WO2023246333A1 - 一种多频段多波束mimo电磁透镜阵列天线及天线装置 - Google Patents

一种多频段多波束mimo电磁透镜阵列天线及天线装置 Download PDF

Info

Publication number
WO2023246333A1
WO2023246333A1 PCT/CN2023/092503 CN2023092503W WO2023246333A1 WO 2023246333 A1 WO2023246333 A1 WO 2023246333A1 CN 2023092503 W CN2023092503 W CN 2023092503W WO 2023246333 A1 WO2023246333 A1 WO 2023246333A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
band
low
array antenna
electromagnetic lens
Prior art date
Application number
PCT/CN2023/092503
Other languages
English (en)
French (fr)
Inventor
李梓萌
Original Assignee
广州司南技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州司南技术有限公司 filed Critical 广州司南技术有限公司
Publication of WO2023246333A1 publication Critical patent/WO2023246333A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of lens antennas, and in particular to a multi-band multi-beam MIMO electromagnetic lens array antenna and antenna device.
  • Lens antennas have many advantages in the field of multi-beam antennas.
  • the lens antenna has a circular structure, and its wind resistance is smaller than that of the same plate antenna.
  • the isolation between lens antenna beams can be better than 30dB, and the mutual coupling is small.
  • the inter-coherence is small; the side-lobe suppression in the horizontal plane can be better than 20dB, and its side-lobes cause little interference to adjacent areas; the lens antenna gain can reach 30dBi, and the overall antenna efficiency is as high as over 90%.
  • Low-power base stations can be used to achieve large-scale cover. This allows people to take advantage of these advantages to build multi-beam MIMO communication systems in future mobile communications, which will be applied in 5G communications and even future 6G communications technology.
  • the dielectric lens multi-beam antenna device discloses a dielectric lens column, array antenna, outer cover, end cover and installation. Bracket, wherein the outer cover is an integrated antenna cover, the dielectric lens column and the array antenna are covered together in the outer cover, the end caps are located at both ends of the outer cover, and the outer cover is installed on the installation bracket.
  • this dielectric lens multi-beam antenna device is only suitable for single-band lens antennas without cables. Not only does the formed beam fail to cover a 120-degree sector, but it also cannot meet the needs of multi-band multi-port lens antennas.
  • the present application provides a multi-band multi-beam MIMO electromagnetic lens array antenna and antenna device, which not only meets the requirements of multi-band multi-port lens antennas, but also solves the problem of existing antennas.
  • the problem is that the device cannot cover a 120 degree sector.
  • a multi-band multi-beam MIMO electromagnetic lens array antenna including an electromagnetic lens and at least one multi-band antenna unit group, at least one of the multi-band antenna unit group is arranged on the peripheral side of the electromagnetic lens;
  • Each of the multi-band antenna unit groups includes a low-frequency reflection plate provided with a low-frequency array antenna, and two high-frequency reflection plates provided with a high-frequency array antenna.
  • the low-frequency reflection plate is connected to the adjacent high-frequency reflection plate. Set at an angle so that the high and low frequency beams formed have different directions.
  • multi-band antenna unit groups are arranged along the circumferential side of the electromagnetic lens and distributed within an included angle range of 165° on one side of the electromagnetic lens.
  • angle range between the direction of the low-frequency beam of the low-frequency array antenna and the direction of the high-frequency beam of the adjacent high-frequency array antenna is between 2° and 20°.
  • each of the low-frequency array antennas operates in the frequency band of 617-960MHz;
  • Each of the high-frequency array antennas operates in the frequency band of 1427-2690MHz;
  • the angle range between the low-frequency reflection plate and the high-frequency reflection plate is between 160° and 178°.
  • the ratio of the beam of the low-frequency array antenna operating in the 617-960 MHz frequency band to the beam of the high-frequency array antenna operating in the 1427-2690 MHz frequency band is 1:2.
  • multiple layers of the multi-band antenna unit groups are evenly stacked along the axis direction of the electromagnetic lens to form a multi-layer multi-channel multi-beam MIMO electromagnetic lens array antenna.
  • each of the multi-band antenna unit groups further includes a combiner for combining and frequency dividing the low-frequency array antenna and the high-frequency array antenna.
  • each of the low-frequency array antennas includes at least one low-frequency dipole arranged in an array; and each of the high-frequency array antennas includes at least one high-frequency dipole arranged in an array.
  • the low-frequency dipole is composed of a low-frequency reduced dipole or/and a low-frequency crossed dipole
  • the high-frequency dipole is composed of a high-frequency reduced dipole or/and a high-frequency crossed dipole.
  • the low-frequency array antenna also has a low-frequency phase shifter that drives the low-frequency phase shifter to perform vertical plane beam scanning;
  • the high-frequency array antenna also has a high-frequency phase shifter that drives all The high-frequency phase shifter is used to perform vertical plane beam scanning.
  • the low-frequency reflection plate and the high-frequency reflection plate are both made of metal plates or pultruded aluminum profiles.
  • This application also discloses an antenna device, including:
  • a plurality of support isolation components, a plurality of the support isolation components are assembled inside the radome body, and the inner side of the radome body and the plurality of support isolation components form a lens cavity;
  • the above-mentioned multi-band multi-beam MIMO electromagnetic lens array antenna the electromagnetic lens assembly of the multi-band multi-beam MIMO electromagnetic lens array antenna is fixed inside the lens cavity, and the multi-band multi-beam MIMO electromagnetic lens array antenna has The antenna unit assembly is assembled inside the supporting isolation component.
  • a cavity is provided inside the support and isolation component, and the cavity is a closed annular columnar structure or an open annular columnar structure.
  • isolation reinforcement ribs are also provided on the support and isolation components.
  • the electromagnetic lens has a cylindrical shape
  • the cylindrical shape here may be a cylindrical shape, a semi-cylindrical shape, a square cylindrical shape, or an elliptical cylindrical shape.
  • the outer surface of the radome body is provided with cover reinforcement ribs.
  • support and isolation components are made by rotational molding process or fiberglass pultrusion process.
  • the upper end cover is made by blister molding process or injection molding process.
  • the main body of the radome is made of a lower end cover and a lens antenna cover made by a rotational molding process.
