WO2023246143A1 - 一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机 - Google Patents

一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机 Download PDF

Info

Publication number
WO2023246143A1
WO2023246143A1 PCT/CN2023/077808 CN2023077808W WO2023246143A1 WO 2023246143 A1 WO2023246143 A1 WO 2023246143A1 CN 2023077808 W CN2023077808 W CN 2023077808W WO 2023246143 A1 WO2023246143 A1 WO 2023246143A1
Authority
WO
WIPO (PCT)
Prior art keywords
saddle
pipeline
saddle bridge
refrigerant pipeline
return air
Prior art date
Application number
PCT/CN2023/077808
Other languages
English (en)
French (fr)
Inventor
张龙
汪亚东
赵昕
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023246143A1 publication Critical patent/WO2023246143A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/03Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements
    • F24F1/031Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements penetrating a wall or window
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to the technical field of air conditioners, and in particular to a pipeline stress testing method applied to a saddle-type window machine and a saddle-type window machine.
  • the stress test is a test that must be done before the air conditioner leaves the factory.
  • the pipeline will produce strain in external forces or non-uniform pressure/temperature fields, which is the deformation rate of the pipeline. This is a dimensionless number.
  • the amount of strain will cause the pipeline to fracture, so the strain needs to be controlled within a certain range. Stress testing is to test whether the strain amount exceeds the standard.
  • the saddle-type window machine mainly includes an indoor part, an outdoor part and a saddle bridge part.
  • the indoor part is separated from the outdoor part through the saddle bridge part, which effectively reduces indoor noise.
  • the window machine rides on the window, and the saddle bridge part can be telescopic to adjust the distance between the indoor part and the outdoor part to adapt to walls of different thicknesses.
  • the n-shaped structure of the saddle-type window machine causes the pipeline inside to be specially designed to allow the pipeline to adapt to the expansion and contraction of the saddle bridge part.
  • the existing pipeline stress testing method is only suitable for ordinary window machines.
  • Ordinary window machines only require a laboratory bench and can be tested under stable working conditions.
  • the saddle-type window machine with n-type structure and its installation method are very different from ordinary window machines.
  • the installation method has a great influence on the maximum strain amount. It is necessary to simulate the maximum strain amount as much as possible according to the user's actual usage scenario. Therefore, the saddle-type window machine Window machines cannot be tested using conventional stress testing methods, otherwise the test results will be inconsistent.
  • the present invention proposes a pipeline stress testing method applied to a saddle-type window machine and a saddle-type window machine, which can test the strain amount of the window machine in the most unfavorable state and improve the window machine pipeline. security.
  • the present invention adopts the following technical solutions to achieve it:
  • the invention provides a pipeline stress testing method applied to saddle-type window machines, which includes:
  • the saddle-type window unit includes an indoor unit, an outdoor unit and a saddle bridge structure connecting the indoor unit and the outdoor unit.
  • the saddle bridge structure can be telescopic to adjust the distance between the indoor unit and the outdoor unit. distance, the refrigerant pipeline passes through the saddle bridge structure;
  • the weight of the indoor unit is W1, and the weight of the outdoor unit is W2;
  • the distance between the indoor unit and the wall is set to L1, and the distance between the outdoor unit and the wall is set to L2.
  • the stress testing methods of the refrigerant pipeline include:
  • the strain of the refrigerant pipeline is ⁇ .
  • the theoretical upper limit of the strain ⁇ ⁇ max1 is known data.
  • the window machine when the window machine is subjected to stress testing in three states: starting, running, and shutting down, the rated voltage Ue, voltage (Ue-u1), and voltage (Ue+) of the window machine are tested in each state.
  • the window machine when the window machine performs a refrigerant pipeline stress test in the starting working state, the refrigerant pipeline strain amount in the time period t1 after the compressor reaches the rated frequency is tested.
  • the refrigerant pipeline strain amount in the time period t2 after the compressor has stabilized operation is tested.
  • the refrigerant pipeline strain amount in the time period t3 before the window is shut down and the time period t4 after the window is shut down is tested.
  • the refrigerant pipeline includes a return air pipe group, and the return air pipe group includes a first return air pipe section, a second return air pipe section, and a third return air pipe section that are connected in sequence;
  • the first return air pipe section is connected to the indoor heat exchanger, the third return air pipe section is connected to the compressor installed in the outdoor unit, and the second return air pipe section has a U-shaped structure and is located on the saddle bridge. in the lumen of the structure;
  • the first return air pipe section is provided with a bent portion near its end to connect with the indoor heat exchanger
  • the third return air pipe section is provided with a bent portion near its end to connect with the indoor heat exchanger.
  • the compressor is connected, and the bending part is the stress test point.
  • the third return air pipe section includes a first section of the third return air pipe, a U-shaped section of the third return air pipe, and a second section of the third return air pipe, which are connected in sequence.
  • the opening of the U-shaped section of the pipeline faces upward, one section of the third return air pipe is connected to the second return air pipe section, and the second section of the third return air pipe is connected to the suction port of the compressor;
  • the bent portion at the bottom of the U-shaped section of the third air return pipeline is the stress test point.
  • the invention also provides a saddle-type window machine, which includes an indoor unit, an outdoor unit, and a saddle bridge structure connecting the indoor unit and the outdoor unit.
  • the saddle bridge structure includes:
  • An outer saddle bridge shell is fixedly connected to one of the indoor unit and the outdoor unit;
  • the inner saddle bridge shell is fixedly connected to the other one of the indoor unit and the outdoor unit.
  • the outer saddle bridge shell is sleeved on the outside of the inner saddle bridge shell.
  • the outer saddle bridge shell is connected to the inner saddle bridge shell.
  • the inner saddle bridge shell can move relative to each other;
  • the part of the refrigerant pipeline located in the inner cavity of the inner saddle bridge shell has a U-shaped bent part, and the electrical box is located in an area surrounded by the U-shaped bent part.
  • the stress testing method of the saddle-type window machine in this application can simulate the maximum strain of the refrigerant pipeline as much as possible according to the actual use scenario of the window machine, and can test the strain of the window machine in the most unfavorable state to ensure that the pipeline
  • the accuracy and reliability of the stress test improves the safety of the pipeline during the actual use of the window machine, and effectively avoids excessive stress on the refrigerant pipeline of the window machine under different installation and use conditions, resulting in pipeline rupture and refrigerant leakage. Case.
  • Figure 4 is a structural schematic diagram of the stretched saddle bridge structure of the saddle-type window machine according to the embodiment.
  • Figure 6 is a schematic structural diagram of a saddle bridge cover according to an embodiment
  • Figure 8 is a schematic structural diagram of the structure shown in Figure 7 observed from Q1 direction;
  • Figure 9 is an exploded view of the inner saddle bridge shell according to the embodiment.
  • Figure 10 is a schematic structural diagram of an outer saddle bridge shell according to an embodiment
  • Figure 11 is a schematic structural diagram of the structure shown in Figure 10 viewed from Q2 direction;
  • Figure 12 is an exploded view of an outer saddle bridge shell according to an embodiment
  • Figure 14 is a schematic structural diagram of a return air pipe group according to an embodiment.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • the saddle-type window machine has an n-type structure.
  • the indoor unit 100 and the outdoor unit 200 are respectively located at both ends of the saddle bridge structure 300 and are located on the same side of the saddle bridge structure 300.
  • the indoor unit 100 and the outdoor unit 200 face the saddle bridge structure 300. extends below.
  • the saddle bridge structure 300 When the saddle-type window machine is installed on the window, the saddle bridge structure 300 is directly located on the window, the indoor unit 100 is located on the indoor side, and the outdoor unit 200 is located on the outdoor side.
  • the saddle-type air conditioner solves the problem of blocking sunlight after the existing integrated window unit is installed.
  • the indoor unit 100 mainly includes components such as a casing, an indoor heat exchanger, a water tray, a cross-flow fan, and an air duct.
  • the outdoor unit 200 mainly includes components such as a casing, an outdoor heat exchanger, an axial fan, and a compressor.
  • the saddle bridge structure 300 can be telescopic, and the distance between the indoor unit 100 and the outdoor unit 200 can be adjusted by adjusting the length of the saddle bridge structure 300 to adapt to walls of different thicknesses.
