WO2022016460A1 - 一种混合网络天线 - Google Patents

一种混合网络天线 Download PDF

Info

Publication number
WO2022016460A1
WO2022016460A1 PCT/CN2020/103841 CN2020103841W WO2022016460A1 WO 2022016460 A1 WO2022016460 A1 WO 2022016460A1 CN 2020103841 W CN2020103841 W CN 2020103841W WO 2022016460 A1 WO2022016460 A1 WO 2022016460A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
array
antenna
low
reflector
Prior art date
Application number
PCT/CN2020/103841
Other languages
English (en)
French (fr)
Inventor
孙贺
王生光
杨忠操
张海霞
盛林峰
Original Assignee
罗森伯格亚太电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗森伯格亚太电子有限公司 filed Critical 罗森伯格亚太电子有限公司
Priority to PCT/CN2020/103841 priority Critical patent/WO2022016460A1/zh
Priority to EP20941525.6A priority patent/EP3979423A4/en
Priority to US17/564,671 priority patent/US20220123482A1/en
Publication of WO2022016460A1 publication Critical patent/WO2022016460A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/106Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using two or more intersecting plane surfaces, e.g. corner reflector antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present invention relates to the field of antenna technology, in particular to a hybrid network antenna.
  • the antenna is the interface between the transceiver and the external propagation medium.
  • the antenna converts high-frequency current into electromagnetic waves
  • the antenna converts electromagnetic waves into high-frequency currents.
  • the mobile communication network is also constantly being upgraded.
  • the performance and practical functions of the base station antenna are also continuously improved and improved.
  • the types of base station antennas used are also different.
  • multiple independent antennas are set up, and each antenna works in the corresponding frequency band to meet the needs of different regions and/or different user groups.
  • setting multiple independent antennas on the one hand, It is not conducive to antenna integration and miniaturization, and on the other hand, is not conducive to alleviating the contradiction of antenna site resources, and also increases the cost of building a base station.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a hybrid network antenna, which can meet the needs of different regions and different customers by flexibly combining multiple antenna arrays.
  • the present invention proposes the following technical solution: a hybrid network antenna, the hybrid network antenna includes
  • a reflector the reflector includes a straight portion and a bent portion provided at both ends of the straight portion, the bent portion is formed by bending the ends of the straight portion, and the reflector has a width direction and a length direction perpendicular to the width direction;
  • the low-frequency antenna array is arranged on the straight part
  • the dual-beam antenna array includes a beam antenna sub-array, a beam antenna sub-array is arranged on both sides of the low-frequency antenna array, and each beam antenna sub-array includes several along the reflector plate.
  • the first high-frequency radiation element arrays are arranged at intervals in the width direction, and in each beam antenna sub-array, at least one of the first high-frequency radiation element arrays is arranged on the straight portion, and the rest of the first high-frequency radiation element arrays are arranged on the straight portion.
  • the high-frequency radiating element array is arranged on the bending part on the corresponding side of the beam antenna sub-array; or all the first high-frequency radiating element arrays are arranged on the bending part on the corresponding side of the beam antenna sub-array.
  • a plurality of the double-beam antenna arrays are arranged on the reflector at intervals along the length direction of the reflector.
  • the cross section of the reflecting plate is in the shape of a trapezoid.
  • the low-frequency antenna array includes a plurality of low-frequency radiation units, and the plurality of low-frequency radiation units are arranged in an S shape on the straight portion along the length direction of the reflector.
  • a plurality of the low frequency radiation units are arranged in an S shape.
  • two adjacent first high-frequency radiation element arrays are arranged in a staggered position.
  • each of the first high-frequency radiation unit arrays includes a plurality of first high-frequency radiation units spaced along the length direction of the reflector, and the plurality of first high-frequency radiation units are arranged in a straight line.
  • the hybrid network antenna further includes a high-frequency antenna array, the high-frequency antenna array is arranged on the straight portion, and the two beam antenna sub-arrays are located between the low-frequency antenna array and the high-frequency antenna array. sides.
  • the high-frequency antenna array includes a second high-frequency radiation element array, and the second high-frequency radiation element array is staggered from the adjacent first high-frequency radiation element array.
  • the second high-frequency radiation unit array includes a plurality of second high-frequency radiation units spaced along the length direction of the reflector, and the plurality of second high-frequency radiation units are arranged in a straight line.
  • the hybrid network antenna of the present invention by flexibly nesting a low-frequency antenna array, a high-frequency antenna array and a dual-beam antenna array on a trapezoidal reflector, multiple antenna arrays can work in different frequency bands. It can meet the needs of different regions and customers. On the other hand, it can reduce the total number of antennas, reduce the construction cost of base stations, and alleviate the contradiction between antenna sites.
  • the plurality of first high-frequency radiating element arrays in the beam antenna sub-array are installed on the reflector in a different plane arrangement, which can be a high-frequency and low-frequency antenna.
  • the array provides a large enough ground to improve the stability of the antenna structure.
  • the two beam antenna sub-arrays in the dual-beam antenna are arranged on both sides of the low-frequency antenna array and the high-frequency antenna array, so that the two are far apart, which can provide high Excellent beam pointing stability and high co-polar isolation characteristics reduce interference between co-polar beams.
  • FIG. 1 is a schematic side view of a hybrid network antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of a hybrid network antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic side view of a hybrid network antenna according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic top view of a hybrid network antenna according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of an antenna pattern of the hybrid network antenna of the present invention.
  • Fig. 6 is a positive electrode co-polar isolation comparison diagram
  • FIG. 7 is a comparison diagram of the co-polar isolation of the negative electrode.
  • the hybrid network antenna disclosed in the present invention can meet the needs of different regions and different customers by flexibly combining multiple antenna arrays.