  • the multi-band multi-beam MIMO electromagnetic lens array antenna and antenna device provided by this application have the following technical effects:
  • the low frequency generated by the low-frequency array antenna is The high-frequency beam released by the beam and high-frequency array antenna covers a 120° sector, effectively solving the problem that existing antenna devices cannot cover the 120-degree sector, thus leading to the development of 4G/5G converged lens antenna products covering the 5G network standard.
  • Figure 1 is a schematic structural diagram of a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 2 is a first combination diagram of a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 3 is a second combination diagram of a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 4 is a partial enlarged schematic diagram of position A in Figure 1;
  • Figure 5 is a first overall assembly diagram of the antenna device according to the second embodiment of the present application.
  • Figure 6 is a first overall exploded view of the antenna device according to the second embodiment of the present application.
  • Figure 7 is a second overall assembly diagram of the antenna device according to the second embodiment of the present application.
  • Figure 8 is a projection view of Figure 7 along the axis of the electromagnetic lens
  • Figure 9 is a schematic diagram of the unit interface definition in Figure 8.
  • Figure 10 is a schematic structural diagram of the supporting isolation component in the antenna device of the present application.
  • Figure 11 is a first perspective structural view of the main body of the radome in the antenna device of the present application.
  • Figure 12 is a second perspective structural view of the main body of the radome in the antenna device of the present application.
  • Figure 13 is a first horizontal image of a low-frequency beam generated by a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 14 is a first horizontal image of a high-frequency beam generated by a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 15 is a first horizontal image of the high and low frequency beams combined in Figure 13 and Figure 14;
  • Figure 16 is a first vertical image of a low-frequency beam generated by a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 17 is a first vertical image of a high-frequency beam generated by a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 18 is the first vertical image of the high and low frequency beams combined in Figure 16 and Figure 17;
  • Figure 19 is a second horizontal image of a high-frequency beam generated by a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 20 is a second horizontal image of a low-frequency beam generated by a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 21 is a second horizontal image of the high and low frequency beams combined in Figure 19 and Figure 20;
  • Figure 22 is a second vertical image of a high-frequency beam generated by a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 23 is a second vertical image of a low-frequency beam generated by a multi-band multi-beam MIMO electromagnetic lens array antenna according to the first embodiment of the present application;
  • Figure 24 is a second vertical image of the high and low frequency beams of Figure 22 and Figure 23 combined.
  • Icon 1-multi-band antenna unit group, 1A-top multi-frequency multi-port antenna group, 1B-bottom multi-frequency multi-port antenna group, 11-low-frequency array antenna, 111-low-frequency dipole, 12-high-frequency array antenna, 121-High frequency dipole, 13-Low frequency reflector, 14-High frequency reflector, 21-Radome main body, 211-Lower end cover, 212-Lens antenna cover, 213-End cover reinforcement, 214-Cover reinforcement , 22-Upper end cover, 23-Support isolation component, 231-Cavity, 232-Isolation reinforcement rib, 24-Lens cavity, 25-Electromagnetic lens.
  • FIG 1 The antenna device shown in Figure 6
  • the first overall exploded view of the device is shown in Figure 1.
  • This application discloses a multi-band multi-beam MIMO electromagnetic lens array antenna, including an electromagnetic lens 25 and at least one multi-band antenna unit group 1, and at least one multi-band antenna.
  • the unit group 1 is arranged on the peripheral side of the electromagnetic lens 25, then the multi-band antenna unit group 1 and the electromagnetic lens 25 form a multi-channel multi-beam MIMO;
  • Each multi-band antenna unit group 1 includes a low-frequency reflection plate 13 provided with a low-frequency array antenna 11, and two high-frequency reflection plates 14 provided with a high-frequency array antenna 12.
  • the two high-frequency array antennas 12 are respectively They are arranged on opposite sides of the low-frequency array antenna 11 .
  • the core of the solution is that the low-frequency reflection plate 13 and the adjacent high-frequency reflection plate 14 are arranged at an angle.
  • the low-frequency reflection plate 13 and the high-frequency reflection plate 14 are both made of metal plates or pultruded aluminum profiles.
  • the reflection plate 14 and the low-frequency reflection plate 13 are not located on the same plane, which not only makes the directions of each low-frequency array antenna 11 and each high-frequency array antenna 12 different, that is, the low-frequency beam released by each low-frequency array antenna 11 is directed in the same direction as each high-frequency array antenna 12 .
  • the high-frequency beams of the high-frequency array antennas 12 have different directions, so that the formed high- and low-frequency beams have different directions, and the low-frequency beams released by each low-frequency array antenna 11 and the high-frequency beams released by each high-frequency array antenna 12 are Under the action of the high-frequency reflector 14 and the low-frequency reflector 13, the beam forms a beam coverage sector, which facilitates the purpose of covering the low-frequency beam and the high-frequency beam to form a 120° sector.
  • each low-frequency array antenna 11 works in the frequency band of 617-960MHz
  • each high-frequency array antenna 12 works in the frequency band of 1427-2690MHz, ensuring that the low-frequency array antenna 11 and the high-frequency array antenna 12 work in 4G, Within the 5G operating frequency band.
  • the angle range between the low-frequency reflector 13 and the high-frequency reflector 14 is between 160° and 178°, which means that the low-frequency beam released by the low-frequency array antenna 11 is directed in the same direction as the adjacent high-frequency array antenna 12
  • the angle range of the direction of the high-frequency beam is between 2° and 20°, so that the low-frequency beam released by the low-frequency array antenna 11 working in the 617-960MHz frequency band and the high-frequency array antenna 12 working in the 1427-2690MHz frequency band have high
  • Each frequency beam can cover nearly 120° within the sector, and all beams in each frequency band cover the sector.
  • the ratio of the beam of the low-frequency array antenna 11 operating in the 617-960 MHz frequency band to the beam of the high-frequency array antenna 12 operating in the 1427-2690 MHz frequency band is 1:2.
  • the low-frequency array antenna 11 working in the 617-960MHz frequency band releases three low-frequency beams and high
  • the frequency array antenna 12 works in the 1427-2690MHz frequency band and releases 6 high-frequency beams. After the low-frequency beam and the high-frequency beam are compressed by the electromagnetic lens 25, they all cover a sector of nearly 120°.
  • the 10dB angle between each low-frequency beam of the low-frequency array antenna 11 is 40 degrees
  • the 10dB angle between each high-frequency beam of the high-frequency array antenna 12 is 20 degrees, forming a low-frequency beam containing
  • the two high-frequency beams also achieve a ratio of low-frequency beam to high-frequency beam of 1:2.
