WO2021151377A1 - 阵列天线装置及其制备方法和电子设备 - Google Patents

阵列天线装置及其制备方法和电子设备 Download PDF

Info

Publication number
WO2021151377A1
WO2021151377A1 PCT/CN2021/073822 CN2021073822W WO2021151377A1 WO 2021151377 A1 WO2021151377 A1 WO 2021151377A1 CN 2021073822 W CN2021073822 W CN 2021073822W WO 2021151377 A1 WO2021151377 A1 WO 2021151377A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
substrate
array
elements
distance
Prior art date
Application number
PCT/CN2021/073822
Other languages
English (en)
French (fr)
Inventor
蔡渤
Original Assignee
沐风电子科技(西安)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沐风电子科技(西安)有限公司 filed Critical 沐风电子科技(西安)有限公司
Publication of WO2021151377A1 publication Critical patent/WO2021151377A1/zh
Priority to US17/901,856 priority Critical patent/US20220416443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the invention relates to the field of communication technology, in particular to an array antenna device, a preparation method thereof, and electronic equipment using the array antenna device for communication.
  • antennas play a very important role in mobile communication devices.
  • 5G era fifth-generation mobile communication technology era
  • a single and fixed antenna array structure is usually adopted, and there will be side lobe levels during operation, which will cause the signal-to-noise ratio of the signal to decrease.
  • the single and fixed antenna array structure makes the antenna working frequency bandwidth limited and the beam direction is single, which limits the working accuracy, working band and working range of the antenna. Therefore, in the antenna development, the development of an antenna with the advantages of low sidelobe, large bandwidth, and multi-beam is particularly important in the field of communication technology, and it is also particularly necessary to meet the communication needs of the 5G era.
  • the embodiment of the present invention provides an array antenna device, a preparation method thereof, and electronic equipment, which overcomes the technical problems of fixed beam, narrow beam width, and limited bandwidth in the traditional planar antenna array method. While ensuring the resolution, it also It has the advantages of low sidelobe, large bandwidth and multiple beams.
  • an array antenna device including:
  • At least two substrates are provided from top to bottom: a first substrate and a second substrate;
  • a first antenna is provided on the first substrate
  • a second antenna is provided on the second substrate
  • the first antenna is provided with a plurality of array elements arranged in an array
  • the second antenna is provided with a plurality of array elements arranged in an array
  • the projections of all the elements of the first antenna and all the elements of the second antenna on the second substrate do not completely coincide.
  • all the elements of the first antenna are symmetrically distributed about the geometric center of the first substrate, and all the elements of the second antenna are symmetrically distributed about the geometric center of the second substrate, so The geometric center of the first substrate coincides with the projection of the geometric center of the second substrate on the second substrate.
  • the size of each element of the first antenna is different from the size of each element of the second antenna.
  • all the elements of the first antenna are not symmetrically distributed about the geometric center of the first substrate, and all the elements of the second antenna are not symmetrically distributed about the geometric center of the second substrate, so The geometric center of the first substrate coincides with the projection of the geometric center of the second substrate on the second substrate.
  • the spacing between any two adjacent array elements in each row of the first antenna in a second direction perpendicular to the first direction from top to bottom is not equal, and the second The distance between any two adjacent array elements in each row of the antenna in the second direction is not equal.
  • all the elements of the first antenna have the same size
  • all the elements of the second antenna have the same size
  • the sizes of the elements of the first antenna are different from those of the second antenna.
  • the size of the yuan is the size of the yuan.
  • the distance between all the array elements of the first antenna in the lateral and/or longitudinal direction of the first substrate between two adjacent array elements gradually increases as the distance from the geometric center of the first substrate increases.
  • the distance between all the elements of the second antenna in the lateral and/or longitudinal direction of the second substrate between two adjacent elements gradually increases as the distance from the geometric center of the second substrate increases Increase or decrease gradually.
  • the distance between all the array elements of the first antenna in the lateral and/or longitudinal direction of the first substrate between two adjacent array elements gradually increases as the distance from the geometric center of the first substrate increases.
  • the distance between all the elements of the second antenna in the lateral and longitudinal directions of the second substrate between two adjacent elements gradually increases as the distance from the geometric center of the second substrate increases Or gradually decrease.
  • the width of each element of the first antenna gradually increases or decreases as the distance from the geometric center of the first substrate increases, and the width of each element of the second antenna increases as the distance from the geometric center of the first substrate increases.
  • the distance from the geometric center of the second substrate increases and gradually increases or decreases, and the length of each element of the first antenna is a first preset value, and the length of each element of the second antenna is The length is a second preset value different from the first preset value.
  • the distance between the geometric centers of any two adjacent elements of the first antenna is a first specified value; the distance between the geometric centers of any two adjacent elements of the second antenna is different from that of the The second specified value of the first specified value.
  • an embodiment of the present invention also provides a manufacturing method of an array antenna device, the manufacturing method includes:
  • the projections of all the elements of the first antenna and all the elements of the second antenna on the second substrate do not completely coincide.
  • an embodiment of the present invention also provides an electronic device, which includes the array antenna device described in any one of the preceding items.
  • the electronic device is at least one of a mobile communication device, a radar device, a satellite communication device, or an automobile.
  • the array antenna device, the preparation method thereof, and the electronic equipment of the present invention have the following beneficial effects:
  • Multi-beam forming shaped beams of different shapes, the number and shape of the beams can be flexibly set, the element beams are narrow and the gain is high, it can serve multiple users at the same time, and the composite beam can cover a specified wide area and can be combined
  • the feed mode achieves low sidelobes.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an array antenna device in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the array antenna device in FIG. 1 drawn in perspective from a top perspective;
  • Fig. 3 is a schematic structural view of the A-A' section in Fig. 2;
  • Fig. 4 is a schematic structural diagram of the B-B' section in Fig. 2;