  • the hybrid network antenna disclosed in this embodiment includes a reflector 10, a low-frequency antenna array 20, and at least one dual-beam antenna array 30. Both the low-frequency antenna array 20 and the dual-beam antenna array 30 are installed in the On the reflector 10, the operating frequency range of the low-frequency antenna array 20 is 698-960 MHz, and the operating frequency range of the dual-beam antenna array 30 is 1695-2690 MHz.
  • the reflector 10 has a width direction and a length direction perpendicular to the width direction, and includes a straight portion 11 and bent portions 12 provided at both ends of the straight portion 11 , and the bent portions 12 are formed by the ends of the straight portion 11 .
  • the two ends of the width direction of the straight portion 11 are respectively bent to two sides to form two bent portions 12, so that the cross section of the reflector 10 is trapezoidal, and the straight portion 11 and the two Each bent portion 12 forms three sides of a trapezoid.
  • the low-frequency antenna array 20 includes a plurality of low-frequency radiation units 21 spaced along the second direction Y, and the plurality of low-frequency radiation units 21 are arranged on the straight portion 11 of the reflector 10.
  • the second direction Y is the reflector.
  • the length direction of 10; the low-frequency antenna array 20 is preferably a low-frequency 65° antenna array, and in the low-frequency antenna array 20, a plurality of low-frequency radiation units 21 are arranged at equal intervals on the straight portion 11 of the reflector 10, and are arranged in an S shape , so as to achieve a good signal isolation effect.
  • the plurality of low-frequency radiation units 21 may also be arranged in a straight line.
  • Each dual-beam antenna array 30 in this embodiment includes two beam antenna sub-arrays, denoted as a first beam antenna sub-array 31 and a second beam antenna sub-array 32, and the first beam antenna sub-array 31 and the second beam antenna sub-array respectively
  • the antenna sub-arrays 32 are respectively located on the reflectors 10 on both sides of the low-frequency antenna array 20, wherein the first beam antenna sub-array 31 and the corresponding feed network (not shown) form a beam antenna, and the second beam antenna sub-array 32 and the corresponding feed network (not shown) form a beam antenna.
  • the corresponding feed network forms another beam antenna, and the two beam antennas finally form a dual beam antenna.
  • Each beam antenna sub-array includes several first high-frequency radiation element arrays spaced along the first direction X, and two adjacent first high-frequency radiation element arrays are staggered, that is, two adjacent first high-frequency radiation element arrays The ends of the array are not aligned to reduce interference between signals.
  • Each of the first high-frequency radiation element arrays includes a plurality of first high-frequency radiation elements 33 spaced along the length of the reflector 10 , and the plurality of first high-frequency radiation elements 33 are arranged in a straight line.
  • the first direction X is the width direction of the reflector 10 .
  • first high-frequency radiating element arrays in each beam antenna sub-array are arranged on the reflector 10 in an out-of-plane manner, namely:
  • first high-frequency radiation element arrays When several first high-frequency radiation element arrays are arranged on the reflector 10 in different planes, at least one first high-frequency radiation element array is arranged on the straight portion 11 of the reflector 10, and the rest of the first high-frequency radiation elements
  • the arrays are all arranged on the bending portion 12 on the corresponding side of the beam antenna sub-array 31 (the left or right side as shown in FIG. 1 ), the first high-frequency radiation element array on the straight portion 11 and the bending portion 12
  • the first high-frequency radiating element array of 20 is in a different plane, but is in the same plane as the low-frequency antenna array 20 .
  • the first beam antenna sub-array 31 and the second beam antenna sub-array 32 both include three first high-frequency radiating element arrays as an example for detailed description.
  • a high-frequency radiation element array which are respectively a first high-frequency radiation element array 311 , a first high-frequency radiation element array 312 and a first high-frequency radiation array 313 , and three first high-frequency radiation elements in the second beam antenna sub-array 32
  • the unit arrays are respectively a first high frequency radiation unit array 321 , a first high frequency radiation unit array 322 and a first high frequency radiation array 323 . As can be seen from FIG.
  • the first high-frequency radiation element array 311 and the first high-frequency radiation element array 312 are on the same plane, that is, they are both located on the bending portion 12 of the reflector 10
  • the first high-frequency radiation element array 313 and the low-frequency antenna array 20 are on the same plane, that is, they are both located on the flat portion of the reflector 10, but the first high-frequency radiation element array 313 and the other two first high-frequency radiation element arrays are on the same plane. not in the same plane.
  • the first high-frequency radiation element array 322 and the first high-frequency radiation element array 323 are on the same plane, that is, they are both located on the bent portion 12 of the reflector 10, while the first high-frequency radiation element array 322 and the first high-frequency radiation element array 323 are on the same plane.
  • the high-frequency radiation element array 321 and the low-frequency antenna array 20 are in the same plane, that is, they are both located on the flat portion of the reflector 10, but the first high-frequency radiation element array 321 and the other two first high-frequency radiation element arrays are not located. same plane.
  • the hybrid network antenna further includes a high-frequency antenna array 40, the high-frequency antenna array 40 is arranged on the straight portion 11 of the reflector 10, and the two beam antenna sub-arrays 31 are located on the low-frequency antenna array 20 and On both sides of the high-frequency antenna array 40 , the high-frequency antenna array 40 includes a second high-frequency radiating element array, and the second high-frequency radiating element array is staggered from the adjacent first high-frequency radiating element array to reduce interference.
  • the second high-frequency radiation element array includes a plurality of second high-frequency radiation elements 41 spaced along the second direction Y, and the plurality of second high-frequency radiation elements 41 are arranged on the straight portion 11 of the reflector 10 .
  • the high-frequency antenna array 40 is preferably a high-frequency 65° antenna array, and in the high-frequency antenna array 40, a plurality of second high-frequency radiation elements 41 are arranged at equal intervals on the straight portion 11 of the reflector 10, and are in a straight line type arrangement.
