor transmittance of less than 5g/m 2 /day under the conditions of a temperature of 50° and a relative humidity of 100%, where g represents grams and m represents Meter, day means day.
  • the flexible circuit board or printed circuit board used in the electrical signal penetration structure is multi-layered, and the glue-free hot pressing process can be used between the layers to reduce the water vapor permeability of the electrical signal penetration structure.
  • Figure 16 is a schematic cross-sectional view at the dotted line N in Figure 15.
  • the optical device in the embodiment of the present application can also include: a fixing member 21, the box body includes: a side wall 111 and a bottom cover 112, an electrical signal
  • the pass-through structure 17 and the third colloid 183 wrapping the electrical signal pass-through structure 17 are fixed between the fixing member 21 and the bottom cover 112. In this way, the third colloid 183 can be compressed, making the third colloid 183 stronger and preventing the third colloid 183 from being fall off.
  • the third colloid 183 is provided both inside the box body and in the second through hole T2, so that the glue and sealing effect of the electrical signal penetration structure can be better.
  • a third colloid 183 can also be provided outside the box body.
  • the material of the protective film can be a highly dense organic or inorganic polymer.
  • the material of the protective film can be non-metallic materials such as Parylene.
  • the material of the protective film can also be a metal material, which is not done here. limited.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光器件、光通信设备及光交换系统,光器件包括:盒体(11)、上盖(12),位于盒体(11)内部的光学基板(13)和光学元件(14)。光学基板(13)具有贯穿厚度方向的开口(Q),光学元件(14)固定于开口(Q)的内壁。在光学基板(13)中设置贯穿厚度方向的开口(Q),并将光学元件(14)固定于开口(Q)的内壁,相比于将光学元件(14)设置在光学基板(13)的上表面,可以大幅降低光器件的总厚度,提升光器件的集成度。另外,将光学元件(14)固定于开口(Q)的内壁,可以降低光学基板(13)的形变对光学元件(14)形成的光路的影响,也可以降低光学基板(13)的加工精度,从而减少光学基板(13)的制作成本。

Description

一种光器件、光通信设备及光交换系统
相关申请的交叉引用
本申请要求在2022年06月22日提交中国专利局、申请号为202210712064.9、申请名称为“一种光器件、光通信设备及光交换系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光器件、光通信设备及光交换系统。
背景技术
随着光通信技术的不断发展,光通信设备得到了广泛的应用和发展,光通信设备逐渐向小型化、高集成度等方向发展。在光通信设备中,采用光学基板承载光器件中的光学元件,以实现高精度的光路耦合。
在相关技术中,光学元件通常设置在光学基板的上表面,导致光器件的厚度较大、集成较低。
发明内容
本申请实施例提供了一种光器件、光通信设备及光交换系统,用以解决光器件的厚度较大、集成较低的问题。
第一方面,本申请实施例提供了一种光器件,本申请实施例提供的光器件可以包括:盒体、上盖,位于盒体内部的光学基板和光学元件。光学基板具有贯穿厚度方向的开口,光学元件固定于开口的内壁。
本申请实施例提供的光器件中,通过在光学基板中设置贯穿厚度方向的开口,并将光学元件固定于开口的内壁,相比于将光学元件设置在光学基板的上表面,可以大幅降低光器件的总厚度,提升光器件的集成度。另外,将光学元件固定于开口的内壁,可以降低光学基板的形变对光学元件形成的光路的影响,也可以降低光学基板的加工精度,从而减少光学基板的制作成本。
在相关技术中,光学元件通常设置在光学基板的上表面,这样,光学基板与光学元件的总厚度为光学基板的厚度与光学元件的高度之和,导致光器件的总厚度较大。本申请实施例中,将光学元件固定于光学基板的开口的内壁,在光学基板的上表面和下表面均不设置光学元件,这样,可以使光学基板与光学元件的总厚度为光学基板的厚度或光学元件的高度,因此,相比于相关技术中将光学元件设置在光学基板的上表面,可以节省光器件内部的高度空间,大幅降低光器件的总厚度,例如光器件的总厚度可以降至18mm以下。
在具体实施时,可以采用胶水将光学元件的侧面贴附于开口的内壁,当然,也可以采用其他方式固定光学元件,此处不做限定。通过将光学元件固定于光学基板的开口的内壁,可以使光线在光学基板的开口内传输,光线的损耗较小,并且,光学基板的形变对光线的影响较小,从而可以在光器件内形成精度较高的光路。在实际应用中,可以在开口的内壁 设置一个或多个光学元件,可以根据实际需要,来设置光学元件的数量、形状或尺寸等,在具体实施时,可以根据实际光路需要,来设置开口的形状和尺寸,此处不做限定。
可选地,光学基板的材料包括但不限于铝碳化硅(AlSiC)复合材料、氮化铝(AlN)陶瓷、氧化铝陶瓷、可伐(Kovar)合金或因瓦(Invar)合金等。
在一种可能的实现方式中,光学基板与盒体可以分立设置,即光学基板和光学元件均位于盒体的内部,这样,可以减小光学基板受外力影响而产生的形变,防止外界因素影响光学元件形成的光路。
在一种可能的实现方式中,光学基板的厚度可以小于或等于光学元件在光学基板厚度方向上的高度,这样,可以充分利用开口的内壁的空间,使光器件的集成度较高。当然,光学基板的厚度也可以大于光学元件在光学基板厚度方向的最大高度,此处不做限定。