  • FIG. 5 is a schematic structural diagram of an array antenna device in Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of an array antenna device in Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of an array antenna device in Embodiment 4 of the present invention.
  • Embodiment 8 is a schematic structural diagram of an array antenna device in Embodiment 5 of the present invention.
  • FIG. 9 is a schematic diagram of a manufacturing method of an array antenna device in Embodiment 6 of the present invention.
  • FIG. 10 is a schematic structural diagram of an electronic device using the array antenna devices of the foregoing embodiments 1 to 5 in Embodiment 7 of the present invention.
  • the array antenna device in Embodiment 1 of the present invention is mainly used in high-speed communications and radar, and mainly includes:
  • At least two substrates are provided from top to bottom: a first substrate 100 and a second substrate 200;
  • a first antenna 110 is provided on the first substrate 100;
  • a second antenna 210 is provided on the second substrate 200;
  • the first antenna 110 is provided with a plurality of array elements arranged in an array
  • the second antenna 210 is provided with a plurality of array elements arranged in an array; here, each element can be formed by a microstrip patch, preferably Each microstrip patch has a rectangular shape.
  • the array arrangement here can be implemented as follows:
  • the matrix of the array antenna consists of at least 2x1 elements, which can be expanded to a larger scale, where the number of rows and columns of the matrix is an exponential multiple of 2, such as 2x2, 2x4, 4x4, 4x8, 8x8, 8x16, 16x16, 32x32, etc. scale. It can also be other matrix arrangements, such as 2x3, 2x6, 2x12, etc., which also fall within the realizable scope of the present invention.
  • the projections of all the array elements of the first antenna 110 and all the array elements of the second antenna 210 on the second substrate 200 do not completely overlap.
  • the incomplete coincidence means that the element size of the first antenna is different from the element size of the second antenna, or the projection of the element of the first antenna and the element of the second antenna on the second substrate is not overlapped or partially overlapping.
  • the size of the first substrate and the size of the second substrate are preferably the same, of course, they may be different.
  • the size (array element size, substrate size) mentioned in this article mainly refers to the length of the device (array element, substrate) on the Y axis (usually called the antenna length ) And the width on the X-axis (usually called the antenna width), do not calculate the thickness of the device.
  • the thickness of the device is the top-down direction in the present invention, that is, between the upper surface and the lower surface of the device in the vertical direction The height difference.
  • the first antenna and the second antenna may be only a transmitting antenna, or only a receiving antenna, or each may include a transmitting antenna and a receiving antenna.
  • the receiving antenna and the transmitting antenna on the same substrate are connected to each other through metal wire vias.
  • the array element of the receiving antenna of the first antenna and the array element of the transmitting antenna on the first substrate are connected by a first connecting line 400, and the receiving antenna of the second antenna on the second substrate
  • the element of the antenna and the element of the transmitting antenna are connected by a second connecting line 500.
  • the element of the first antenna and the element of the second antenna are connected to the chip of the array antenna device (not shown) through the feeder 700 through the through holes 600 provided on the first substrate and the second substrate.
  • the signal is transmitted to the chip and then processed by the chip to realize communication.
  • the array elements on the same substrate are connected by connecting lines, and the array elements are arranged symmetrically on both sides of the connecting line (as shown in FIG. 1).
  • the geometric center O of the first substrate 100 and the geometric center O'of the second substrate 200 are located on the connecting line, which is also the geometric center of the connecting line.
  • the number of substrates and the number of antennas set on the substrate can be set to n, n is greater than or equal to 2, so that multi-beam can be realized, and the array elements of each layer and the array elements of other layers are between the elements of any substrate.
  • the projections on the specified surface are not completely coincident, such as staggered arrangement or partial overlap.
  • the main lobes of the array elements of each layer can be directed to different directions.
  • the angle of the main lobes can be adjusted through the incomplete coincidence of the array elements, which can achieve a large bandwidth; and the array antennas on each substrate The generated horizontal sidelobe levels can thus cancel each other out.
  • the positions of the two or more layers of antenna array elements are evenly overlapped but not completely overlapped, and the sizes of the array elements (microstrip patches) are different, and multi-channel or large-bandwidth transmission can be realized in the same transmitting/receiving direction.
  • the length of any element of the first antenna or the second antenna is approximately equal to 0.5 times the medium wavelength ⁇ .
  • the antenna size can be small, preferably between 0.3 ⁇ and 1.2 ⁇ .
  • H is the horizontal spacing of the array element (microstrip patch), the number 1 refers to the first layer antenna, the letter n refers to the nth layer antenna, and H1 is the space between the microstrip patches of the first layer antenna Hn is the horizontal spacing between the microstrip patches of the nth layer antenna; it can be seen that the size of H1 in the figure is different from the size of Hn.
  • V is the longitudinal spacing of the array element (microstrip patch), the number 1 refers to the first layer antenna, the letter n refers to the nth layer antenna, V1 is the longitudinal spacing between the microstrip patches of the first layer antenna, and Vn is the first layer antenna.
  • L is the width of the array element (microstrip patch), the number 1 refers to the first layer antenna, the letter n refers to the nth layer antenna, L1 is the width of the microstrip patch of the first layer antenna, and Ln is the nth layer The width of the antenna's microstrip patch.
  • the size of L1 is also different from the size of Ln.
  • the antenna bandwidth is increased, multiple beams are realized, and the antenna side lobes can be effectively adjusted and suppressed, the mutual coupling and interference between the antennas are effectively reduced, and the communication quality and radar are improved. Testing efficiency.
  • the array antenna device of the first embodiment of the present invention is designed up and down in a three-dimensional space, and the array elements of the array antenna on each substrate layer and the array elements of the array antenna on the other substrate layers are arranged in the array element layout position and between the adjacent array elements.
  • Differentiating the design of the space between the two not only overcomes the technical bias in the prior art, that is, the bias in the design of the upper and lower layers in the three-dimensional space, but also can effectively achieve the following beneficial effects:
  • Multi-beam forming shaped beams of different shapes, the number and shape of the beams can be flexibly set, the element beams are narrow and the gain is high, it can serve multiple users at the same time, and the composite beam can cover a specified wide area and can be combined
  • the feed mode achieves low sidelobes.