  • one or two dual-beam antenna arrays are preferably arranged on the reflector 10 .
  • the number of dual-beam antenna arrays may be set according to actual requirements.
  • the dual beam antenna array 30, the low frequency antenna array 20 and the high frequency antenna array 40 form a hybrid network antenna including a low frequency antenna, two high frequency antennas and a dual beam antenna
  • the two double-beam antenna arrays are arranged at intervals along the second direction Y, as shown in Figure 2, the two double-beam antenna arrays 30 and the low-frequency antenna array 20 form a A hybrid network antenna with one low-frequency antenna and two dual-beam antennas, or two dual-beam antenna arrays 30 and low-frequency antenna array 20 and high-frequency antenna array 40 form a single low-frequency antenna, two high-frequency antennas, and two dual-beam antennas Antenna's Hybrid Network Antenna.
  • another hybrid network antenna disclosed in this embodiment includes a reflector 10, a low-frequency antenna array 20 and at least one dual-beam antenna array 30, a low-frequency antenna array 20 and a dual-beam antenna array 30 are installed on the reflector 10, wherein the operating frequency range of the low-frequency antenna array 20 is 698-960 MHz, and the operating frequency range of the dual-beam antenna array 30 is 1695-2690 MHz.
  • the structures of the reflector 10 and the low-frequency antenna array in this embodiment are the same as those of the first embodiment, and the specific structures are detailed in the first embodiment, which will not be repeated here.
  • each dual-beam antenna array 30 includes two beam antenna sub-arrays, two beam antenna sub-arrays, respectively denoted as a first beam antenna sub-array 31 and a second beam antenna sub-array 32, the first beam antenna
  • the sub-array 31 and the second beam antenna sub-array 32 are respectively located on the reflectors 10 on both sides of the low-frequency antenna array 20, wherein the first beam antenna sub-array 31 and the corresponding feed network (not shown) form a beam antenna, The two-beam antenna sub-array 32 and the corresponding feed network (not shown) form another beam antenna, and the two beam antennas finally form a double-beam antenna.
  • Each beam antenna sub-array includes several first high-frequency radiation element arrays spaced along the first direction, and two adjacent first high-frequency radiation element arrays are staggered.
  • Each of the first high-frequency radiation element arrays includes a plurality of first high-frequency radiation elements 33 spaced along the length of the reflector 10 , and the plurality of first high-frequency radiation elements 33 are arranged in a straight line.
  • first high-frequency radiation element arrays When several first high-frequency radiation element arrays are arranged on the reflector 10 in a coplanar manner, all the first high-frequency radiation element arrays are arranged on the bending portion 12 on the corresponding side of the beam antenna sub-array 31, as shown in FIG. 4 .
  • the first high-frequency radiating element arrays in the left beam antenna sub-array (the first beam antenna sub-array 31) are all arranged on the left bending portion 12, and the right beam antenna sub-array (the second beam antenna sub-array 31)
  • the first high-frequency radiation element arrays in the array 32) are all arranged on the right bending portion 12, and the plurality of first high-frequency radiation element arrays are on the same plane.
  • first beamline sub-array 31 and the second beam antenna sub-array 32 each include three first high-frequency radiation element arrays as an example for detailed description.
  • a high-frequency radiation element array including a first high-frequency radiation element array 311 , a first high-frequency radiation element array 312 and a first high-frequency radiation array 313 , and three first high-frequency radiation elements in the second beam antenna sub-array 32
  • the unit arrays are respectively a first high frequency radiation unit array 321 , a first high frequency radiation unit array 322 and a first high frequency radiation array 323 . It can be seen from FIG.
  • first high-frequency radiation element array 311 , the first high-frequency radiation element array 312 and the first high-frequency radiation element array 313 are on the same plane, that is, they are all located on the bending portion 12 of the reflector 10 , but Not in the same plane as the low frequency antenna array 20 .
  • the hybrid network antenna further includes a high-frequency antenna array 40 .
  • the high-frequency antenna array 40 includes a second high-frequency radiating element array, and the second high-frequency radiating element array is staggered from the adjacent first high-frequency radiating element array to reduce interference.
  • the specific structure of the second high-frequency radiation element array is detailed in Embodiment 1, and details are not repeated here.
  • the two beam antenna sub-arrays 31 in the dual-beam antenna are arranged on both sides of the low-frequency antenna array and the high-frequency antenna array, so that the two are far apart and can provide a very high beam.
  • Pointing stability and high co-polar isolation characteristics reduce interference between co-polar beams.
  • the lobe width of the low-frequency antenna array and the high-frequency antenna array is 65°, and at the same time, the lobe width of the two beams in the dual-beam antenna is narrow, which can provide good beam pointing Stability, stronger anti-interference ability.
  • Figure 6 is a comparison diagram of positive co-polar isolation
  • Figure 7 is a comparison diagram of negative co-polar isolation.
  • the co-polarization isolation is -15dB, while in the hybrid network antenna described in this embodiment, the co-polarization isolation of the dual-beam antenna can reach -35dB or more, which greatly reduces the interference between co-polarized beams. interference.
  • the dual-beam antenna array 30 on both sides of the low-frequency antenna array 20 a plurality of first high-frequency radiating element arrays are installed on the reflector 10 in an out-of-plane arrangement. The large ground improves the stability of the antenna structure.
  • the hybrid network antenna of the present invention also flexibly nests the low-frequency antenna array 20, the high-frequency antenna array 40 and the double-beam antenna array 30 on the trapezoidal reflector 10, and multiple antenna arrays can work in different frequency bands. On the one hand, it can meet the needs of different regions and different customers. On the other hand, it can reduce the total number of antennas, reduce the cost of site construction, and alleviate the contradiction between antenna sites.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明揭示了一种混合网络天线,属于天线技术领域。混合网络天线包括反射板、低频天线阵列及双波束天线阵列,反射板具有平直部,平直部的两端弯折形成折弯部;低频天线阵列设于平直部上,双波束天线阵列中的两个波束天线子阵列位于低频天线阵列的两侧,每个波束天线子阵中的多个高频辐射单元阵列采用异面或共面的方式设于反射板上。本发明通过在低频天线阵列两侧各设置一波束天线子阵列,使两个波束天线子阵列相距较远,可提供很高的波束指向稳定性和高同极化隔离特性,减少同极化波束之间的干扰,同时通过在反射板上灵活嵌套低频天线阵列、高频天线阵列及双波束天线阵列,满足不同地区、不同客户的需求。