  • one antenna can be used by multiple operators, thereby achieving high-frequency tube capacity and low-frequency tube coverage, saving site and operator site construction costs. At the same time, it also has the ability to effectively The unexpected effect of improving the call quality in the overlap zone between two adjacent high-frequency beams.
  • the network architecture of the multi-channel multi-beam MIMO composed of the multi-band antenna unit group 1 and the electromagnetic lens 25 is a cellular structure, that is, one sector is 120 degrees, and a low-frequency 3-beam divides the 120-degree sector into 3 sectors.
  • Physical sub-cells increase capacity by 3 times, and each sub-cell is 40 degrees, that is, each of the three low-frequency beams covers exactly 40 degrees (10dB wave width is 40 degrees).
  • 2*2 MIMO is achieved in each sub-cell.
  • the electromagnetic lens 25 is configured with two layers of multi-band antenna unit groups 1, that is, the electromagnetic lens 25 is configured with two layers of the same low-frequency 3-beam
  • a 4*4 low-frequency MIMO can be formed correspondingly in each 40-degree sub-cell physical space.
  • two layers of low-frequency 3-beams are equivalent to 3*2 equal to 6 times the capacity of one layer of low-frequency 3-beams, and its capacity will be greatly improved.
  • a 0.8 coefficient is discounted
  • the actual multi-channel multi-beam MIMO still has a capacity of 6*0.8 equal to 4.8 times.
  • the capacity has been increased by nearly 5 times, which is still much larger than the capacity of the existing network.
  • a high-frequency 6-beam divides a 120-degree sector into 6 physical sub-cells, increasing the capacity by 6 times, and each sub-cell is 20 degrees, which is equivalent to a high-frequency 3-beam.
  • Each beam just covers Cover 20 degrees (10dB wave width is 20 degrees).
  • the electromagnetic lens 25 is configured with two layers of multi-band antenna unit groups 1, that is, the electromagnetic lens 25 is configured with two layers of the same high-frequency 6-beams, that is, two layers of the same high-frequency 6-beams are superimposed.
  • the physical space can correspond to the formation of 8*8 low-frequency MIMO.
  • two layers of high-frequency 6-beams are equivalent to 6*4 of one layer of high-frequency 6-beams, which is 24 times the capacity.
  • Even if interference within the network system and uneven user distribution are discounted by a factor of 0.8, the actual multi-channel multi-beam MIMO still has a capacity of 24*0.8 equal to 19.6 times, and the capacity can be increased by nearly 20 times.
  • each sub-cell when the electromagnetic lens 25 is configured with one layer of multi-band antenna unit group 1, each sub-cell constitutes 2*2 MIMO; when the electromagnetic lens 25 is configured with two layers of multi-band antenna unit group 1, each sub-cell constitutes 4*4 MIMO, and so on.
  • each sub-cell when the electromagnetic lens 25 is configured with a three-layer multi-band antenna unit group 1, each sub-cell forms a 6*6 MIMO; when the electromagnetic lens 25 is configured with a four-layer multi-band antenna unit group 1, each sub-cell forms an 8*8 MIMO.
  • the benefits brought by the above-mentioned capacity improvement due to limited spectrum resources, for existing network operators, the 120-degree large sector is divided into several sub-sectors to avoid the operator's shortage of spectrum resources and improve spectrum utilization. efficiency, increase operator profits, and improve the KPI of the operating department.
  • FIG. 2 shows a schematic diagram of the combination of a multi-band multi-beam MIMO electromagnetic lens array antenna.
  • Three multi-band antenna unit groups 1 are arranged on the central axis of the electromagnetic lens 25, and they are all located on one side of the electromagnetic lens 25. It should be noted that it is not limited to the three multi-band antenna unit groups 1 in the figure, but may also be two multi-band antenna unit groups 1, or four multi-band antenna unit groups 1.
  • FIG. 4 shows a partially enlarged schematic diagram of position A in the structural diagram of a multi-band multi-beam MIMO electromagnetic lens array antenna.
  • Each low-frequency array antenna 11 is composed of It consists of four low-frequency dipole 111 arrays, and each low-frequency unit has an independent low-frequency phase shifter whose electrical scanning angle is controlled by the ICU.
  • the high-frequency unit of each high-frequency array antenna 12 is composed of eight high-frequency dipole arrays 121, and each high-frequency unit is equipped with an independent high-frequency phase shifter whose electrical scanning angle is controlled by the ICU.
  • the low-frequency dipole 111 is composed of a low-frequency reduced dipole or/and a low-frequency crossed dipole
  • the high-frequency dipole 121 is composed of a high-frequency reduced dipole or/and a high-frequency crossed dipole.
  • each multi-band antenna unit group 1 also includes a combiner for combining and dividing the low-frequency array antenna 11 and the high-frequency array antenna 12 .
  • the combiner may be provided on the low-frequency array antenna 11, or may be provided on the high-frequency array antenna 12, or both the low-frequency array antenna 11 and the high-frequency array antenna 12 may be provided with combiners.
  • FIG. 11 and 12 there are schematic structural diagrams of the radome main body, radome main body 21, and the open end of the radome main body 21 is sealed with an upper end cover 22.
  • the upper end cover 22 is preferably made by a blister process or an injection molding process;
  • a plurality of support and isolation components 23 made by a rotational molding process or a fiberglass pultrusion process are assembled inside the radome main body 21 , and the inner side of the radome main body 21 and the several support and isolation components 23 form a lens cavity 24 ;as well as
  • the above-mentioned multi-band multi-beam MIMO electromagnetic lens array antenna, the electromagnetic lens 25 of the multi-band multi-beam MIMO electromagnetic lens array antenna is assembled and fixed inside the lens cavity 24, and the multi-band antenna unit group 1 of the multi-band multi-beam MIMO electromagnetic lens array antenna is It is assembled inside the support isolation member 23.
  • the reflective surfaces of the low-frequency reflection plates 13 of the two multi-band antenna unit groups 1 The reflecting surfaces of the high-frequency reflecting plate 14 and the high-frequency reflecting plate 14 are parallel to the center line of the electromagnetic lens 25 . Therefore, both the low-frequency beam and the high-frequency beam cover the 120° sector and are distributed around the circumference of the electromagnetic lens 25 .
  • the shape and size of the electromagnetic lens 25 is adapted to the shape and size of the lens cavity 24.
