WO2023246149A1 - 室内机的控制方法、装置及空调 - Google Patents

室内机的控制方法、装置及空调 Download PDF

Info

Publication number
WO2023246149A1
WO2023246149A1 PCT/CN2023/078057 CN2023078057W WO2023246149A1 WO 2023246149 A1 WO2023246149 A1 WO 2023246149A1 CN 2023078057 W CN2023078057 W CN 2023078057W WO 2023246149 A1 WO2023246149 A1 WO 2023246149A1
Authority
WO
WIPO (PCT)
Prior art keywords
execution position
swing
execution
activity range
indoor unit
Prior art date
Application number
PCT/CN2023/078057
Other languages
English (en)
French (fr)
Inventor
刘光朋
石衡
张鹏
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023246149A1 publication Critical patent/WO2023246149A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioning equipment, and in particular to a control method and device for an indoor unit and an air conditioner.
  • Air conditioning is a common smart device that regulates the temperature and humidity of indoor environments and has been widely used. Among them, in order to avoid direct blowing in a certain direction or to make the temperature uniform in all directions of the room, the free swing mode of the air conditioner guide plate is often turned on when the air conditioner is running.
  • the existing control logic of the automatic swing of the air conditioner guide plate is to move the guide plate back and forth between the maximum angle positions up and down or left and right to adjust the average temperature fluctuation in the air conditioner action area. If the refrigeration is turned on and the user has a small range of activities indoors, the swing blades will still swing at a constant speed from the maximum angular position at both ends. Since the guide plate adjustment method is relatively fixed, the user will not feel the movement until the overall room temperature drops. Coolness seriously affects user experience and causes waste of energy efficiency.
  • the present application provides a control method, device and air conditioner for an indoor unit to solve the problem in the prior art that the guide plate swing mode is relatively fixed.
  • This application provides a control method for an indoor unit, including:
  • the position information of the indoor individual is collected by the radar module; the first execution position is in the left area of the air outlet, and the first execution position is formed by the horizontal plane where the radar module is located The angle is less than or equal to 90°; the second execution position is located in the right area of the air outlet, and the angle between the second execution position and the horizontal plane where the radar module is located is greater than or equal to 90° .
  • adjusting the swing speed of the vertical swing blade assembly in the rated swing wind area based on the first execution position and the second execution position includes:
  • control the vertical swing leaf assembly to swing in the first target area at a first speed
  • the third execution position and the fourth execution position are respectively the starting positions of the rated swing wind area; the first target area, the second target area and the third target area are based on The first execution position and the second execution position are determined; the first speed is greater than the second speed.
  • the method further includes:
  • the preset activity range is determined based on the position information of the indoor individual fed back by the radar module.
  • setting the first execution position and the second execution position based on the activity range includes:
  • the vertical swing leaf assembly includes an upper vertical swing leaf assembly and a lower vertical swing leaf assembly
  • adjusting the swing speed of the vertical swing blade assembly in the rated swing wind area specifically includes:
  • the lower vertical swing leaf assembly is controlled to start reciprocating from the fourth execution position, through the second execution position and the first execution position to the third execution position.
  • the method further includes:
  • control the oscillating blade assembly to move to the fifth execution position to guide the air downward obliquely;
  • control the sway blade assembly to move to the sixth execution angle to guide the air upward obliquely;
  • the angle between the fifth execution position and the horizontal plane where the radar module is located is greater than the critical angle; the angle between the fifth execution position and the horizontal plane where the radar module is located less than the critical angle.
  • This application also provides a control device for an indoor unit, including:
  • the real-time range determination module is used to determine the activity range based on the location information of indoor individuals;
  • An execution position determination module configured to set a first execution position and a second execution position based on the activity range when it is determined that the similarity between the activity range and the preset activity range is less than a preset threshold;
  • a first control module configured to adjust the swing speed of the vertical swing blade assembly in the rated swing wind area based on the first execution position and the second execution position;
  • the position information of the indoor individual is collected by the radar module; the first execution position is in the left area of the air outlet, and the first execution position is in the same area as the radar module.
  • the angle formed by the horizontal plane is less than or equal to 90°; the second execution position is located in the right area of the air outlet, and the angle between the second execution position and the horizontal plane where the radar module is located is greater than or equal to 90°. equal to 90°.
  • the application also provides an air conditioner, which includes an indoor unit and an outdoor unit.
  • the indoor unit is provided with a control processor and a radar module.
  • the radar module is provided on the surface of the indoor unit. It also includes a memory and a storage unit.
  • the radar module includes millimeter wave radar.
  • This application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the control method of any of the above-mentioned indoor units is implemented.
  • the present application also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the control method of any of the indoor units described above is implemented.
  • the indoor unit control method, device and air conditioner provided by this application are based on the radar module to monitor the individual's activity range in real time, and set the first execution position and the second execution position through the activity range decision-making, so that at the first execution position Slow down the swing speed between the second execution position and the second execution position, and speed up the swing speed in the remaining areas.
  • This achieves optimal control of the swing speed of the guide plate in the corresponding range according to the manned area, so that the manned area can be swept slowly and the unmanned area can be swept quickly. Sweep the air to improve the control accuracy and efficiency of the indoor unit and optimize the user experience.
  • Figure 1 is a schematic flow chart of the control method of the indoor unit provided by this application.
  • FIG. 2 is a schematic structural diagram of the control device of the indoor unit provided by this application.
  • FIG. 3 is a schematic structural diagram of the air conditioner provided by this application.
  • first, second, etc. in this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • FIG 1 is a schematic flowchart of an indoor unit control method provided by this application.
  • the control method of an indoor unit provided by the embodiment of the present application includes: Step 101: Determine the activity range based on the location information of the indoor individual.
  • the location information of the indoor individual is collected by a radar module.
  • the execution subject of the indoor unit control method provided by the embodiment of the present application is the control device of the indoor unit.
  • the application scenario of the indoor unit control method provided by the embodiment of the present application is that after the user activates the air conditioner, the activity range of the indoor individual is determined through the location information fed back in real time by the radar module, so that the area where the person is located is regarded as the effective area.
  • the unmanned area is regarded as an invalid area, and the indoor unit is controlled to perform slow air swing in the effective area and fast swing in the invalid area.
  • the radar module periodically collects the location information of all individuals in the room at specified time intervals and sends the location information to the control device of the indoor unit.
  • the embodiments of this application do not specifically limit the working cycle of the radar module.
  • the radar module can perform collection operations in the default working cycle.
  • the user can issue a cycle change command, so that the radar module receives and responds to the command and changes the working cycle to the cycle indicated by the command to perform the collection operation.
  • step 101 the user needs to send an activation command through the transmission medium to activate the working mode of the air conditioner, so that the indoor unit of the air conditioner runs at the default wind speed of this mode, and the outdoor unit runs at the default frequency of this mode. .
  • the user can transmit activation instructions through the control device and use wireless communication between the control device and the air-conditioning system to initialize the working mode of the air-conditioning system.
  • the user can issue an activation instruction through voice interaction, and the air conditioning system receives the activation instruction, performs voice recognition, and initializes the working mode.
  • step 101 after the air conditioner starts working mode for a period of time, the control device of the indoor unit receives the location information periodically collected by the radar module for each individual in the room, and combines the location information of multiple groups of individuals. Store it in a collection corresponding to the current moment to form the activity range of indoor individuals in the current period.
  • the embodiments of this application do not specifically limit the type and quantity of radar sensing devices in the radar module.
  • the radar module may include a lidar, infrared sensor, etc.
  • the horizontal detection range of millimeter wave radar can reach ⁇ 75°
  • the vertical detection range is ⁇ 40°
  • the detection distance can reach 8 meters
  • the distance output accuracy can reach 0.1 meters
  • the angle output accuracy can reach 1°
  • control device of the indoor unit uses the movement angle, displacement point and other information collected in real time by the millimeter wave radar as the user's individual location information. It can also collect acceleration, speed and other information to calculate the user's individual location information.
  • the radar module can include a variety of sensing elements such as millimeter wave radar, lidar, and infrared sensors.
  • the control device of the indoor unit integrates the behavioral information collected by each sensing element to comprehensively characterize the individual. Current location information and behavior information.
  • millimeter-wave radar can be used to collect individual heart rate information. According to a large amount of prior data, it is proved that in the case of non-emergency diseases, heart rate and human body exercise are often positively correlated. Based on the above correspondence, if the room is within the effective area, If the overall heart rate of an individual user is high, the wind speed can be appropriately increased in the cooling mode to increase the cooling capacity.
  • Step 102 When it is determined that the similarity between the activity range and the preset activity range is less than the preset threshold, set a first execution position and a second execution position based on the activity range.
  • first execution position is located in the left area of the air outlet, and the angle formed by the first execution position and the horizontal plane where the radar module is located is less than or equal to 90°.
  • the second execution position is located in the right area of the air outlet, and the angle formed by the second execution position and the horizontal plane where the radar module is located is greater than or equal to 90°.
  • the preset activity range refers to a set based on the location information collected by the radar module in the historical period before the current time.
  • step 102 the control device of the indoor unit compares the displacement points included in the user's current activity range with the displacement points in the preset activity range. The higher the coincidence rate of the displacement points in the two sets, the greater the activity. The greater the similarity between the range and the preset activity range.
  • the similarity between the activity range and the preset activity range is less than the preset threshold, it means that the indoor individual has obvious displacement changes.
  • the mapping relationship between the activity range and the execution angle determine the distance between the two ends of the activity range. The corresponding first execution position and second execution position.
  • the similarity between the activity range and the preset activity range is greater than or equal to the preset threshold, it means that there is no obvious displacement change of the indoor individual, then based on the preset activity range or activity range, combined with the relationship between the activity range and the execution angle The mapping relationship determines the first execution position and the second execution position corresponding to the two ends of the current range.
  • the first execution position corresponds to the first end of the activity range and is located in the left half area of the air outlet.
  • the second execution position corresponds to the second end of the activity range and is located in the right half area of the air outlet.
  • the embodiment of the present application does not specifically limit the value ranges of the first execution position and the second execution position.
  • the angle formed by the endpoint on the left half of the horizontal line and the horizontal plane is recorded as 0°
  • the angle formed by the endpoint on the right half of the horizontal line is 0°
  • the angle formed by the endpoint and the horizontal plane is recorded as 180°.
  • the angle between the first execution position and the horizontal plane where the radar module is located can only be 90°, that is, the angle between the first execution position and the horizontal plane where the radar module is located can only be 90°.
  • the swing blades are vertical in the air outlet. If the air continues to swing to the left, the air conditioner will receive a large amount of return air due to the rebound effect of the left wall, affecting the air supply efficiency.
  • the gap between the first execution position and the horizontal plane where the radar module is located is The angle can be acute or right, so that the sweep area completely encompasses the left side of the room.
  • the angle between the second execution position and the horizontal plane where the radar module is located can only be 90°, that is, the angle between the second execution position and the horizontal plane where the radar module is located can only be 90°.
  • the swing blades are vertical in the air outlet. If the air continues to swing to the right, the air conditioner will receive a large amount of return air due to the rebound effect of the right wall, affecting the air supply efficiency.
  • the angle between the second execution position and the horizontal plane where the radar module is located can be an obtuse angle or a right angle, so that the sweep area completely includes the right side of the room.