  • the saddle bridge structure 300 can be provided with multiple telescopic gears for easy adjustment and use.
  • the heat exchange pipeline of the saddle-type window machine mainly includes the return air pipe group, the subcooling pipe group, the exhaust pipe and the water soaking pipe.
  • One end of the subcooling pipe group is connected to the liquid inlet end of the evaporator (corresponding to the indoor heat exchanger), and the other end is connected to the water soaking pipe;
  • one end of the return air pipe group is connected to the air outlet end of the evaporator, and the other end is connected to the suction end of the compressor.
  • one end of the exhaust pipe is connected to the air inlet end of the condenser (corresponding to the outdoor heat exchanger), and the other end is connected to the exhaust port of the compressor; one end of the water soaking pipe is connected to the subcooling pipe group, and the other end is connected to the condensation pipe Connect the liquid outlet of the device.
  • the refrigerant pipeline passes through the saddle bridge structure 300 , specifically the return air pipe group and the subcooling pipe group pass through the saddle bridge structure 300 . Since the saddle bridge structure 300 can be expanded and contracted, both the return air pipe group and the supercooling pipe group need to have a certain amount of expansion and contraction to adapt to the expansion and contraction adjustment of the saddle bridge structure 300 .
  • the window machine performs the stress test of the refrigerant pipeline before leaving the factory, it is necessary to fully consider the stress changes in the refrigerant pipeline caused by the expansion and contraction of the saddle bridge structure 300 to ensure that during the actual process of the window machine after leaving the factory, regardless of the user No matter how far the window machine is stretched, the refrigerant pipeline can meet the stress requirements, ensuring the safety of the window machine pipeline and avoiding refrigerant leakage.
  • the refrigerant pipeline stress testing method mainly includes the following steps:
  • the experimental bench 600 simulates the structure of the window and the wall. Set the wall 610 on the experimental bench 600. During the experiment, the window machine rides on the wall 610 to determine the indoor The distance between the machine 100 and the wall 610, and the distance between the outdoor unit 200 and the wall 610;
  • steps 2 and 3 are the key improvement technical points of this embodiment, which will be described in detail below.
  • step 2 determine the two test states of the window machine based on the pull-out gear of the saddle-type window machine, which are the fully stretched test state and the unstretched test state, because these two states can cover all gears of the window machine.
  • bit state that is, it can cover the state that is least conducive to stress testing.
  • a ⁇ (W2/L1+W1/L2) to determine the installation position of the window unit. Specifically, set the weight of the indoor unit 100 to W1, the weight of the outdoor unit 200 to W2, and the distance between the indoor unit 100 and the wall. The distance between the bodies 610 is L1, the distance between the outdoor unit 200 and the wall 610 is L2, and the strain of the refrigerant pipeline is ⁇ .
  • Y min and Y max are known data.
  • ⁇ max1 The theoretical upper limit of the strain ⁇ of the refrigerant pipeline is recorded as ⁇ max1 .
  • ⁇ max2 ⁇ max1 (W1/L1+W2/( Y min -L1)) ⁇ (W1/L1+W2/( Y min -L1)) is obtained for the saddle bridge structure 300 in the unstretched state;
  • ⁇ max2 ⁇ max1 (W1/L1+W2/( Y max -L1)) ⁇ (W1/L1+W2/( Y max -L1)) is obtained for the saddle bridge structure 300 in the fully stretched state;
  • ⁇ max2 is the actual upper limit of the refrigerant pipeline strain ⁇ , ⁇ max2 ⁇ max1 .
  • the actual strain of the refrigerant pipeline needs to be less than ⁇ max2 . If the actual strain exceeds ⁇ max2 , Then there is a risk of the refrigerant pipeline breaking and leaking refrigerant.
  • the actual upper limit value ⁇ max2 of the refrigerant pipeline strain ⁇ can be obtained, and the corresponding L1 when the strain ⁇ is ⁇ max2 .
  • step 3 it is necessary to test the refrigerant pipeline strain of the saddle bridge structure 300 in the unstretched state and the fully stretched state. In each window machine installation state, it is necessary to separately test the window machine during startup and operation. And the strain amount of the refrigerant pipeline in the three working states of shutdown. The strain amount ⁇ of the refrigerant pipeline in all states cannot exceed the actual upper limit value ⁇ max2 . If it exceeds, the refrigerant pipeline test will fail and there will be a safety risk.
  • the stress testing method of the saddle-type window machine in this application can simulate the maximum strain of the refrigerant pipeline as much as possible according to the actual use scenario of the window machine, and can test the strain of the window machine in the most unfavorable state to ensure that the pipeline
  • the accuracy and reliability of the stress test improves the safety of the pipeline during the actual use of the window machine, and effectively avoids excessive stress on the refrigerant pipeline of the window machine under different installation and use conditions, resulting in pipeline rupture and refrigerant leakage. Case.
  • the window machine when the window machine is subjected to stress testing in three states: starting, running, and shutting down, the rated voltage Ue, voltage (Ue-u1), and voltage (Ue +u2) to further improve the accuracy and reliability of the pipeline test.
  • u1 and u2 can take a value of 10% of the rated voltage Ue, that is, the refrigerant pipeline strain of the window unit is tested respectively at the rated voltage Ue, 90% of the rated voltage, and 110% of the rated voltage.
  • the strain of the refrigerant pipeline in the time period t1 after the compressor reaches the rated frequency is tested.
  • t1 can take a value of 40 seconds, for example.
  • the refrigerant pipeline strain amount in the time period t2 after the compressor has stabilized operation is tested.
  • t2 can take a value of 180s, for example.
  • the refrigerant pipeline strain amount in the time period t3 before the window is shut down and the time period t4 after the window is shut down is tested.
  • t3 can take a value of 20s.
  • t4 can take a value of 60s.
  • the window machine after the window machine is installed on the experimental bench 600 and before the pipeline test is performed, it is necessary to measure the horizontal state of the window machine through a level ruler to ensure that the inclination angle of the window machine in each direction cannot be greater than 1 degree. Adjusting the level by raising the level under the saddle bridge and fine-tuning the hand-tightened bolts on the back panel of the outdoor unit will help improve the accuracy of the pipeline test.
  • the refrigerant pipeline includes a return air pipe group 500.
  • the return air pipe group 500 includes a first return air pipe section 510, a second return air pipe section 520, and a third return air pipe section 530 that are connected in sequence.
  • the first return pipe section 510 is connected to the indoor heat exchanger
  • the third return pipe section 30 is connected to the compressor 220 installed in the outdoor unit
  • the second return pipe section 520 is a U-shaped structure and is located inside the saddle bridge structure 300 in the cavity.
  • the three-section structure of the return air pipe group 500 facilitates processing and improves the technological level.
  • the U-shaped second return pipe section 520 serves as a certain amount of buffer for pipeline stretching, which satisfies the telescopic function of the saddle bridge structure 300 .
  • the first return air pipe section 510 is provided with a bent portion (marked as c1 in Figure 14) near its end to connect with the indoor heat exchanger, and the third return air pipe section 530 is provided near its end. There is a bent part (marked as c2 in Figure 14) to connect with the compressor 220, and the bent parts c1 and c2 are stress test points.
  • the U-shaped structure of the second return air duct section 520 is a semicircular structure.
  • the vibration of the pipeline is actually the transmission of force, and the semicircular structure of the second return air duct section 520
  • the arc form designed for the pipeline is relatively square or similar to the square form of the pipeline at the same level.
  • the semicircular structure uses less pipelines, which reduces pipeline costs to a certain extent.
  • an electrical box 400 is provided in the inner cavity of the saddle bridge structure 300, and the second return pipe section 520 is disposed between the electrical box 400 and the inner cavity side wall of the saddle bridge structure 300. There are gaps and horizontally surrounding one side of the electrical box 400, making full use of the internal space of the saddle bridge structure 300 to realize pipe routing.
  • the electrical box 400 is located in the space enclosed by the U-shaped structure of the second return pipe section 520. When the saddle bridge structure 300 is stretched, there can be enough margin on the left and right sides of the electrical box 400 to ensure that the pipeline does not conflict with the drawing process. Electrical box with 400 contacts.
  • a spring 540 is set on the second air return pipe section 520 to prevent the second air return pipe section 520 from being flattened or deflated during the stretching process.
  • the outer periphery of the second air return pipe section 520 is covered with a heat insulating sleeve (not shown), and the heat insulating sleeve covers the outer circumference of the spring 540 to prevent condensed water generated on the second return air pipe section 520 from flowing into the electrical box 400 .