  • the electromagnetic lens 25 is cylindrical, and the electromagnetic lens 25 is preferably cylindrical. Of course, it is also It can be semi-cylindrical, square cylindrical or elliptical cylindrical. According to the shape of the lens cavity 24, the electromagnetic lens 25 can also be in other cylindrical shapes;
  • a cavity 231 is provided inside the support and isolation component 23 .
  • the cavity 231 is a closed annular columnar structure or an open annular columnar structure.
  • isolation reinforcement ribs 232 are also provided on the support isolation component 23. The isolation reinforcement ribs 232 improve the structural strength of the support isolation component 23, thereby further improving the overall strength of the antenna device.
  • the support isolation component 23 is used to strengthen the structural strength of the radome main body 21, and the electromagnetic lens 25 is assembled and fixed in the lens cavity 24 formed between the radome main body 21 and several support isolation components 23, ensuring that the electromagnetic
  • the staff first assembles several support and isolation components 23 to the interior of the radome body 21 one by one, then assembles the electromagnetic lens 25 smoothly to the interior of the lens cavity 24, and finally assembles the lens 25 into the lens cavity 24.
  • the multi-band multi-beam MIMO electromagnetic lens array antenna is correspondingly assembled to the inside of the supporting isolation component 23, and the upper end cover 22 is sealed to the radome main body 21. Therefore, the overall assembly of the antenna device is simple and is more convenient for the installation personnel.
  • the outer surface of the radome main body 21 has cover reinforcement ribs, wherein , the cover reinforcement includes the end cover reinforcement 213 and the cover reinforcement 214 provided on the outer wall of the lens antenna housing 212.
  • the end cover reinforcement 213 is provided on the lower end cover 211. Therefore, the lower end is reinforced through the end cover reinforcement 213.
  • the structural strength of the cover 211 is enhanced, and the structural strength of the lens antenna housing 212 is enhanced through the housing reinforcement ribs 214, thereby achieving the purpose of enhancing the overall structural strength of the antenna device through the cover reinforcement ribs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请公开了一种多频段多波束MIMO电磁透镜阵列天线,包括电磁透镜以及至少一个多频段天线单元组,多频段天线单元组设置于电磁透镜的周侧一侧;每一多频段天线单元组包括设置有低频阵列天线的低频反射板、以及设置有高频阵列天线的高频反射板,低频反射板与高频反射板呈夹角设置。

Description

一种多频段多波束MIMO电磁透镜阵列天线及天线装置 技术领域
本申请涉及透镜天线技术领域,尤其涉及一种多频段多波束MIMO电磁透镜阵列天线及天线装置。
背景技术
透镜天线在多波束天线领域有诸多优点,例如,透镜天线外形具有圆形结构,其风阻相对于相同的板状天线要小,透镜天线波束间的隔离度可以优于30dB,互藕小,波束间相干性小;水平面的旁瓣抑制可以优于20dB,其旁瓣对相邻的干扰小;透镜天线增益可达30dBi,整体天线的效率高达90%以上,可以使用小功率基站实现大范围的覆盖。使人们可以利用这些优点在未来的移动通信中构建多波束MIMO通信系统,在5G通信甚至未来的6G通信技术中得到应用。
随着现代移动通信技术的快速发展,第四代移动通信系统(4G)网络覆盖技术的深入发展和第五代移动通信系统(5G)时代的开启,在运营商网络规划网络覆盖实施中,需要一种既能对4G网络多制式兼容,又能满足5G网络制式覆盖的4G/5G融合透镜天线产品,多频透镜天线成为发展的趋势。
如申请人于2019年8月16日研制并公开的公告授权号CN209266574U的一种介质透镜多波束天线装置,该介质透镜多波束天线装置公开了介质透镜柱、阵列天线、外罩、端盖以及安装支架,其中,外罩为一体化天线外罩,介质透镜柱和阵列天线一起罩在外罩内,端盖位于外罩两端,外罩安装在安装支架上。但是该介质透镜多波束天线装置仅适用于无电缆的单频段的透镜天线,不仅形成的波束不能覆盖120度的扇区,而且不能满足多频段多端口透镜天线的需求。
发明内容