  • Step 103 Adjust the swing speed of the vertical swing blade assembly in the rated swing wind area based on the first execution position and the second execution position.
  • step 103 the control device of the indoor unit uses the area defined by the first execution position and the second execution position obtained in step 102 as the enhanced swing area, and removes the effective swing area from the rated swing area.
  • the area of the area is used as a weakened swing area.
  • the first execution position and the second execution position are packaged into control instructions and sent to the indoor unit.
  • the indoor unit receives and responds to the control command, and when controlling the vertical swing blade assembly to swing back and forth in the rated swing area, it reduces the swing of the assembly in the enhanced swing area based on the analyzed first execution position and second execution position. speed, and increase the swing speed of the component in the weakened swing wind area.
  • the embodiment of the present application monitors the individual's activity range in real time based on the radar module, and sets the first execution position and the second execution position through the activity range decision-making to slow down the swing between the first execution position and the second execution position. speed, and accelerate the swing speed in the remaining areas. It realizes optimal control of the swing speed of the guide plate in the corresponding range according to the occupied area, so that the occupied area can be swept slowly and the unmanned area can be swept quickly, improving the control accuracy and control of the indoor unit. efficiency and optimize user experience.
  • adjusting the swing speed of the vertical swing blade assembly in the rated swing wind area includes: in the third execution position and the fourth execution position During the reciprocating swing process between positions, the current position of the vertical swing blade assembly is obtained.
  • the third execution position and the fourth execution position are respectively the starting positions of the rated swing wind area.
  • the range formed between the third execution position and the fourth execution position is the rated air swing area initially set for the corresponding model of air conditioner, where the third execution position is located The limit swing position of the left zone, the fourth execution position is the limit swing position of the right zone.
  • the control device of the indoor unit acquires the current position of the vertical swing blade assembly in real time.
  • the vertical swing leaf assembly is controlled to swing in the first target area at a first speed.
  • the vertical swing leaf assembly is controlled to swing in the second target area at a second speed.
  • the vertical swing leaf assembly is controlled to swing in the third target area at the first speed.
  • the first target area, the second target area and the third target area are determined based on the first execution position and the second execution position.
  • the first speed is greater than the second speed.
  • the rated swing wind area is divided into adjacent first target areas, second target areas and third target areas according to the first execution position and the second execution position.
  • the first target area is an invalid area where no one exists, and its starting position is the third execution position and the first execution position.
  • the second target area is an effective area where people exist, and its starting position is the first execution position and the second execution position.
  • the third target area is an invalid area where no one exists, and its starting position is the second execution position and the fourth execution position.
  • control device of the indoor unit sets the swing speed of the vertical swing blade assembly in the first target area and the third target area to a faster first speed, and sets the swing speed of the vertical swing blade assembly in the second target area.
  • the speed is set to a slower second speed, and the reciprocating wind swing process between the third execution position and the fourth execution position can iteratively perform the following steps:
  • the vertical swing blade assembly In the process of swinging from the third execution position to the fourth execution position, the vertical swing blade assembly is controlled to move from the third execution position to the first execution position at a first speed, and then switches to a second speed to move from the first execution position to the third execution position. second execution position, and finally returns to the first speed and moves from the second execution position to the fourth execution position.
  • the vertical swing blade assembly In the process of swinging from the fourth execution position to the third execution position, the vertical swing blade assembly is controlled to move from the fourth execution position to the second execution position at the first speed, and then switches to the second speed to move from the second execution position to the second execution position.
  • the row position moves to the first execution position, and finally returns to the first speed and moves from the first execution position to the third execution position.
  • the embodiment of the present application divides the rated swing wind area based on the first execution position and the second execution position, so that the swing speed of the area composed of the first execution position and the second execution position is set to the second speed, and the swing speed of the remaining areas is The speed is set to first speed. It is possible to optimally control the swing speed of the guide plate within the corresponding range according to the occupied area, so that the air is swept slowly in the occupied area and the air is swept quickly in the unmanned area, thereby improving the control accuracy and efficiency of the indoor unit and optimizing the user experience.
  • the activity range based on the location information of the indoor individual before determining the activity range based on the location information of the indoor individual, it also includes: within a preset time period after the air conditioner is started, based on the location information of the indoor individual fed back by the radar module, Determine the preset activity range.
  • the control device of the indoor unit receives the location information collected by the radar module for each individual in the room during this period, and based on multiple Multiple sets of location information at historical moments are used to fit the user's individual activity range after a period of time that is slightly stable, and this range is used as the initial default activity range.
  • the preset activity range refers to the activity range in which the relative motion trajectories of indoor users are relatively fixed within the preset time period after the working mode is started.
  • the preset activity range is used to provide a comparison basis for subsequent activity ranges to characterize and quantify the individual user's movement status.
  • the embodiment of this application does not specifically limit the value of the preset duration.
  • the preset time period needs to be much larger than the working cycle of the radar module, for example, 10 minutes.
  • step 103 for the execution position adjustment strategy executed in this round, the corresponding activity range, first execution position and second execution position of this round are updated and stored in memory by replacing the default activity range,
  • the current round of activity scope is used as the historical activity scope of the next round of adjustment, providing a reference object for the adjustment strategy at the next moment.
  • a fixed-length sequence can also be dynamically maintained to sequentially store the activity ranges at different historical moments.
  • the length of the sequence reaches the fixed length value, the earliest stored historical activity range is marginalized and the newly stored historical activity range is added.
  • the embodiment of the present application uses the activity range to update and store the historical activity range, and then provides the theoretical basis for the adjustment strategy of the first execution position and the second execution position next time, realizing quantitative analysis of the indoor activity range based on the activity range.
  • Individual abnormal movements and quickly determine the update of the occupied area, and accordingly adjust the swing speed of the guide plate within the swing range corresponding to the occupied area. degree, so that the sweep area composed of the first execution position and the second execution position updated in real time slows down the swing speed, and speeds up the swing speed in other areas, improving the control accuracy and currentness of the indoor unit, and optimizing the user experience.
  • setting the first execution position and the second execution position based on the activity range includes: extracting the first position information and the second position information from the activity range.
  • the distance between the first position information and the second position information is the furthest.
  • step 101 the control device of the indoor unit calculates the distance between any two displacement points from the set of displacement points corresponding to the activity range, and uses the two displacement points with the largest distance as the first position information and Second location information.
  • the first position information and the second position information are respectively the farthest displacement points on the left and right sides separated by the air conditioner, and the distance calculation method between any two displacement points includes but is not limited to Euclidean distance, Manhattan distance, Chebyshev distance, Min distance, standardized Euclidean distance, cosine similarity, Mahalanobis distance, Hamming distance or Bach distance, etc.
  • the process can also be judged based on the distance from each displacement point in the set to the origin of the coordinate system.
  • the X-axis value is 0 for boundary division.
  • the displacement points with the X-axis value less than 0 are divided into the left area sub-set, and the displacement points with the X-axis value less than 0 are divided into the right area sub-set. gather.
  • the displacement point with the largest absolute value of the X-axis value is extracted from the two subsets respectively as the first position information and the second position information.
  • calculations are performed with the position information of the radar module respectively to determine the first execution position and the second execution position.
  • the control device of the indoor unit uses the first position information and the position information of the radar module to calculate the first execution in the third quadrant of the coordinate system. position, using the second position information and the position information of the radar module to calculate the second execution position in the fourth quadrant of the coordinate system.
  • the embodiment of this application is based on the first location information and the farthest left and right areas within the activity range.
  • the second position information combined with the position information of the radar module, is solved to calculate the first execution position and the second execution position relative to the radar module, realizing the determination of the occupied area based on the displacement points of multiple bodies, and optimally controlling the swing of the guide plate.
  • the range slows down the swing speed in the sweep area formed by the first execution position and the second execution position, and speeds up the swing speed in other areas, thereby improving the control accuracy and efficiency of the indoor unit and optimizing the user experience.
  • the vertical swing leaf assembly includes an upper vertical swing leaf assembly and a lower vertical swing leaf assembly
  • adjusting the swing speed of the vertical swing blade assembly in the rated swing wind area specifically includes:
  • the upper vertical swing leaf assembly is controlled to start reciprocating from the third execution position, through the first execution position and the second execution position to the fourth execution position.
  • the lower vertical swing leaf assembly is controlled to start reciprocating from the fourth execution position, through the second execution position and the first execution position to the third execution position.
  • the vertical swing leaf assembly can be divided into upper and lower sections, and is provided with an upper vertical swing leaf assembly and a lower vertical swing leaf assembly. Then the third execution position and the fourth execution position can be used as the initial positions of the upper vertical swing leaf assembly and the lower vertical swing blade assembly respectively.
  • the swing speed is slowed down and the rapid swing wind is restored during the swing to the fourth execution position.
  • the lower vertical swing blade assembly is also controlled to move rapidly from the fourth execution position to the third execution position.
  • the swing speed slows down in the interval formed by the second execution position and the first execution position, and the rapid swing wind resumes during the swing to the third execution position.
  • the embodiment of the present application is based on controlling the upper vertical swing blade assembly and the lower vertical swing blade assembly.
  • the wind is guided in the opposite swing direction, and the upper vertical swing blade assembly and the lower vertical swing blade can be controlled at any time.
  • the components are in the same position, there is air volume output in both left and right zones, improving the control accuracy and sweeping efficiency of the indoor unit and optimizing the user experience.
  • the activity range based on the indoor individual's position information after determining the activity range based on the indoor individual's position information, it further includes: determining the individual's height position information based on the indoor individual's shape information fed back by the radar module.
  • the vertical line where the radar module is located is used as the Z axis to establish a complete three-dimensional coordinate system.
  • control device of the indoor unit can also receive the shape information of the indoor individual fed back by the radar module, extract and calculate the longitudinal height corresponding to the outline of each individual on the Z axis, and use it as the height of the corresponding individual. location information.
  • all current height position information is weighted and averaged according to the number of individuals in the room, and the average value obtained can represent the overall height level of the indoor individuals.
  • a critical angle is determined.
  • the oscillating blade assembly is controlled to move to the fifth execution position to guide air downwards at an angle.
  • the oscillating blade assembly is controlled to move to the sixth execution angle to guide the air upward obliquely.
  • the angle between the fifth execution position and the horizontal plane where the radar module is located is greater than the critical angle.
  • the angle between the fifth execution position and the horizontal plane where the radar module is located is smaller than the critical angle.
  • control device of the indoor unit calculates the angle between the straight line connecting the individual head and the radar module and the XY plane in the coordinate system based on the height position information of the indoor individual and the position information of the radar module. , take this value as the critical angle.