  • the third return air pipeline section 530 includes a third return air pipeline section 531, a third return air pipeline U-shaped section 532, and a third return air pipeline section 533 connected in sequence.
  • the third return air pipeline U-shaped section The opening of the profile section 532 faces upward, the third section 531 of the third return pipeline is connected to the second section 520 of the second return pipeline, and the second section 533 of the third return pipeline is connected to the suction port of the compressor 220 .
  • the U-shaped section 532 of the third return air pipeline plays a role in assisting tensile deformation, can bear a small part of the tensile force, and plays a buffering role to avoid directly connecting the compressor 220 and giving a lateral force to the compressor, causing the compressor to be damaged. Force affects performance and vibration.
  • the bent portion at the bottom of the U-shaped section 532 of the third return air pipe (marked c3 in Figure 14) is the stress test point.
  • the saddle bridge structure 300 includes an inner saddle bridge shell 310 and an outer saddle bridge shell 320.
  • the outer saddle bridge shell 320 is sleeved on the outside of the inner saddle bridge shell 310.
  • the inner saddle bridge shell 310 is The shell 310 and the outer saddle bridge shell 320 can move relative to each other to realize expansion and contraction of the saddle bridge structure 300, and the refrigerant pipeline passes through the inner saddle bridge shell 310.
  • One end of the inner saddle bridge shell 310 is connected to one of the indoor unit 100 and the outdoor unit 200 , and one end of the outer saddle bridge shell 320 is connected to the other one of the indoor unit 100 and the outdoor unit 200 , so as to connect the inner saddle bridge shell 310 to the outdoor unit 200 through the saddle bridge structure 300 .
  • the indoor unit 100 and the outdoor unit 200 are connected together.
  • Figures 7 to 9 show a schematic structural view of the inner saddle bridge shell 310.
  • Figures 10 to 12 show a schematic structural view of the outer saddle bridge shell 320.
  • the inner saddle bridge shell 310 and The indoor unit 100 is connected, and the outer saddle shell 320 is connected to the outdoor unit 200 .
  • a sliding portion is provided between the inner saddle bridge shell 310 and the outer saddle bridge shell 320 to make the sliding movement between the inner saddle bridge shell 310 and the outer saddle bridge shell 320 more reliable and smooth.
  • the sliding part may be a slide rail structure, or a slideway, a slider structure, etc. provided between the two.
  • the inner saddle bridge shell 310 and the outer saddle bridge shell 320 respectively have vertical portions extending downward, and the vertical portions constitute the back plates of the indoor unit 100 and the outdoor unit 200 .
  • the saddle bridge structure 300 can carry part of the weight of the indoor unit 100 and the outdoor unit 200. The weight is transferred to the window through the saddle bridge structure 300, which helps to improve the safety of the saddle-type air conditioner after installation and reduce the risk of crash. .
  • the saddle bridge structure 300 also includes a saddle bridge cover 330.
  • the saddle bridge cover 330 When the inner saddle bridge shell 310 and the outer saddle bridge shell 320 move away from each other, the saddle bridge cover 330 will be exposed. The inner saddle bridge shell 310 is shielded.
  • the back panel of the outdoor unit 200 is provided with an adjustment bolt 210.
  • the window unit is placed on the window and the saddle bridge structure 300 is adjusted to the corresponding length, tighten the bolts 210.
  • the inner saddle bridge shell 310 includes an inner saddle bridge L-shaped bottom plate 311 and an inner saddle bridge cover plate 312.
  • the inner saddle bridge cover plate 312 is provided on the top of the transverse portion 3111 of the L-shaped bottom plate of the inner saddle bridge, and surrounds the first through cavity 313 .
  • the vertical portion 3112 of the L-shaped bottom plate of the inner saddle bridge constitutes the back panel of the indoor unit 100, and the vertical portion 3112 of the L-shaped bottom plate of the inner saddle bridge is fixedly connected to the bottom plate of the indoor unit 100.
  • the inner saddle bridge reinforcing plate 314 is provided at the transition position between the transverse part 3111 and the vertical part 3112 of the inner saddle bridge L-shaped bottom plate, which further improves the structural strength of the inner saddle bridge L-shaped bottom plate 3111.
  • the outer saddle bridge shell 320 includes an outer saddle bridge L-shaped bottom plate 321 and an outer saddle bridge cover plate 322.
  • the outer saddle bridge cover plate 322 is provided on the top of the transverse portion 3221 of the L-shaped bottom plate of the outer saddle bridge, and surrounds the second through cavity 323 .
  • the vertical portion 3212 of the L-shaped bottom plate of the outer saddle bridge constitutes the back plate of the outdoor unit 200 , and the vertical portion 3212 of the L-shaped bottom plate of the outer saddle bridge is fixedly connected to the bottom plate of the outdoor unit 200 .
  • An outer saddle bridge reinforcing plate 324 is provided at the transition position between the transverse portion 3221 and the vertical portion 3222 of the outer saddle bridge L-shaped bottom plate, which further improves the structural strength of the outer saddle bridge L-shaped bottom plate 321.
  • the saddle bridge cover 330 includes a saddle bridge cover top plate 331 and a saddle bridge cover side plate 332.
  • the saddle bridge cover top plate 331 connects the saddle bridge cover 330 to the saddle bridge cover 330.
  • the top of the bridge structure 300 is shielded, and the saddle bridge cover side panels 332 shield the sides of the saddle bridge structure 300 .
  • the side plate 332 of the saddle bridge cover has an L-shaped structure.
  • the transverse part 3321 of the side plate of the saddle bridge cover blocks the side of the saddle bridge structure 300.
  • the vertical part 3322 of the side plate of the saddle bridge shell is fixed to the side plate of the indoor unit 100.
  • the connection forms a part of the side of the indoor unit 100, and at the same time realizes the fixed installation of the saddle bridge cover 330 on the indoor unit 100.
  • the transverse portion 3321 of the saddle bridge shell side plate is provided with a raised portion 333 protruding inward, and the raised portion 333 is connected to the outer saddle bridge shell 320.
  • the inner saddle axle shell 310 and the outer saddle axle shell 320 are fixedly connected with each other through components (such as screws) to achieve positioning after the relative movement of the inner saddle bridge shell 310 and the outer saddle bridge shell 320 to the required position.
  • the protruding portion 333 is provided such that a depression is formed on the outer surface of the saddle bridge cover 330, and the screw is embedded in the concave structure to prevent the outer end surface of the screw from protruding from the saddle bridge cover 330 and scratching the user.
  • an electrical box 400 is provided in the inner cavity of the inner saddle shell 310.
  • the electrical box 400 is disposed against one side wall of the inner saddle shell 310.
  • the electrical box 400 is connected to the inner saddle shell 310.
  • the installation position of the electrical box 400 makes full use of the internal space of the saddle bridge structure 300, making the whole machine structure more compact.
  • the electrical box 400 is placed against one side of the through cavity, and a gap is formed between the electrical box 400 and the other side of the through cavity for the heat exchange pipeline and drainage pipeline of the air conditioner.
  • the drainage pipeline and heat exchange The pipeline extends from one side of the electrical box 400 to make the internal structure of the saddle bridge structure 300 more regular and compact.
  • the saddle bridge structure 300 in this embodiment not only plays the role of connecting the indoor unit 100 and the outdoor unit 00, but also plays the role of installing the electrical box 400, routing pipes, and wiring. It has multi-functional integration and a more compact structure.
  • one side of the electrical box 400 has an inclined wall 410.
  • the inclined wall 410 is inclined in the vertical plane to avoid heat exchange pipes and drainage pipes when the saddle bridge structure 300 expands and contracts, thereby avoiding saddle bridge. When the structure 300 expands and contracts, it interferes with the heat exchange pipeline and the drainage pipeline.
  • the electrical box 400 is fixed on the transverse portion 3111 of the L-shaped bottom plate of the inner saddle bridge.
  • the top of the electrical box 400 is open to facilitate the installation of internal electrical components.
  • the inner saddle bridge cover 312 is used to protect the electrical box 400 The top opening is sealed.
  • a buffer seal portion 315 is provided on the inside of the inner saddle bridge cover 312 .
  • the seal buffer portion 315 is in contact with the top of the electrical box 400 and opens the top of the electrical box 400 .
  • the entire mouth is covered.
  • the open top structure of the electrical box 400 facilitates the installation of electrical components inside the electrical box 400.
  • the inner wall of the saddle bridge structure 300 (specifically, the inner saddle bridge cover 312) serves as the top cover of the electrical box 400, simplifying the structure and reducing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种应用于马鞍式窗机的管路应力测试方法,马鞍式窗机包括室内机(100)、室外机(200)及可以伸缩的鞍桥结构(300),冷媒管路穿经鞍桥结构(300),室内机(100)的重量为W1,室外机(200)的重量为W2,室内机(100)与墙体(610)之间的距离为L1,室外机(200)与墙体(610)之间的距离为L2,鞍桥(300)在未拉伸状态下L1+L2=Y min,鞍桥(300)在完全拉伸状态下L1+L2=Y max,Y min和Y max为已知数据;应力测试方法包括:通过仿真确定冷媒管路的应力测试点;利用公式ε=a×(W2/L1+W1/L2)确定窗机在墙体(610)上的安装位置;测试窗机在未拉伸以及拉伸状态下的冷媒管路应变量,分别测试窗机在启动、运行以及停机三种工作状态下的冷媒管路应变量。能够测试出窗机在最不利状态下的应变量,提高窗机管路的安全性。还公开了一种马鞍式窗机。