为了克服上述现有技术所述的至少一种缺陷,本申请提供一种多频段多波束MIMO电磁透镜阵列天线及天线装置,不仅达到满足多频段多端口透镜天线的诉求,同时还解决现有天线装置不能覆盖120度的扇区的问题。
本申请为解决其问题所采用的技术方案是:
一种多频段多波束MIMO电磁透镜阵列天线,包括电磁透镜以及至少一个多频段天线单元组,至少一个所述多频段天线单元组设置于所述电磁透镜的周侧一侧;
每一所述多频段天线单元组包括设置有低频阵列天线的低频反射板、以及两个设置有高频阵列天线的高频反射板,所述低频反射板与相邻的所述高频反射板呈夹角设置,以使所形成的高低频波束的指向不同。
进一步地,若干所述多频段天线单元组沿着所述电磁透镜的周侧排列并分布于所述电磁透镜一侧的165°夹角范围内。
进一步地,所述低频阵列天线的低频波束的指向与相邻的所述高频阵列天线的高频波束的指向的夹角范围在2°-20°之间。
进一步地,每一所述低频阵列天线工作于617-960MHz的频段;
每一所述高频阵列天线工作于1427-2690MHz的频段;
所述低频反射板与所述高频反射板的夹角范围在160°-178°之间。
进一步地,所述低频阵列天线工作于617-960MHz频段的波束与所述高频阵列天线工作于1427-2690MHz频段的波束之比为1:2。
进一步地,沿着所述电磁透镜的轴线方向均匀叠加多层所述多频段天线单元组,构成多层的多频道多波束MIMO电磁透镜阵列天线。
进一步地,每一所述多频段天线单元组还包括合路器,用以组合、分频所述低频阵列天线及所述高频阵列天线。
进一步地,每一所述低频阵列天线均包括至少个阵列设置的低频偶极子;每一所述高频阵列天线均包括至少个阵列设置的高频偶极子。
进一步地,所述低频偶极子由低频折合偶极子或/与低频交叉偶极子构成;所述高频偶极子由高频折合偶极子或/与高频交叉偶极子构成。
进一步地,所述低频阵列天线还具有低频移相器,驱动所述低频移相器以进行垂直面波束扫描;所述高频阵列天线还具有高频移相器,驱动所 述高频移相器以进行垂直面波束扫描。
进一步地,所述低频反射板及所述高频反射板均由金属板或拉挤铝型材加工而成。
本申请还公开了一种天线装置,包括:
天线罩主体,所述天线罩主体的开口端封设有上端盖;
若干支撑隔离部件,若干所述支撑隔离部件均装配于所述天线罩主体的内部,且所述天线罩主体的内侧与若干所述支撑隔离部件形成透镜腔;
上述的多频段多波束MIMO电磁透镜阵列天线,所述多频段多波束MIMO电磁透镜阵列天线的电磁透镜装配固定在所述透镜腔的内部,所述多频段多波束MIMO电磁透镜阵列天线的多频段天线单元组装配于所述支撑隔离部件的内部。
进一步地,所述支撑隔离部件内部设置有空腔,所述空腔为封闭式环形柱状结构或开口式环形柱状结构。
进一步地,所述支撑隔离部件上还设置有隔离加强筋。
进一步地,所述电磁透镜呈柱形,此处的柱形可以为圆柱形、可以为半圆柱形、可以为方柱形、或可以为椭圆柱形。
进一步地,所述天线罩主体的外表面上具有罩体加强筋。
进一步地,所述支撑隔离部件由滚塑工艺或玻璃钢拉挤工艺制成。
进一步地,所述上端盖由吸塑工艺或注塑工艺制成。
进一步地,所述天线罩主体由下端盖与滚塑工艺制成的透镜天线外罩一体制成。
综合上述,本申请提供的一种多频段多波束MIMO电磁透镜阵列天线及天线装置,具有如下技术效果:
通过低频阵列天线、高频阵列天线及电磁透镜的配合使用,实现满足多频段多端口透镜天线的应用条件,同时,结合低频反射板与高频反射板夹角设置,则低频阵列天线产生的低频波束及高频阵列天线释放的高频波束覆盖形成120°扇区,有效解决现有天线装置不能覆盖120度的扇区的问题,从而5G网络制式覆盖的4G/5G融合透镜天线产品的发展。
附图说明
图1为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线的结构示意图;
图2为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线的第一组合图;
图3为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线的第二组合图;
图4为图1中A处的局部放大示意图;
图5为本申请第二实施例天线装置的第一整体装配图;
图6为本申请第二实施例天线装置的第一整体爆炸图;
图7为本申请第二实施例天线装置的第二整体装配图;
图8为图7沿电磁透镜轴向的投影图;
图9为图8中的单元接口定义示意图;
图10为本申请天线装置中的支撑隔离部件的结构示意图;
图11为本申请天线装置中天线罩主体的第一视角结构图;
图12为本申请天线装置中天线罩主体的第二视角结构图;
图13为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线产生低频波束的第一水平图像;
图14为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线产生高频波束的第一水平图像;
图15为图13与图14相结合的高低频波束的第一水平图像;
图16为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线产生低频波束的第一垂直图像;
图17为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线产生高频波束的第一垂直图像;
图18为图16与图17相结合的高低频波束的第一垂直图像;
图19为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线产生高频波束的第二水平图像;
图20为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线产生低频波束的第二水平图像;
图21为图19与图20相结合的高低频波束的第二水平图像;
图22为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线产生高频波束的第二垂直图像;
图23为本申请第一实施例多频段多波束MIMO电磁透镜阵列天线产生低频波束的第二垂直图像;
图24为图22与图23相结合的高低频波束的第二垂直图像。
图标:1-多频段天线单元组,1A-顶层多频多端口天线组,1B-底层多频多端口天线组,11-低频阵列天线,111-低频偶极子,12-高频阵列天线,121-高频偶极子,13-低频反射板,14-高频反射板,21-天线罩主体,211-下端盖,212-透镜天线外罩,213-端盖加强筋,214-外罩加强筋,22-上端盖,23-支撑隔离部件,231-空腔,232-隔离加强筋,24-透镜腔,25-电磁透镜。
具体实施方式
为了更好地理解和实施,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。
第一实施例
图1中,四个低频偶极子111组成一整列,形成低频阵列天线11,低频阵列天线11的两相对侧均由八个高频偶极子121组成一整列的高频阵列天线12,应当说明,四个低频偶极子111及八个高频偶极子121仅为示例,并不局限于四个低频偶极子111及八个高频偶极子121,图6所示的天线装 置的第一整体爆炸图并请结合图1所示,本申请公开了一种多频段多波束MIMO电磁透镜阵列天线,包括电磁透镜25以及至少一个多频段天线单元组1,至少一个多频段天线单元组1设置于电磁透镜25的周侧一侧,则多频段天线单元组1以及电磁透镜25构成多频道多波束MIMO;
每一多频段天线单元组1包括设置有低频阵列天线11的低频反射板13、以及两个设置有高频阵列天线12的高频反射板14,优选的,两个高频阵列天线12分别的相对设置在低频阵列天线11的相对两侧。