  • Embodiment 2 of the present invention makes further improvements and refinements to the array antenna device.
  • the main feature is: all the elements of the first antenna are related to the first substrate
  • the geometric center of the bottom is symmetrically distributed
  • all the elements of the second antenna are symmetrically distributed with respect to the geometric center of the second substrate.
  • the geometric center of the first substrate and the geometric center of the second substrate are symmetrically distributed.
  • the projections on the second substrate coincide.
  • the size of each element of the first antenna is different from the size of each element of the second antenna.
  • all the array elements of the first antenna 110 on the first substrate 100 have the same size, and the spacing between any two adjacent array elements is equal, and they are arranged in a center-symmetrical arrangement.
  • All the array elements of the second antenna 210 on the second substrate 200 have the same size, and the distance between any two adjacent array elements is equal, and the center is symmetrically arranged.
  • the projection of the geometric center of the first substrate and the geometric center of the second substrate on the second substrate completely coincides.
  • each element (microstrip patch) of the first antenna is different from the length of each element (microstrip patch) of the second antenna, so they each generate different frequencies of outgoing waves, which can form multiple frequency bands, or They are superimposed on each other in the frequency domain to achieve the effect of increasing the bandwidth.
  • embodiment 3 of the present invention is further improved and refined.
  • the main feature is: all the array elements 111, 112, 113, 114 of the first antenna are not Regarding the symmetrical distribution of the geometric center of the first substrate, all the elements 211, 212, 213, and 214 of the second antenna are not symmetrically distributed about the geometric center of the second substrate.
  • the geometric center coincides with the projection of the geometric center of the second substrate on the second substrate.
  • All the elements 111, 112, 113, 114 of the first antenna are offset to the right by a certain distance relative to the geometric center of the first substrate, while all the elements 211, 212, 213, 214 of the second antenna are relative to the second substrate.
  • the geometric center of is offset to the left by a certain distance. Both of them even have no overlap in their projections on the second substrate.
  • the distance between any two adjacent array elements in each row of the first antenna in a second direction perpendicular to the first direction from top to bottom is not equal, such as array element 112
  • the distance between the array element 113 and the array element 113 is not equal to the distance between the array element 113 and the array element 114.
  • the distance between any two adjacent array elements in each row of the second antenna in the second direction is not equal, for example, the distance between the array element 211 and the array element 212 is not equal to the array element 212 And the distance between the array element 213.
  • the array elements of the array antenna on a certain substrate layer are arranged unevenly or asymmetrically, which can change the beam angle and direction of the main beam of the antenna on that layer, and the array elements of the antennas on each substrate layer
  • the projections of the elements of the antennas of other layers on any specified layer are not completely coincident, which makes each layer can produce its own electromagnetic field phase change, resulting in multiple strands. Outgoing beam.
  • Embodiment 4 of the present invention is further improved and refined.
  • the main feature is: the size of all the elements of the first antenna is the same, and the second antenna has the same size.
  • the size of all the elements of the antenna is the same, and the size of each element of the first antenna is different from the size of each element of the second antenna.
  • all of the array elements 11A, 11B, 11C, 11D, 11E, 11F, 11G, and 11H of the first antenna are located between two adjacent array elements in the transverse and/or longitudinal direction of the first substrate.
  • the distance between the two antennas gradually increases as the distance from the geometric center of the first substrate increases.
  • All the elements 21A, 21B, 21C, 21D, 21E, 21F, 21G, and 21H of the second antenna are in the second substrate.
  • the distance between two adjacent array elements in the lateral and/or longitudinal direction of the bottom gradually increases or decreases as the distance from the geometric center of the second substrate increases.
  • the distance between all the array elements of the first antenna in the transverse and/or longitudinal direction of the first substrate between two adjacent array elements increases with the distance from the geometric center of the first substrate Increase and gradually decrease
  • the distance between all the elements of the second antenna in the lateral and longitudinal directions of the second substrate between two adjacent elements increases with the distance from the geometric center of the second substrate And gradually increase or gradually decrease.
  • Embodiment 5 of the present invention is further improved and refined.
  • the main feature is: all the elements of the first antenna have the same size, and the second antenna has the same size.
  • the size of all the elements of the antenna is the same, and the size of each element of the first antenna is different from the size of each element of the second antenna.
  • each element 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h of the first antenna gradually increases or decreases as the distance from the geometric center of the first substrate increases.
  • the width of each element 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h of the second antenna gradually increases or decreases as the distance from the geometric center of the second substrate increases.
  • the length of each element of the first antenna is a first preset value
  • the length of each element of the second antenna is a second preset value different from the first preset value.
  • the distance between the geometric centers of any two adjacent elements of the first antenna is a first specified value; the distance between the geometric centers of any two adjacent elements of the second antenna is A second designated value different from the first designated value. That is to say, the distance between the geometric centers of any adjacent element of the first antenna remains unchanged, but the size of the element is changed, and the same is true for any adjacent element of the second antenna.
  • Embodiment 6 of the present invention also provides a method for manufacturing an array antenna device on the basis of Embodiments 1 to 5.
  • the manufacturing method includes:
  • a first antenna is formed on a first substrate, and the first antenna is provided with a plurality of array elements arranged in an array;
  • a second antenna is formed on the second substrate, and the second antenna is provided with a plurality of array elements arranged in an array;
  • an electronic device is further provided, and the electronic device includes the array antenna device in Embodiments 1 to 5 above.
  • the electronic device can be a mobile communication device, a satellite communication device, a car, or a radar device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及通讯技术领域,具体涉及一种阵列天线装置及其制备方法和电子设备。该阵列天线装置包括:自上而下设有至少两个衬底:第一衬底和第二衬底;第一衬底上设置第一天线;第二衬底上设置有第二天线;所述第一天线设有多个呈阵列排布的阵元,所述第二天线设有多个呈阵列排布的阵元;其中所述第一天线的所有阵元与所述第二天线的所有阵元在所述第二衬底上的投影不完全重合。本发明具有低旁瓣、大带宽以及多波束等优点。