Description

一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机 技术领域
本发明涉及空调器技术领域,尤其涉及一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机。
背景技术
应力测试是空调器出厂前必须做的一项测试,管路在外力或者非均匀压力/温度场中会产生应变,也就是管路的形变率,这是个无量纲数,应变量大会导致管路断裂,因此需要将应变量控制在一定的范围内。应力测试就是测试应变量是否超标。
马鞍式窗机主要包括室内部分、室外部分以及鞍桥部分,通过鞍桥部分将室内部分与室外部分分离,有效的降低了室内噪音。安装时窗机骑跨在窗口上,鞍桥部分可以伸缩,以调节室内部分与室外部分之间的距离,以适应不同厚度的墙体。马鞍式窗机的n型结构导致里面的管路是经过特殊设计的,以允许管路能够适应鞍桥部分的伸缩。
现有的管路应力测试方法只适用于普通的窗机,普通窗机只是需要一个实验室台位,稳定好工况就可以测试。而n型结构的马鞍式窗机和安装方法都和普通窗机差别很大,安装方法对于最大应变量影响很大,需要根据用户的实际使用场景来尽可能的模拟最大应变量,因此马鞍式窗机不能用常规的应力测试方法来进行测试,否则测试结果会有出入。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
技术问题
针对背景技术中指出的问题,本发明提出一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机,能够测试出窗机在最不利状态下的应变量,提高窗机管路的安全性。
技术解决方案
为实现上述发明目的,本发明采用下述技术方案予以实现:
本发明提供一种应用于马鞍式窗机的管路应力测试方法,包括:
所述马鞍式窗机包括室内机、室外机以及连接所述室内机和所述室外机的鞍桥结构,所述鞍桥结构可以伸缩,以调节所述室内机与所述室外机之间的距离,冷媒管路穿经所述鞍桥结构;
所述室内机的重量为W1,所述室外机的重量为W2;
用于进行窗机应力测试的实验台上设有墙体,设定所述室内机与所述墙体之间的距离为L1,所述室外机与所述墙体之间的距离为L2,所述鞍桥结构在未拉伸状态下L1+L2=Y min,所述鞍桥结构在完全拉伸状态下L1+L2=Y max,Y min和Y max为已知数据;
所述冷媒管路的应力测试方法包括:
确定测试点,通过仿真确定所述冷媒管路的应力测试点,在所述应力测试点处布置传感器;
确定窗机在所述墙体上的安装位置,所述冷媒管路的应变量为ε,应变量ε的理论上限值ε max1为已知数据,应变系数a=ε max1×(W1/L1+W2/L2),根据公式ε=a×(W2/L1+W1/L2)计算得到应变量ε的实际上限值ε max2、以及应变量取ε max2时所对应的L1和L2;
测试所述鞍桥结构在未拉伸状态下的冷媒管路应变量,按照应变量ε取ε max2时所对应的L1和L2将窗机安装至所述墙体上,测试窗机在启动、运行以及停机三种工作状态下的冷媒管路应变量;
测试所述鞍桥结构在完全拉伸状态下的冷媒管路应力,按照应变量ε取ε max2时所对应的L1和L2将窗机安装至所述墙体上,测试窗机在启动、运行以及停机三种工作状态下的冷媒管路应变量。
本申请一些实施例中,窗机在启动、运行以及停机三种状态下进行应力测试时,在每个状态下分别测试窗机在额定电压Ue、电压(Ue-u1)、以及电压(Ue+u2)下的冷媒管路应变量。
本申请一些实施例中,窗机在启动工作状态下进行冷媒管路应力测试时,测试压缩机达到额定频率后的时间段t1内的冷媒管路应变量。
本申请一些实施例中,窗机在运行工作状态下进行冷媒管路应力测试时,测试压缩机稳定运行后的时间段t2内的冷媒管路应变量。
本申请一些实施例中,窗机在停机工作状态下进行冷媒管路应力测试时,测试窗机关机前时间段t3以及关机后时间段t4内的冷媒管路应变量。
本申请一些实施例中,冷媒管路包括回气管组,所述回气管组包括依次连通的第一回气管路段、第二回气管路段以及第三回气管路段;
所述第一回气管路段与室内换热器连接,所述第三回气管路段与设于室外机中的压缩机连接,所述第二回气管路段为U型结构、且位于所述鞍桥结构的内腔中;
所述第一回气管路段在靠近其端部的位置处设有弯折部分以与室内换热器连接,所述第三回气管路段在靠近其端部的位置处设有弯折部分以与压缩机连接,所述弯折部分处为应力测试点。
本申请一些实施例中,所述第三回气管路段包括依次连接的第三回气管路一段、第三回气路管路U型段以及第三回气管路二段,所述第三回气管路U型段的敞口朝上,所述第三回气管路一段与所述第二回气管路段连接,所述第三回气管路二段与所述压缩机的吸气口连接;
所述第三回气管路U型段的底部弯折部分处为应力测试点。
本发明还提供一种马鞍式窗机,包括室内机、室外机以及连接所述室内机和所述室外机的鞍桥结构,所述鞍桥结构包括:
外鞍桥壳,与所述室内机和所述室外机中的一者固定连接;
内鞍桥壳,与所述室内机和所述室外机中的另一者固定连接,所述外鞍桥壳套设于所述内鞍桥壳的外侧,所述外鞍桥壳与所述内鞍桥壳可以相对运动;
冷媒管路穿经所述内鞍桥壳,窗机在出厂前,所述冷媒管路利用如权利要求1至7中任一项所述的管路应力测试方法进行应力测试。
本申请一些实施例中,所述内鞍桥壳的内腔中设有电器盒,所述电器盒贴靠于所述内鞍桥壳的一侧壁设置,所述电器盒与所述内鞍桥壳的另一侧壁之间具有供所述冷媒管路走管的间隙。
本申请一些实施例中,所述冷媒管路位于所述内鞍桥壳的内腔中的部分具有U型弯折部分,所述电器盒位于所述U型弯折部分所围区域内。
有益效果
本申请中的马鞍式窗机的应力测试方法,能够根据窗机实际使用场景来尽可能的模拟冷媒管路的最大应变量,能够测试出窗机在最不利状态下的应变量,保证管路应力测试的准确性和可靠性,提高窗机在实际使用过程中管路的安全性,有效避免窗机在不同安装状态及使用状态下出现冷媒管路应力过大而导致管路断裂、泄露冷媒的情况。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据实施例的马鞍式窗机放置在实验台上的结构示意图;
图2为根据实施例的马鞍式窗机从室内侧观察的轴侧结构示意图;
图3为根据实施例的马鞍式窗机从室外侧观察的轴侧结构示意图;
图4为根据实施例的马鞍式窗机的鞍桥结构拉伸后的结构示意图;
图5为图4所示结构省略罩壳后的结构示意图;
图6为根据实施例的鞍桥罩壳的结构示意图;
图7为根据实施例的内鞍桥壳的结构示意图;
图8为图7所示结构从Q1向观察到的结构示意图;
图9为根据实施例的内鞍桥壳的爆炸图;
图10为根据实施例的外鞍桥壳的结构示意图;
图11为图10所示结构从Q2向观察到的结构示意图;
图12为根据实施例的外鞍桥壳的爆炸图;
图13为根据实施例的马鞍式空调器内部走管结构示意图;
图14为根据实施例的回气管组的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本实施例公开一种马鞍式窗机,参照图1,其包括位于室内侧的室内机100、位于室外侧的室外机200、以及连接室内机100和室外机200的鞍桥结构300。