为了进一步减小外界因素对光路的影响,可以在光学基板的侧面设置缓冲件,缓冲件可以支撑在光学基板与盒体的内壁之间,从而起到缓冲作用,这样,外界产生气压变化、振动等因素,都不会导致光学基板上的光路发生偏移。将缓冲件设置在光学基板的侧面,在光学基板的上下表面不设置缓冲件,因而,缓冲件不会占用厚度空间,可以进一步降低光器件的厚度。在具体实施时,缓冲件可以包括硅胶垫,当然,缓冲件也可以采用其他具有缓冲作用的材料,此处不做限定。
为了使缓冲效果较好,可以在光学基板相对的两个侧面设置缓冲件,例如,可以在光学基板中面积较小的两个侧面设置缓冲件,举例来说,可以在这两个侧面中的每一个侧面设置至少两个缓冲件。当然,也可以在光学基板的一个、三个或更多个侧面设置缓冲件,一个侧面也可以设置一个、三个或更多个缓冲件,可以根据实际需要设置缓冲件的位置和数量,此处不做限定。
在另一种可能的实现方式中,盒体可以包括:侧壁和底盖,光学基板与盒体的侧壁为一体结构,即光学基板的外壁复用为盒体的侧壁,光学基板与盒体的底盖胶合设置,光学基板与上盖胶合设置,从而可以得到气密封装的光器件。在制作过程中,可以采用同一加工工艺、相同的材料,制作得到光学基板和盒体的侧壁,也可以将光器件中的其他部件设置在光学基板的开口内,通过在光学基板的两侧胶合上盖和底盖,可以形成气密封装的光器件。光学基板与盒体的侧壁为一体结构,可以进一步降低光器件的总厚度,提高光器件的集成度,并降低光器件的生产成本。
在具体实施时,盒体的侧壁在光学基板厚度方向的高度大于光学基板的厚度。光学基板靠近上盖一侧的表面与侧壁可以形成第一凹陷结构,上盖可以嵌设于第一凹陷结构内,这样,可以使光学基板与上盖胶合后,上盖的表面可以与侧壁的边缘平齐,使光器件的上表面为近似平坦的表面,提升光器件的集成度。和/或,光学基板靠近底盖一侧的表面与侧壁形成第二凹陷结构,底盖嵌设于第二凹陷结构内,这样,可以使光学基板与底盖胶合后,底盖的表面可以与侧壁的边缘平齐,使光器件的下表面为近似平坦的表面,提升光器件的集成度。也就是说,可以仅在光学基板一侧的表面设置凹陷结构,将上盖或底盖嵌设在该凹陷结构内,也可以在光学基板两侧的表面均设置凹陷结构,将上盖和底盖分别嵌设在凹陷结构中,可以根据实际需要进行设置,此处不做限定。
在具体实施时,光学基板的厚度可以大于或等于光学元件在光学基板厚度方向上的最大高度,这样,可以使光学元件不超出光学基板的上下表面,使光学基板更容易与上盖和底盖胶合,例如,可以采用板状的上盖和底盖。当然,在一些场景下,光学元件的高度也 可以大于光学基板的厚度,可以通过将上盖和/或底盖设置为半球形等形状,以容纳超出光学基板表面的光学元件。在光学基板的侧面也可以设置缓冲件,缓冲件具有缓冲作用,这样,将光器件安装于光通信设备中,可以防止光通信设备中其他部件对光学基板的光路的影响。
为了实现光信号传输功能和电信号传输功能,本申请实施例提供的光器件还可以包括:光信号穿通结构和电信号穿通结构,盒体的侧壁设有贯穿盒体的第一通孔和第二通孔,光信号穿通结构穿过第一通孔,电信号穿通结构穿过第二通孔。为了使光器件中的光学元件等部件在水汽和气体密度相对稳定的环境中工作,需要将盒体与上盖、光信号穿通结构与第一通孔,以及电信号穿通结构与第二通孔进行密封,以实现光器件的气密封装。
在具体实施时,盒体与上盖可以通过胶体胶合密封设置,光信号穿通结构可以通过胶体与盒体胶合密封设置,电信号穿通结构可以通过胶体与盒体胶合密封设置。胶体的材料可以包括:环氧树脂,当然,胶体也可以采用其他材料,此处不做限定。为了便于区分,在本申请实施例中,将密封盒体与上盖的胶体称为第一胶体,将密封光信号穿通结构与盒体的胶体称为第二胶体,将密封电信号穿通结构与盒体的胶体称为第三胶体。
为了防止胶体老化,光器件还可以包括:至少覆盖部分胶体的保护膜。保护膜可以为采用有机材料或无机材料制作的真空镀膜,例如,可以采用等离子体增强化学的气相沉积(PECVD)工艺制作保护膜。保护膜的材料可以为高致密的有机或无机聚合物,例如保护膜的材料可以为聚对二甲苯(Parylene)等非金属材料,当然,保护膜的材料也可以为金属材料,此处不做限定。
为了使光器件内部的水汽含量相对稳定,可以在盒体的内部设置干燥剂,干燥剂可以吸附水分子,起到除湿的作用,通过合理设置干燥剂的量,可以使光器件内部的水汽含量相对稳定。本申请实施例中,采用胶体对光器件进行气密封装,并在盒体内设置干燥剂,可以使光器件满足年内保持水汽小于5000ppm的行业标准。
本申请实施例中的光器件还可以包括:位于盒体内部的第一传感器,位于盒体外部的第二传感器,第一传感器用于检测盒体内部的温度、湿度和气压,并输出第一检测信号,第二传感器用于检测盒体外部的温度、湿度和气压,并输出第二检测信号。通过设置第一传感器和第二传感器,可以实时监测盒体内部和外部的温度、湿度和气压。在具体实施时,可以在盒体的内部或外部设置处理器,处理器可以接收第一检测信号和第二检测信号,并根据第一检测信号和第二检测信号确定并输出寿命模型曲线,后续可以将寿命模型曲线,或根据寿命模型曲线得到的寿命预警信息显示到外部显示设备,以使用户可以根据该显示设备了解光器件的使用情况,并实时监测光器件的寿命,例如可以实现至少提前20个月获知寿命预警信息,提高光器件的可靠性。此外,还可以根据盒体内部和外部的温度、湿度和气压,进行电控干燥、消除水汽、频率补偿或波长偏移等操作,以使光器件的性能较稳定。
在本申请实施例中,盒体与上盖可以通过第一胶体胶合密封设置,在一种可能的实现方式中,盒体的侧壁和底盖可以为一体结构,在另一种可能的实现方式中,盒体的侧壁和底盖可以分立设置,可以通过胶体胶合盒体的侧壁和底盖。由于胶合密封工艺对盒体和上盖的要求较低,因而可以采用成本较低的材料制作盒体和上盖,例如,可以采用不锈钢或铝等金属材料制作盒体和上盖,也可以采用塑料等非金属材料制作盒体和上盖。并且,胶合密封工艺的成本较低,从而,可以大幅降低光器件的材料成本和工艺成本。另外,在盒 体与上盖之间的胶合连接位置,以及第一胶体裸露的位置可以设置保护膜,通过保护膜对第一胶体进行保护,可以避免第一胶体老化,提高第一胶体的可靠性,使光器件能够在温度为50°且相对湿度为100%的条件下实现水气透过率小于5g/m2/day,其中,g表示克,m表示米,day表示天。
在一种可能的实现方式中,光信号穿通结构可以包括:连接管,以及穿过连接管的光纤,连接管穿过第一通孔,盒体在对应于第一通孔处设有凹槽,凹槽围绕第一通孔,且凹槽位于盒体的内壁和/或外壁。如果第一通孔的周围未设置凹槽,会导致盒体的应力直接作用到连接管上,连接管内的光纤容易受到损伤,本申请实施例中,通过设置围绕第一通孔的凹槽,凹槽可以防止盒体的应力直接作用到连接管上,从而可以避免应力过大而损伤连接管内的光纤。
在实际应用中,连接管的一部分位于第一通孔内部,另一部分位于盒体的内部,位于盒体内部的部分连接管设有开孔。在高温过程中,连接管内部的光纤受到拉应力的破坏,容易导致光纤断裂。本申请实施例中,通过在位于盒体内部的部分连接管设有开孔,可以减小连接管内部光纤的拉应力,降低光纤断裂的风险,提高了光信号穿通结构的可靠性。
光纤可以包括:裸纤和涂覆层,光纤具有裸纤区域和包覆区域,裸纤区域的位置与开孔的位置相对应,涂覆层包裹包覆区域内的裸纤,裸纤区域中的裸纤未被涂覆层包裹,也就是说,裸纤区域中的光纤为裸纤,包裹区域中的光纤为非裸纤。光信号穿通结构还可以包括:填充部,填充部填充于光纤与连接管之间,且填充部包裹裸纤区域及与裸纤区域临近的部分包覆区域B内的光纤。