Description

阵列天线装置及其制备方法和电子设备 技术领域
本发明涉及通讯技术领域,具体涉及一种阵列天线装置及其制备方法和采用该阵列天线装置通讯的电子设备。
背景技术
随着现代无线通讯技术的发展,天线在移动通信设备中扮演着非常重要作用。随着第五代移动通信技术时代(5G时代)的到来,为满足5G时代的高速率信息传输要求,因此需要对多个天线单元组阵形成阵列天线提升其增益,并且通过多天线实现对于信息传输容量的提升。然而,在现有技术中,作为应用于终端设备和基站的阵列天线,通常采用单一且固定的天线阵列结构,在工作过程中会存在旁瓣电平,这会造成信号的信噪比下降。而单一且固定的天线阵列结构使得天线工作频率带宽有限、波束方向单一,这限制了天线的工作精度、工作波段和工作范围。因此在天线开发中,开发出一种具有低旁瓣、大带宽和多波束等优点的天线在通讯技术领域显得尤为重要,且也对满足5G时代的通讯需求尤为必要。
发明内容
本发明实施例提供了一种阵列天线装置及其制备方法和电子设备,克服了传统平面天线阵列方式存在的波束固定、波束宽度较窄、带宽有限的技术问题,在保证分辨率的同时,还具有低旁瓣、大带宽以及多波束的优点。
一方面,为实现上述优点,本发明提供了一种阵列天线装置,包括:
自上而下设有至少两个衬底:第一衬底和第二衬底;
第一衬底上设置第一天线;
第二衬底上设置有第二天线;
所述第一天线设有多个呈阵列排布的阵元,所述第二天线设有多个呈阵列 排布的阵元;
其中,所述第一天线的所有阵元与所述第二天线的所有阵元在所述第二衬底上的投影不完全重合。
优选地,所述第一天线的所有阵元关于所述第一衬底的几何中心呈对称分布,所述第二天线的所有阵元关于所述第二衬底的几何中心呈对称分布,所述第一衬底的几何中心与所述第二衬底的几何中心在所述第二衬底上的投影重合。
优选地,所述第一天线各阵元的尺寸不同于所述第二天线各阵元的尺寸。
优选地,所述第一天线的所有阵元不关于所述第一衬底的几何中心对称分布,所述第二天线的所有阵元不关于所述第二衬底的几何中心对称分布,所述第一衬底的几何中心与所述第二衬底的几何中心在所述第二衬底上的投影重合。
优选地,所述第一天线的每一行的各阵元在与自上而下的第一方向相垂直的第二方向上任意相邻两阵元之间的间距大小不等,所述第二天线的每一行的各阵元在所述第二方向上任意相邻两阵元之间的间距大小不等。
优选地,所述第一天线的所有阵元的尺寸相同,所述第二天线的所有阵元的尺寸相同,且所述第一天线的各阵元的尺寸不同于所述第二天线各阵元的尺寸。
优选地,所述第一天线的所有阵元在第一衬底的横向和/或纵向上的相邻两阵元之间的间距随着距离第一衬底的几何中心的距离增大而逐渐增大,所述第二天线的所有阵元在第二衬底的横向和/或纵向上的相邻两阵元之间的间距随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小。
优选地,所述第一天线的所有阵元在第一衬底的横向和/或纵向上的相邻两阵元之间的间距随着距离第一衬底的几何中心的距离增大而逐渐减小,所述第二天线的所有阵元在第二衬底的横向和纵向上的相邻两阵元之间的间距随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小。
优选地,所述第一天线的各阵元的宽度随着距离第一衬底的几何中心的距 离增大而逐渐增大或逐渐减小,所述第二天线的各阵元的宽度随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小,且所述第一天线的各阵元的长度为第一预设值,所述第二天线的各阵元的长度为不同于所述第一预设值的第二预设值。
优选地,所述第一天线任意相邻两阵元的几何中心之间的间距为第一指定值;所述第二天线任意相邻两阵元的几何中心之间的间距为不同于所述第一指定值的第二指定值。
另一方面,本发明实施例还提供一种阵列天线装置的制备方法,所述制备方法包括:
在第一衬底上形成第一天线,所述第一天线设有多个呈阵列排布的阵元;
在第二衬底上形成第二天线,所述第二天线设有多个呈阵列排布的阵元;
将所述第一衬底置于所述第二衬底上方;
其中,所述第一天线的所有阵元与所述第二天线的所有阵元在所述第二衬底上的投影不完全重合。
再一方面,本发明实施例还提供一种电子设备,所述电子设备包括前面任一项所述的阵列天线装置。
优选地,所述电子设备为移动通信设备、雷达设备、卫星通信设备或汽车中的至少一种。
本发明的阵列天线装置及其制备方法和电子设备具有以下有益效果:
1)旁瓣抑制:降低上旁瓣的能量分配,达到减少上旁瓣过大后,引起的同频、临频、越区干扰等等,达到优化的零点对消效果,从而实现较为理想的旁瓣抑制;
2)大带宽或多频道:具有高信息速率,具有宽的扩谱能力,减少多径、杂波并增强抗干扰能力;在相邻频率的无线通讯中,易克服相互干扰;大幅提高通讯量;
3)多波束:形成不同形状的成形波束,可对波束数目和形状进行灵活设定,元波束窄而且增益高,可同时服务多个用户,合成波束能覆盖指定较宽区域范 围,能以组合馈源方式实现低旁瓣。
附图说明
图1是本发明实施例1中的一种阵列天线装置的立体结构示意图;
图2是图1中的阵列天线装置在俯视视角下的采用透视方式绘制的结构示意图;
图3是图2中A-A’剖面的结构示意图;
图4是图2中B-B’剖面的结构示意图;
图5是本发明实施例2中的一种阵列天线装置的结构示意图;
图6是本发明实施例3中的一种阵列天线装置的结构示意图;
图7是本发明实施例4中的一种阵列天线装置的结构示意图;
图8是本发明实施例5中的一种阵列天线装置的结构示意图;
图9是本发明实施例6中的一种阵列天线装置的制备方法示意图;
图10是本发明实施例7中采用上述实施例1至5的阵列天线装置的电子设备的结构示意图。
附图标号说明:
100--第一衬底;110--第一天线;O为第一衬底的几何中心
200--第二衬底;210--第二天线;O’为第二衬底的几何中心
300--反射件;
400--第一连接线
500--第二连接线
600--通孔
700--馈线
111、112、113、114--第一衬底的阵元
211、212、213、214--第二衬底的阵元
11A、11B、11C、11D、11E、11F、11G、11H--第一衬底的阵元
21A、21B、21C、21D、21E、21F、21G、21H--第二衬底的阵元
11a、11b、11c、11d、11e、11f、11g、11h--第一衬底的阵元
21a、21b、21c、21d、21e、21f、21g、21h--第二衬底的阵元
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。如果不冲突,本发明施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。
实施例1
请参见图1至图4,本发明实施例1中的阵列天线装置主要应用于高速通信和雷达中,主要包括:
自上而下设有至少两个衬底:第一衬底100和第二衬底200;
第一衬底100上设置第一天线110;
第二衬底200上设置有第二天线210;
所述第一天线110设有多个呈阵列排布的阵元,所述第二天线210设有多 个呈阵列排布的阵元;这里的每一阵元可以采用微带贴片构成,优选每一微带贴片呈矩形形状。这里的阵列排布可以按照如下实现:
阵列天线的矩阵至少由2x1个阵元组成,可扩展为更大规模,其中矩阵的行数与列数为2的指数倍,如2x2,2x4,4x4,4x8,8x8,8x16,16x16,32x32等规模。也可以是其它矩阵的排布方式,例如2x3,2x6,2x12等,也属于本发明可实现范围内。
其中,所述第一天线110的所有阵元与所述第二天线210的所有阵元在所述第二衬底200上的投影不完全重合。这里的不完全重合是指第一天线的阵元尺寸不同于第二天线的阵元尺寸,或者第一天线的阵元与第二天线的阵元在第二衬底上的投影不重叠或者部分重叠。
此外第一衬底的尺寸与第二衬底的尺寸优选为相同,当然也可以不相同。需要说明的是本文中提及的尺寸(阵元尺寸、衬底尺寸)主要指器件(阵元、衬底)以二维平面坐标轴表示时,在Y轴上的长度(通常称为天线长度)和X轴上的宽度(通常称作天线宽度),不计算器件的厚度,器件的厚度为本发明中的自上而下的方向也即竖直方向上器件的上表面与下表面之间的高度差。
这里第一天线和第二天线分别可以仅是发射天线,也可以仅是接收天线,还可以是各自均包括发射天线和接收天线。例如,当第一天线或第二天线同时包括发射天线和接收天线时,在同一衬底上的接收天线和发射天线经金属线过孔相互连接。如图3和图4所示,第一衬底上的第一天线的接收天线的阵元和发射天线的阵元通过第一连接线400连接,第二衬底上的第二天线的接收天线的阵元和发射天线的阵元通过第二连接线500连接。而第一天线的阵元和第二天线的阵元通过馈线700穿过第一衬底和第二衬底上设置的通孔600后连接到阵列天线装置的芯片(图未示),通过将信号传输到芯片再由芯片处理后实现通讯。
在优选的实施例中,同一衬底上各阵元经连接线相连,且各个阵元左右对称排布于所述连接线两侧(如图1中所示)。同时第一衬底100的几何中心O和第二衬底200的几何中心O’位于连接线上,也是连接线的几何中心。
此外,衬底的数量和衬底上设置天线的数量可以设置为n,n大于等于2,这样可以实现多波束,而且每一层的阵元与其它层的阵元之间在任一衬底的指定面上的投影都不完全重合,例如交错排列或者部分重叠。这样就可以实现每一层的阵元的主瓣都指向不同的方向,通过阵元的不完全重合方式可以调节各主瓣的角度,可以实现大带宽;还可以将各衬底上的阵列天线产生的水平旁瓣电平可由此相互抵消。
两层或多层天线阵元的位置均匀重叠排布但不完全重合,且阵元(微带贴片)尺寸不同,则可在相同的发射/接收方向实现多频道或大带宽传输。
第一天线或第二天线的任意一个阵元长度约等于0.5倍介质波长λ。通常采用毫米波,因此天线尺寸可以做到很小,优选为0.3λ至1.2λ之间。
在图2至图4中,H为阵元(微带贴片)横向间距,数字1指第1层天线,字母n指第n层天线,H1即为第1层天线的微带贴片间的横向间距,Hn即为第n层天线的微带贴片间的横向间距;可以看到,图中H1大小不同于Hn的大小。
V为阵元(微带贴片)纵向间距,数字1指第1层天线,字母n指第n层天线,V1即为第1层天线的微带贴片间的纵向间距,Vn即为第n层天线的微带贴片间的纵向间距;V1大小也不同于Vn的大小。
L为阵元(微带贴片)的宽度,数字1指第1层天线,字母n指第n层天线,L1即为第1层天线的微带贴片的宽度,Ln即为第n层天线的微带贴片的宽度。L1的大小也不同于Ln的大小。
按本发明公开的天线结构进行布局后,提高了天线带宽、实现了多波束,且可对天线旁瓣进行有效调节和抑制,有效减少了天线之间互耦和干扰,提升了通讯质量和雷达检测效能。
本发明实施例1阵列天线装置通过采用三维空间上下设计,且对每一衬底层上的阵列天线的阵元与其它衬底层上的阵列天线的阵元在阵元布局位置以及相邻阵元之间的间距上做差异化设计,不仅克服了现有技术中的技术偏见,也即在三维空间上上下层设计的偏见,而且还可以有效达到以下有益效果:
1)旁瓣抑制:降低上旁瓣的能量分配,达到减少上旁瓣过大后,引起的同 频、临频、越区干扰等等,达到优化的零点对消效果,从而实现较为理想的旁瓣抑制;
2)大带宽或多频道:具有高信息速率,具有宽的扩谱能力,减少多径、杂波并增强抗干扰能力;在相邻频率的无线通讯中,易克服相互干扰;大幅提高通讯量;
3)多波束:形成不同形状的成形波束,可对波束数目和形状进行灵活设定,元波束窄而且增益高,可同时服务多个用户,合成波束能覆盖指定较宽区域范围,能以组合馈源方式实现低旁瓣。