该马鞍式窗机为n型结构,室内机100和室外机200分别设于鞍桥结构300的两端、且位于鞍桥结构300的同侧,室内机100和室外机200朝向鞍桥结构300的下方延伸。
将马鞍式窗机安装至窗口上时,鞍桥结构300直接坐落在窗口上,室内机100位于室内侧,室外机200位于室外侧。
由于室内机100和室外机200均位于窗口的下方,所以该马鞍式空调器解决了现有一体式窗机安装后遮挡阳光的问题。
通过鞍桥结构300将室内机100与室外机200分离,有助于避免室外机200的噪音传到室内侧,提高用户使用舒适度。
室内机100主要包括机壳、室内换热器、接水盘、贯流风扇、风道等部件。
室外机200主要包括机壳、室外换热器、轴流风扇、压缩机等部件。
本申请一些实施例中,鞍桥结构300可以伸缩,通过鞍桥结构300长度的调节,以调节室内机100与室外机200之间的距离,以适应不同厚度的墙体。
鞍桥结构300可以设置多个伸缩档位,便于调节和使用。
马鞍式窗机的换热管路主要包括回气管组、过冷管组、排气管以及泡水管等。过冷管组的一端与蒸发器(对应室内换热器)的进液端连接,另一端与泡水管连接;回气管组的一端与蒸发器的出气端连接,另一端与压缩机的吸气口连接;排气管的一端与冷凝器(对应室外换热器)的进气端连接,另一端与压缩机的排气口连接;泡水管的一端与过冷管组连接,另一端与冷凝器的出液端连接。
冷媒管路穿经鞍桥结构300,具体为回气管组和过冷管组穿经鞍桥结构300。由于鞍桥结构300可以伸缩,回气管组和过冷管组都需要具备一定的伸缩量,以适应鞍桥结构300的伸缩调节。那么窗机在出厂前做冷媒管路的应力测试时,则需要充分考虑由于鞍桥结构300伸缩所带来的冷媒管路的应力变化,以保证窗机在出厂后的实际过程中,无论用户将窗机拉伸至何位置,冷媒管路都能够满足应力要求,保证窗机管路的安全性,避免冷媒泄露。
冷媒管路应力测试方法主要包括以下步骤:
1、通过CAE仿真手段确定冷媒管路的应力测试点,在应力测试点处布置传感器;
2、确定窗机在实验台600上的安装位置,实验台600模拟窗口和墙体的结构,在实验台600上设置墙体610,实验时将窗机骑跨在墙体610上,确定室内机100与墙体610之间的距离、以及室外机200与墙体610之间的距离;
3、窗机准备完成,开始应力测试;
4、测试完成后输出报告,从报告中可以看出哪个管路的具体哪个部位存在风险点。
其中,步骤2和3是本实施例的重点改进技术点,以下详述。
在步骤2中,根据马鞍式窗机的抽拉档位确定窗机的两个测试状态,分别为完全拉伸测试状态和未拉伸测试状态,因为这两种状态可以覆盖窗机的所有档位状态,即可以覆盖最不利于应力测试的状态。
利用根据公式ε=a×(W2/L1+W1/L2)来确定窗机的安装位置,具体的,设定室内机100的重量为W1,室外机200的重量为W2,室内机100与墙体610之间的距离为L1,室外机200与墙体610之间的距离为L2,冷媒管路的应变量为ε。
鞍桥结构300在未拉伸状态下L1+L2=Y min,鞍桥结构300在完全拉伸状态下L1+L2=Y max,根据不同型号的窗机,Y min和Y max为已知数据,比如本实施例中鞍桥结构300在未拉伸时L1+L2=240mm,鞍桥结构300在完全拉伸时L1+L2=400mm。
冷媒管路的应变量ε的理论上限值记为ε max1,针对具体型号的冷媒管路,其为已知数据,比如本实施例中,ε max1=280μs,则可以得到应变系数a=ε max1×(W1/L1+W2/L2)。
将应变系数a重新带入公式ε=a×(W2/L1+W1/L2)中,
鞍桥结构300在未拉伸状态下得到推导公式ε max2max1(W1/L1+W2/( Y min-L1)) ×(W1/L1+W2/( Y min-L1));
鞍桥结构300在完全拉伸状态下得到推导公式ε max2max1(W1/L1+W2/( Y max-L1)) ×(W1/L1+W2/( Y max-L1));
其中,ε max2为冷媒管路应变量ε的实际上限值,ε max2<ε max1,窗机在实际使用时,冷媒管路的实际应变量需要小于ε max2,若实际应变量超过ε max2,则冷媒管路就存在断裂、泄露冷媒的风险。
根据上面两个推导公式,即可得到冷媒管路应变量ε的实际上限值ε max2、以及应变量取ε max2时所对应的L1,那么鞍桥结构300未拉伸状态下,L2= Y min-L1;鞍桥结构300完全拉伸状态下,L2= Y max-L1,这样也即确定了窗机分别在未拉伸状态和完全拉伸状态下的具体安装位置。
在步骤3中,需要分别测试鞍桥结构300在未拉伸状态和完全拉伸状态下的冷媒管路应变量,在每一种窗机安装状态下,都需要分别测试窗机在启动、运行以及停机三种工作状态下的冷媒管路应变量,冷媒管路在所有状态下的应变量ε都不能超过实际上限值ε max2,在超过,则冷媒管路测试不合格,存在安全风险。
鞍桥结构300在未拉伸状态下,按照应变量ε取ε max2时所对应的L1和L2将窗机安装至墙体610上,其中L2= Y min-L1,分别测试窗机在启动、运行以及停机三种工作状态下的冷媒管路应变量。
鞍桥结构300在完全拉伸状态下,按照应变量ε取ε max2时所对应的L1和L2将窗机安装至墙体610上,其中L2= Y max-L1,分别测试窗机在启动、运行以及停机三种工作状态下的冷媒管路应变量。
本申请中的马鞍式窗机的应力测试方法,能够根据窗机实际使用场景来尽可能的模拟冷媒管路的最大应变量,能够测试出窗机在最不利状态下的应变量,保证管路应力测试的准确性和可靠性,提高窗机在实际使用过程中管路的安全性,有效避免窗机在不同安装状态及使用状态下出现冷媒管路应力过大而导致管路断裂、泄露冷媒的情况。
本申请一些实施例中,窗机在启动、运行以及停机三种状态下进行应力测试时,在每个状态下都分别测试窗机在额定电压Ue、电压(Ue-u1)、以及电压(Ue+u2)下的冷媒管路应变量,进一步提高管路测试的准确性和可靠性。
u1和u2可以取值额定电压Ue的10%,也即分别测试窗机在额定电压Ue、额定电压的90%、以及额定电压的110%下的冷媒管路应变量。
本申请一些实施例中,窗机在启动工作状态下进行冷媒管路应力测试时,测试压缩机达到额定频率后的时间段t1内的冷媒管路应变量,t1比如可以取值40s。
本申请一些实施例中,窗机在运行工作状态下进行冷媒管路应力测试时,测试压缩机稳定运行后的时间段t2内的冷媒管路应变量,t2比如可以取值180s。
本申请一些实施例中,窗机在停机工作状态下进行冷媒管路应力测试时,测试窗机关机前时间段t3以及关机后时间段t4内的冷媒管路应变量比如,t3可以取值20s,t4可以取值60s。
本申请一些实施例中,在窗机安装至实验台600上后、进行管路测试之前,需要通过水平尺来测量窗机的水平状态,保证窗机各个方向上的倾斜角不能大于1度,通过在鞍桥下面垫高和微调室外机后背板上的手拧螺栓来调整水平状态,有助于提高管路测试的准确性。