Description

一种混合网络天线 技术领域
本发明涉及天线技术领域,尤其是涉及一种混合网络天线。
背景技术
在无线通信系统中,天线是收发信机与外界传播介质之间的接口,发射信号时,天线将高频电流转换为电磁波,接收信号时,天线将电磁波转换为高频电流。随着移动通信技术在持续不断地飞速发展,移动通信网络也在持续地升级换代,基站天线作为移动通信网络的关键设备,其性能和实用功能也在持续地改进和提高。
针对不同的区域和/或不同的用户人群,所应用的基站天线的类型也不尽相同。传统的基站在建设过程中,设置多个独立的天线,每个天线工作在对应的频段内,以满足不同区域和/或不同用户人群的使用需求,然而,设置多个独立的天线,一方面不利于天线集成化和小型化,另一方面也不利于缓解天线站址资源矛盾,也使得基站的建站成本增大。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种混合网络天线,通过将多种天线阵列进行灵活组合,以满足不同地区、不同客户的需求。
为实现上述目的,本发明提出如下技术方案:一种混合网络天线,所述混合网络天线包括
反射板,所述反射板包括平直部和设于所述平直部两端的折弯部,所述折弯部由所述平直部的端部弯折形成,所述反射板具有宽度方向和与所述宽度方向相垂直的长度方向;
低频天线阵列,所述低频天线阵列设于所述平直部上;
至少一个双波束天线阵列,所述双波束天线阵列包括波束天线子阵列,所述低频天线阵列的两侧均设置一所述波束天线子阵列,每个波束天线子阵列均包括数个沿反射板的宽度方向间隔设置的第一高频辐射单元阵列,且在每个波束天线子阵列中,至少一个所述第一高频辐射单元阵列设于所述平直部上,其余的所述第一高频辐射单元阵列设于波束天线子阵列对应侧的折弯部上;或者所有的所述第一高频辐射单元阵列设于波束天线子阵列对应侧的折弯部上。
优选地,多个所述双波束天线阵列沿所述反射板的长度方向间隔设于所述反射板上。
优选地,所述反射板的截面呈梯形状。
优选地,所述低频天线阵列包括多个低频辐射单元,多个所述低频辐射单元沿反射板的长度方向在平直部上呈S形排布。
优选地,多个所述低频辐射单元呈S形排布。
优选地,相邻两个第一高频辐射单元阵列错位设置。
优选地,每个所述第一高频辐射单元阵列包括多个沿反射板的长度方向间隔设置的第一高频辐射单元,多个所述第一高频辐射单元呈直线型排布。
优选地,所述混合网络天线还包括高频天线阵列,所述高频天线阵列设于所述平直部上,所述两个波束天线子阵列位于所述低频天线阵列和高频天线阵列的两侧。
优选地,所述高频天线阵列包括第二高频辐射单元阵列,所述第二高频辐射单元阵列与相邻的第一高频辐射单元阵列错位设置。
优选地,所述第二高频辐射单元阵列包括多个沿反射板的长度方向间隔设置的第二高频辐射单元,多个所述第二高频辐射单元呈直线型排布。
本发明的有益效果是:
(1)本发明所述的混合网络天线,通过在呈梯形的反射板上灵活嵌套低频天线阵列、高频天线阵列及双波束天线阵列,多个天线阵列可工作于不同的频段,一方面可满足不同地区、不同客户的需求,另一方面,可减小天线总数,降低基站建设成本,缓解天线站址矛盾。
(2)本发明所述的混合网络天线,通过将波束天线子阵列中的多个第一高频辐射单元阵列采用异面布置的方式安装于反射板上,这种方式可为高、低频天线阵列提供足够大的地,提高天线结构的稳定性。
(3)本发明所述的混合网络天线,通过将双波束天线中的两个波束天线子阵列设于低频天线阵列和高频天线阵列的两侧,使两者相距较远,可提供很高的波束指向稳定性和高同极化隔离特性,减少同极化波束之间的干扰。
附图说明
图1是本发明实施例一混合网络天线的侧视示意图;
图2是本发明实施例一混合网络天线的俯视示意图;
图3是本发明实施例二混合网络天线的侧视示意图;
图4是本发明实施例二混合网络天线的俯视示意图;
图5是本发明混合网络天线的天线方向图示意图;
图6是正极同极化隔离对比图;
图7是负极同极化隔离对比图。
附图标记:10、反射板,11、平直部,12、折弯部,20、低频天线阵列,21、低频辐射单元,30、双波束天线阵列,31、第一波束天线子阵列,32、第二波束天线子阵列,33、第一高频辐射单元,40、高频天线阵列,41、第二高频辐射单元。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
结合图1~4所示,本发明所揭示的一种混合网络天线,通过将多种天线阵列进行灵活组合,可满足不同地区、不同客户的需求。
实施例一