实施例2
请参见图5,在本发明实施例1的基础上,本发明实施例2对阵列天线装置作了进一步的改进和细化,主要特点是:第一天线的所有阵元关于所述第一衬底的几何中心呈对称分布,所述第二天线的所有阵元关于所述第二衬底的几何中心呈对称分布,所述第一衬底的几何中心与所述第二衬底的几何中心在所述第二衬底上的投影重合。
在一个具体实施例中,所述第一天线各阵元的尺寸不同于所述第二天线各阵元的尺寸。
具体来说,第一衬底100上的第一天线110的所有阵元尺寸相同,任意相邻两阵元之间的间距相等,呈中心对称排布。第二衬底200上的第二天线210的所有阵元的尺寸相同,任意相邻两阵元之间的间距相等,中心对称排布。第一衬底的几何中心与第二衬底的几何中心在第二衬底上的投影完全重合。
而第一天线的各阵元(微带贴片)的长度不同于第二天线的各阵元(微带贴片)的长度,故各自产生不同频率的出射波,可形成多个频段,或在频域上相互叠加,达到增加带宽的效果。
实施例3
请参见图6,在本发明实施例1的基础上,本发明实施例3中作了进一步改进和细化,主要特点是:所述第一天线的所有阵元111、112、113、114不关于所述第一衬底的几何中心对称分布,所述第二天线的所有阵元211、212、213、 214不关于所述第二衬底的几何中心对称分布,所述第一衬底的几何中心与所述第二衬底的几何中心在所述第二衬底上的投影重合。第一天线的所有阵元111、112、113、114相对第一衬底的几何中心向右偏移了一定距离,而第二天线的所有阵元211、212、213、214相对第二衬底的几何中心向左偏移了一定距离。两者甚至在第二衬底上的投影都存在完全无重合部分。
进一步地,所述第一天线的每一行的各阵元在与自上而下的第一方向相垂直的第二方向上任意相邻两阵元之间的间距大小不等,如阵元112与阵元113之间的间距不等于阵元113与阵元114之间的间距。所述第二天线的每一行的各阵元在所述第二方向上任意相邻两阵元之间的间距大小不等,如阵元211与阵元212之间的间距不等于阵元212与阵元213之间的间距。
在本实施例中,某一衬底层上的阵列天线的阵元间距不均匀或不对称排布,可改变该层天线主波束的波束角和主波束方向,同时各衬底层的天线的阵元的位置在不均匀或不对称分布情况下,与其它层的天线的阵元在任一指定层上的投影也不完全重合,这就使得每层可以分别产生各自的电磁场相位变化,产生出多股出射波束。当这多层天线阵列叠加时可实现多波束天线。
实施例4
请参见图7,在本发明实施例1的基础上,本发明实施例4中作了进一步改进和细化,主要特点是:所述第一天线的所有阵元的尺寸相同,所述第二天线的所有阵元的尺寸相同,且所述第一天线的各阵元的尺寸不同于所述第二天线各阵元的尺寸。
在一个具体实施例中,所述第一天线的所有阵元11A、11B、11C、11D、11E、11F、11G、11H在第一衬底的横向和/或纵向上的相邻两阵元之间的间距随着距离第一衬底的几何中心的距离增大而逐渐增大,所述第二天线的所有阵元21A、21B、21C、21D、21E、21F、21G、21H在第二衬底的横向和/或纵向上的相邻两阵元之间的间距随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小。
在一个具体实施例中,所述第一天线的所有阵元在第一衬底的横向和/或纵 向上的相邻两阵元之间的间距随着距离第一衬底的几何中心的距离增大而逐渐减小,所述第二天线的所有阵元在第二衬底的横向和纵向上的相邻两阵元之间的间距随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小。
实施例5
请参见图8,在本发明实施例1的基础上,本发明实施例5中作了进一步改进和细化,主要特点是:所述第一天线的所有阵元的尺寸相同,所述第二天线的所有阵元的尺寸相同,且所述第一天线的各阵元的尺寸不同于所述第二天线各阵元的尺寸。
进一步地,所述第一天线的各阵元11a、11b、11c、11d、11e、11f、11g、11h的宽度随着距离第一衬底的几何中心的距离增大而逐渐增大或逐渐减小,所述第二天线的各阵元21a、21b、21c、21d、21e、21f、21g、21h的宽度随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小,且所述第一天线的各阵元的长度为第一预设值,所述第二天线的各阵元的长度为不同于所述第一预设值的第二预设值。
在一个具体实施例中,所述第一天线任意相邻两阵元的几何中心之间的间距为第一指定值;所述第二天线任意相邻两阵元的几何中心之间的间距为不同于所述第一指定值的第二指定值。也就是说第一天线的任意相邻阵元的几何中心之间的间距不变,但改变了阵元的尺寸大小,第二天线的任意相邻阵元的情况也是如此。
实施例6
请参见图9,本发明实施例6在实施例1至5的基础上还提供了一种阵列天线装置的制备方法,所述制备方法包括:
S1、在第一衬底上形成第一天线,所述第一天线设有多个呈阵列排布的阵元;
S2、在第二衬底上形成第二天线,所述第二天线设有多个呈阵列排布的阵元;
S3、将所述第一衬底置于所述第二衬底上方;
其中,所述第一天线的所有阵元与所述第二天线的所有阵元在所述第二衬底上的投影不完全重合。有关本发明阵列天线装置的进一步特点请参见本发明实施例1至5的描述,在此不再赘述。
实施例7
请参见图10,在本发明实施例1至5的基础上,还提供一种电子设备,该电子设备包括上述实施例1至5中的阵列天线装置。该电子设备可以是移动通信设备、卫星通信设备、汽车或者雷达设备。
需要明确的是,本发明并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。这些都应涵盖在本发明的保护范围之内。

