WO2023246125A1 - 一种反应釜以及使用该反应釜的涂层制备方法 - Google Patents

一种反应釜以及使用该反应釜的涂层制备方法 Download PDF

Info

Publication number
WO2023246125A1
WO2023246125A1 PCT/CN2023/075834 CN2023075834W WO2023246125A1 WO 2023246125 A1 WO2023246125 A1 WO 2023246125A1 CN 2023075834 W CN2023075834 W CN 2023075834W WO 2023246125 A1 WO2023246125 A1 WO 2023246125A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
station
blind hole
flow
jet center
Prior art date
Application number
PCT/CN2023/075834
Other languages
English (en)
French (fr)
Inventor
唐少春
陆洪彬
孟祥康
Original Assignee
海安南京大学高新技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海安南京大学高新技术研究院 filed Critical 海安南京大学高新技术研究院
Publication of WO2023246125A1 publication Critical patent/WO2023246125A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material

Definitions

  • the invention relates to the technical field of metal material plating, and in particular to a reaction kettle and a coating preparation method using the reaction kettle.
  • PANI polyaniline
  • the technical problem to be solved by the present invention is to overcome one of the technical problems in the prior art and provide a reaction kettle.
  • reaction kettle including:
  • the kettle body has a material inlet on the top and a discharge port on the side;
  • the upper partition is rotatably arranged in the cavity of the kettle body.
  • the lower partition is fitted with the upper partition.
  • a lower jet center is provided on the lower partition, and a number of downflow openings and a number of through-flow openings are arranged around the lower jet center. The lengths of the flow paths from each of the lower jet centers to the lower flow openings are equal, and each of the upper flow openings is connected to one of the through flow openings;
  • Adjustment part the adjustment part is threadedly connected at the center of the upper jet, and the liquid is suitable for The adjusting part flows toward the upper jet center and the lower jet center respectively, and the adjusting part extends out of the feed inlet;
  • a plurality of the downflow openings are circumferentially surrounded by a plurality of the through-flow openings, and
  • a plurality of the flow openings are arranged horizontally and vertically.
  • the adjustment part includes a blind hole tube with a blind hole formed inside.
  • a lower tee pipe and an upper tee pipe upward from the bottom of the blind hole pipe.
  • the center of the lower tee pipe opens downward.
  • a jacket opening is provided on the jacket wall of the ring
  • the inner wall of the threaded channel has a U-shaped groove with a U-shaped cross section.
  • the blind hole pipe is threadedly connected in the threaded channel, wherein
  • the outer casing wall is adapted to be rotated to the first station, the second station and the third station.
  • the gap between the upper tee pipe and the lower tee pipe is adapted to the slot of the U-shaped groove.
  • the end surface of the upper partition near the threaded groove has a first mark, a second mark and a third mark
  • the side wall of the blind hole tube has a first corresponding mark, a second mark and a third mark.
  • the blind hole tube is located at the first station
  • the blind hole tube is located at the second station
  • the blind hole tube is located at the third station.
  • the beneficial effect of the present invention is that the reaction kettle of the present invention realizes liquid stratification and batch transportation, and promotes the mixing of two liquids. At the same time, the volatilization of volatile substances can be well avoided with the help of the lower partition plate. Mixes well.
  • the present invention also provides a coating preparation method using the reaction kettle as mentioned above,
  • step S7 Repeat step S4 to step S6 to 20 times.
  • the spin coating speed is 1300 rpm to 3000 rpm, and the thickness of a single protective coating is 2 ⁇ m to 3 ⁇ m.
  • the beneficial effects of the present invention are that the coating preparation method using a reaction kettle of the present invention has a simple and quick preparation process and good preparation effects.
  • Figure 1 is a front view of a preferred embodiment of a reactor of the present invention
  • Figure 2 is a front view of a preferred embodiment of the upper partition of the present invention.
  • Figure 3 is a front view of a preferred embodiment of the lower partition of the present invention.
  • Figure 4 is a partial cross-sectional view of a preferred embodiment of the adjustment part of the present invention.
  • Figure 5 is a schematic diagram of the flow of liquid on the upper partition and the liquid on the lower partition when the invention is in the first station;
  • Figure 6 is a schematic diagram of the flow of liquid on the upper partition and the liquid on the lower partition when the invention is in the second station;
  • FIG. 7 is a schematic diagram of the flow of liquid on the upper partition and the liquid on the lower partition when the invention is in the third station.
  • the usage scenario of this application is inside a reactor.
  • the conventional method is to use a solenoid valve to spray, but the acid-base conditions inside the reactor are uncertain. , at this time, the life of the solenoid valve will be greatly reduced, or it will not work. The working and non-working status of the solenoid valve cannot be controlled. Once the non-working status occurs during the reaction, the reaction will fail and the input production raw materials will be invalid. Compared with The cost of solenoid valves and the cost of production raw materials are much greater than the cost of solenoid valves. This uncertain factor will increase the loss of raw materials and the scrap rate.