  • control device of the indoor unit determines based on the operating information fed back by each component of the air conditioner that the started working mode is the heating mode, it controls the oscillating blade assembly to move to the fifth execution position, and the angle between this position and the XY plane is greater than critical angle. Under the action of a larger angle, the air is directed downwards so that the hot air with lower density is transported to the bottom space of the room.
  • control device of the indoor unit determines based on the operating information fed back by each component of the air conditioner that the started working mode is the cooling mode, it controls the oscillating blade assembly to move to the sixth execution position, and the angle between this position and the XY plane is less than the critical angle. Under the action of a small angle, the air is directed upward but does not blow directly on the head.
  • the embodiment of the present application is based on the real-time monitoring of the body shape information of indoor individuals based on the radar module to determine the height position information of the individual in the room.
  • the height position information is used to decide and control the execution angle of the oscillating blade assembly in different working modes, which can be used in refrigeration. Avoid cold wind blowing directly on the head when heating, and avoid the "hot head and cold feet" situation caused by the accumulation of hot air above the room during heating, improve the control accuracy of the indoor unit, and optimize the user experience.
  • FIG. 2 is a schematic structural diagram of the control device of the indoor unit provided by this application.
  • the indoor unit control device provided by the embodiment of the present application includes a real-time range determination module 210, an execution position determination module 220 and a first control module 230, wherein:
  • the real-time range determination module 210 is used to determine the activity range based on the location information of indoor individuals.
  • the execution position determination module 220 is configured to set a first execution position and a second execution position based on the activity range if it is determined that the similarity between the activity range and the preset activity range is less than a preset threshold.
  • the first control module 230 is used to adjust the swing speed of the vertical swing blade assembly in the rated swing wind area based on the first execution position and the second execution position.
  • the location information of the indoor individual is collected by a radar module.
  • the first execution position is located in the left area of the air outlet, and the angle formed by the first execution position and the horizontal plane where the radar module is located is less than or equal to 90°.
  • the second execution position is located in the right area of the air outlet, and the angle formed by the second execution position and the horizontal plane where the radar module is located is greater than or equal to 90°.
  • the real-time range determination module 210, the execution position determination module 220 and the first control module 230 are electrically connected in sequence.
  • the real-time range determination module 210 receives the position information of each individual in the room periodically collected by the radar module after the air conditioner is activated for a period of time, and stores the position information of multiple groups of individuals in the location corresponding to the current moment. collection to form the activity range of indoor individuals in the current cycle.
  • the execution position determination module 220 compares the displacement points contained in the current activity range of the user individual with the displacement points of the preset activity range. The higher the coincidence rate of the displacement points in the two sets, the greater the difference between the activity range and the preset activity range. The higher the similarity.
  • the similarity between the activity range and the preset activity range is less than the preset threshold, it means that the indoor individual has obvious displacement changes.
  • the mapping relationship between the activity range and the execution angle determine the distance between the two ends of the activity range. The corresponding first execution position and second execution position.
  • the first control module 230 uses the area defined by the first execution position and the second execution position obtained in the execution position determination module 220 as the enhanced swing area, and uses the area in the rated swing area except the effective swing area as the weakened area. Wind swing area. And combine the first execution position and the second execution position The settings are packaged into control instructions and sent to the indoor unit.
  • the indoor unit receives and responds to the control command, and when controlling the vertical swing blade assembly to swing back and forth in the rated swing area, it reduces the swing of the assembly in the enhanced swing area based on the analyzed first execution position and second execution position. speed, and increase the swing speed of the component in the weakened swing wind area.
  • the first control module 230 includes a current position determination unit, a first control unit, a second control unit and a third control unit, wherein:
  • a current position determination unit is configured to obtain the current position of the vertical swing blade assembly during the reciprocating swing process between the third execution position and the fourth execution position.
  • a first control unit configured to control the vertical swing leaf assembly to swing in the first target area at a first speed if it is determined that the current position of the vertical swing leaf assembly is in the first target area.
  • the second control unit is configured to control the vertical swing leaf assembly to swing in the second target area at a second speed if it is determined that the current position of the vertical swing leaf assembly is in the second target area.
  • a third control unit is configured to control the vertical swing leaf assembly to swing in the third target area at the first speed if it is determined that the current position of the vertical swing leaf assembly is in the third target area.
  • control device of the indoor unit also includes a preset range determination module, wherein:
  • the preset range determination module is used to determine the preset activity range based on the position information of indoor individuals fed back by the radar module within a preset time period after the air conditioner is started.
  • the execution position determination module 220 includes an endpoint determination unit and a position determination unit, wherein:
  • An endpoint determination unit is used to extract first position information and second position information from the activity range.
  • a position determination unit configured to calculate the first execution position and the second execution position based on the first position information and the second position information, respectively, and the position information of the radar module.
  • the distance between the first position information and the second position information is the furthest.
  • the vertical swing leaf assembly includes an upper vertical swing leaf assembly and a lower vertical swing leaf assembly.
  • the first control module 230 is specifically used to control the upper vertical swing blade assembly to start reciprocating from the third execution position, through the first execution position and the second execution position to the fourth execution position.
  • the first control module 230 is specifically used to control the lower vertical swing blade assembly to start reciprocating from the fourth execution position, through the second execution position and the first execution position to the third execution position.
  • control device of the indoor unit also includes a height determination module, a critical angle determination module, a second control module and a third control module, wherein:
  • the height determination module is used to determine the height position information of the individual based on the shape information of the indoor individual fed back by the radar module.
  • a critical angle determination module is used to determine a critical angle based on the height position information and the position information of the radar module.
  • the second control module is used to control the oscillating blade assembly to move to the fifth execution position to conduct inclined downward air guidance if it is determined that the air conditioner turns on the heating mode.
  • the third control module is used to control the oscillating blade assembly to move to the sixth execution angle to guide the air upward obliquely if it is determined that the air conditioner is in the cooling mode.
  • the angle between the fifth execution position and the horizontal plane where the radar module is located is greater than the critical angle.
  • the angle between the fifth execution position and the horizontal plane where the radar module is located is smaller than the critical angle.
  • the indoor unit control device provided by the embodiment of the present application is used to execute the above-mentioned indoor unit control method of the present application. Its implementation is consistent with the implementation of the indoor unit control method provided by the present application, and can achieve the same beneficial effects. No further details will be given here.
  • the embodiment of the present application monitors the individual's activity range in real time based on the radar module, and sets the first execution position and the second execution position through the activity range decision-making to slow down the swing between the first execution position and the second execution position. speed, and accelerate the swing speed in the remaining areas. It realizes optimal control of the swing speed of the guide plate in the corresponding range according to the occupied area, so that the occupied area can be swept slowly and the unmanned area can be swept quickly, improving the control accuracy and control of the indoor unit. efficiency and optimize user experience.
  • FIG 3 is a schematic structural diagram of the air conditioner provided by this application.
  • the air conditioner includes an indoor unit 310 and an outdoor unit 320.
  • the indoor unit 310 is provided with a control processor 311 and a radar module 312.
  • the radar module 312 is provided in the indoor unit. 310 on the surface. It also includes a memory and a program or instruction stored in the memory and executable on the control processor 311. When the program or instruction is executed by the control processor, the control method of the indoor unit is executed.
  • the radar module 312 includes a millimeter wave radar.
  • the air conditioner is composed of an indoor unit 310 body and an outdoor unit 320 body.
  • the control processor 311 can be integrated into the control development board of the indoor unit 310 with a chip or a microprocessor. Through the communication connection of the control processor 311 with the indoor unit 310 and the radar module 312 respectively, according to the real-time feedback of the individual The location information determines the indoor area where there are people, so as to adjust the working range of the indoor unit guide plate so that the air guide area matches the occupied area.
  • the radar module 312 is composed of millimeter wave radar.
  • the control processor 311 uses wireless communication technology to transmit signals with the motor, radar module 312, and light-emitting array of the indoor unit 310 respectively.
  • wireless communication technologies include but are not limited to WIFI wireless cellular signals (2G, 3G, 4G, 5G), Bluetooth, Zigbee and other methods, which are not specifically limited in the embodiments of this application.
  • the air conditioner of the present application also includes a memory and programs or instructions stored in the memory and executable on the control processor.
  • the above-mentioned control processor can call logical instructions in the memory to execute the control method of the indoor unit of the present application.
  • the method includes: determining the activity range based on the location information of the indoor individual; determining the activity range and the preset activity range. When the similarity is less than the preset threshold, a first execution position and a second execution position are set based on the activity range; based on the first execution position and the second execution position, the vertical swing leaf assembly is adjusted to the rated swing position.
  • the angle formed by the horizontal plane where the group is located is less than or equal to 90°; the second execution position is located in the right area of the air outlet, and the second execution position is formed by the horizontal plane where the radar module is located.
  • the included angle is greater than or equal to 90°.
  • the above-mentioned logical instructions in the memory can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including A number of instructions that cause a computer device to The equipment (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the embodiment of the present application monitors the individual's activity range in real time based on the radar module, and sets the first execution position and the second execution position through the activity range decision-making to slow down the swing between the first execution position and the second execution position. speed, and accelerate the swing speed in the remaining areas. It realizes optimal control of the swing speed of the guide plate in the corresponding range according to the occupied area, so that the occupied area can be swept slowly and the unmanned area can be swept quickly, improving the control accuracy and control of the indoor unit. efficiency and optimize user experience.
  • the present application also provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program can be stored on a non-transitory computer-readable storage medium.
  • the computer can Executing the control method of the indoor unit provided by each of the above methods, the method includes: determining the activity range based on the location information of the indoor individual; when it is determined that the similarity between the activity range and the preset activity range is less than a preset threshold, Based on the range of motion, a first execution position and a second execution position are set; based on the first execution position and the second execution position, the swing speed of the vertical swing blade assembly in the rated swing wind area is adjusted; wherein, The position information of the indoor individual is collected by the radar module; the first execution position is in the left area of the air outlet, and the angle formed between the first execution position and the horizontal plane where the radar module is located is less than Or equal to 90°; the second execution position is located in the right area of the air outlet, and the angle formed
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by the processor, it is implemented to execute the control method of the indoor unit provided by each of the above methods.
  • the method includes: determining the activity range based on the location information of the indoor individual; and setting the first execution position and the second execution position based on the activity range when it is determined that the similarity between the activity range and the preset activity range is less than a preset threshold.
  • the first execution position is located in the left area of the air outlet, and the first execution position is in contact with the radar module.
  • the angle formed by the horizontal plane at is less than or equal to 90°; the second execution position is in the right area of the air outlet, and the angle formed by the second execution position and the horizontal plane where the radar module is located Greater than or equal to 90°.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Abstract