在实际应用中,光纤中的涂覆层可以传输水汽,为了防止涂覆层通过开孔将水汽传输至盒体内部,而影响光器件的气密封装效果,本申请实施例中,在开孔的对应位置设置裸纤区域,裸纤区域中的光纤未被涂覆层包裹,使涂覆层在裸纤区域处隔断,从而可以隔断涂覆层的水汽传输路径。另外,通过设置填充于光纤与连接管之间的填充部,该填充部包裹光纤的裸纤区域,且该填充部包裹该裸纤区域两侧临近的包裹区域内的部分光纤,这样,可以阻断涂覆层通过开孔向盒体内部传输水汽的路径,有效提升光器件的气密封装效果。也就是说,本申请实施例中的光信号穿通结构,可以在不影响光器件的气密封装效果的基础上,减小连接管内光纤的拉应力,提高光信号穿通结构的可靠性。在具体实施时,填充部可以包括:焊锡或胶水,当然,填充部也可以采用其他具有阻隔水汽作用的材料,此处不做限定。另外,为了固定开孔处的填充部,可以在连接管外侧对应于开孔的位置处贴附高温胶带。
为了使光器件的气密封装效果较好,可以将裸纤区域在光纤延伸方向上的长度,设置为大于开孔在光纤延伸方向上的长度,这样,涂覆层断开的长度较长,且涂覆层的断面与开孔的距离更远,使得涂覆层更不容易通过开孔向盒体内部传输水汽。为了使光信号穿通结构阻隔水汽的效果较好,可以将裸纤区域在光纤延伸方向上的长度设置为大于8mm,将裸纤区域在光纤延伸方向上的长度设置为:至少比开孔在光纤延伸方向上的长度大2mm。当然,在具体实施时,裸纤区域在光纤延伸方向上的长度也可以等于或稍小于开孔在光纤延伸方向上的长度,此处不做限定。
在具体实施时,可以根据实际需要,设置连接管中开孔的形状,例如,开孔的形状可以为长方形、圆形、椭圆形、正方形等,也可以根据实际需要,设置连接管中开孔的数量,例如,开孔的数量可以为一个、两个或更多个,此处不对连接管中开孔的形状和数量进行 限定。
基于类似的原理,为了减小连接管内部光纤的拉应力,可以对连接管进行局部减薄,使连接管具有位于盒体内部的减薄区域,连接管在减薄区域内的直径,小于连接管在除减薄区域外的其他区域内的直径。光纤可以包括:裸纤和涂覆层,光纤具有裸纤区域和包覆区域,裸纤区域的位置与减薄区域的位置相对应,涂覆层包裹包覆区域内的裸纤,裸纤区域中的裸纤未被涂覆层包裹。光信号穿通结构还可以包括:填充部,填充部填充于光纤与连接管之间,且填充部包裹裸纤区域及与该裸纤区域临近的部分包覆区域内的光纤。本申请实施例中,通过在光信号穿通结构中设置减薄区域,也可以在不影响光器件的气密封装效果的基础上,减小连接管内光纤的拉应力,提高光信号穿通结构的可靠性,具体原理与上述实施例的原理类似,重复之处不再赘述。
在本申请实施例中,光信号穿通结构可以为单管结构,即光信号穿通结构可以仅包括一个连接管。本申请实施例中的光信号穿通结构也可以为双管结构,即光信号穿通结构可以包括两个连接管,光信号穿通结构中的这两个连接管可以为一体结构。或者,本申请实施例中的光信号穿通结构也可以为多管组合一体结构,即光信号穿通结构可以包括至少三个连接管,光信号穿通结构中的各连接管可以为一体结构。在具体实施时,可以根据实际需要,设置光信号穿通结构中连接管的数量,此处不做限定。
本申请实施例中,光信号穿通结构通过第二胶体与盒体胶合密封设置,可以在盒体的内部设置第二胶体,第二胶体包裹位于盒体内部靠近盒体的部分光信号穿通结构,且第二胶体与盒体的内壁粘接。由于盒体内部的水汽含量较低,盒体内部的第二胶体不容易老化,因而,在盒体内部设置第二胶体,可以使胶合密封效果更好,使光器件的可靠性较高。为了使胶合密封效果更好,在盒体外部和/或第一通孔内部也可以设置第二胶体。
由于胶合密封工艺对连接管的要求较低,因而,可以采用成本较低的材料制作连接管,例如可以采用铜等成本较低的金属材料制作连接管,并且,胶合密封工艺的成本较低,从而,可以大幅降低光器件的材料成本和工艺成本。另外,在光信号穿通结构与盒体之间的胶合连接位置,以及第二胶体裸露的位置可以设置保护膜,通过保护膜对第二胶体进行保护,可以避免第二胶体老化,提高第二胶体的可靠性,使光器件能够在温度为50°且相对湿度为100%的条件下实现水气透过率小于5g/m2/day,其中,g表示克,m表示米,day表示天。
在本申请的一些实施例中,电信号穿通结构穿过第二通孔,电信号穿通结构可以与盒体内部的芯片电连接,电信号穿通结构通过第三胶体与盒体胶合密封设置。电信号穿通结构可以包括:条状的柔性电路板(FPC);或者,电信号穿通结构可以包括:条状的印刷电路板(PCB)。通过将电信号穿通结构设置为包括柔性电路板或印刷电路板,可以使电信号穿通结构与盒体之间能够采用胶合工艺密封,降低密封工艺成本。其中,柔性电路板的材料可以包括:聚酰亚胺(PI)或液晶聚合物(LCP),印刷电路板的材料可以包括:聚酰亚胺或液晶聚合物,由于聚酰亚胺或液晶聚合物的水气透过率较低,使光器件能够在温度为50°且相对湿度为100%的条件下实现水气透过率小于5g/m2/day,其中,g表示克,m表示米,day表示天。在具体实施时,电信号穿通结构采用的柔性电路板或印刷电路板为多层,可以层与层之间可以采用无胶热压工艺组合,以降低电信号穿通结构的水气透过率。
在本申请实施例中,可以在盒体的内部设置有第三胶体,第三胶体包裹位于盒体内部靠近盒体的部分电信号穿通结构,且第三胶体与盒体的内壁粘接。由于盒体内部的水汽含 量较低,盒体内部的第三胶体不容易老化,因而,至少在盒体内部设置第三胶体,可以使胶合密封效果更好,使光器件的可靠性较高。
本申请实施例中的光器件还可以包括:固定件,盒体包括:侧壁和底盖,电信号穿通结构以及包裹电信号穿通结构的第三胶体固定于固定件与底盖之间,这样,可以压紧第三胶体,使第三胶体更牢固,防止第三胶体脱落。在具体实施时,可以在固定件的两端分别设置螺孔,可以通过螺钉穿过螺孔与底盖固定连接,从而将电信号穿通结构和第三胶体固定于固定件与底盖之间。
在一种可能的实现方式中,固定件可以包括:相互连接的第一固定部和第二固定部,第一固定部与底盖固定电信号穿通结构以及包裹电信号穿通结构的第三胶体,第二固定部固定粘接于盒体的内壁的第三胶体。第一固定部与第二固定部之间的夹角可以为倒角,这样,可以防止第三胶体在第一固定部与第二固定部之间的位置的应力过于集中,导致第三胶体因应力过大而开裂,提高第三胶体的可靠性。在具体实施时,也可以对第二通孔的边缘也进行倒角设置,即第二通孔的内壁与盒体的内壁之间的夹角为倒角;和/或,第二通孔与盒体的外壁之间的夹角为倒角,从而,可以防止第三胶体在第二通孔的边缘处应力过于集中,导致第三胶体因应力过大而开裂,进一步提高第三胶体的可靠性。第三胶体填充于固定件、盒体的内壁及盒体的底盖之间,且第三胶体填充第二通孔。在盒体内部和第二通孔内均设置第三胶体,可以使电信号穿通结构的胶合密封效果较好。在具体实施时,为了使胶合密封效果更好,也可以在盒体外部也设置第三胶体。
在具体实施时,在电信号穿通结构与盒体之间的胶合连接位置,以及第三胶体裸露的位置可以设置保护膜,通过保护膜对第三胶体进行保护,可以避免第三胶体老化,提高第三胶体的可靠性,使光器件能够在温度为50°且相对湿度为100%的条件下实现水气透过率小于5g/m2/day,其中,g表示克,m表示米,day表示天。
第二方面,本申请实施例还提供了一种光通信设备,光通信设备可以为任何具有光信号收发功能的设备。光通信设备可以包括:上述任一光器件,电路板,以及壳体,光器件位于电路板上,壳体包裹电路板和光器件。由于上述光器件的集成度较高,包括该光器件的光通信设备的集成度也较高。另外,可以采用胶合密封方式,对上述光器件进行气密封装,使得上述光器件的成本较低,因而包括上述光器件的光通信设备的成本也较低。
第三方面,本申请实施例还提供了一种光交换系统,光交换系统可以为波分光交叉(optical cross connect,OXC)系统,光交换系统可以包括:第一光通信设备和第二光通信设备,第一光通信设备为上述任一光通信设备,第二光通信设备通过第一光通信设备进行光信息交换。由于上述光通信设备的集成度较高、成本较低,因而包括上述光通信设备的光交换系统的集成度也较高,成本也较低。
附图说明
图1为本申请实施例提供的光器件的侧视结构示意图;
图2为本申请实施例中光学基板的俯视结构示意图;
图3为与图2对应的光学基板的侧视结构示意图;
图4为本申请实施例中光学基板的立体结构示意图;
图5为本申请实施例中光器件的立体结构示意图;