结合图1和图2所示,本实施例所揭示的混合网络天线,包括反射板10、低频天线阵列20和至少一个双波束天线阵列30,低频天线阵列20和双波束天线阵列30均安装于反射板10上,其中,低频天线阵列20的工作频率范围为698~960MHz,双波束天线阵列30的工作频率范围为1695~2690MHz。
具体地,反射板10具有宽度方向和与宽度方向相垂直的长度方向,其包括平直部11和设于平直部11两端的折弯部12,折弯部12由平直部11的端部弯折形成,本实施例中,平直部11的宽度方向的两端分别向两侧弯折形成两个折弯部12,使得反射板10的截面呈梯状,平直部11和两个折弯部12形成梯形的三个面。
低频天线阵列20包括多个沿第二方向Y间隔设置的低频辐射单元21,多个低频辐射单元21设于反射板10的平直部11上,本实施例中,第二方向Y为反射板10的长度方向;低频天线阵列20优选为低频65°天线阵列,并且低频天线阵列20中,多个低频辐射单元21等间距设于反射板10的平直部11上,并呈S形排布,以起到很好的信号隔离作用,当然,在其他实施例中,多个低频辐射单元21也可呈直线型排布。
本实施例中的每个双波束天线阵列30包括两个波束天线子阵列,分别记为第一波束天线子阵列31和第二波束天线子阵列32,第一波束天线子阵列31和第二波束天线子阵列32分别位于低频天线阵列20两侧的反射板10上,其中第一波束天线子阵列31与对应的馈电网络(图未示)形成一波束天线,第二波束天线子阵列32与对应的馈电网络(图未示)形成另一 波束天线,两个波束天线最终形成双波束天线。每个波束天线子阵列包括数个沿第一方向X间隔设置的第一高频辐射单元阵列,相邻两个第一高频辐射单元阵列错位设置,即相邻两个第一高频辐射单元阵列的端部不对齐设置,可减少信号间的干扰。每个第一高频辐射单元阵列包括多个沿反射板10长度方向间隔设置的第一高频辐射单元33,多个所述第一高频辐射单元33呈直线型排布。本实施例中,第一方向X为反射板10的宽度方向。
结合图1和图2所示,每个波束天线子阵列中的数个第一高频辐射单元阵列采用异面方式设于反射板10上,即:
数个第一高频辐射单元阵列采用异面方式设于反射板10上时,至少一个第一高频辐射单元阵列设于反射板10的平直部11上,其余的第一高频辐射单元阵列全部设于波束天线子阵列31对应侧(如图1所示的左侧或右侧)的折弯部12上,平直部11上的第一高频辐射单元阵列与折弯部12上的第一高频辐射单元阵列处于不同平面,但与低频天线阵列20处于同一平面。具体地,以第一波束天线子阵列31和第二波束天线子阵列32均包括三个第一高频辐射单元阵列为例进行详细地说明,其中,第一波束天线子阵列31中三个第一高频辐射单元阵列,分别为第一高频辐射单元阵列311、第一高频辐射单元阵列312和第一高频辐射阵列313,第二波束天线子阵列32中三个第一高频辐射单元阵列,分别为第一高频辐射单元阵列321、第一高频辐射单元阵列322和第一高频辐射阵列323。由图2可知,第一波束线子阵列31中,第一高频辐射单元阵列311、第一高频辐射单元阵列312处于同一平面,也即均位于反射板10的折弯部12上,而第一高频辐射单元阵列313与低频天线阵列20处于同一平面,也即均位于反射板10的平直部上,但第一高频辐射单元阵列313与其余两个第一高频辐射单元阵列不处于同一平面。同样地,第一波束线子阵列32中,第一高频辐射单元阵列322、第一高频辐射单元阵列323处于同一平面,也即均位于反射板10的折弯部12上,而第一高频辐射单元阵列321与低频天线阵列20处 于同一平面,也即均位于反射板10的平直部上,但第一高频辐射单元阵列321与其余两个第一高频辐射单元阵列不处于同一平面。
结合图1和图2所示,混合网络天线还包括高频天线阵列40,高频天线阵列40设于反射板10的平直部11上,两个波束天线子阵列31位于低频天线阵列20和高频天线阵列40的两侧,高频天线阵列40包括第二高频辐射单元阵列,第二高频辐射单元阵列与相邻的第一高频辐射单元阵列错位设置,以减少干扰。第二高频辐射单元阵列包括多个沿第二方向Y间隔设置的第二高频辐射单元41,多个第二高频辐射单元41设于反射板10的平直部11上,本实施例中,高频天线阵列40优选为高频65°天线阵列,并且高频天线阵列40中,多个第二高频辐射单元41等间距设于反射板10的平直部11上,并且呈直线型排布。
本实施例中,反射板10上优选设置一个或两个双波束天线阵列,当然,在其他实施例中,可根据实际需求设置双波束天线阵列的数量。当反射板10上设置一个双波束天线阵列时,双波束天线阵列30与低频天线阵列20、高频天线阵列40形成一个包含一个低频天线、两个高频天线和一个双波束天线的混合网络天线;当反射板10上设置两个双波束天线阵列时,两个双波束天线阵列沿第二方向Y间隔设置,如图2所示,两个双波束天线阵列30与低频天线阵列20形成一个包含一个低频天线和两个双波束天线的混合网络天线,或者两个双波束天线阵列30与低频天线阵列20、高频天线阵列40形成一个包含一个低频天线、两个高频天线和两个双波束天线的混合网络天线。实施时,可根据实际需求将低频天线阵列、高频天线阵列及双波束天线阵列进行自由组合,以满足不同区域和/或用户的需求。