作为方案的核心在于,低频反射板13与相邻的高频反射板14呈夹角设置,低频反射板13及高频反射板14均由金属板或拉挤铝型材加工而成,则高频反射板14与低频反射板13不位于同一平面,不仅使得每一低频阵列天线11与每一高频阵列天线12的指向不相同,即每一低频阵列天线11所释放的低频波束指向与每一高频阵列天线12的高频波束指向不相同,实现所形成的高低频波束的指向不同,并且使得每一低频阵列天线11所释放的低频波束以及每一高频阵列天线12所释放的高频波束在高频反射板14与低频反射板13的作用下,形成波束覆盖扇区,进而便于将低频波束与高频波束覆盖形成120°扇区的目的。
在本实施例中,每一低频阵列天线11工作于617-960MHz的频段,每一高频阵列天线12工作于1427-2690MHz的频段,保证低频阵列天线11及高频阵列天线12工作于4G、5G的工作频段内。
重要的,低频反射板13与高频反射板14的夹角范围在160°-178°之间,也即使得低频阵列天线11所释放的低频波束的指向与相邻的高频阵列天线12的高频波束的指向的夹角范围在2°至20°之间,使得工作在617-960MHz频段的低频阵列天线11所释放的低频波束及工作在1427-2690MHz频段的高频阵列天线12的高频波束均能覆盖在将近120°扇区的内部,每个频段的所有波束均覆盖于扇区。
优选的,低频阵列天线11工作于617-960MHz频段的波束与高频阵列天线12工作于1427-2690MHz频段的波束之比为1:2。
综合上述方案,以三个多频段多波束MIMO电磁透镜阵列天线组合为例,则低频阵列天线11工作在617-960MHz频段所释放的低频波束为3束,高 频阵列天线12工作于1427-2690MHz频段所释放的高频波束为6束,低频波束及高频波束经电磁透镜25的压缩后,则均覆盖在将近120°扇区内,具体可根据图13至图24所示,则低频阵列天线11的每个低频波束的10dB间夹角是40度,高频阵列天线12的每个高频波束的10dB夹角是20度,形成一个低频波束中包含两个高频波束,也达到低频波束与高频波束之比为1:2。此外,由于4G、5G的工作频段分散,满足一个天线就可以供多个运营商使用,从而达到高频管容量,低频管覆盖,节省站址与运营商建站成本,同时,还具备有可以有效改善高频相邻两波束间交叠带通话质量的意想不到的效果。
应当说明,沿着电磁透镜25的轴线方向均匀叠加多层多频段天线单元组1,构成多层的多频道多波束MIMO电磁透镜阵列天线。具体如图3示出了多频段多波束MIMO电磁透镜阵列天线的第二组合图可知,以两个多频段天线单元组1叠加示意,两个多频段天线单元组1收尾连接,也即两个多频段天线单元组1沿着电磁透镜25的中心线方向排列设置。其中,靠近上端盖22一侧的多频段天线单元组1为顶层多频多端口天线组1A,则另一多频段天线单元组1为底层多频多端口天线组1B。
具体的,由多频段天线单元组1与电磁透镜25构成的多频道多波束MIMO的网络架构是蜂窝结构,即一个扇区为120度,则一个低频3波束将120度的扇区分成3个物理子小区,提升3倍容量,且每个子小区是40度,即低频3波束的每个波束刚好覆盖40度(10dB波宽是40度),同时,在每个子小区里实现2*2MIMO。
当电磁透镜25配置两层多频段天线单元组1时,也即电磁透镜25配置有两层相同的低频3波束,在每个40度的子小区物理空间就能对应形成4*4的低频MIMO,此时,两层低频3波束相当于一层低频3波束的3*2等于6倍的容量,其容量将大幅度提高,那么,当考虑网络系统内的干扰及用户分布不均衡打折0.8系数,则实际多频道多波束MIMO仍然具备有6*0.8等于4.8倍的容量,容量提升将近5倍,仍然远大于现网的容量。
同理,一个高频6波束将120度的扇区分成6个物理子小区,提升6倍容量,且每个子小区是20度,相当于一个高频3波束的每个波束刚好覆 盖20度(10dB波宽是20度)。
当电磁透镜25配置两层多频段天线单元组1时,也即电磁透镜25配置有两层相同的高频6波束,即两层相同的高频6波束叠加,在每个20度的子小区物理空间就能对应形成8*8的低频MIMO。此时,两层高频6波束相当于一层高频6波束的6*4等于24倍容量。哪怕考虑网络系统内的干扰及用户分布不均衡打折0.8系数,则实际多频道多波束MIMO仍然具备有24*0.8等于19.6倍的容量,容量提升也可以做到将近20倍。
综合上述可知,电磁透镜25配置一层多频段天线单元组1时,每个子小区构成2*2MIMO,电磁透镜25配置两层多频段天线单元组1时,每个子小区构成4*4MIMO,依次类推,电磁透镜25配置三层多频段天线单元组1时,每个子小区构成6*6MIMO,电磁透镜25配置四层多频段天线单元组1时,每个子小区构成8*8MIMO。
还有,上述容量的提升所带来的好处:由于频谱资源有限,对现网运营商来说,把120度的大扇区分成若干个子扇区,避免运营商频谱资源短缺问题,提高频谱利用效率,增加运营商利润,提高运营部门的KPI。
举个例子示意,若某运营商只有5MHz带宽部署其网络,我们把一个120度的大扇区划分6个物理子小区,每个子小区里实现8*8MIMO,此时对应为24倍容量,相当于运营商向政府购买了5MHz*24=“120MHz”的频谱,这尤其有利于频谱资源不够的小运营商。
此外,还要说明的,具体结合图2示出的多频段多波束MIMO电磁透镜阵列天线的第一组合示意图,若干多频段天线单元组1沿着电磁透镜25的周侧排列并分布于电磁透镜25一侧的165°夹角范围内。根据图2示出了多频段多波束MIMO电磁透镜阵列天线的组合示意图,电磁透镜25的中轴线为中心设置有三个多频段天线单元组1,且均位于电磁透镜25一侧。应该说明,不局限于图示中三个多频段天线单元组1,还可以为两个多频段天线单元组1,或者四个多频段天线单元组1。
在上述的低频阵列天线11及高频阵列天线12中,每一低频阵列天线11均包括至少2个阵列设置的低频偶极子111,每一高频阵列天线12均包括至少2个阵列设置的高频偶极子121。进一步的,低频阵列天线11还具 有低频移相器,驱动低频移相器及高频移相器,驱动高频移相器以进行垂直面波束扫描。
结合图4示出了多频段多波束MIMO电磁透镜阵列天线的结构示意图中A处的局部放大示意图,此处提供一个优选方案进行举例,但不局限于该优选方案,每一低频阵列天线11由四个低频偶极子111阵列组成,且每个低频单元具备有一独立的低频移相器,由ICU控制其电扫描角度。同样的,每一高频阵列天线12的高频单元由八个高频偶极子121阵列组成,且每个高频单元具备有一独立的高频移相器,由ICU控制其电扫描角度。
其中,低频偶极子111由低频折合偶极子或/与低频交叉偶极子构成,高频偶极子121由高频折合偶极子或/与高频交叉偶极子构成。
此外,每一多频段天线单元组1还包括合路器,用以组合、分频低频阵列天线11及高频阵列天线12。具体的,合路器可设置在低频阵列天线11上,或者也可以设置在高频阵列天线12,或者低频阵列天线11及高频阵列天线12均设置有合路器。
第二实施例
基于上述第一实施例研发并公开的多频段多波束MIMO电磁透镜阵列天线,结合图5所示的天线装置的第一整体装配图并结合图1及图6可知,申请人还公开了一种天线装置,包括:
如图11及图12示出的天线罩主体的结构示意图,天线罩主体21,天线罩主体21的开口端封设有上端盖22,上端盖22优选由吸塑工艺或注塑工艺制成;
若干由滚塑工艺或玻璃钢拉挤工艺制成的支撑隔离部件23,若干支撑隔离部件23均装配于天线罩主体21的内部,且天线罩主体21的内侧与若干支撑隔离部件23形成透镜腔24;以及
上述的多频段多波束MIMO电磁透镜阵列天线,多频段多波束MIMO电磁透镜阵列天线的电磁透镜25装配固定在透镜腔24的内部,多频段多波束MIMO电磁透镜阵列天线的多频段天线单元组1装配于支撑隔离部件23的内部。