  • the present invention provides a reaction kettle, including a kettle body 100, an upper partition 200 arranged in the internal cavity of the kettle body 100, and arranged below the upper partition 200 and connected with the upper partition 200 fit the lower partition 300 and the adjustment part 400 arranged between the upper partition 200 and the lower partition 300 .
  • the kettle body 100 is suitable for preparing composite coating solutions; the upper partition 200 is suitable for guiding The solution flowing into the upper surface of the upper partition 200 spreads around and flows into the kettle body 100 evenly; the lower partition 300 is suitable for guiding the solution flowing into the upper surface of the lower partition 300 to spread around and flows into the kettle body 100 evenly; the regulating part 400
  • Different work stations can be switched to adjust the order in which the solutions in the upper partition 200 and the lower partition 300 enter the kettle body 100, thereby adjusting the mixing process of the solutions.
  • the cauldron body 100 has a cylindrical shape, and the cauldron body 100 is hollow inside to form a cavity. There are several supporting legs below the cauldron body 100. The cauldron body 100 can be fixed to the work surface through the supporting legs and kept vertically.
  • the top of the kettle body 100 has an inlet 110, and the side of the kettle body 100 has an outlet 120.
  • the original solution for preparing the composite coating can be poured into the kettle body 100 through the inlet 110, and pass through the upper partition 200 respectively. and the lower partition 300, and then enters the kettle body 100 for mixing.
  • the mixed coating solution can be poured out from the outlet 120.
  • the upper partition 200 is disc-shaped, and is rotatably disposed in the cavity of the kettle body 100. Specifically, the upper partition 200 is located above the cavity of the kettle body 100 and below the feed inlet 110. After the original coating solution is poured from the inlet 110, part of the original coating solution can flow through the upper end surface of the upper partition 200, diffuse circumferentially through the upper partition 200, and then flow evenly downward into the kettle through the upper partition 200.
  • the upper partition 200 is provided with an upper jet center 201 and a plurality of upper flow ports 202 surrounding the upper jet center 201 on the upper end surface of the upper partition 200. The length of the flow path from each upper jet center 201 to the upper flow port 202 is equal.
  • the upper jet center 201 is located at the center of the upper end surface of the upper partition 200.
  • the upper jet center 201 is a regular hexagon, and a main flow channel 205 is opened outward from the midpoint of each side of the upper jet center 201.
  • Each main channel 205 is perpendicular to the side corresponding to the upper jet center 201.
  • One main flow channel 205 divides two main flow channels 206 to both sides, and the two main flow channels 206 extend in opposite directions.
  • One main flow channel 206 then branches into three sub-flow channels 207, and one sub-flow channel 207 continues to branch out to all sides.
  • the main channel 205 and the main channel 206 are common channels for the original coating solution.
  • the length of each secondary channel 207 is X, and the length of each branch channel 208 is R. This ensures that the original coating solution is The lengths from the upper jet center 201 to each upflow port 202 are equal, that is, the original coating solution reaches each upflow port 202 at the same time.
  • the lower partition 300 is disc-shaped and has the same size as the upper partition 200.
  • the lower partition 300 is arranged below the upper partition 200, and the lower partition 300 is attached to the upper partition 200. Since the upper end surface of the lower partition 300 and the lower end surface of the upper partition 200 form a closed space, the lower partition 300 can pour the volatile coating original solution without reducing the concentration of the original coating solution due to volatilization during the circulation process. .
  • the upper partition 200 rotates
  • the lower partition 300 can rotate synchronously with the upper partition 200 .
  • part of the original coating solution can flow through the upper end surface of the lower partition 300, diffuse circumferentially through the lower partition 300, and then pass downward evenly through the lower partition 300. Flow into the kettle body 100.
  • the lower partition 300 is located on the lower partition 300 and is respectively provided with a lower jet center 301, a number of downflow openings 302 and a number of throughflow openings 303 arranged around the lower jet center 301, and the length of the circulation path from each lower jet center 301 to the downflow opening 302 Equally, each upflow port 202 is connected to a through-flow port 303.
  • the lower jet center 301 is located at the center of the upper end surface of the lower partition 300.
  • the lower jet center 301 is also a regular hexagon, and a main channel 304 is opened outward from the midpoint of each side of the lower jet center 301. , each main channel 304 is perpendicular to the corresponding side of the lower jet center 301.
  • a main channel 304 divides two main channels 305 to both sides, and the two main channels 305 extend in opposite directions.
  • a main channel 305 then branches into four branch channels 306.
  • a downstream outlet 302 is located in a End of Branch Road 306.
  • the main channel 304 and the dry channel 305 are common flow channels for the original coating solution, and the length of each branch channel 306 is L. This can ensure that the length of the original coating solution from the lower jet center 301 to each downstream port 302 is equal, that is, the time it takes for the original coating solution to reach each downstream port 302 is the same.