一种室内机的控制方法、装置及空调,该方法包括:基于室内个体的位置信息,确定活动范围;在确定活动范围与预设活动范围的相似度小于预设阈值的情况下,基于活动范围,设置第一执行位置和第二执行位置;基于第一执行位置和第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度,基于雷达模组对个体的活动范围进行实时监测,通过活动范围决策对第一执行位置和第二执行位置进行设置,以在第一执行位置和第二执行位置之间减慢摆动速度,在其余区域加快摆动速度,使有人区域进行慢扫风,无人区域进行快扫风,提高室内机的控制精度和效率,优化用户体验。

Description

室内机的控制方法、装置及空调
相关申请的交叉引用
本申请要求于2022年06月22日提交的申请号为202210727896.8,发明名称为“室内机的控制方法、装置及空调”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调设备技术领域,尤其涉及一种室内机的控制方法、装置及空调。
背景技术
空调作为一种常见调节室内环境温湿度的智能设备已被广泛应用。其中,空调在运行过程中,为避免直吹某一方向或使房间各方向能温度均匀,往往会在空调运行时开启空调导板的自由摆模式。
现有的空调器导板自动摆的控制逻辑为使导板在上下或左右最大角度位置之间来回运动,调整空调作用区域内的平均温度波动。如若开启制冷后,使用者在室内的活动范围较小,摆叶仍从两端最大的角度位置之间进行匀速摆动,由于导板调节方式比较固定化,导致在整体室温下降后使用者才感觉到凉爽,严重影响用户体验,且造成能效上的浪费。
发明内容
本申请提供一种室内机的控制方法、装置及空调,用以解决现有技术中导板摆动模式较为固化的缺陷。
本申请提供一种室内机的控制方法,包括:
基于室内个体的位置信息,确定活动范围;
在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置;
基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度;
其中,所述室内个体的位置信息是由雷达模组采集的;所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所处的水平面形成的夹角小于或者等于90°;所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
根据本申请提供的一种室内机的控制方法,所述基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度,包括:
在第三执行位置与第四执行位置之间的往复摆风过程中,获取所述竖摆叶组件的当前位置;
若确定所述竖摆叶组件的当前位置处于第一目标区域,控制所述竖摆叶组件以第一速度在所述第一目标区域摆动;
若确定所述竖摆叶组件的当前位置处于第二目标区域,控制所述竖摆叶组件以第二速度在所述第二目标区域摆动;
若确定所述竖摆叶组件的当前位置处于第三目标区域,控制所述竖摆叶组件以所述第一速度在所述第三目标区域摆动;
其中,所述第三执行位置和所述第四执行位置分别是所述额定摆风区域的起始位置;所述第一目标区域、所述第二目标区域和所述第三目标区域是基于所述第一执行位置和所述第二执行位置确定的;所述第一速度大于所述第二速度。
根据本申请提供的一种室内机的控制方法,在所述基于室内个体的位置信息,确定活动范围之前,还包括:
在空调启动后的预设时长内,基于雷达模组反馈的室内个体的位置信息,确定所述预设活动范围。
根据本申请提供的一种室内机的控制方法,所述基于所述活动范围,设置第一执行位置和第二执行位置,包括:
从所述活动范围中抽取出第一位置信息和第二位置信息;
基于所述第一位置信息和所述第二位置信息,分别与所述雷达模组的位置信息进行计算,确定所述第一执行位置和所述第二执行位置;
其中,在所述活动范围内,所述第一位置信息和所述第二位置信息之 间的距离最远。
根据本申请提供的一种室内机的控制方法,所述竖摆叶组件包括上竖摆叶组件和下竖摆叶组件;
基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度,具体包括:
控制所述上竖摆叶组件从所述第三执行位置,经由所述第一执行位置和所述第二执行位置至第四执行位置开始往复摆动;
控制所述下竖摆叶组件从所述第四执行位置,经由所述第二执行位置和所述第一执行位置至第三执行位置开始往复摆动。
根据本申请提供的一种室内机的控制方法,在所述基于室内个体的位置信息,确定活动范围之后,还包括:
基于所述雷达模组反馈的室内个体的形体信息,确定个体的高度位置信息;
基于所述高度位置信息和所述雷达模组的位置信息,确定临界角度;
若确定所述空调开启制热模式的情况下,控制横摆叶组件移动至第五执行位置,进行倾斜向下导风;
若确定所述空调开启制冷模式的情况下,控制横摆叶组件移动至第六执行角度,进行倾斜向上导风;
其中,所述第五执行位置与所述雷达模组所处的水平面之间的夹角大于所述临界角度;所述第五执行位置与所述雷达模组所处的水平面之间的夹角小于所述临界角度。
本申请还提供一种室内机的控制装置,包括:
实时范围确定模块,用于基于室内个体的位置信息,确定活动范围;
执行位置确定模块,用于在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置;
第一控制模块,用于基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度;
其中,所述室内个体的位置信息是由雷达模组采集的;所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所处的 水平面形成的夹角小于或者等于90°;所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
本申请还提供一种空调,包括室内机和室外机,所述室内机中设置有控制处理器和雷达模组,所述雷达模组设置于所述室内机的表面上;还包括存储器及存储在所述存储器上并可在所述控制处理器上运行的程序或指令,所述程序或指令被所述控制处理器执行时实现如上述任一种所述室内机的控制方法;
其中,所述雷达模组包括毫米波雷达。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述室内机的控制方法。
本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述室内机的控制方法。
本申请提供的室内机的控制方法、装置及空调,基于雷达模组对个体的活动范围进行实时监测,通过活动范围决策对第一执行位置和第二执行位置进行设置,以在第一执行位置和第二执行位置之间减慢摆动速度,在其余区域加快摆动速度,实现了根据有人区域,最优化控制导板在对应范围内的摆动速度,使有人区域进行慢扫风,无人区域进行快扫风,提高室内机的控制精度和效率,优化用户体验。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的室内机的控制方法的流程示意图;
图2是本申请提供的室内机的控制装置的结构示意图;
图3是本申请提供的空调的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
图1是本申请提供的室内机的控制方法的流程示意图。如图1所示,本申请实施例提供的室内机的控制方法,包括:步骤101、基于室内个体的位置信息,确定活动范围。
其中,所述室内个体的位置信息是由雷达模组采集的。
需要说明的是,本申请实施例提供的室内机的控制方法的执行主体是室内机的控制装置。
本申请实施例提供的室内机的控制方法的应用场景为,当用户激活空调后,通过雷达模组实时反馈的位置信息确定室内个体的活动范围,以将人所在的区域视作有效区域,将无人区域视作无效区域,并控制室内机在有效区域内进行慢摆风,在无效区域内进行快摆风。
其中,雷达模组在指定的时间间隔下,周期性地采集室内中的所有个体的位置信息,并将该位置信息发送至室内机的控制装置。本申请实施例对雷达模组的工作周期不作具体限定。
可选地,雷达模组可以以默认的工作周期进行采集作业。
可选地,用户可以通过发出周期更改指令,使雷达模组接收并响应于该指令,将工作周期更改为该指令所指示的周期进行采集作业。
需要说明的是,在步骤101之前,用户需要通过传输介质发送激活指令,以激活空调的工作模式,使空调的室内机以该模式默认的风速运转,而室外机则以该模式默认的频率运转。
可选地,用户可以通过控制设备,采用控制设备与空调系统之间的无线通信方式,进行激活指令的传输,使空调系统初始化工作模式。
可选地,用户可以通过语音交互的方式发出激活指令,空调系统接收该激活指令,并进行语音识别后,初始化工作模式。
具体地,在步骤101中,空调启动工作模式的一段时间后,室内机的控制装置接收雷达模组周期性的对房间内的每一个体所采集的位置信息,并将多组个体的位置信息存放到与当前时刻对应的集合中,以构成当前周期下室内个体的活动范围。
本申请实施例对雷达模组中的雷达感知器件的种类和数量不作具体限定。
示例性地,雷达模组中可以包括一个激光雷达、红外传感器等。
可选地,由于毫米波雷达的水平检测范围可达到±75°,垂直检测范围±40°,检测最远可达到8米,距离输出精度可达0.1米,角度输出精度可达1°,且不涉及隐私问题、不受光线影响,其响应速度也较快。
所以,室内机的控制装置将该毫米波雷达实时采集的移动角度、位移点等信息,作为用户个体的位置信息。也可以采集加速度、速度等信息,换算出用户个体的位置信息。