本申请一些实施例中,冷媒管路包括回气管组500,参照图14,回气管组500包括依次连通的第一回气管路段510、第二回气管路段520以及第三回气管路段530。第一回气管路段510与室内换热器连接,第三回气管路段30与设于室外机中的压缩机220连接,第二回气管路段520为U型结构、且位于鞍桥结构300的内腔中。
回气管组500的三段式结构便于加工,提高工艺水平。当鞍桥结构300拉伸时,U型的第二回气管路段520起到了一定的管路拉伸的缓冲量,满足了鞍桥结构300的伸缩功能。
第一回气管路段510在靠近其端部的位置处设有弯折部分(在图14中标记为c1处)以与室内换热器连接,第三回气管路段530在靠近其端部的位置处设有弯折部分(在图14中标记为c2处)以与压缩机220连接,弯折部分c1和c2处为应力测试点。
本申请一些实施例中,第二回气管路段520的U型结构为半圆形结构,在整机运行时,管路的震动其实就是力的传送,而第二回气管路段520的半圆形结构受力时,在圆弧结构上的力在传动中会互相抵消,这样就起到了减震的作用,同时管路所设计的弧形形式,相对方形或类似方形的管路形式,在同等空间下,半圆形的结构形式所用的管路量比较少,在一定程度上减少了管路成本。
本申请一些实施例中,参照图13,鞍桥结构300的内腔中设有电器盒400,第二回气管路段520穿设于电器盒400与鞍桥结构300的内腔侧壁之间的空隙、并且水平地围绕在电器盒400的一侧,充分利用鞍桥结构300的内部空间,实现走管。
电器盒400位于第二回气管路段520的U型结构所围空间内,当鞍桥结构300拉伸时,电器盒400左右两侧能够有足够的余量来保证抽拉过程中管路不与电器盒400接触。
本申请一些实施例中,第二回气管路段520上套设有弹簧540,防止第二回气管路段520在拉伸过程中压扁或瘪了。
第二回气管路段520的外周包覆有隔热套(未图示),隔热套包覆在弹簧540的外周,避免第二回气管路段520上产生冷凝水流入到电器盒400中。
本申请一些实施例中,第三回气管路段530包括依次连接的第三回气管路一段531、第三回气管路U型段532以及第三回气管路二段533,第三回气管路U型段532的敞口朝上,第三回气管路一段531与第二回气管路段520连接,第三回气管路二段533与压缩机220的吸气口连接。
第三回气管路U型段532起到了辅助拉伸变形的作用,能够承担一小部分的拉伸力,起到缓冲作用,避免直接连接压缩机220后给压缩机一个横向力导致压缩机受力影响性能和震动。
第三回气管路U型段532的底部弯折部分处(在图14中标记为c3)为应力测试点。
本申请一些实施例中,参照图4和图5,鞍桥结构300包括内鞍桥壳310和外鞍桥壳320,外鞍桥壳320套设于内鞍桥壳310的外侧,内鞍桥壳310与外鞍桥壳320可以相对运动,以实现鞍桥结构300的伸缩,冷媒管路穿经所述内鞍桥壳310。
内鞍桥壳310的一端与室内机100和室外机200中的一者连接,外鞍桥壳320的一端与室内机100和室外机200中的另一者连接,以通过鞍桥结构300将室内机100与室外机200连接在一起。
图7至图9所示为内鞍桥壳310的结构示意图,图10至图12所示为外鞍桥壳320的结构示意图,图2至图5所示结构中,内鞍桥壳310与室内机100连接,外鞍桥壳320与室外机200连接。
本申请一些实施例中,内鞍桥壳310与外鞍桥壳320之间设有滑动部,以使内鞍桥壳310与外鞍桥壳320之间的滑动运动更为可靠、顺畅。滑动部可以为滑轨结构,也可以为设于二者之间的滑道、滑块结构等。
本申请一些实施例中,内鞍桥壳310和外鞍桥壳320分别具有向下延伸的竖向部,竖向部构成室内机100和室外机200的后背板。
鞍桥结构300通过两个竖向部分别与室内机100和室外机200固定连接,有助于提高室内机100、室外机200及鞍桥结构300三者之间的结构稳固性。
鞍桥结构300能够承载一部分室内机100和室外机200的重量,通过鞍桥结构300将重量转移到窗口上,有助于提高马鞍式空调器整机安装后的安全性,减小坠机风险。
本申请一些实施例中,参照图4和图5,鞍桥结构300还包括鞍桥罩壳330,内鞍桥壳310与外鞍桥壳320相互远离运动时,鞍桥罩壳330将露出的内鞍桥壳310遮挡。
本申请一些实施例中,参照图2,室外机200的后背板上设有调节螺栓210,在将窗机放置到窗口上、并将鞍桥结构300调节至相应的长度档位后,拧动调节螺栓210,使调节螺栓210抵靠于室外侧墙体,进一步提高窗机的安装稳固性。
对于内鞍桥壳310的具体结构,本申请一些实施例中,参照图7至图10,内鞍桥壳310包括内鞍桥L型底板311和内鞍桥盖板312,内鞍桥盖板312设于内鞍桥L型底板的横向部3111的顶部,围成第一贯通腔313。
内鞍桥L型底板的竖向部3112构成室内机100的后背板,内鞍桥L型底板的竖向部3112与室内机100的底板固定连接。
内鞍桥L型底板的横向部3111与竖向部3112的转接位置处设有内鞍桥加强板314,进一步提高内鞍桥L型底板3111的结构强度。
对于外鞍桥壳320的具体结构,本申请一些实施例中,参照图10至图12,外鞍桥壳320包括外鞍桥L型底板321和外鞍桥盖板322,外鞍桥盖板322设于外鞍桥L型底板的横向部3221的顶部,围成第二贯通腔323。
外鞍桥L型底板的竖向部3212构成室外机200的后背板,外鞍桥L型底板的竖向部3212与室外机200的底板固定连接。
外鞍桥L型底板的横向部3221与竖向部3222的转接位置处设有外鞍桥加强板324,进一步提高外鞍桥L型底板321的结构强度。
对于鞍桥罩壳330的具体结构,本申请一些实施例中,参照图6,鞍桥罩壳330包括鞍桥罩壳顶板331和鞍桥罩壳侧板332,鞍桥罩壳顶板331将鞍桥结构300的顶部遮挡,鞍桥罩壳侧板332将鞍桥结构300的侧面遮挡。
鞍桥罩壳侧板332为L型结构,鞍桥罩壳侧板的横向部3321将鞍桥结构300的侧面遮挡,鞍桥罩壳侧板的竖向部3322与室内机100的侧板固定连接,构成室内机100侧面的一部分,同时实现鞍桥罩壳330在室内机100上的固定安装。
本申请一些实施例中,参照图3和图5,鞍桥罩壳侧板的横向部3321上设有向其内侧凸出的凸起部333,凸起部333与外鞍桥壳320通过连接件(比如螺钉)固定连接,实现内鞍桥壳310与外鞍桥壳320相对运动至所需位置后的定位。
鞍桥结构300拉伸到位后,在鞍桥罩壳330的左右侧壁打螺钉,将鞍桥罩壳330的左右侧壁与外鞍桥壳320的左右侧壁对应固定连接,鞍桥罩壳330与外鞍桥壳320固定连接,由于内鞍桥壳310和鞍桥罩壳330均与室内机100固定连接,而外鞍桥壳320与室外机200固定连接,从而实现鞍桥结构300在固定位置处的止位固定。
凸起部333的设置,使得在鞍桥罩壳330的外侧面上形成凹陷,螺钉嵌入凹陷结构内,避免螺钉的外端面外凸于鞍桥罩壳330而划伤用户。
本申请一些实施例中,参照图13,内鞍桥壳310的内腔中设有电器盒400,电器盒400贴靠于内鞍桥壳310的一侧壁设置,电器盒400与内鞍桥壳310的另一侧壁之间具有供换热管路(指回气管组和过冷管组)走管和排水管路走管的间隙。
电器盒400的设置位置充分利用了鞍桥结构300的内部空间,使整机结构更为紧凑。