  • a plurality of through-flow openings 303 are circumferentially surrounded by a number of downflow openings 302 , and the plurality of through-flow openings 303 are arranged horizontally and vertically.
  • the main flow channel provided by the upper partition 200 and the main flow channel provided by the lower partition 300 overlap in horizontal projection, and the main flow channel provided in the upper partition 200 coincides with the main flow channel established in the lower partition 300.
  • the sum of the lengths of the secondary flow channel and the branch flow channel is greater than the length of the branch channels of the lower partition 300, that is, the original coating solution is passed through the upper partition 200 and the lower partition 300 at the same time without interference, and the coating solution on the lower partition 300 is
  • the original coating solution can always enter the kettle body 100 first.
  • the reaction kettle shown in this embodiment also has an adjustment part. 400.
  • the adjusting part 400 is threadedly connected to the upper jet center 201.
  • the adjusting part 400 is adapted to the threaded channel 203.
  • the original coating solution is suitable for the upper jet center 201 and the lower part of the self-adjusting part 400 respectively.
  • the jet center 301 flows, and the adjusting part 400 extends out of the feed inlet 110 .
  • the adjusting part 400 can switch different work stations to adjust the order in which the solutions in the upper partition 200 and the lower partition 300 enter the kettle body 100, thereby adjusting the mixing process of the solutions.
  • the adjusting part 400 includes a blind hole tube 401 with a blind hole formed inside. From the bottom of the blind hole tube 401 upward, there is a lower tee pipe 402 and an upper tee pipe 403. Located in the lower tee pipe The center of 402 has a flow pipe opening downward, which is located in the center of the upper tee pipe 403 and communicates upward with the blind hole pipe 401.
  • the outer ring of the blind hole pipe 401 has an outer casing wall 404, and the outer casing wall 404 has an outer casing opening 405. , the jacket opening 405 can communicate with the upper jet center 201 of the upper partition 200 .
  • the original coating solution poured into the blind hole tube 401 can flow into the lower partition 300; the original coating solution poured between the blind hole tube 401 and the jacket wall 404 can flow to the upward jet center 201 through the jacket opening 405.
  • the original coating solution flowing into the blind hole tube 401 can flow into the lower jet center 301 through an upper tee pipe 403, a lower tee pipe 402 and the flow pipe opening in sequence.
  • the upper partition 200 In order to compensate for the difference between the original coating solution reaching the lower outlet 302 from the lower jet center 301 and the arrival of the original coating solution from the upper jet center 201 to the upper outlet 202, the upper partition 200 also has a threaded groove 203 in the middle.
  • the groove 203 penetrates the upper partition 200 along the thickness direction of the upper partition 200.
  • the inner wall of the threaded channel 203 has a U-shaped groove 204 with a U-shaped cross section.
  • the blind hole tube 401 is threadedly connected in the threaded channel 203.
  • the gap between the upper tee pipe 403 and the lower tee pipe 402 is adapted to the slot of the U-shaped groove 204 .
  • the relative positions between the upper tee pipe 403, the lower tee pipe 402 and the U-shaped groove 204 can be adjusted.
  • Select the critical position to divide the adjustment part 400 into three states namely the upper tee pipe. 403 and the lower tee pipe 402 are located below the U-shaped groove 204; the upper tee pipe 403 and the lower tee pipe 402 are flush with the U-shaped groove 204; the upper tee pipe 403 and the lower tee pipe 402 are located above the U-shaped groove 204 .
  • the above three states correspond to the first station, the second station and the third station of the adjusting part 400 respectively.
  • the end surface of the upper partition 200 near the threaded groove 203 has a first mark, a second mark and a third mark, and there is a first corresponding mark on the side wall of the blind hole tube 401.
  • annotation, a second corresponding annotation, and a third corresponding annotation When the first mark and the first corresponding mark match each other, the blind hole tube 401 is located at the first station; when the second mark and the second corresponding mark match each other, the blind hole tube 401 is located at the second station; when the second mark matches each other, the blind hole tube 401 is located at the second station.
  • the third annotation and the third corresponding annotation are adapted to each other, the blind hole tube 401 is located at the third station.
  • this embodiment also provides a coating preparation method using the reactor.
  • One of the reactors is the same as Example 1 and will not be described again here.
  • a specific coating preparation method is as follows:
  • step S7 repeat step S4 to step S6 to 20 times.
  • the spin coating speed is 1300rpm ⁇ 3000rpm, and the thickness of a single protective coating is 2 ⁇ m ⁇ 3 ⁇ m.
  • the coating preparation method using a reaction kettle of the present invention has a simple and quick preparation process and good preparation effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种反应釜以及使用该反应釜的涂层制备方法,反应釜包括釜本体(100),釜本体(100)的顶部具有入料口(110),侧部具有出料口(120);上隔板(200)可转动地设置在釜本体(100)的腔体内,位于上隔板(200)上分别开设有一上射流中心(201)和环绕上射流中心(201)设置的若干上流口(202),每个上射流中心(201)至上流口(202)的流通路径长度相等;下隔板(300)与上隔板(200)贴合,位于下隔板(300)上分别开设有一下射流中心(301),环绕下射流中心(301)设置的若干下流口(302)和若干通流口(303),每个下射流中心(301)至下流口(302)的流通路径长度相等(201)。能够实现液体分层、分批的输送,并且促进两种液体的混合,借助下隔板(300)能够很好的避免挥发性物质的挥发,混合效果良好。