实施例二
结合图3和图4所示,为本本实施例所揭示的另一种混合网络天线,包括反射板10、低频天线阵列20和至少一个双波束天线阵列30,低频天线阵列20和双波束天线阵列30均安装于反射板10上,其中,低频天线阵 列20的工作频率范围为698~960MHz,双波束天线阵列30的工作频率范围为1695~2690MHz。
本实施例中的反射板10、低频天线阵列的结构与实施例一相同,具体结构详见实施例一,在此不再一一赘述。
本实施例中,每个双波束天线阵列30包括两个波束天线子阵列,两个波束天线子阵列,分别记为第一波束天线子阵列31和第二波束天线子阵列32,第一波束天线子阵列31和第二波束天线子阵列32分别位于低频天线阵列20两侧的反射板10上,其中第一波束天线子阵列31与对应的馈电网络(图未示)形成一波束天线,第二波束天线子阵列32与对应的馈电网络(图未示)形成另一波束天线,两个波束天线最终形成双波束天线。每个波束天线子阵列包括数个沿第一方向间隔设置的第一高频辐射单元阵列,相邻两个第一高频辐射单元阵列错位设置。每个第一高频辐射单元阵列包括多个沿反射板10长度方向间隔设置的第一高频辐射单元33,多个所述第一高频辐射单元33呈直线型排布。
结合图3和图4所示,每个波束天线子阵列31中的数个第一高频辐射单元阵列采用共面方式设于反射板10上,即:
数个第一高频辐射单元阵列采用共面方式设于反射板10上时,所有的第一高频辐射单元阵列设于波束天线子阵列31对应侧的折弯部12上,如图4所示,左侧波束天线子阵列(第一波束天线子阵列31)中的第一高频辐射单元阵列全部设于左侧的折弯部12上,右侧波束天线子阵列(第二波束天线子阵列32)中的第一高频辐射单元阵列全部设于右侧的折弯部12上,多个第一高频辐射单元阵列处于同一平面。进一步地,以第一波束线子阵列31和第二波束天线子阵列32均包括三个第一高频辐射单元阵列为例进行详细地说明,其中,第一波束天线子阵列31中三个第一高频辐射单元阵列,分别为第一高频辐射单元阵列311、第一高频辐射单元阵列312和第一高频辐射阵列313,第二波束天线子阵列32中三个第一高频辐射单 元阵列,分别为第一高频辐射单元阵列321、第一高频辐射单元阵列322和第一高频辐射阵列323。由图4可知,第一高频辐射单元阵列311、第一高频辐射单元阵列312和第一高频辐射单元阵列313处于同一平面,也即均位于反射板10的折弯部12上,但与低频天线阵列20不处于同一平面。
结合图3和图4所示,混合网络天线还包括高频天线阵列40,高频天线阵列40设于反射板10的平直部11上,两个波束天线子阵列31位于低频天线阵列20和高频天线阵列40的两侧,高频天线阵列40包括第二高频辐射单元阵列,第二高频辐射单元阵列与相邻的第一高频辐射单元阵列错位设置,以减少干扰。第二高频辐射单元阵列的具体结构详见实施例一,在此不再一一赘述。
本发明所述的混合网络天线,通过将双波束天线中的两个波束天线子阵列31设于低频天线阵列和高频天线阵列的两侧,使两者相距较远,可提供很高的波束指向稳定性和高同极化隔离特性,减少同极化波束之间的干扰。具体地,如图5所示,低频天线阵列和高频天线阵列的波瓣宽度为65°,同时,双波束天线中的两个波束的波瓣宽度较窄,进而可提供很好的波束指向稳定性,抗干扰能力更强。如图6和7所示,图6为正极同极化隔离对比图,图7为负极同极化隔离对比图,从图6和图7可知,传统巴特勒矩阵(Butler Matrix)多波束天线的同极化隔离度为-15dB,而本实施例所述的混合网路天线中,双波束天线的同极化隔离度可达到-35dB以上,极大的减小了同极化波束之间的干扰。并且低频天线阵列20两侧的双波束天线阵列30中,多个第一高频辐射单元阵列采用异面布置的方式安装于反射板10上,这种方式可为高、低频天线阵列20提供足够大的地,提高天线结构的稳定性。
本发明所述的混合网络天线还通过在呈梯形的反射板10上灵活嵌套低频天线阵列20、高频天线阵列40及双波束天线阵列30,多个天线阵列 可工作于不同的频段,一方面可满足不同地区、不同客户的需求,另一方面,可减小了天线总数,降低建站成本,缓解天线站址矛盾。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (10)