示例性地,雷达模组中可以包括毫米波雷达、激光雷达、红外传感器等传感元件中的多种,室内机的控制装置利用各传感元件采集的行为信息进行整合,以全面刻画出个体当前的位置信息和行为信息。
例如,可以利用毫米波雷达采集个体的心率信息,根据大量先验数据证明,在非突发疾病的情况下,心率和人体运动量往往成正相关,基于上述的对应关系,若在有效区域内,房间内用户个体整体心率偏高,则可以在制冷模式下适当性提高风速,以加大制冷量。
步骤102、在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置。
其中,所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所处的水平面形成的夹角小于或者等于90°。所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
需要说明的是,预设活动范围,是指根据雷达模组在当前时刻之前的历史周期中采集的位置信息所构成的集合。
具体地,在步骤102中,室内机的控制装置将用户个体当前的活动范围内包含的位移点与预设活动范围的位移点进行对比,两个集合内的位移点重合率越高,则活动范围与预设活动范围之间的相似度越高。
若活动范围与预设活动范围之间的相似度小于预设阈值的情况下,即说明室内个体有明显位移变化,则根据活动范围和执行角度之间的映射关系,确定分别与活动范围两端对应的第一执行位置和第二执行位置。
若活动范围与预设活动范围之间的相似度大于或者等于预设阈值的情况下,即说明室内个体无明显位移变化,则根据预设活动范围或者活动范围,结合活动范围与执行角度之间的映射关系,确定分别与当前范围两端对应的第一执行位置和第二执行位置。
其中,第一执行位置与活动范围的第一端对应,位于出风口的左半侧区域。第二执行位置与活动范围的第二端对应,位于出风口的右半侧区域。
本申请实施例对第一执行位置和第二执行位置的取值范围不作具体限定。
示例性地,在雷达模组所处的水平面中,以雷达模组所处位置为原点,将处于左半边水平线上的端点与水平面所形成的夹角记为0°,处于右半边水平线上的端点与水平面所形成的夹角记为180°。
若空调处于室内的最左端,且雷达模组设置于空调外壳的最左端时,第一执行位置与雷达模组所处水平面之间的夹角只能为90°,即处于第一执行位置的摆叶在出风口中呈垂直状,如继续向左摆风则会在左侧墙壁反弹作用下使空调接收到大量回返风,影响送风效率。
而在其他布设情况下,第一执行位置与雷达模组所处水平面之间的夹 角可以为锐角或者直角,以使得扫风区域完全包含室内的左侧区域。
若空调处于室内的最右端,且雷达模组设置于空调外壳的最右端时,第二执行位置与雷达模组所处水平面之间的夹角只能为90°,即处于第二执行位置的摆叶在出风口中呈垂直状,如继续向右摆风则会在右侧墙壁反弹作用下使空调接收到大量回返风,影响送风效率。
而在其他布设情况下,第二执行位置与雷达模组所处水平面之间的夹角可以为钝角或者直角,以使得扫风区域完全包含室内的右侧区域。
步骤103、基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度。
具体地,在步骤103中,室内机的控制装置将步骤102中获取到的第一执行位置和第二执行位置所限定的区域作为强化摆风区域,而将额定摆风区域中除有效摆风区域的区域作为弱化摆风区域。并将第一执行位置和第二执行位置封装至控制指令,并发送至室内机。
室内机接收并响应于控制指令,在控制竖摆叶组件在额定摆风区域内进行往复摆动时,根据解析出的第一执行位置和第二执行位置,在强化摆风区域内降低组件的摆动速度,并在弱化摆风区域内提高组件的摆动速度。
本申请实施例基于雷达模组对个体的活动范围进行实时监测,通过活动范围决策对第一执行位置和第二执行位置进行设置,以在第一执行位置和第二执行位置之间减慢摆动速度,在其余区域加快摆动速度,实现了根据有人区域,最优化控制导板在对应范围内的摆动速度,使有人区域进行慢扫风,无人区域进行快扫风,提高室内机的控制精度和效率,优化用户体验。
在上述任一实施例的基础上,基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度,包括:在第三执行位置与第四执行位置之间的往复摆风过程中,获取所述竖摆叶组件的当前位置。
其中,所述第三执行位置和所述第四执行位置分别是所述额定摆风区域的起始位置。
需要说明的是,第三执行位置和第四执行位置之间构成的范围,就是对应型号的空调所初始设置的额定摆风区域,其中,第三执行位置为位于 左区的极限摆动位置,第四执行位置为位于右区的极限摆动位置。
具体地,在控制竖摆叶组件在第三执行位置与第四执行位置之间的往复摆风过程中,室内机的控制装置实时获取竖摆叶组件的当前位置。
若确定所述竖摆叶组件的当前位置处于第一目标区域,控制所述竖摆叶组件以第一速度在所述第一目标区域摆动。
若确定所述竖摆叶组件的当前位置处于第二目标区域,控制所述竖摆叶组件以第二速度在所述第二目标区域摆动。
若确定所述竖摆叶组件的当前位置处于第三目标区域,控制所述竖摆叶组件以所述第一速度在所述第三目标区域摆动。
其中,所述第一目标区域、所述第二目标区域和所述第三目标区域是基于所述第一执行位置和所述第二执行位置确定的。所述第一速度大于所述第二速度。
需要说明的是,根据第一执行位置和第二执行位置将额定摆风区域划分成邻接的第一目标区域、第二目标区域和第三目标区域。
其中,第一目标区域为无人存在的无效区域,其起始位置为第三执行位置和第一执行位置。
第二目标区域为有人存在的有效区域,其起始位置为第一执行位置和第二执行位置。
第三目标区域为无人存在的无效区域,其起始位置为第二执行位置和第四执行位置。
具体地,室内机的控制装置对处于第一目标区域和第三目标区域的竖摆叶组件的摆动速度设置为较快的第一速度,而对处于第二目标区域的竖摆叶组件的摆动速度设置为较慢的第二速度,而第三执行位置与第四执行位置之间的往复摆风过程可以迭代执行如下步骤:
在第三执行位置向第四执行位置摆动的过程中,控制竖摆叶组件以第一速度由第三执行位置移动至第一执行位置,再切换至第二速度由第一执行位置移动至第二执行位置,最后再恢复至第一速度由第二执行位置移动至第四执行位置。
在第四执行位置向第三执行位置摆动的过程中,控制竖摆叶组件以第一速度由第四执行位置移动至第二执行位置,再切换至第二速度由第二执 行位置移动至第一执行位置,最后再恢复至第一速度由第一执行位置移动至第三执行位置。
本申请实施例基于第一执行位置和第二执行位置对额定摆风区域进行划分,以在第一执行位置和第二执行位置所构成的区域的摆动速度设置为第二速度,其余区域的摆动速度设置为第一速度。实现了根据有人区域,最优化控制导板在对应范围内的摆动速度,使有人区域进行慢扫风,无人区域进行快扫风,提高室内机的控制精度和效率,优化用户体验。
在上述任一实施例的基础上,在所述基于室内个体的位置信息,确定活动范围之前,还包括:在空调启动后的预设时长内,基于雷达模组反馈的室内个体的位置信息,确定所述预设活动范围。
具体地,在步骤101之前,在空调启动工作模式后的预设时长内后,室内机的控制装置接收雷达模组在该时段内对房间内的每一个体所采集的位置信息,根据多个历史时刻下的多组位置信息,拟合出用户个体在时长内稍加稳定后的活动范围,并将该范围作为初始的预设活动范围。
预设活动范围,是指启动工作模式后,室内用户在预设时长内相对的运动轨迹相对固定的活动范围。预设活动范围用于为后续的活动范围提供对比依据,以表征并量化用户个体的移动状态。
本申请实施例对预设时长的取值不作具体限定。
可选地,预设时长需要远大于雷达模组的工作周期,例如,为10分钟。
可以理解的是,在步骤103之后,对于本轮所执行的执行位置调整策略,对本轮对应的活动范围、第一执行位置和第二执行位置,替换预设活动范围进行更新和存储记忆,以将本轮的活动范围作为下一轮调整的历史活动范围,为下一时刻的调整策略提供参照对象。
可选地,还可以动态维护一个固定长度的序列,用于顺次存放不同历史时刻的活动范围。当该序列的长度达到固定长度值后,则边缘化最早存储的历史活动范围,并添加新存储的历史活动范围。
本申请实施例在每一次调整后,均利用活动范围对历史活动范围进行更新存储,进而在下一次为第一执行位置和第二执行位置的调整策略理论依据,实现了根据活动范围量化分析出室内个体的异动情况,并快速决策有人区域的更新,并相应调整导板在有人区域对应的摆动范围内的摆动速 度,使实时更新的第一执行位置和第二执行位置所构成的扫风区域减慢摆动速度,在其他区域加快摆动速度,提高室内机的控制精度和现势性,优化用户体验。
在上述任一实施例的基础上,基于所述活动范围,设置第一执行位置和第二执行位置,包括:从所述活动范围中抽取出第一位置信息和第二位置信息。
其中,在所述活动范围内,所述第一位置信息和所述第二位置信息之间的距离最远。
具体地,在步骤101中,室内机的控制装置从活动范围对应的位移点集合中,对任意两个位移点之间的距离进行计算,将距离最大的两个位移点作为第一位置信息和第二位置信息。
其中,第一位置信息和第二位置信息分别为以空调为分界的左右两边内最远的位移点,且任意两个位移点之间的距离计算方法包括但不限于欧氏距离、曼哈顿距离、切比雪夫距离、闵氏距离、标准化欧氏距离、余弦相似度、马氏距离、汉明距离或巴氏距离等。
可选地,其过程也可以为通过集合内各位移点到坐标系原点的距离进行判断。
示例性地,在以传感模组在室内的布设位置作为坐标系原点,将传感模组所处的水平线作为X轴,在该水平面内垂直于X轴的竖直线作为Y轴,依照X轴取值为0进行界限划分,将活动范围对应的位移点集合中X轴取值小于0的位移点划分至左区子集合,将X轴取值小于0的位移点划分至右区子集合。并分别从两个子集合中抽取X轴取值的绝对值最大的位移点,作为第一位置信息和第二位置信息。