对应的,当沿着电磁透镜25的轴线方向均匀叠加多层多频段天线单元组1时,以第一实施例设置两层多频段天线单元组1的优选方案为例,具体结合图7示出的天线装置的第二整体装配图,并结合图3、图8以及图9所示,则天线装置装配的过程如下:
顶层多频多端口天线组1A及底层多频多端口天线组1B按顺序依次对应装配至支撑隔离部件23的空腔231中时,两个多频段天线单元组1的低频反射板13的反射面及高频反射板14的反射面均与电磁透镜25的中心线平行,因而,低频波束与高频波束均覆盖于120°扇区内,并分布在电磁透镜25的周侧。
在本实施例中,如图6所示,电磁透镜25的形状尺寸与透镜腔24的形状尺寸相适配,应当说明,电磁透镜25呈柱形,电磁透镜25优选呈圆柱形,当然,还可以为半圆柱形、方柱形或者椭圆柱形,根据透镜腔24的形状,电磁透镜25还可以呈其他柱状;
其中,结合图10示出的支撑隔离部件23的结构示意图,支撑隔离部件23内部设置有空腔231,空腔231为封闭式环形柱状结构或开口式环形柱状结构。此外,支撑隔离部件23上还设置有隔离加强筋232,通过隔离加强筋232提高支撑隔离部件23的结构强度,从而进一步提高了天线装置的整体强度。
在本实施例中,支撑隔离部件23用以加强天线罩主体21的结构强度,则电磁透镜25装配固定在天线罩主体21与若干支撑隔离部件23之间形成的透镜腔24内,保证了电磁透镜25的稳固,不容易发生装配松动,则工作人员先将若干个支撑隔离部件23逐一对应装配至天线罩主体21内部,再将电磁透镜25平稳装配至透镜腔24的内部,以及将最后将多频段多波束MIMO电磁透镜阵列天线对应装配至支撑隔离部件23的内部,上端盖22封设至天线罩主体21上,因此,该天线装置的整体装配简便,更便于安装人员的装配工作。
进一步的,具体结合图11示出的天线罩主体21的第一视角结构图以及图12示出的天线罩主体21的第二视角结构图可知,天线罩主体21由下端盖211与滚塑工艺制成的透镜天线外罩212一体制成。
为使得天线罩主体21在装配及使用过程中稳固,不易于发生变形,具体结合图5、图7、图11及图12所示,天线罩主体21的外表面上具有罩体加强筋,其中,罩体加强筋包括端盖加强筋213及设置在透镜天线外罩212外侧壁上的外罩加强筋214,端盖加强筋213设置在下端盖211上,因此,通过端盖加强筋213实现增强下端盖211的结构强度,而通过外罩加强筋214增强透镜天线外罩212的结构强度,进而实现通过罩体加强筋实现整体增强天线装置的结构强度的目的。
本申请方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (19)

  1. 一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:
    包括电磁透镜(25)以及至少一个多频段天线单元组(1),至少一个所述多频段天线单元组(1)设置于所述电磁透镜(25)的周侧一侧;
    每一所述多频段天线单元组(1)包括设置有低频阵列天线(11)的低频反射板(13)、以及两个设置有高频阵列天线(12)的高频反射板(14),所述低频反射板(13)与相邻的所述高频反射板(14)呈夹角设置,以使所形成的高低频波束的指向不同。
  2. 根据权利要求1所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:若干所述多频段天线单元组(1)沿着所述电磁透镜(25)的周侧排列并分布于所述电磁透镜(25)一侧的165°夹角范围内。
  3. 根据权利要求1所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:所述低频阵列天线(11)的低频波束的指向与相邻的所述高频阵列天线(12)的高频波束的指向的夹角范围在2°-20°之间。
  4. 根据权利要求1所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:
    每一所述低频阵列天线(11)工作于617-960MHz的频段;
    每一所述高频阵列天线(12)工作于1427-2690MHz的频段;
    所述低频反射板(13)与所述高频反射板(14)的夹角范围在160°-178°之间。
  5. 根据权利要求1所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:所述低频阵列天线(11)工作于617-960MHz频段的波束与所述高频阵列天线(12)工作于1427-2690MHz频段的波束之比为1:2。
  6. 根据权利要求1所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:沿着所述电磁透镜(25)的轴线方向均匀叠加多层所述多频段天线单元组(1),构成多层的多频道多波束MIMO电磁透镜阵列天线。
  7. 根据权利要求1所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:每一所述多频段天线单元组(1)还包括合路器,用以组合、分 频所述低频阵列天线(11)及所述高频阵列天线(12)。
  8. 根据权利要求1至7任意一项所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:
    每一所述低频阵列天线(11)均包括至少2个阵列设置的低频偶极子(111);
    每一所述高频阵列天线(12)均包括至少2个阵列设置的高频偶极子(121)。
  9. 根据权利要求8所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:
    所述低频偶极子(111)由低频折合偶极子或/与低频交叉偶极子构成;
    所述高频偶极子(121)由高频折合偶极子或/与高频交叉偶极子构成。
  10. 根据权利要求8所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:
    所述低频阵列天线(11)还具有低频移相器,驱动所述低频移相器以进行垂直面波束扫描;
    所述高频阵列天线(12)还具有高频移相器,驱动所述高频移相器以进行垂直面波束扫描。
  11. 根据权利要求8所述的一种多频段多波束MIMO电磁透镜阵列天线,其特征在于:所述低频反射板(13)及所述高频反射板(14)均由金属板或拉挤铝型材加工而成。
  12. 一种天线装置,其特征在于:包括:
    天线罩主体(21),所述天线罩主体(21)的开口端封设有上端盖(22);
    若干支撑隔离部件(23),若干所述支撑隔离部件(23)均装配于所述天线罩主体(21)的内部,且所述天线罩主体(21)的内侧与若干所述支撑隔离部件(23)形成透镜腔(24);
    权利要求1至11任意一项所述的多频段多波束MIMO电磁透镜阵列天线,所述多频段多波束MIMO电磁透镜阵列天线的电磁透镜(25)装配固定在所述透镜腔(24)的内部,所述多频段多波束MIMO电磁透镜阵列天线的多频段天线单元组(1)装配于所述支撑隔离部件(23)的内部。
  13. 根据权利要求12所述的一种天线装置,其特征在于:所述支撑隔离部件(23)内部设置有空腔(231),所述空腔(231)为封闭式环形柱状结构或开口式环形柱状结构。
  14. 根据权利要求12所述的一种天线装置,其特征在于:所述支撑隔离部件(23)上还设置有隔离加强筋(232)。
  15. 根据权利要求12所述的一种天线装置,其特征在于:所述电磁透镜(25)呈柱形
  16. 根据权利要求12所述的一种天线装置,其特征在于:所述天线罩主体(21)的外表面上具有罩体加强筋。