图6为本申请实施例提供的光器件的俯视结构示意图;
图7为本申请实施例提供的光器件的另一侧视结构示意图;
图8为本申请实施例中盒体的立体结构示意图;
图9为本申请实施例中连接管的结构示意图;
图10为图9中虚线RR′处的截面示意图;
图11为本申请实施例中连接管的另一结构示意图;
图12为本申请实施例中连接管的另一结构示意图;
图13为图12中虚线EE′处的截面示意图;
图14为本申请实施例中光信号穿通结构的结构示意图;
图15为本申请实施例中光器件的局部示意图;
图16为图15中虚线N处的截面示意图。
附图标记:
11-盒体;111-侧壁;112-底盖;12-上盖;13-光学基板;14-光学元件;141-胶水;15-缓冲件;16-光信号穿通结构;161-连接管;162-光纤;1621-裸纤;1622-涂覆层;163-填充部;17-电信号穿通结构;181-第一胶体;182-第二胶体;183-第三胶体;191-第一传感器;192-第二传感器;20-芯片;21-固定件;211-第一固定部;212-第二固定部;22-螺钉;Q-开口;U1-第一凹陷结构;U2-第二凹陷结构;T1-第一通孔;T2-第二通孔;G-干燥剂;W-凹槽;P-开孔;A-裸纤区域;B-包覆区域;M-减薄区域。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
应注意的是,本申请的附图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
为了解决光器件的厚度较大、集成较低的问题,本申请实施例提供了一种光器件、光通信设备及光交换系统。例如,光器件可以为光波长选择开关(wavelength selective switch,WSS),光波长选择开关可以将从输入端口输入的任意波长信号切换到任意输出端口。光器件可以应用于各种类型的光通信设备中,光通信设备可以为任何具有光信号收发功能的设备。例如,光交换系统可以为波分光交叉(optical cross connect,OXC)系统。
图1为本申请实施例提供的光器件的侧视结构示意图,图2为本申请实施例中光学基板的俯视结构示意图,图3为与图2对应的光学基板的侧视结构示意图,结合图1至图3,本申请实施例提供的光器件可以包括:盒体11、上盖12,位于盒体11内部的光学基板13和光学元件14。光学基板13具有贯穿厚度方向的开口Q,光学元件14固定于开口Q的内壁。
本申请实施例提供的光器件中,通过在光学基板中设置贯穿厚度方向的开口,并将光学元件固定于开口的内壁,相比于将光学元件设置在光学基板的上表面,可以大幅降低光器件的总厚度,提升光器件的集成度。另外,将光学元件固定于开口的内壁,可以降低光学基板的形变对光学元件形成的光路的影响,也可以降低光学基板的加工精度,从而减少光学基板的制作成本。
在相关技术中,光学元件通常设置在光学基板的上表面,这样,光学基板与光学元件 的总厚度为光学基板的厚度与光学元件的高度之和,导致光器件的总厚度较大。本申请实施例中,参照图2和图3,将光学元件14固定于光学基板13的开口Q的内壁,在光学基板13的上表面和下表面均不设置光学元件14,这样,可以使光学基板13与光学元件14的总厚度为光学基板13的厚度或光学元件14的高度,因此,相比于相关技术中将光学元件设置在光学基板的上表面,可以节省光器件内部的高度空间,大幅降低光器件的总厚度,例如光器件的总厚度可以降至18mm以下。
在具体实施时,可以采用胶水141将光学元件14的侧面贴附于开口Q的内壁,当然,也可以采用其他方式固定光学元件14,此处不做限定。通过将光学元件14固定于光学基板13的开口Q的内壁,可以使光线在光学基板13的开口Q内传输,光线的损耗较小,并且,光学基板13的形变对光线的影响较小,从而可以在光器件内形成精度较高的光路。在实际应用中,可以在开口Q的内壁设置一个或多个光学元件14,可以根据实际需要,来设置光学元件14的数量、形状或尺寸等,并且,图2中以开口Q的形状为长方形为例进行示意,在具体实施时,可以根据实际光路需要,来设置开口Q的形状和尺寸,此处不做限定。
可选地,光学基板13的材料包括但不限于铝碳化硅(AlSiC)复合材料、氮化铝(AlN)陶瓷、氧化铝陶瓷、可伐(Kovar)合金或因瓦(Invar)合金等。
在一种可能的实现方式中,如图2和图3所示,光学基板13与盒体11可以分立设置,即光学基板13和光学元件14均位于盒体11的内部,这样,可以减小光学基板13受外力影响而产生的形变,防止外界因素影响光学元件形成的光路。
如图3所示,光学基板13的厚度可以小于或等于光学元件14在光学基板13厚度方向上的高度,这样,可以充分利用开口Q的内壁的空间,使光器件的集成度较高。当然,光学基板13的厚度也可以大于光学元件14在光学基板13厚度方向的最大高度,此处不做限定。
如图2和图3所示,为了进一步减小外界因素对光路的影响,可以在光学基板13的侧面设置缓冲件15,缓冲件15可以支撑在光学基板13与盒体11的内壁之间,从而起到缓冲作用,这样,外界产生气压变化、振动等因素,都不会导致光学基板13上的光路发生偏移。将缓冲件15设置在光学基板13的侧面,在光学基板13的上下表面不设置缓冲件15,因而,缓冲件15不会占用厚度空间,可以进一步降低光器件的厚度。在具体实施时,缓冲件15可以包括硅胶垫,当然,缓冲件15也可以采用其他具有缓冲作用的材料,此处不做限定。
为了使缓冲效果较好,可以在光学基板13相对的两个侧面设置缓冲件15,例如,可以在光学基板13中面积较小的两个侧面设置缓冲件15,举例来说,可以在这两个侧面中的每一个侧面设置至少两个缓冲件15。当然,也可以在光学基板13的一个、三个或更多个侧面设置缓冲件15,一个侧面也可以设置一个、三个或更多个缓冲件15,可以根据实际需要设置缓冲件15的位置和数量,此处不做限定。
图4为本申请实施例中光学基板的立体结构示意图,图5为本申请实施例中光器件的立体结构示意图,结合图4和图5,在另一种可能的实现方式中,盒体可以包括:侧壁111和底盖112,光学基板13与盒体的侧壁111为一体结构,即光学基板13的外壁复用为盒体的侧壁111,光学基板13与盒体的底盖112胶合设置,光学基板13与上盖12胶合设置,从而可以得到气密封装的光器件。图4为光学基板13没有与上盖12和底盖112胶合设置 的示意图,将光学基板13与上盖12和底盖112胶合设置后,可以得到图5所示的气密封装的光器件。在制作过程中,可以采用同一加工工艺、相同的材料,制作得到光学基板13和盒体的侧壁111,也可以将光器件中的其他部件设置在光学基板13的开口Q内,通过在光学基板13的两侧胶合上盖12和底盖112,可以形成气密封装的光器件。光学基板13与盒体的侧壁111为一体结构,可以进一步降低光器件的总厚度,提高光器件的集成度,并降低光器件的生产成本。
继续参照图4和图5,盒体的侧壁111在光学基板13厚度方向的高度大于光学基板13的厚度。以图4示意的图形为光学基板靠近上盖一侧的表面为例,光学基板13靠近上盖12一侧的表面与侧壁111可以形成第一凹陷结构U1,上盖12可以嵌设于第一凹陷结构U1内,这样,可以使光学基板13与上盖12胶合后,上盖12的表面可以与侧壁111的边缘平齐,使光器件的上表面为近似平坦的表面,提升光器件的集成度。和/或,以图4所示的图形为光学基板靠近底盖一侧的表面为例,光学基板13靠近底盖112一侧的表面与侧壁111形成第二凹陷结构U2,底盖112嵌设于第二凹陷结构U2内,这样,可以使光学基板13与底盖112胶合后,底盖112的表面可以与侧壁111的边缘平齐,使光器件的下表面为近似平坦的表面,提升光器件的集成度。也就是说,可以仅在光学基板13一侧的表面设置凹陷结构,将上盖12或底盖112嵌设在该凹陷结构内,也可以在光学基板13两侧的表面均设置凹陷结构,将上盖12和底盖112分别嵌设在凹陷结构中,可以根据实际需要进行设置,此处不做限定。