基于所述第一位置信息和所述第二位置信息,分别与所述雷达模组的位置信息进行计算,确定所述第一执行位置和所述第二执行位置。
具体地,在以传感模组在室内的布设位置作为原点的坐标系内,室内机的控制装置利用第一位置信息和雷达模组的位置信息解算出处于坐标系第三象限的第一执行位置,利用第二位置信息和雷达模组的位置信息解算出处于坐标系第四象限的第二执行位置。
本申请实施例基于活动范围内位于左右两区最远的第一位置信息和第 二位置信息,结合雷达模组的位置信息,解算出相对于雷达模组的第一执行位置和所述第二执行位置,实现了根据多个体的位移点确定有人区域,最优化控制导板的摆动范围,使第一执行位置和第二执行位置所构成的扫风区域减慢摆动速度,在其他区域加快摆动速度,提高室内机的控制精度和效率,优化用户体验。
在上述任一实施例的基础上,竖摆叶组件包括上竖摆叶组件和下竖摆叶组件;
基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度,具体包括:
控制所述上竖摆叶组件从所述第三执行位置,经由所述第一执行位置和所述第二执行位置至第四执行位置开始往复摆动。
控制所述下竖摆叶组件从所述第四执行位置,经由所述第二执行位置和所述第一执行位置至第三执行位置开始往复摆动。
具体地,竖摆叶组件可以按照上下进行分区,设置有上竖摆叶组件和下竖摆叶组件。则可使第三执行位置和第四执行位置分别作为上竖摆叶组件和下竖摆叶组件的初始位置,在控制上竖摆叶组件从第三执行位置快速移动至第一执行位置后,在第一执行位置和第二执行位置构成的区间减慢摆动速度,并向第四执行位置摆动过程中恢复快速摆风的同时,还控制下竖摆叶组件从第四执行位置快速移动至第二执行位置后,在第二执行位置和第一执行位置构成的区间减慢摆动速度,并向第三执行位置摆动过程中恢复快速摆风。
本申请实施例基于控制上竖摆叶组件和下竖摆叶组件,在额定摆风区域内,按照相反的摆动方向进行导风,能够在任一时刻下,上竖摆叶组件和下竖摆叶组件所处同一位置时,在左右两区均有风量输出,提高室内机的控制精度和扫风效率,优化用户体验。
在上述任一实施例的基础上,在所述基于室内个体的位置信息,确定活动范围之后,还包括:基于所述雷达模组反馈的室内个体的形体信息,确定个体的高度位置信息。
需要说明的是,在以雷达模组位置作为原点的坐标系中,将雷达模组所处的竖直线作为Z轴,建立完整的三维坐标系。
具体地,在步骤101之后,室内机的控制装置还可以接收雷达模组反馈的室内个体的形体信息,提取并解算出每一个体轮廓在Z轴上所对应的纵向高度,作为对应个体的高度位置信息。
可以理解的是,根据室内的个体数量对当前所有高度位置信息进行加权平均,所获取到均值可以表征室内个体的整体高度水平。
基于所述高度位置信息和所述雷达模组的位置信息,确定临界角度。
若确定所述空调开启制热模式的情况下,控制横摆叶组件移动至第五执行位置,进行倾斜向下导风。
若确定所述空调开启制冷模式的情况下,控制横摆叶组件移动至第六执行角度,进行倾斜向上导风。
其中,所述第五执行位置与所述雷达模组所处的水平面之间的夹角大于所述临界角度。所述第五执行位置与所述雷达模组所处的水平面之间的夹角小于所述临界角度。
具体地,室内机的控制装置根据室内个体的高度位置信息和所述雷达模组的位置信息,解算出个体头部与雷达模组所连成的直线于坐标系中XY平面之间的夹角,将该值作为临界角度。
若室内机的控制装置根据空调各部件反馈的运行信息确定,所启动的工作模式为制热模式时,控制横摆叶组件移动至第五执行位置,该位置与XY平面之间的夹角大于临界角度。以在较大的角度作用下,进行倾斜向下的导风,使密度较小的热空气输送至室内的底部空间。
若室内机的控制装置根据空调各部件反馈的运行信息确定,所启动的工作模式为制冷模式时,控制横摆叶组件移动至第六执行位置,该位置与XY平面之间的夹角小于临界角度。以在较小的角度作用下,进行倾斜向上,但又不直吹头部的导风。
本申请实施例基于雷达模组实时监测室内个体的形体信息,以确定个体在室内中的高度位置信息,通过高度位置信息在在不同工作模式下决策控制横摆叶组件的执行角度,能够在制冷时避免冷风直吹头部,在制热时避免热空气在室内上方堆积所导致的“头热脚冷”的情况,提高室内机的控制精度,优化用户体验。
图2是本申请提供的室内机的控制装置的结构示意图。在上述任一实 施例的基础上,如图2所示,本申请实施例提供的室内机的控制装置,包括实时范围确定模块210、执行位置确定模块220和第一控制模块230,其中:
实时范围确定模块210,用于基于室内个体的位置信息,确定活动范围。
执行位置确定模块220,用于在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置。
第一控制模块230,用于基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度。
其中,所述室内个体的位置信息是由雷达模组采集的。所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所处的水平面形成的夹角小于或者等于90°。所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
具体地,实时范围确定模块210、执行位置确定模块220和第一控制模块230顺次电连接。
实时范围确定模块210接收雷达模组在空调启动工作模式的一段时间后,周期性的对房间内的每一个体所采集的位置信息,并将多组个体的位置信息存放到与当前时刻对应的集合中,以构成当前周期下室内个体的活动范围。
执行位置确定模块220将用户个体当前的活动范围内包含的位移点与预设活动范围的位移点进行对比,两个集合内的位移点重合率越高,则活动范围与预设活动范围之间的相似度越高。
若活动范围与预设活动范围之间的相似度小于预设阈值的情况下,即说明室内个体有明显位移变化,则根据活动范围和执行角度之间的映射关系,确定分别与活动范围两端对应的第一执行位置和第二执行位置。
第一控制模块230将执行位置确定模块220中获取到的第一执行位置和第二执行位置所限定的区域作为强化摆风区域,而将额定摆风区域中除有效摆风区域的区域作为弱化摆风区域。并将第一执行位置和第二执行位 置封装至控制指令,并发送至室内机。
室内机接收并响应于控制指令,在控制竖摆叶组件在额定摆风区域内进行往复摆动时,根据解析出的第一执行位置和第二执行位置,在强化摆风区域内降低组件的摆动速度,并在弱化摆风区域内提高组件的摆动速度。
可选地,第一控制模块230包括当前位置确定单元、第一控制单元、第二控制单元和第三控制单元,其中:
当前位置确定单元,用于在第三执行位置与第四执行位置之间的往复摆风过程中,获取所述竖摆叶组件的当前位置。
第一控制单元,用于若确定所述竖摆叶组件的当前位置处于第一目标区域,控制所述竖摆叶组件以第一速度在所述第一目标区域摆动。
第二控制单元,用于若确定所述竖摆叶组件的当前位置处于第二目标区域,控制所述竖摆叶组件以第二速度在所述第二目标区域摆动。
第三控制单元,用于若确定所述竖摆叶组件的当前位置处于第三目标区域,控制所述竖摆叶组件以所述第一速度在所述第三目标区域摆动。
可选地,室内机的控制装置还包括预设范围确定模块,其中:
预设范围确定模块,用于在空调启动后的预设时长内,基于雷达模组反馈的室内个体的位置信息,确定所述预设活动范围。
可选地,执行位置确定模块220包括端点确定单元和位置确定单元,其中:
端点确定单元,用于从所述活动范围中抽取出第一位置信息和第二位置信息。
位置确定单元,用于基于所述第一位置信息和所述第二位置信息,分别与所述雷达模组的位置信息进行计算,确定所述第一执行位置和所述第二执行位置。
其中,在所述活动范围内,所述第一位置信息和所述第二位置信息之间的距离最远。
可选地,竖摆叶组件包括上竖摆叶组件和下竖摆叶组件。
第一控制模块230,具体用于控制所述上竖摆叶组件从所述第三执行位置,经由所述第一执行位置和所述第二执行位置至第四执行位置开始往复摆动。
第一控制模块230,具体用于控制所述下竖摆叶组件从所述第四执行位置,经由所述第二执行位置和所述第一执行位置至第三执行位置开始往复摆动。
可选地,室内机的控制装置还包括高度确定模块、临界角度确定模块、第二控制模块和第三控制模块,其中:
高度确定模块,用于基于所述雷达模组反馈的室内个体的形体信息,确定个体的高度位置信息。
临界角度确定模块,用于基于所述高度位置信息和所述雷达模组的位置信息,确定临界角度。
第二控制模块,用于若确定所述空调开启制热模式的情况下,控制横摆叶组件移动至第五执行位置,进行倾斜向下导风。
第三控制模块,用于若确定所述空调开启制冷模式的情况下,控制横摆叶组件移动至第六执行角度,进行倾斜向上导风。
其中,所述第五执行位置与所述雷达模组所处的水平面之间的夹角大于所述临界角度。所述第五执行位置与所述雷达模组所处的水平面之间的夹角小于所述临界角度。
本申请实施例提供的室内机的控制装置,用于执行本申请上述室内机的控制方法,其实施方式与本申请提供的室内机的控制方法的实施方式一致,且可以达到相同的有益效果,此处不再赘述。
本申请实施例基于雷达模组对个体的活动范围进行实时监测,通过活动范围决策对第一执行位置和第二执行位置进行设置,以在第一执行位置和第二执行位置之间减慢摆动速度,在其余区域加快摆动速度,实现了根据有人区域,最优化控制导板在对应范围内的摆动速度,使有人区域进行慢扫风,无人区域进行快扫风,提高室内机的控制精度和效率,优化用户体验。
图3是本申请提供的空调的结构示意图。在上述任一实施例的基础上,如图3所示,空调包括室内机310和室外机320,室内机310中设置有控制处理器311和雷达模组312,雷达模组312设置于室内机310的表面上。还包括存储器及存储在存储器上并可在控制处理器311上运行的程序或指令,程序或指令被控制处理器执行时执行室内机的控制方法。