Claims (15)

  1. 一种阵列天线装置,其特征在于,所述阵列天线装置包括:
    自上而下设有至少两个衬底:第一衬底和第二衬底;
    第一衬底上设置第一天线;
    第二衬底上设置有第二天线;
    所述第一天线设有多个呈阵列排布的阵元,所述第二天线设有多个呈阵列排布的阵元;
    其中,所述第一天线的所有阵元与所述第二天线的所有阵元在所述第二衬底上的投影不完全重合。
  2. 根据权利要求1所述的阵列天线装置,其特征在于,所述第一天线的所有阵元关于所述第一衬底的几何中心呈对称分布,所述第二天线的所有阵元关于所述第二衬底的几何中心呈对称分布,所述第一衬底的几何中心与所述第二衬底的几何中心在所述第二衬底上的投影重合。
  3. 根据权利要求2所述的阵列天线装置,其特征在于,所述第一天线各阵元的尺寸不同于所述第二天线各阵元的尺寸。
  4. 根据权利要求1所述的阵列天线装置,其特征在于,所述第一天线的所有阵元不关于所述第一衬底的几何中心对称分布,所述第二天线的所有阵元不关于所述第二衬底的几何中心对称分布,所述第一衬底的几何中心与所述第二衬底的几何中心在所述第二衬底上的投影重合。
  5. 根据权利要求4所述的阵列天线装置,其特征在于,所述第一天线的每一行的各阵元在与自上而下的第一方向相垂直的第二方向上任意相邻两阵元之间的间距大小不等,所述第二天线的每一行的各阵元在所述第二方向上任意相 邻两阵元之间的间距大小不等。
  6. 根据权利要求2所述的阵列天线装置,其特征在于,所述第一天线的所有阵元的尺寸相同,所述第二天线的所有阵元的尺寸相同,且所述第一天线的各阵元的尺寸不同于所述第二天线各阵元的尺寸。
  7. 根据权利要求6所述的阵列天线装置,其特征在于,所述第一天线的所有阵元在第一衬底的横向和/或纵向上的相邻两阵元之间的间距随着距离第一衬底的几何中心的距离增大而逐渐增大,所述第二天线的所有阵元在第二衬底的横向和/或纵向上的相邻两阵元之间的间距随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小。
  8. 根据权利要求6所述的阵列天线装置,其特征在于,所述第一天线的所有阵元在第一衬底的横向和/或纵向上的相邻两阵元之间的间距随着距离第一衬底的几何中心的距离增大而逐渐减小,所述第二天线的所有阵元在第二衬底的横向和纵向上的相邻两阵元之间的间距随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小。
  9. 根据权利要求2所述的阵列天线装置,其特征在于,所述第一天线的各阵元的宽度随着距离第一衬底的几何中心的距离增大而逐渐增大或逐渐减小,所述第二天线的各阵元的宽度随着距离第二衬底的几何中心的距离增大而逐渐增大或逐渐减小,且所述第一天线的各阵元的长度为第一预设值,所述第二天线的各阵元的长度为不同于所述第一预设值的第二预设值。
  10. 根据权利要求9所述的阵列天线装置,其特征在于,所述第一天线任意相邻两阵元的几何中心之间的间距为第一指定值;所述第二天线任意相邻两阵元的几何中心之间的间距为不同于所述第一指定值的第二指定值。
  11. 一种阵列天线装置的制备方法,其特征在于,所述制备方法包括:
    在第一衬底上形成第一天线,所述第一天线设有多个呈阵列排布的阵元;
    在第二衬底上形成第二天线,所述第二天线设有多个呈阵列排布的阵元;
    将所述第一衬底置于所述第二衬底上方;
    其中,所述第一天线的所有阵元与所述第二天线的所有阵元在所述第二衬底上的投影不完全重合。
  12. 根据权利要求11所述的阵列天线装置的制备方法,其特征在于,所述第一天线的所有阵元关于所述第一衬底的几何中心呈对称分布,所述第二天线的所有阵元关于所述第二衬底的几何中心呈对称分布,所述第一衬底的几何中心与所述第二衬底的几何中心在所述第二衬底上的投影重合。
  13. 根据权利要求12所述的阵列天线装置的制备方法,其特征在于,所述第一天线的所有阵元不关于所述第一衬底的几何中心对称分布,所述第二天线的所有阵元不关于所述第二衬底的几何中心对称分布,所述第一衬底的几何中心与所述第二衬底的几何中心在所述第二衬底上的投影重合。
  14. 一种电子设备,其特征在于,所述电子设备包括阵列天线装置,所述阵列天线装置包括:自上而下设有至少两个衬底:第一衬底和第二衬底;
    第一衬底上设置第一天线;
    第二衬底上设置有第二天线;
    所述第一天线设有多个呈阵列排布的阵元,所述第二天线设有多个呈阵列排布的阵元;
    其中,所述第一天线的所有阵元与所述第二天线的所有阵元在所述第二衬底上的投影不完全重合。
  15. 根据权利要求14所述的电子设备,其特征在于,所述电子设备为移动通信设备、雷达设备、卫星通信设备或汽车中的至少一种。
PCT/CN2021/073822 2020-01-31 2021-01-26 阵列天线装置及其制备方法和电子设备 WO2021151377A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/901,856 US20220416443A1 (en) 2020-01-31 2022-09-02 Array antenna apparatus and preparation method therefor, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010077702.5 2020-01-31
CN202010077702.5A CN113206372A (zh) 2020-01-31 2020-01-31 阵列天线装置及其制备方法和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/901,856 Continuation US20220416443A1 (en) 2020-01-31 2022-09-02 Array antenna apparatus and preparation method therefor, and electronic device