如图4所示,在具体实施时,光学基板13的厚度可以大于或等于光学元件14在光学基板13厚度方向上的最大高度,这样,可以使光学元件14不超出光学基板13的上下表面,使光学基板13更容易与上盖12和底盖112胶合,例如,可以采用板状的上盖12和底盖112。当然,在一些场景下,光学元件14的高度也可以大于光学基板13的厚度,可以通过将上盖12和/或底盖112设置为半球形等形状,以容纳超出光学基板13表面的光学元件14。
在图4和图5所示的实施例中,在光学基板13的侧面也可以设置缓冲件15,缓冲件15具有缓冲作用,这样,将光器件安装于光通信设备中,可以防止光通信设备中其他部件对光学基板13的光路的影响。图4和图5所示实施例中的缓冲件的具体实现方式,可以参照图2和图3所示实施例中的缓冲件的具体实现方式,重复之处不再赘述。
如图1所示,为了实现光信号传输功能和电信号传输功能,本申请实施例提供的光器件还可以包括:光信号穿通结构16和电信号穿通结构17,盒体11的侧壁设有贯穿盒体11的第一通孔T1和第二通孔T2,光信号穿通结构16穿过第一通孔T1,电信号穿通结构17穿过第二通孔T2。为了使光器件中的光学元件等部件在水汽和气体密度相对稳定的环境中工作,需要将盒体11与上盖12、光信号穿通结构16与第一通孔T1,以及电信号穿通结构17与第二通孔T2进行密封,以实现光器件的气密封装。
在具体实施时,盒体11与上盖12可以通过胶体胶合密封设置,光信号穿通结构16可以通过胶体与盒体11胶合密封设置,电信号穿通结构17可以通过胶体与盒体11胶合密封设置。胶体的材料可以包括:环氧树脂,当然,胶体也可以采用其他材料,此处不做限定。为了便于区分,在本申请实施例中,将密封盒体11与上盖12的胶体称为第一胶体181,将密封光信号穿通结构16与盒体11的胶体称为第二胶体182,将密封电信号穿通结构17与盒体11的胶体称为第三胶体183。为了防止胶体老化,光器件还可以包括:至少覆盖部 分胶体的保护膜。
图6为本申请实施例提供的光器件的俯视结构示意图,如图6所示,为了使光器件内部的水汽含量相对稳定,可以在盒体11的内部设置干燥剂G,干燥剂G可以吸附水分子,起到除湿的作用,通过合理设置干燥剂G的量,可以使光器件内部的水汽含量相对稳定。本申请实施例中,采用胶体对光器件进行气密封装,并在盒体内设置干燥剂G,可以使光器件满足15年内保持水汽小于5000ppm的行业标准。
图7为本申请实施例提供的光器件的另一侧视结构示意图,如图7所示,本申请实施例中的光器件还可以包括:位于盒体11内部的第一传感器191,位于盒体11外部的第二传感器192,第一传感器191用于检测盒体11内部的温度、湿度和气压,并输出第一检测信号,第二传感器192用于检测盒体11外部的温度、湿度和气压,并输出第二检测信号。通过设置第一传感器191和第二传感器192,可以实时监测盒体11内部和外部的温度、湿度和气压。在具体实施时,可以在盒体11的内部或外部设置处理器,处理器可以接收第一检测信号和第二检测信号,并根据第一检测信号和第二检测信号确定并输出寿命模型曲线,后续可以将寿命模型曲线,或根据寿命模型曲线得到的寿命预警信息显示到外部显示设备,以使用户可以根据该显示设备了解光器件的使用情况,并实时监测光器件的寿命,例如可以实现至少提前20个月获知寿命预警信息,提高光器件的可靠性。此外,还可以根据盒体内部和外部的温度、湿度和气压,进行电控干燥、消除水汽、频率补偿或波长偏移等操作,以使光器件的性能较稳定。
在本申请实施例中,参照图1,盒体11与上盖12可以通过第一胶体181胶合密封设置,在一种可能的实现方式中,盒体11的侧壁和底盖可以为一体结构,在另一种可能的实现方式中,盒体11的侧壁和底盖可以分立设置,可以通过胶体胶合盒体11的侧壁和底盖。由于胶合密封工艺对盒体11和上盖12的要求较低,因而可以采用成本较低的材料制作盒体11和上盖12,例如,可以采用不锈钢或铝等金属材料制作盒体11和上盖12,也可以采用塑料等非金属材料制作盒体11和上盖12。并且,胶合密封工艺的成本较低,从而,可以大幅降低光器件的材料成本和工艺成本。另外,在盒体11与上盖12之间的胶合连接位置,以及第一胶体181裸露的位置可以设置保护膜(图中未示出),通过保护膜对第一胶体181进行保护,可以避免第一胶体181老化,提高第一胶体181的可靠性,使光器件能够在温度为50°且相对湿度为100%的条件下实现水气透过率小于5g/m2/day,其中,g表示克,m表示米,day表示天。在具体实施时,保护膜可以为采用有机材料或无机材料制作的真空镀膜,例如,可以采用等离子体增强化学的气相沉积(PECVD)工艺制作保护膜。保护膜的材料可以为高致密的有机或无机聚合物,例如保护膜的材料可以为聚对二甲苯(Parylene)等非金属材料,当然,保护膜的材料也可以为金属材料,此处不做限定。
图8为本申请实施例中盒体的立体结构示意图,图9为本申请实施例中连接管的结构示意图,结合图8和图9,光信号穿通结构可以包括:连接管161,以及穿过连接管161的光纤(图中未示出),连接管161穿过第一通孔T1,盒体11在对应于第一通孔T1处设有凹槽W,凹槽W围绕第一通孔T1,且凹槽W位于盒体11的内壁和/或外壁。如果第一通孔T1的周围未设置凹槽W,会导致盒体11的应力直接作用到连接管161上,连接管161内的光纤容易受到损伤,本申请实施例中,通过设置围绕第一通孔T1的凹槽W,凹槽W可以防止盒体11的应力直接作用到连接管161上,从而可以避免应力过大而损伤连接管161内的光纤。
继续参照图8和图9,连接管161的一部分位于第一通孔T1内部,另一部分位于盒体11的内部,例如图9中虚线L右侧的部分连接管161位于第一通孔T1内部,虚线L左侧的部分连接管161位于盒体11的内部。位于盒体11内部的部分连接管161设有开孔P。在高温过程中,连接管161内部的光纤受到拉应力的破坏,容易导致光纤断裂。本申请实施例中,通过在位于盒体11内部的部分连接管161设有开孔P,可以减小连接管161内部光纤的拉应力,降低光纤断裂的风险,提高了光信号穿通结构的可靠性。
图10为图9中虚线RR′处的截面示意图,结合图9和图10,光纤162可以包括:裸纤1621和涂覆层1622,光纤162具有裸纤区域A和包覆区域B,裸纤区域A的位置与开孔P的位置相对应,涂覆层1622包裹包覆区域B内的裸纤1621,裸纤区域A中的裸纤1621未被涂覆层1622包裹,也就是说,裸纤区域A中的光纤162为裸纤,包裹区域B中的光纤为非裸纤。光信号穿通结构还可以包括:填充部163,填充部163填充于光纤162与连接管161之间,且填充部163包裹裸纤区域A及与裸纤区域A临近的部分包覆区域B内的光纤162。
在实际应用中,光纤162中的涂覆层1622可以传输水汽,为了防止涂覆层1622通过开孔P将水汽传输至盒体内部,而影响光器件的气密封装效果,本申请实施例中,在开孔P的对应位置设置裸纤区域A,裸纤区域A中的光纤162未被涂覆层1622包裹,使涂覆层1622在裸纤区域A处隔断,从而可以隔断涂覆层1622的水汽传输路径。另外,通过设置填充于光纤162与连接管161之间的填充部163,该填充部163包裹光纤162的裸纤区域A,且该填充部163包裹该裸纤区域A两侧临近的包裹区域B内的部分光纤162,这样,可以阻断涂覆层1622通过开孔P向盒体内部传输水汽的路径,有效提升光器件的气密封装效果。也就是说,本申请实施例中的光信号穿通结构,可以在不影响光器件的气密封装效果的基础上,减小连接管161内光纤162的拉应力,提高光信号穿通结构的可靠性。在具体实施时,填充部163可以包括:焊锡或胶水,当然,填充部163也可以采用其他具有阻隔水汽作用的材料,此处不做限定。另外,为了固定开孔P处的填充部163,可以在连接管161外侧对应于开孔P的位置处贴附高温胶带。