  1. 一种混合网络天线,其特征在于,所述混合网络天线包括
    反射板,所述反射板包括平直部和设于所述平直部两端的折弯部,所述折弯部由所述平直部的端部弯折形成,所述反射板具有宽度方向和与所述宽度方向相垂直的长度方向;
    低频天线阵列,所述低频天线阵列设于所述平直部上;
    至少一个双波束天线阵列,所述双波束天线阵列包括波束天线子阵列,所述波束天线子阵列设于所述低频天线阵列的两侧,每侧的波束天线子阵列均包括数个沿所述反射板的宽度方向间隔设置的第一高频辐射单元阵列,且在每个波束天线子阵列中,至少一个所述第一高频辐射单元阵列设于所述平直部上,其余的所述第一高频辐射单元阵列设于波束天线子阵列对应侧的折弯部上;或者所有的所述第一高频辐射单元阵列设于波束天线子阵列对应侧的折弯部上。
  2. 根据权利要求1所述的混合网络天线,其特征在于,多个所述双波束天线阵列沿所述反射板的长度方向间隔设于所述反射板上。
  3. 根据权利要求1所述的混合网络天线,其特征在于,所述反射板的截面呈梯形状。
  4. 根据权利要求1所述的混合网络天线,其特征在于,所述低频天线阵列包括多个低频辐射单元,多个所述低频辐射单元沿反射板的长度方向间隔设置。
  5. 根据权利要求4所述的混合网络天线,其特征在于,多个所述低频辐射单元沿反射板的长度方向在平直部上呈S形排布。
  6. 根据权利要求1所述的混合网络天线,其特征在于,相邻两个第一高频辐射单元阵列错位设置。
  7. 根据权利要求1或6所述的混合网络天线,其特征在于,每个所述第 一高频辐射单元阵列包括多个沿反射板的长度方向间隔设置的第一高频辐射单元,多个所述第一高频辐射单元呈直线型排布。
  8. 根据权利要求1所述的混合网络天线,其特征在于,所述混合网络天线还包括高频天线阵列,所述高频天线阵列设于所述平直部上,所述两个波束天线子阵列位于所述低频天线阵列和高频天线阵列的两侧。
  9. 根据权利要求8所述的混合网络天线,其特征在于,所述高频天线阵列包括第二高频辐射单元阵列,所述第二高频辐射单元阵列与相邻的第一高频辐射单元阵列错位设置。
  10. 根据权利要求9所述的混合网络天线,其特征在于,所述第二高频辐射单元阵列包括多个沿反射板的长度方向间隔设置的第二高频辐射单元,多个所述第二高频辐射单元呈直线型排布。
PCT/CN2020/103841 2020-07-23 2020-07-23 一种混合网络天线 WO2022016460A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/103841 WO2022016460A1 (zh) 2020-07-23 2020-07-23 一种混合网络天线
EP20941525.6A EP3979423A4 (en) 2020-07-23 2020-07-23 HYBRID NETWORK ANTENNA
US17/564,671 US20220123482A1 (en) 2020-07-23 2021-12-29 Hybrid network antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103841 WO2022016460A1 (zh) 2020-07-23 2020-07-23 一种混合网络天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/564,671 Continuation US20220123482A1 (en) 2020-07-23 2021-12-29 Hybrid network antenna