其中,雷达模组312包括毫米波雷达。
具体地,空调由室内机310本体和室外机320本体构成。其中,控制处理器311可以以一个芯片或者微处理器集成至室内机310的控制开发板上,通过控制处理器311分别与室内机310和雷达模组312的通信连接,根据实时反馈的个体的位置信息确定室内有人的区域,以对室内机导板的工作范围进行调整,使导风区域与有人区域相适配。
还需要在室内机310中非出风口处的表面设置一个或者多个雷达模组312,以实时采集室内的用户个体的移动状态进行实时监控,并反馈至控制处理器311进行导板控制的逻辑判断。
优选地,雷达模组312由毫米波雷达构成。控制处理器311则分别与室内机310的电机、雷达模组312、发光阵列采用无线通信技术进行信号传输。
其中,无线通信技术包括但不限于WIFI无线蜂窝信号(2G、3G、4G、5G)、蓝牙、Zigbee等方式,本申请实施例对此不作具体限定。
本申请的空调还包括存储器及存储在存储器上并可在控制处理器上运行的程序或指令。上述控制处理器可以调用存储器中的逻辑指令,以执行本申请的室内机的控制方法,该方法包括:基于室内个体的位置信息,确定活动范围;在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置;基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度;其中,所述室内个体的位置信息是由雷达模组采集的;所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所处的水平面形成的夹角小于或者等于90°;所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设 备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例基于雷达模组对个体的活动范围进行实时监测,通过活动范围决策对第一执行位置和第二执行位置进行设置,以在第一执行位置和第二执行位置之间减慢摆动速度,在其余区域加快摆动速度,实现了根据有人区域,最优化控制导板在对应范围内的摆动速度,使有人区域进行慢扫风,无人区域进行快扫风,提高室内机的控制精度和效率,优化用户体验。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的室内机的控制方法,该方法包括:基于室内个体的位置信息,确定活动范围;在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置;基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度;其中,所述室内个体的位置信息是由雷达模组采集的;所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所处的水平面形成的夹角小于或者等于90°;所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的室内机的控制方法,该方法包括:基于室内个体的位置信息,确定活动范围;在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置;基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度;其中,所述室内个体的位置信息是由雷达模组采集的;所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所 处的水平面形成的夹角小于或者等于90°;所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种室内机的控制方法,包括:
    基于室内个体的位置信息,确定活动范围;
    在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置;
    基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度;
    其中,所述室内个体的位置信息是由雷达模组采集的;所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所处的水平面形成的夹角小于或者等于90°;所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
  2. 根据权利要求1所述的室内机的控制方法,其中,所述基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度,包括:
    在第三执行位置与第四执行位置之间的往复摆风过程中,获取所述竖摆叶组件的当前位置;
    若确定所述竖摆叶组件的当前位置处于第一目标区域,控制所述竖摆叶组件以第一速度在所述第一目标区域摆动;
    若确定所述竖摆叶组件的当前位置处于第二目标区域,控制所述竖摆叶组件以第二速度在所述第二目标区域摆动;
    若确定所述竖摆叶组件的当前位置处于第三目标区域,控制所述竖摆叶组件以所述第一速度在所述第三目标区域摆动;
    其中,所述第三执行位置和所述第四执行位置分别是所述额定摆风区域的起始位置;所述第一目标区域、所述第二目标区域和所述第三目标区域是基于所述第一执行位置和所述第二执行位置确定的;所述第一速度大于所述第二速度。
  3. 根据权利要求1所述的室内机的控制方法,其中,在所述基于室内个体的位置信息,确定活动范围之前,还包括:
    在空调启动后的预设时长内,基于雷达模组反馈的室内个体的位置信 息,确定所述预设活动范围。
  4. 根据权利要求1所述的室内机的控制方法,其中,所述基于所述活动范围,设置第一执行位置和第二执行位置,包括:
    从所述活动范围中抽取出第一位置信息和第二位置信息;
    基于所述第一位置信息和所述第二位置信息,分别与所述雷达模组的位置信息进行计算,确定所述第一执行位置和所述第二执行位置;
    其中,在所述活动范围内,所述第一位置信息和所述第二位置信息之间的距离最远。
  5. 根据权利要求2所述的室内机的控制方法,其中,所述竖摆叶组件包括上竖摆叶组件和下竖摆叶组件;
    基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度,具体包括:
    控制所述上竖摆叶组件从所述第三执行位置,经由所述第一执行位置和所述第二执行位置至第四执行位置开始往复摆动;
    控制所述下竖摆叶组件从所述第四执行位置,经由所述第二执行位置和所述第一执行位置至第三执行位置开始往复摆动。
  6. 根据权利要求1-5任一所述的室内机的控制方法,其中,在所述基于室内个体的位置信息,确定活动范围之后,还包括:
    基于所述雷达模组反馈的室内个体的形体信息,确定个体的高度位置信息;
    基于所述高度位置信息和所述雷达模组的位置信息,确定临界角度;
    若确定所述空调开启制热模式的情况下,控制横摆叶组件移动至第五执行位置,进行倾斜向下导风;
    若确定所述空调开启制冷模式的情况下,控制横摆叶组件移动至第六执行角度,进行倾斜向上导风;
    其中,所述第五执行位置与所述雷达模组所处的水平面之间的夹角大于所述临界角度;所述第五执行位置与所述雷达模组所处的水平面之间的夹角小于所述临界角度。
  7. 一种室内机的控制装置,包括:
    实时范围确定模块,用于基于室内个体的位置信息,确定活动范围;
    执行位置确定模块,用于在确定所述活动范围与预设活动范围的相似度小于预设阈值的情况下,基于所述活动范围,设置第一执行位置和第二执行位置;
    第一控制模块,用于基于所述第一执行位置和所述第二执行位置,调节竖摆叶组件在额定摆风区域内的摆动速度;
    其中,所述室内个体的位置信息是由雷达模组采集的;所述第一执行位置处于出风口的左侧区域,且所述第一执行位置与所述雷达模组所处的水平面形成的夹角小于或者等于90°;所述第二执行位置处于所述出风口的右侧区域,且所述第二执行位置与所述雷达模组所处的水平面形成的夹角大于或者等于90°。
  8. 一种空调,包括室内机和室外机,其中,所述室内机中设置有控制处理器和雷达模组,所述雷达模组设置于所述室内机的表面上;还包括存储器及存储在所述存储器上并可在所述控制处理器上运行的程序或指令,所述程序或指令被所述控制处理器执行时执行如权利要求1至6任一项所述室内机的控制方法;
    其中,所述雷达模组包括毫米波雷达。
  9. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述室内机的控制方法。
  10. 一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述室内机的控制方法。
PCT/CN2023/078057 2022-06-22 2023-02-24 室内机的控制方法、装置及空调 WO2023246149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210727896.8A CN115218407A (zh) 2022-06-22 2022-06-22 室内机的控制方法、装置及空调
CN202210727896.8 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023246149A1 true WO2023246149A1 (zh) 2023-12-28