为了使光器件的气密封装效果较好,可以将裸纤区域A在光纤162延伸方向上的长度,设置为大于开孔P在光纤162延伸方向上的长度,这样,涂覆层1622断开的长度较长,且涂覆层1622的断面与开孔P的距离更远,使得涂覆层1622更不容易通过开孔P向盒体内部传输水汽。为了使光信号穿通结构阻隔水汽的效果较好,可以将裸纤区域A在光纤162延伸方向上的长度设置为大于8mm,将裸纤区域A在光纤162延伸方向上的长度设置为:至少比开孔P在光纤162延伸方向上的长度大2mm。当然,在具体实施时,裸纤区域A在光纤162延伸方向上的长度也可以等于或稍小于开孔P在光纤162延伸方向上的长度,此处不做限定。
如图9所示,在一种可能的实现方式中,连接管161中的开孔P可以为长方形,可以在连接管161中设置两个开孔P。或者,如图11所示,图11为本申请实施例中连接管的另一结构示意图,在另一种可能的实现方式中,连接管161中的开孔P也可以为圆形,可以在连接管161中设置六个开孔P。当然,在具体实施时,可以根据实际需要,设置连接管161中开孔P的形状,例如,开孔P的形状也可以为椭圆形、正方形等,也可以根据实际需要,设置连接管161中开孔P的数量,例如,开孔P的数量可以为一个、两个或更多个,此处不对连接管161中开孔P的形状和数量进行限定。
图12为本申请实施例中连接管的另一结构示意图,如图8和图12所示,基于类似的原理,为了减小连接管161内部光纤的拉应力,可以对连接管161进行局部减薄,使连接管161具有位于盒体11内部的减薄区域M,连接管161在减薄区域M内的直径,小于连接管161在除减薄区域M外的其他区域内的直径。
图13为图12中虚线EE′处的截面示意图,结合图12和图13,光纤162可以包括:裸纤1621和涂覆层1622,光纤162具有裸纤区域A和包覆区域B,裸纤区域A的位置与减薄区域M的位置相对应,涂覆层1622包裹包覆区域B内的裸纤1621,裸纤区域A中的裸纤1621未被涂覆层1622包裹。光信号穿通结构还可以包括:填充部163,填充部163填充于光纤162与连接管161之间,且填充部163包裹裸纤区域A及与该裸纤区域A临近的部分包覆区域B内的光纤。图12和图13所示的光信号穿通结构,也可以在不影响光器件的气密封装效果的基础上,减小连接管161内光纤162的拉应力,提高光信号穿通结构的可靠性,具体原理与图9和图10所示实施例的原理类似,重复之处不再赘述。
图9至图13所示的光信号穿通结构为单管结构,即光信号穿通结构可以仅包括一个连接管。图14为本申请实施例中光信号穿通结构的结构示意图,如图14所示,本申请实施例中的光信号穿通结构也可以为双管结构,即光信号穿通结构可以包括两个连接管161,光信号穿通结构中的这两个连接管161可以为一体结构。或者,本申请实施例中的光信号穿通结构也可以为多管组合一体结构,即光信号穿通结构可以包括至少三个连接管,光信号穿通结构中的各连接管可以为一体结构。在具体实施时,可以根据实际需要,设置光信号穿通结构中连接管的数量,此处不做限定。
本申请实施例中,参照图1,光信号穿通结构16通过第二胶体182与盒体11胶合密封设置,可以在盒体11的内部设置第二胶体182,第二胶体182包裹位于盒体11内部靠近盒体11的部分光信号穿通结构16,且第二胶体182与盒体11的内壁粘接。由于盒体11内部的水汽含量较低,盒体11内部的第二胶体182不容易老化,因而,在盒体11内部设置第二胶体182,可以使胶合密封效果更好,使光器件的可靠性较高。为了使胶合密封效果更好,在盒体11外部和/或第一通孔T1内部也可以设置第二胶体182。
由于胶合密封工艺对连接管的要求较低,因而,可以采用成本较低的材料制作连接管,例如可以采用铜等成本较低的金属材料制作连接管,并且,胶合密封工艺的成本较低,从而,可以大幅降低光器件的材料成本和工艺成本。另外,在光信号穿通结构与盒体之间的胶合连接位置,以及第二胶体裸露的位置可以设置保护膜,通过保护膜对第二胶体进行保护,可以避免第二胶体老化,提高第二胶体的可靠性,使光器件能够在温度为50°且相对湿度为100%的条件下实现水气透过率小于5g/m2/day,其中,g表示克,m表示米,day表示天。在具体实施时,保护膜可以为采用有机材料或无机材料制作的真空镀膜,例如,可以采用等离子体增强化学的气相沉积(PECVD)工艺制作保护膜。保护膜的材料可以为高致密的有机或无机聚合物,例如保护膜的材料可以为聚对二甲苯(Parylene)等非金属材料,当然,保护膜的材料也可以为金属材料,此处不做限定。
图15为本申请实施例中光器件的局部示意图,如图15所示,电信号穿通结构17穿过第二通孔T2,电信号穿通结构17可以与盒体11内部的芯片20电连接,电信号穿通结构17通过第三胶体183与盒体11胶合密封设置。电信号穿通结构17可以包括:条状的柔性电路板(FPC);或者,电信号穿通结构17可以包括:条状的印刷电路板(PCB)。通过将电信号穿通结构设置为包括柔性电路板或印刷电路板,可以使电信号穿通结构17与盒 体11之间能够采用胶合工艺密封,降低密封工艺成本。其中,柔性电路板的材料可以包括:聚酰亚胺(PI)或液晶聚合物(LCP),印刷电路板的材料可以包括:聚酰亚胺或液晶聚合物,由于聚酰亚胺或液晶聚合物的水气透过率较低,使光器件能够在温度为50°且相对湿度为100%的条件下实现水气透过率小于5g/m2/day,其中,g表示克,m表示米,day表示天。在具体实施时,电信号穿通结构采用的柔性电路板或印刷电路板为多层,可以层与层之间可以采用无胶热压工艺组合,以降低电信号穿通结构的水气透过率。
继续参照图15,在本申请实施例中,可以在盒体11的内部设置第三胶体183,第三胶体183包裹位于盒体11内部靠近盒体11的部分电信号穿通结构17,且第三胶体183与盒体11的内壁粘接。由于盒体11内部的水汽含量较低,盒体11内部的第三胶体183不容易老化,因而,至少在盒体11内部设置第三胶体183,可以使胶合密封效果更好,使光器件的可靠性较高。
图16为图15中虚线N处的截面示意图,结合图15和图16,本申请实施例中的光器件还可以包括:固定件21,盒体包括:侧壁111和底盖112,电信号穿通结构17以及包裹电信号穿通结构17的第三胶体183固定于固定件21与底盖112之间,这样,可以压紧第三胶体183,使第三胶体183更牢固,防止第三胶体183脱落。在具体实施时,可以在固定件21的两端分别设置螺孔,可以通过螺钉22穿过螺孔与底盖112固定连接,从而将电信号穿通结构17和第三胶体183固定于固定件21与底盖112之间。
在一种可能的实现方式中,固定件21可以包括:相互连接的第一固定部211和第二固定部212,第一固定部211与底盖112固定电信号穿通结构17以及包裹电信号穿通结构17的第三胶体183,第二固定部212固定粘接于盒体的内壁的第三胶体183。第一固定部211与第二固定部212之间的夹角可以为倒角,这样,可以防止第三胶体183在第一固定部211与第二固定部212之间的位置的应力过于集中,导致第三胶体183因应力过大而开裂,提高第三胶体183的可靠性。在具体实施时,也可以对第二通孔T2的边缘也进行倒角设置,即第二通孔T2的内壁与盒体的内壁之间的夹角为倒角;和/或,第二通孔T2与盒体的外壁之间的夹角为倒角,从而,可以防止第三胶体183在第二通孔T2的边缘处应力过于集中,导致第三胶体183因应力过大而开裂,进一步提高第三胶体183的可靠性。第三胶体183填充于固定件21、盒体的内壁及盒体的底盖112之间,且第三胶体183填充第二通孔T2。在盒体内部和第二通孔T2内均设置第三胶体183,可以使电信号穿通结构的胶合密封效果较好。在具体实施时,为了使胶合密封效果更好,也可以在盒体外部也设置第三胶体183。