电器盒400贴靠于贯通腔的一侧设置,电器盒400与贯通腔的另一侧之间形成用于空调器的换热管路和排水管路走管的空隙,排水管路和换热管路从电器盒400的一侧延伸走线,使鞍桥结构300内部结构更为规整、紧凑。
本实施例中的鞍桥结构300不仅起到了连接室内机100与室外机00的作用,还起到了安装电器盒400、走管、走线的作用,多功能集成,结构更为紧凑。
本申请一些实施例中,电器盒400的一侧具有倾斜壁410,倾斜壁410在竖直面内倾斜,用于在鞍桥结构300伸缩时避让换热管路和排水管路,避免鞍桥结构300伸缩时对换热管路和排水管路产生干涉。
本申请一些实施例中,电器盒400固定设于内鞍桥L型底板的横向部3111上,电器盒400顶部敞口,便于内部电器件的安装,利用内鞍桥盖板312对电器盒400的顶部敞口进行封堵。
本申请一些实施例中,电器盒400与围成鞍桥结构300贯通腔的内壁接触的位置处设有缓冲密封部315,缓冲密封部315一方面起到减振作用,另一方面可避免凝结在鞍桥结构300内壁上的冷凝水滴落在电器盒400的内部,提高电器盒400的防水性能。
作为一种具体实施例,参照图9,内鞍桥盖板312的内侧设有缓冲密封部315,密封缓冲部315与电器盒400的顶部贴合密封抵靠,并将电器盒400的顶部敞口全部覆盖。电器盒400的顶部敞口结构便于电器盒400内部电器件的安装,鞍桥结构300的内壁(具体为内鞍桥盖板312)充当了电器盒400的顶盖作用,简化结构,降低成本。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。以上仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种应用于马鞍式窗机的管路应力测试方法,其特征在于,包括:
    所述马鞍式窗机包括室内机、室外机以及连接所述室内机和所述室外机的鞍桥结构,所述鞍桥结构可以伸缩,以调节所述室内机与所述室外机之间的距离,冷媒管路穿经所述鞍桥结构;
    所述室内机的重量为W1,所述室外机的重量为W2;
    用于进行窗机应力测试的实验台上设有墙体,设定所述室内机与所述墙体之间的距离为L1,所述室外机与所述墙体之间的距离为L2,所述鞍桥结构在未拉伸状态下L1+L2=Y min,所述鞍桥结构在完全拉伸状态下L1+L2=Y max,Y min和Y max为已知数据;
    所述冷媒管路的应力测试方法包括:
    确定测试点,通过仿真确定所述冷媒管路的应力测试点,在所述应力测试点处布置传感器;
    确定窗机在所述墙体上的安装位置,所述冷媒管路的应变量为ε,应变量ε的理论上限值ε max1为已知数据,应变系数a=ε max1×(W1/L1+W2/L2),根据公式ε=a×(W2/L1+W1/L2)计算得到应变量ε的实际上限值ε max2、以及应变量取ε max2时所对应的L1和L2;
    测试所述鞍桥结构在未拉伸状态下的冷媒管路应变量,按照应变量ε取ε max2时所对应的L1和L2将窗机安装至所述墙体上,测试窗机在启动、运行以及停机三种工作状态下的冷媒管路应变量;
    测试所述鞍桥结构在完全拉伸状态下的冷媒管路应力,按照应变量ε取ε max2时所对应的L1和L2将窗机安装至所述墙体上,测试窗机在启动、运行以及停机三种工作状态下的冷媒管路应变量。
  2.  根据权利要求1所述的应用于马鞍式窗机的管路应力测试方法,其特征在于,
    窗机在启动、运行以及停机三种状态下进行应力测试时,在每个状态下分别测试窗机在额定电压Ue、电压(Ue-u1)、以及电压(Ue+u2)下的冷媒管路应变量。
  3.  根据权利要求1所述的应用于马鞍式窗机的管路应力测试方法,其特征在于,
    窗机在启动工作状态下进行冷媒管路应力测试时,测试压缩机达到额定频率后的时间段t1内的冷媒管路应变量。
  4.  根据权利要求1所述的应用于马鞍式窗机的管路应力测试方法,其特征在于,
    窗机在运行工作状态下进行冷媒管路应力测试时,测试压缩机稳定运行后的时间段t2内的冷媒管路应变量。
  5.  根据权利要求1所述的应用于马鞍式窗机的管路应力测试方法,其特征在于,
    窗机在停机工作状态下进行冷媒管路应力测试时,测试窗机关机前时间段t3以及关机后时间段t4内的冷媒管路应变量。
  6.  根据权利要求1至5中任一项所述的应用于马鞍式窗机的管路应力测试方法,其特征在于,
    冷媒管路包括回气管组,所述回气管组包括依次连通的第一回气管路段、第二回气管路段以及第三回气管路段;
    所述第一回气管路段与室内换热器连接,所述第三回气管路段与设于室外机中的压缩机连接,所述第二回气管路段为U型结构、且位于所述鞍桥结构的内腔中;
    所述第一回气管路段在靠近其端部的位置处设有弯折部分以与室内换热器连接,所述第三回气管路段在靠近其端部的位置处设有弯折部分以与压缩机连接,所述弯折部分处为应力测试点。
  7.  根据权利要求6所述的应用于马鞍式窗机的管路应力测试方法,其特征在于,
    所述第三回气管路段包括依次连接的第三回气管路一段、第三回气路管路U型段以及第三回气管路二段,所述第三回气管路U型段的敞口朝上,所述第三回气管路一段与所述第二回气管路段连接,所述第三回气管路二段与所述压缩机的吸气口连接;
    所述第三回气管路U型段的底部弯折部分处为应力测试点。
  8.  一种马鞍式窗机,其特征在于,包括室内机、室外机以及连接所述室内机和所述室外机的鞍桥结构,所述鞍桥结构包括:
    外鞍桥壳,与所述室内机和所述室外机中的一者固定连接;
    内鞍桥壳,与所述室内机和所述室外机中的另一者固定连接,所述外鞍桥壳套设于所述内鞍桥壳的外侧,所述外鞍桥壳与所述内鞍桥壳可以相对运动;
    冷媒管路穿经所述内鞍桥壳,窗机在出厂前,所述冷媒管路利用如权利要求1至7中任一项所述的管路应力测试方法进行应力测试。
  9.  根据权利要求8所述的马鞍式窗机,其特征在于,
    所述内鞍桥壳的内腔中设有电器盒,所述电器盒贴靠于所述内鞍桥壳的一侧壁设置,所述电器盒与所述内鞍桥壳的另一侧壁之间具有供所述冷媒管路走管的间隙。
  10.  根据权利要求9所述的马鞍式窗机,其特征在于,
    所述冷媒管路位于所述内鞍桥壳的内腔中的部分具有U型弯折部分,所述电器盒位于所述U型弯折部分所围区域内。
PCT/CN2023/077808 2022-06-24 2023-02-23 一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机 WO2023246143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210722623.4 2022-06-24
CN202210722623.4A CN115493548A (zh) 2022-06-24 2022-06-24 一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机