  17. 根据权利要求12至14任意一项所述的一种天线装置,其特征在于:所述支撑隔离部件(23)由滚塑工艺或玻璃钢拉挤工艺制成。
  18. 根据权利要求12所述的一种天线装置,其特征在于:所述上端盖(22)由吸塑工艺或注塑工艺制成。
  19. 根据权利要求12或16所述的一种天线装置,其特征在于:
    所述天线罩主体(21)由下端盖(211)与滚塑工艺制成的透镜天线外罩(212)一体制成。
PCT/CN2023/092503 2022-06-20 2023-05-06 一种多频段多波束mimo电磁透镜阵列天线及天线装置 WO2023246333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210698854.6A CN114937859A (zh) 2022-06-20 2022-06-20 一种多频段多波束mimo电磁透镜阵列天线及天线装置
CN202210698854.6 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023246333A1 true WO2023246333A1 (zh) 2023-12-28

Family

ID=82867614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092503 WO2023246333A1 (zh) 2022-06-20 2023-05-06 一种多频段多波束mimo电磁透镜阵列天线及天线装置

Country Status (2)

Country Link
CN (1) CN114937859A (zh)
WO (1) WO2023246333A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114937859A (zh) * 2022-06-20 2022-08-23 广州司南技术有限公司 一种多频段多波束mimo电磁透镜阵列天线及天线装置
CN117673748A (zh) * 2024-01-30 2024-03-08 广州司南技术有限公司 一种超大大规模mimo多波束透镜天线系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009277A (zh) * 2013-02-21 2014-08-27 中国移动通信集团设计院有限公司 一种天线设备和天线阵列
CN109905153A (zh) * 2017-12-11 2019-06-18 梁平 自适应mu-mimo波束成形
EP3864763A1 (en) * 2018-10-09 2021-08-18 British Telecommunications public limited company Mimo systems
CN114243293A (zh) * 2021-12-16 2022-03-25 杭州电子科技大学 一种多单元自解耦高隔离小型化mimo天线阵列
CN114937859A (zh) * 2022-06-20 2022-08-23 广州司南技术有限公司 一种多频段多波束mimo电磁透镜阵列天线及天线装置
CN217589412U (zh) * 2022-06-20 2022-10-14 广州司南技术有限公司 一种多频段多波束mimo电磁透镜阵列天线及天线装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009277A (zh) * 2013-02-21 2014-08-27 中国移动通信集团设计院有限公司 一种天线设备和天线阵列
CN109905153A (zh) * 2017-12-11 2019-06-18 梁平 自适应mu-mimo波束成形
EP3864763A1 (en) * 2018-10-09 2021-08-18 British Telecommunications public limited company Mimo systems
CN114243293A (zh) * 2021-12-16 2022-03-25 杭州电子科技大学 一种多单元自解耦高隔离小型化mimo天线阵列
CN114937859A (zh) * 2022-06-20 2022-08-23 广州司南技术有限公司 一种多频段多波束mimo电磁透镜阵列天线及天线装置
CN217589412U (zh) * 2022-06-20 2022-10-14 广州司南技术有限公司 一种多频段多波束mimo电磁透镜阵列天线及天线装置

Also Published As

Publication number Publication date
CN114937859A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2023246333A1 (zh) 一种多频段多波束mimo电磁透镜阵列天线及天线装置
US11296429B2 (en) Flat panel array antenna with integrated polarization rotator
WO2017031980A1 (zh) 一种微波毫米波双频天线
CN105655702A (zh) 一种低剖面小型双极化基站天线
CN104979642B (zh) 多频天线及多频天线配置方法
CN112952378B (zh) 一种用于降低交叉极化耦合具有极化转换特性的去耦结构
EP4270656A1 (en) Multi-beam lens antenna and active lens antenna system
Liang et al. Multiple beam parasitic array radiator antenna for 2.4 GHz WLAN applications
CN217589412U (zh) 一种多频段多波束mimo电磁透镜阵列天线及天线装置
CN111585012A (zh) 一体化可调制超材料天线罩和天线组件
CN110233336B (zh) 一种串馈圆极化天线法向组阵
CN105826694A (zh) 一种基于双方环单元的单层双频微带反射阵列天线
US11588249B2 (en) Sidelobe suppression in multi-beam base station antennas
CN205846249U (zh) 天线装置
CN110277641B (zh) 一种实现宽带宽角扫描的结构及具有其的微带天线单元
CN103474754A (zh) 一种单、双极化天线阵子辐射单元以及天线
CN110739547A (zh) 一种卡塞格伦天线
CN108023163B (zh) 矢量合成基站天线单元
CN206628602U (zh) 一种超宽频双波束电调天线
CN109921196B (zh) 一种具有超宽带大角度扫描功能的相控阵天线结构
CN208157636U (zh) 一种窄波束低旁瓣菱形阵列天线
CN109103610B (zh) 一种非均匀子波束覆盖的多波束天线及设计方法
WO2022016460A1 (zh) 一种混合网络天线
KR102558331B1 (ko) 선택적 차폐면을 이용한 다중 대역 기지국 안테나
JP2002353723A (ja) レドーム付パラボラアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825984

Country of ref document: EP

Kind code of ref document: A1