在具体实施时,在电信号穿通结构与盒体之间的胶合连接位置,以及第三胶体裸露的位置可以设置保护膜,通过保护膜对第三胶体进行保护,可以避免第三胶体老化,提高第三胶体的可靠性,使光器件能够在温度为50°且相对湿度为100%的条件下实现水气透过率小于5g/m2/day,其中,g表示克,m表示米,day表示天。在具体实施时,保护膜可以为采用有机材料或无机材料制作的真空镀膜,例如,可以采用等离子体增强化学的气相沉积(PECVD)工艺制作保护膜。保护膜的材料可以为高致密的有机或无机聚合物,例如保护膜的材料可以为聚对二甲苯(Parylene)等非金属材料,当然,保护膜的材料也可以为金属材料,此处不做限定。
基于同一技术构思,本申请实施例还提供了一种光通信设备,光通信设备可以为任何具有光信号收发功能的设备。光通信设备可以包括:上述任一光器件,电路板,以及壳体, 光器件位于电路板上,壳体包裹电路板和光器件。由于上述光器件的集成度较高,包括该光器件的光通信设备的集成度也较高。另外,可以采用胶合密封方式,对上述光器件进行气密封装,使得上述光器件的成本较低,因而包括上述光器件的光通信设备的成本也较低。
基于同一技术构思,本申请实施例还提供了一种光交换系统,光交换系统可以为波分光交叉(optical cross connect,OXC)系统,光交换系统可以包括:第一光通信设备和第二光通信设备,第一光通信设备为上述任一光通信设备,第二光通信设备通过第一光通信设备进行光信息交换。由于上述光通信设备的集成度较高、成本较低,因而包括上述光通信设备的光交换系统的集成度也较高,成本也较低。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种光器件,其特征在于,包括:盒体、上盖,位于所述盒体内部的光学基板和光学元件;
    所述光学基板具有贯穿厚度方向的开口,所述光学元件固定于所述开口的内壁。
  2. 如权利要求1所述的光器件,其特征在于,所述盒体包括:侧壁和底盖;
    所述光学基板与所述盒体的侧壁为一体结构,所述光学基板与所述盒体的底盖胶合设置,所述光学基板与所述上盖胶合设置。
  3. 如权利要求2所述的光器件,其特征在于,所述侧壁在所述光学基板厚度方向的高度大于所述光学基板的厚度;
    所述光学基板靠近所述上盖一侧的表面与所述侧壁形成第一凹陷结构,所述上盖嵌设于所述第一凹陷结构内;和/或,所述光学基板靠近所述底盖一侧的表面与所述侧壁形成第二凹陷结构,所述底盖嵌设于所述第二凹陷结构内。
  4. 如权利要求2或3所述的光器件,其特征在于,所述光学基板的厚度大于或等于所述光学元件在所述光学基板厚度方向上的最大高度。
  5. 如权利要求1~4任一项所述的光器件,其特征在于,还包括:位于所述盒体内部的第一传感器,位于所述盒体外部的第二传感器;
    所述第一传感器用于检测所述盒体内部的温度、湿度和气压,并输出第一检测信号;
    所述第二传感器用于检测所述盒体外部的温度、湿度和气压,并输出第二检测信号。
  6. 如权利要求1~5任一项所述的光器件,其特征在于,还包括:光信号穿通结构;
    所述盒体的侧壁设有贯穿所述盒体的第一通孔;
    所述光信号穿通结构包括:连接管,以及穿过所述连接管的光纤;所述连接管穿过所述第一通孔;
    所述盒体在对应于所述第一通孔处设有凹槽;所述凹槽围绕所述第一通孔,且所述凹槽位于所述盒体的内壁和/或外壁。
  7. 如权利要求6所述的光器件,其特征在于,所述连接管的一部分位于所述第一通孔内部,另一部分位于所述盒体的内部;
    位于所述盒体内部的部分所述连接管设有开孔;
    所述光纤包括:裸纤和涂覆层,所述光纤具有裸纤区域和包覆区域,所述裸纤区域的位置与所述开孔的位置相对应,所述涂覆层包裹所述包覆区域内的所述裸纤,所述裸纤区域中的所述裸纤未被所述涂覆层包裹;
    所述光信号穿通结构还包括:填充部,所述填充部填充于所述光纤与所述连接管之间,且所述填充部包裹所述裸纤区域及与所述裸纤区域临近的部分所述包覆区域内的所述光纤。
  8. 如权利要求6所述的光器件,其特征在于,所述连接管的一部分位于所述第一通孔内部,另一部分位于所述盒体的内部;
    所述连接管具有位于所述盒体内部的减薄区域;所述连接管在所述减薄区域内的直径,小于所述连接管在除所述减薄区域外的其他区域内的直径;
    所述光纤包括:裸纤和涂覆层,所述光纤具有裸纤区域和包覆区域,所述裸纤区域的位置与所述减薄区域的位置相对应,所述涂覆层包裹所述包覆区域内的所述裸纤,所述裸 纤区域中的所述裸纤未被所述涂覆层包裹;
    所述光信号穿通结构还包括:填充部,所述填充部填充于所述光纤与所述连接管之间,且所述填充部包裹所述裸纤区域及与所述裸纤区域临近的部分所述包覆区域内的所述光纤。
  9. 如权利要求6~8任一项所述的光器件,其特征在于,所述光信号穿通结构通过胶体与所述盒体胶合密封设置。
  10. 如权利要求1~9任一项所述的光器件,其特征在于,还包括:电信号穿通结构;
    所述盒体的侧壁设有贯穿所述盒体的第二通孔;
    所述电信号穿通结构包括:条状的柔性电路板;或者,所述电信号穿通结构包括:条状的印刷电路板;
    所述电信号穿通结构穿过所述第二通孔,所述电信号穿通结构通过胶体与所述盒体胶合密封设置。
  11. 如权利要求10所述的光器件,其特征在于,还包括:位于所述盒体内部的固定件;
    所述盒体包括:侧壁和底盖;
    所述胶体包裹位于所述盒体内部靠近所述盒体的部分所述电信号穿通结构,且所述胶体与所述盒体的内壁粘接;
    所述电信号穿通结构以及包裹所述电信号穿通结构的所述胶体固定于所述固定件与所述底盖之间。
  12. 如权利要求11所述的光器件,其特征在于,所述固定件包括:相互连接的第一固定部和第二固定部;
    所述第一固定部与所述底盖固定所述电信号穿通结构以及包裹所述电信号穿通结构的所述胶体,所述第二固定部固定粘接于所述盒体的内壁的所述胶体;
    所述第一固定部与所述第二固定部之间的夹角为倒角;
    所述第二通孔的内壁与所述盒体的内壁之间的夹角为倒角;和/或,所述第二通孔与所述盒体的外壁之间的夹角为倒角;
    所述胶体填充于所述固定件、所述盒体的内壁及所述盒体的底盖之间,且所述胶体填充所述第二通孔。
  13. 如权利要求10~12任一项所述的光器件,其特征在于,所述柔性电路板的材料包括:聚酰亚胺或液晶聚合物;所述印刷电路板的材料包括:聚酰亚胺或液晶聚合物。
  14. 如权利要求1~13任一项所述的光器件,其特征在于,所述盒体与所述上盖通过胶体胶合密封设置。
  15. 如权利要求9、10或14所述的光器件,其特征在于,还包括:至少覆盖部分所述胶体的保护膜;
    所述胶体的材料包括:环氧树脂;
    所述保护膜为采用有机材料或无机材料制作的真空镀膜。
  16. 一种光通信设备,其特征在于,所述光通信设备包括:如权利要求1~15任一项所述的光器件,电路板,以及壳体,所述光器件位于所述电路板上,所述壳体包裹所述电路板和所述光器件。
  17. 一种光交换系统,其特征在于,包括:第一光通信设备和第二光通信设备,所述第一光通信设备为如权利要求16所述的光通信设备,所述第二光通信设备通过所述第一光 通信设备进行光信息交换。
PCT/CN2023/093408 2022-06-22 2023-05-11 一种光器件、光通信设备及光交换系统 WO2023246356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210712064.9 2022-06-22
CN202210712064.9A CN117310896A (zh) 2022-06-22 2022-06-22 一种光器件、光通信设备及光交换系统

Publications (1)

Publication Number Publication Date
WO2023246356A1 true WO2023246356A1 (zh) 2023-12-28

Family