Publications (1)

Publication Number Publication Date
WO2023246143A1 true WO2023246143A1 (zh) 2023-12-28

Family

ID=84467074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077808 WO2023246143A1 (zh) 2022-06-24 2023-02-23 一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机

Country Status (2)

Country Link
CN (1) CN115493548A (zh)
WO (1) WO2023246143A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493548A (zh) * 2022-06-24 2022-12-20 青岛海尔空调器有限总公司 一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626744A (ja) * 1992-07-08 1994-02-04 Hitachi Ltd 空気調和機における室外機と室内機の接続状態検査方法およびその装置
JP2005048965A (ja) * 2003-07-29 2005-02-24 Hitachi Home & Life Solutions Inc 分離型空気調和機
CN104111153A (zh) * 2014-04-12 2014-10-22 宁波奥克斯空调有限公司 空调器随机振动综合测试装置及方法
CN106016617A (zh) * 2016-06-02 2016-10-12 珠海格力电器股份有限公司 一种空调管路检测方法及系统
CN106289410A (zh) * 2016-10-18 2017-01-04 宁波奥克斯空调有限公司 一种新型空调管路应力与振幅测试系统及其同步测试方法
CN107505110A (zh) * 2017-10-10 2017-12-22 奥克斯空调股份有限公司 空调器振动测试方法及系统
CN108006925A (zh) * 2017-12-03 2018-05-08 珠海亚丁科技有限公司 空调应力测试方法、计算机装置、计算机可读存储介质
CN108318356A (zh) * 2018-01-24 2018-07-24 奥克斯空调股份有限公司 空调配管成品级疲劳寿命曲线测试方法
CN210399142U (zh) * 2019-06-12 2020-04-24 青岛海尔空调器有限总公司 一种联机管组件及空调器
CN111175036A (zh) * 2020-02-12 2020-05-19 宁波奥克斯电气股份有限公司 一种管路应力检测工装、空调管路应力检测系统及方法
CN112504718A (zh) * 2020-12-22 2021-03-16 格力电器(武汉)有限公司 一种便携式综合测试装置、空调测试系统及测试方法
US20210332988A1 (en) * 2019-02-03 2021-10-28 Gd Midea Air-Conditioning Equipment Co., Ltd. Window air conditioner
CN113932408A (zh) * 2021-09-18 2022-01-14 浙江中广电器股份有限公司 一种变频空调防共振控制方法
CN115493548A (zh) * 2022-06-24 2022-12-20 青岛海尔空调器有限总公司 一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626744A (ja) * 1992-07-08 1994-02-04 Hitachi Ltd 空気調和機における室外機と室内機の接続状態検査方法およびその装置
JP2005048965A (ja) * 2003-07-29 2005-02-24 Hitachi Home & Life Solutions Inc 分離型空気調和機
CN104111153A (zh) * 2014-04-12 2014-10-22 宁波奥克斯空调有限公司 空调器随机振动综合测试装置及方法
CN106016617A (zh) * 2016-06-02 2016-10-12 珠海格力电器股份有限公司 一种空调管路检测方法及系统
CN106289410A (zh) * 2016-10-18 2017-01-04 宁波奥克斯空调有限公司 一种新型空调管路应力与振幅测试系统及其同步测试方法
CN107505110A (zh) * 2017-10-10 2017-12-22 奥克斯空调股份有限公司 空调器振动测试方法及系统
CN108006925A (zh) * 2017-12-03 2018-05-08 珠海亚丁科技有限公司 空调应力测试方法、计算机装置、计算机可读存储介质
CN108318356A (zh) * 2018-01-24 2018-07-24 奥克斯空调股份有限公司 空调配管成品级疲劳寿命曲线测试方法
US20210332988A1 (en) * 2019-02-03 2021-10-28 Gd Midea Air-Conditioning Equipment Co., Ltd. Window air conditioner
CN210399142U (zh) * 2019-06-12 2020-04-24 青岛海尔空调器有限总公司 一种联机管组件及空调器
CN111175036A (zh) * 2020-02-12 2020-05-19 宁波奥克斯电气股份有限公司 一种管路应力检测工装、空调管路应力检测系统及方法
CN112504718A (zh) * 2020-12-22 2021-03-16 格力电器(武汉)有限公司 一种便携式综合测试装置、空调测试系统及测试方法
CN113932408A (zh) * 2021-09-18 2022-01-14 浙江中广电器股份有限公司 一种变频空调防共振控制方法
CN115493548A (zh) * 2022-06-24 2022-12-20 青岛海尔空调器有限总公司 一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机

Also Published As

Publication number Publication date
CN115493548A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2023246143A1 (zh) 一种应用于马鞍式窗机的管路应力测试方法及马鞍式窗机
EP3441684A1 (en) Heat source unit
CN113188764A (zh) 一种带隔振平台的温度试验箱
Proctor Field Measurements of new residential air conditioners in Phoenix, Arizona
CN206176583U (zh) 换热器及空调室外机
CN206608298U (zh) 用于热泵的压缩机模块及电器
CN107449060A (zh) 窗式空调器
CN206626789U (zh) 分体式挂壁空调安装架
AU2015350987B2 (en) Heat pump
CN205481102U (zh) 一种空气预热器及其密封装置
JP2506785Y2 (ja) 室外機における閉鎖弁の取付構造
WO2020207110A1 (zh) 一种地冷式空调器系统及安装方法
CN202789088U (zh) 一种车用动力系统的涡轮中冷器
CN205401080U (zh) 一种减小压缩机测试振动的测试装置
CN207716562U (zh) 水冷式超薄空调外机
JP2008144616A (ja) 発電装置のパッケージ構造
CN218645795U (zh) 一种带旁通阀精密冷水机组
WO2021134919A1 (zh) 接水盘和窗式空调器
CN220981682U (zh) 一种家电风道用密封棉装置
CN216347137U (zh) 一种冷水机组
CN115144070B (zh) 一种检测箱、噪声检测系统及其噪声检测方法
CN220852445U (zh) 一种气膜建筑用便于安装的组合式风道
CN214662309U (zh) 一种管网水力平衡装置
CN218763995U (zh) 一种空气热泵用降噪设备
JP7448825B2 (ja) 冷凍装置の室外ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825802

Country of ref document: EP

Kind code of ref document: A1