Family

ID=83610704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078057 WO2023246149A1 (zh) 2022-06-22 2023-02-24 室内机的控制方法、装置及空调

Country Status (2)

Country Link
CN (1) CN115218407A (zh)
WO (1) WO2023246149A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115218407A (zh) * 2022-06-22 2022-10-21 青岛海尔空调器有限总公司 室内机的控制方法、装置及空调

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292034A (ja) * 2007-05-23 2008-12-04 Panasonic Corp 空気調和機
CN103890498A (zh) * 2011-10-18 2014-06-25 三菱电机株式会社 空气调节机的室内机
CN105509232A (zh) * 2015-12-18 2016-04-20 宁波奥克斯空调有限公司 一种空调全方位出风控制方法
CN108444052A (zh) * 2018-02-28 2018-08-24 平安科技(深圳)有限公司 一种空调的控制方法及空调
CN109442687A (zh) * 2018-10-08 2019-03-08 珠海格力电器股份有限公司 一种空调的控制方法、装置、存储介质及空调
CN110220281A (zh) * 2019-05-22 2019-09-10 青岛海尔空调器有限总公司 用于空调器的控制方法
CN112648712A (zh) * 2020-10-28 2021-04-13 青岛海尔空调器有限总公司 空调器室内机及其送风区域的配置方法
CN113757969A (zh) * 2021-08-16 2021-12-07 重庆海尔空调器有限公司 空调器的控制方法和电子设备
CN113819634A (zh) * 2021-09-18 2021-12-21 青岛海尔空调器有限总公司 空调控制方法、控制设备、存储介质及空调
CN115218407A (zh) * 2022-06-22 2022-10-21 青岛海尔空调器有限总公司 室内机的控制方法、装置及空调

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292034A (ja) * 2007-05-23 2008-12-04 Panasonic Corp 空気調和機
CN103890498A (zh) * 2011-10-18 2014-06-25 三菱电机株式会社 空气调节机的室内机
CN105509232A (zh) * 2015-12-18 2016-04-20 宁波奥克斯空调有限公司 一种空调全方位出风控制方法
CN108444052A (zh) * 2018-02-28 2018-08-24 平安科技(深圳)有限公司 一种空调的控制方法及空调
CN109442687A (zh) * 2018-10-08 2019-03-08 珠海格力电器股份有限公司 一种空调的控制方法、装置、存储介质及空调
CN110220281A (zh) * 2019-05-22 2019-09-10 青岛海尔空调器有限总公司 用于空调器的控制方法
CN112648712A (zh) * 2020-10-28 2021-04-13 青岛海尔空调器有限总公司 空调器室内机及其送风区域的配置方法
CN113757969A (zh) * 2021-08-16 2021-12-07 重庆海尔空调器有限公司 空调器的控制方法和电子设备
CN113819634A (zh) * 2021-09-18 2021-12-21 青岛海尔空调器有限总公司 空调控制方法、控制设备、存储介质及空调
CN115218407A (zh) * 2022-06-22 2022-10-21 青岛海尔空调器有限总公司 室内机的控制方法、装置及空调

Also Published As

Publication number Publication date
CN115218407A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN110360715B (zh) 区域选择性地动作的空调、云服务器及其动作方法
WO2023246149A1 (zh) 室内机的控制方法、装置及空调
US20190309970A1 (en) Air-conditioner based on parameter learning using artificial intelligence, cloud server, and method of operating and controlling thereof
US11255563B2 (en) Air conditioner and method for operating the air conditioner
CN104713196B (zh) 变频空调制冷控制方法、控制装置及变频空调
WO2023246121A1 (zh) 室内机的控制方法、装置及空调
CN109442687B (zh) 一种空调的控制方法、装置、存储介质及空调
WO2023246129A1 (zh) 室内机的控制方法、装置及空调
CN106839338B (zh) 一种空调送风控制系统和空调送风方法
CN104033988A (zh) 空调控制系统及其控制方法
CN107676935A (zh) 智能空调节能控制方法
CN106091247A (zh) 远程控制单冷空调器智能控制运行方法
CN113251626A (zh) 用于导风板的转速调节方法及装置、空调
CN106288238B (zh) 空调制冷运行控制方法
CN106052011A (zh) 空调制冷控制方法及控制装置
CN113932429A (zh) 用于家电的控制方法、控制装置、智能床垫和服务器
WO2023221462A1 (zh) 空调的辅助睡眠控制方法、装置及空调
CN109210710A (zh) 基于人体舒适度控制空调压缩机的方法及装置
WO2023103410A1 (zh) 用于控制空调的方法、装置及空调
CN110398036A (zh) 一种空调制冷控制方法及系统
CN115218400A (zh) 室内机的控制方法、装置及空调
CN115218401A (zh) 室内机的控制方法、装置及空调
CN110939598B (zh) 一种根据人群分布送风的方法及风机
CN107965887A (zh) 一种基于计算机的室内温度控制方法
CN113418286A (zh) 自适应热感觉机器人及空调温度调整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825808

Country of ref document: EP

Kind code of ref document: A1