Publications (1)

Publication Number Publication Date
WO2022016460A1 true WO2022016460A1 (zh) 2022-01-27

Family

ID=79729944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103841 WO2022016460A1 (zh) 2020-07-23 2020-07-23 一种混合网络天线

Country Status (3)

Country Link
US (1) US20220123482A1 (zh)
EP (1) EP3979423A4 (zh)
WO (1) WO2022016460A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599138A (zh) * 2004-07-28 2005-03-23 西安海天天线科技股份有限公司 四极化六扇区阵列全向天线
US20100109965A1 (en) * 2008-10-15 2010-05-06 Senglee Foo Low power multi-beam active array for cellular communications
CN206602185U (zh) * 2017-04-01 2017-10-31 罗森伯格技术(昆山)有限公司 多频双极化全向天线
CN108011190A (zh) * 2017-11-30 2018-05-08 北京卫星信息工程研究所 多频段一体化广域探测接收天线
CN208539093U (zh) * 2018-05-22 2019-02-22 广东博纬通信科技有限公司 一种超宽频双极化双向覆盖天线
CN109509995A (zh) * 2018-12-28 2019-03-22 广东博纬通信科技有限公司 一种混合多波束天线
US20190103660A1 (en) * 2017-09-29 2019-04-04 Commscope Technologies Llc Base station antennas with lenses for reducing upwardly-directed radiation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8237619B2 (en) * 2007-10-16 2012-08-07 Powerwave Technologies, Inc. Dual beam sector antenna array with low loss beam forming network
KR20090130812A (ko) * 2008-06-16 2009-12-24 주식회사 케이엠더블유 형상 변경이 가능한 기지국 안테나
CN103715519B (zh) * 2013-06-09 2016-12-28 京信通信技术(广州)有限公司 双极化阵列天线及其辐射单元
TWI634700B (zh) * 2016-12-22 2018-09-01 啓碁科技股份有限公司 通訊裝置
US11043755B2 (en) * 2017-12-06 2021-06-22 Galtronics Usa, Inc. Antenna array
CN112437998B (zh) * 2019-06-25 2023-07-18 康普技术有限责任公司 具有宽带辐射元件的多波束基站天线
US11056773B2 (en) * 2019-06-28 2021-07-06 Commscope Technologies Llc Twin-beam base station antennas having thinned arrays with triangular sub-arrays
CN210111046U (zh) * 2019-07-03 2020-02-21 康普技术有限责任公司 基站天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599138A (zh) * 2004-07-28 2005-03-23 西安海天天线科技股份有限公司 四极化六扇区阵列全向天线
US20100109965A1 (en) * 2008-10-15 2010-05-06 Senglee Foo Low power multi-beam active array for cellular communications
CN206602185U (zh) * 2017-04-01 2017-10-31 罗森伯格技术(昆山)有限公司 多频双极化全向天线
US20190103660A1 (en) * 2017-09-29 2019-04-04 Commscope Technologies Llc Base station antennas with lenses for reducing upwardly-directed radiation
CN108011190A (zh) * 2017-11-30 2018-05-08 北京卫星信息工程研究所 多频段一体化广域探测接收天线
CN208539093U (zh) * 2018-05-22 2019-02-22 广东博纬通信科技有限公司 一种超宽频双极化双向覆盖天线
CN109509995A (zh) * 2018-12-28 2019-03-22 广东博纬通信科技有限公司 一种混合多波束天线

Also Published As

Publication number Publication date
US20220123482A1 (en) 2022-04-21
EP3979423A1 (en) 2022-04-06
EP3979423A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
CN108701905B (zh) 一种喇叭天线
WO2006133609A1 (fr) Réseau d’antennes horizontales intelligent à séparation élevée
TWI628861B (zh) 複合天線
US20120115548A1 (en) Mobile communication base station antenna and mobile communication base station antenna system
CN105789877A (zh) 基于超表面的四波束微带透射阵天线及其设计方法
CN107317121A (zh) 一种基于三维毫米波阵列天线的移动终端
JP6002644B2 (ja) アンテナ装置及び反射板配置方法
CN112952378B (zh) 一种用于降低交叉极化耦合具有极化转换特性的去耦结构
JP3540374B2 (ja) 移動通信系の基地局用アンテナ装置
JP3625142B2 (ja) 基地局アンテナ装置
CN111052507A (zh) 一种天线及无线设备
CN112768882B (zh) 一种基于双贴片加载的双波束圆极化阵列天线
US11374331B1 (en) Base station antenna including Fabrey-Perot cavities
CN107546478B (zh) 采用特殊方向图阵元的宽角扫描相控阵天线及设计方法
US20220247067A1 (en) Base station antenna
US11588249B2 (en) Sidelobe suppression in multi-beam base station antennas
WO2022016460A1 (zh) 一种混合网络天线
WO2022051986A1 (zh) 一种双波束馈电网路及具有双波束馈电网络的混合网络天线
WO2021233353A1 (zh) 天线装置和无线电通信设备
WO2021151377A1 (zh) 阵列天线装置及其制备方法和电子设备
CN113078471B (zh) 一种反射面和差网络天线
CN115020990A (zh) 龙勃透镜天线
CN210404054U (zh) 一种采用抛物柱面耦合馈电的多波束缝隙天线
JP2014045278A (ja) 周波数共用指向性アンテナ
CN212277404U (zh) 一种混合网络天线

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020941525

Country of ref document: EP

Effective date: 20211230

NENP Non-entry into the national phase

Ref country code: DE