ID=89244986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093408 WO2023246356A1 (zh) 2022-06-22 2023-05-11 一种光器件、光通信设备及光交换系统

Country Status (2)

Country Link
CN (1) CN117310896A (zh)
WO (1) WO2023246356A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197173A (ja) * 2007-02-08 2008-08-28 Seiko Epson Corp 光通信モジュール、電子機器、光通信モジュールの製造方法および電子機器の製造方法
CN103809255A (zh) * 2012-11-12 2014-05-21 住友电气工业株式会社 具有光多路分解器的接收器光学组件及其制造方法
CN109407235A (zh) * 2018-12-17 2019-03-01 青岛海信宽带多媒体技术有限公司 一种光学次模块及光模块
JP2019191281A (ja) * 2018-04-20 2019-10-31 日本ルメンタム株式会社 光モジュール、及び光伝送装置
CN210518345U (zh) * 2019-10-30 2020-05-12 深圳市深光谷科技有限公司 高导热收发一体光模块
CN212675224U (zh) * 2020-07-10 2021-03-09 江苏宇特光电科技股份有限公司 一种光纤固定结构及光纤连接器
CN113281861A (zh) * 2021-07-14 2021-08-20 武汉联特科技股份有限公司 光发射组件和光路耦合方法
CN215895062U (zh) * 2022-01-17 2022-02-22 湖北菲尔博光电技术有限公司 一种光纤组件封装结构
JP2022037163A (ja) * 2017-03-27 2022-03-08 日本ルメンタム株式会社 光サブアセンブリ、光モジュール、及び光伝送装置
CN216351373U (zh) * 2021-11-05 2022-04-19 苏州旭创科技有限公司 一种光模块

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197173A (ja) * 2007-02-08 2008-08-28 Seiko Epson Corp 光通信モジュール、電子機器、光通信モジュールの製造方法および電子機器の製造方法
CN103809255A (zh) * 2012-11-12 2014-05-21 住友电气工业株式会社 具有光多路分解器的接收器光学组件及其制造方法
JP2022037163A (ja) * 2017-03-27 2022-03-08 日本ルメンタム株式会社 光サブアセンブリ、光モジュール、及び光伝送装置
JP2019191281A (ja) * 2018-04-20 2019-10-31 日本ルメンタム株式会社 光モジュール、及び光伝送装置
CN109407235A (zh) * 2018-12-17 2019-03-01 青岛海信宽带多媒体技术有限公司 一种光学次模块及光模块
CN210518345U (zh) * 2019-10-30 2020-05-12 深圳市深光谷科技有限公司 高导热收发一体光模块
CN212675224U (zh) * 2020-07-10 2021-03-09 江苏宇特光电科技股份有限公司 一种光纤固定结构及光纤连接器
CN113281861A (zh) * 2021-07-14 2021-08-20 武汉联特科技股份有限公司 光发射组件和光路耦合方法
CN216351373U (zh) * 2021-11-05 2022-04-19 苏州旭创科技有限公司 一种光模块
CN215895062U (zh) * 2022-01-17 2022-02-22 湖北菲尔博光电技术有限公司 一种光纤组件封装结构

Also Published As

Publication number Publication date
CN117310896A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US20150315014A1 (en) Top Port MEMS Cavity Package and Method of Manufacture Thereof
US8276460B2 (en) Packaging for chip-on-board pressure sensor
US8215176B2 (en) Pressure sensor for harsh media sensing and flexible packaging
US6646316B2 (en) Package structure of an image sensor and packaging
CN101957245B (zh) 具有不受约束的敏感裸芯的传感器封装组件
CN100452396C (zh) 半导体装置及其制造方法
US9664867B2 (en) Flexible hermetic package for optical device
KR101522758B1 (ko) 패키징 디바이스 장치 및 패키지용 베이스 부재
US8999757B2 (en) Top port MEMS cavity package and method of manufacture thereof
CN110265281B (zh) 一种基于微通道板结构的光电倍增管的防水封装
CN110582046A (zh) 一种防水传感器封装、传感器及电子设备
JPH05203523A (ja) 圧力センサ・パッケージ
WO2023246356A1 (zh) 一种光器件、光通信设备及光交换系统
US20190088614A1 (en) Microelectronic device having protected connections and manufacturing process thereof
WO2017110422A1 (ja) 圧力センサ
EP1909128B1 (en) Air cavity plastic package for high frequency optoelectronic devices and method of packaging and assembling a high frequency optoelectronic device
US6841799B2 (en) Optoelectronic package
US7973454B1 (en) Vacuum hermetic organic packaging carrier and sensor device package
US9343651B2 (en) Organic packaging carrier
JP3135724U (ja) 中空パッケージ
JP2003140008A (ja) 光モジュール及びその製造方法並びに光伝達装置
JP6580079B2 (ja) 圧力センサ、および、圧力センサの製造方法
CN219044842U (zh) 一种mems传感器封装结构
WO2023124433A1 (zh) 光学器件、光模块及光交换系统
CN115077588B (zh) 一种光纤传感用密封塞、管壳、集成光电器件及装配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826006

Country of ref document: EP

Kind code of ref document: A1