Publications (1)

Publication Number Publication Date
WO2021151377A1 true WO2021151377A1 (zh) 2021-08-05

Family

ID=77024789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073822 WO2021151377A1 (zh) 2020-01-31 2021-01-26 阵列天线装置及其制备方法和电子设备

Country Status (3)

Country Link
US (1) US20220416443A1 (zh)
CN (1) CN113206372A (zh)
WO (1) WO2021151377A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116721608B (zh) * 2023-06-13 2024-03-08 云谷(固安)科技有限公司 反射面组件、显示面板和无线通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658433A (zh) * 2004-12-30 2005-08-24 东南大学 变极化微带反射阵天线
CN103646144A (zh) * 2013-12-19 2014-03-19 西安电子科技大学 非周期阵列天线设计方法
CN104769775A (zh) * 2012-11-07 2015-07-08 株式会社村田制作所 阵列天线
CN107634349A (zh) * 2016-06-10 2018-01-26 英特尔Ip公司 阵列天线布置
CN109962334A (zh) * 2017-12-14 2019-07-02 三星电机株式会社 天线模块及包括该天线模块的电子设备
CN210957007U (zh) * 2020-01-31 2020-07-07 沐风电子科技(西安)有限公司 阵列天线装置和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795020B2 (en) * 2002-01-24 2004-09-21 Ball Aerospace And Technologies Corp. Dual band coplanar microstrip interlaced array
US8354972B2 (en) * 2007-06-06 2013-01-15 Fractus, S.A. Dual-polarized radiating element, dual-band dual-polarized antenna assembly and dual-polarized antenna array
US10236593B2 (en) * 2016-09-27 2019-03-19 Massachusetts Institute Of Technology Stacked patch antenna array with castellated substrate
CN110380232A (zh) * 2019-05-29 2019-10-25 惠州市德赛西威汽车电子股份有限公司 一种基于77GHz汽车雷达的双层贴片阵列天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658433A (zh) * 2004-12-30 2005-08-24 东南大学 变极化微带反射阵天线
CN104769775A (zh) * 2012-11-07 2015-07-08 株式会社村田制作所 阵列天线
CN103646144A (zh) * 2013-12-19 2014-03-19 西安电子科技大学 非周期阵列天线设计方法
CN107634349A (zh) * 2016-06-10 2018-01-26 英特尔Ip公司 阵列天线布置
CN109962334A (zh) * 2017-12-14 2019-07-02 三星电机株式会社 天线模块及包括该天线模块的电子设备
CN210957007U (zh) * 2020-01-31 2020-07-07 沐风电子科技(西安)有限公司 阵列天线装置和电子设备

Also Published As

Publication number Publication date
US20220416443A1 (en) 2022-12-29
CN113206372A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
US10804606B2 (en) Broadband low-beam-coupling dual-beam phased array
US20190252800A1 (en) Self-multiplexing antennas
US20120115548A1 (en) Mobile communication base station antenna and mobile communication base station antenna system
CN110492239B (zh) 一种应用于5g-v2x车联网通信系统的三极化车载天线
US8633862B2 (en) Mobile communication base station antenna
CN114069256B (zh) 一种双频双圆极化折叠反射阵天线
KR20210077808A (ko) 마이크로스트립 안테나, 안테나 어레이, 및 마이크로스트립 안테나의 제조 방법
CN113851833B (zh) 基于方向图可重构子阵技术的栅瓣抑制宽角扫描相控阵
CN112688079A (zh) 一种基于加载弯折接地金属柱的双极化宽波束天线
CN113690595A (zh) 一种宽波束天线单元及相控阵
CN211126061U (zh) 毫米波端射圆极化天线及无线通信设备
WO2021151377A1 (zh) 阵列天线装置及其制备方法和电子设备
CN210957007U (zh) 阵列天线装置和电子设备
US11699852B2 (en) Phased array antenna systems
CN116895953A (zh) 一种双极化超宽带宽角扫描紧耦合曲面阵列天线
CN113964489B (zh) 基于弯折形缝隙的宽角扫描相控阵天线
CN111816994B (zh) 采用离散地板提高基站天线隔离度并实现小型化的方法
CN112103640B (zh) 一种基于5g毫米波基站的天线阵及其排布方法
RU2695934C1 (ru) Антенная решетка mimo с широким углом обзора
WO2022016460A1 (zh) 一种混合网络天线
CN214477920U (zh) 一种在大尺寸地中实现天线宽波束和方向图圆滑的结构
JP7115780B1 (ja) アレーアンテナ
CN218101693U (zh) 一种双极化微带相控阵天线
US20230261387A1 (en) Metasurface superstrate (mss) enabled radiator for a multiband antenna apparatus
US20230155288A1 (en) Phased array antenna with high impedance surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747593

Country of ref document: EP

Kind code of ref document: A1