Description

一种反应釜以及使用该反应釜的涂层制备方法 技术领域
本发明涉及金属材料镀覆技术领域,具体涉及一种反应釜以及使用该反应釜的涂层制备方法。
背景技术
随着技术的发展,新型的导电高分子材料越来越多的作为对环境有污染的贵金属的替代材料被应用到器件腐蚀保护中去。其中聚苯胺(PANI)是研究最广泛的高分子材料。它的氧化还原态会在基底上形成一层钝化膜,促进钢铁的阳极保护。同时PANI具有良好的耐腐蚀性。目前普遍采用的制备方式是在金属表面进行电沉积。
但是现有的溶液制备具有一定的困难,比如反应釜的溶液混合形式为粗放式的大流量混合,导致整体溶液混合不均匀。
发明内容
本发明要解决的技术问题是:克服现有技术中的技术问题之一,提供一种反应釜。
本发明解决其技术问题所采用的技术方案是:一种反应釜,包括,
釜本体,所述釜本体的顶部具有入料口,侧部具有出料口;
上隔板,所述上隔板可转动地设置在所述釜本体的腔体内,位于所述上隔板上分别开设有一上射流中心和环绕所述上射流中心设置的若干上流口,每个所述上射流中心至所述上流口的流通路径长度相等;
下隔板,所述下隔板与所述上隔板贴合,位于所述下隔板上分别开设有一下射流中心,环绕所述下射流中心设置的若干下流口和若干通流口,每个所述下射流中心至所述下流口的流通路径长度相等,每个所述上流口与一所述通流口连通;
调节部,所述调节部螺纹连接在所述上射流中心处,液体适于自所 述调节部分别向所述上射流中心以及所述下射流中心流动,所述调节部伸出所述入料口;其中
转动所述调节部至第一工位,位于所述上隔板上的液体领先于位于所述下隔板上的液体流入所述釜本体内;
转动所述调节部至第二工位,位于所述上隔板上的液体协同位于所述下隔板上的液体同时流入所述釜本体内;
转动所述调节部至第三工位,位于所述下隔板上的液体领先于位于所述上隔板上的液体流入所述釜本体内。
作为优选,多个所述通流口的周向包围设置若干所述下流口,以及
多个所述通流口呈横纵排列。
作为优选,所述调节部包括内部形成盲孔的盲孔管,自所述盲孔管的底部向上具有一下三通管道和一上三通管道,位于所述下三通管道的中心向下开设有一流通管口,位于所述上三通管道的中心向上连通所述盲孔管,环所述盲孔管的外圈具有一外套壁,以及
环所述外套壁上开设有外套口;
位于所述上射流中心的中部开设有一螺纹通槽,位于所述螺纹通槽的内壁具有一横截面呈U形的U形槽,所述盲孔管螺纹连接在所述螺纹通槽内,其中
转动所述外套壁适于至所述第一工位、所述第二工位以及第三工位。
作为优选,所述上三通管道与所述下三通管道之间的间隙与所述U形槽的槽隙适配。
作为优选,靠近所述螺纹通槽处的所述上隔板的端面上具有第一标注、第二标注以及第三标注,位于所述盲孔管的侧壁上具有第一对应标注、第二对应标注和第三对应标注;其中
当所述第一标注与所述第一对应标注相互适配时,所述盲孔管位于第一工位;
当所述第二标注与所述第二对应标注相互适配时,所述盲孔管位于第二工位;
当所述第三标注与所述第三对应标注相互适配时,所述盲孔管位于第三工位。
本发明的有益效果是,本发明的此种反应釜,实现液体分层、分批的输送,并且促进两种液体的混合的同时,借助下隔板能够很好的避免挥发性物质的挥发,混合效果良好。
本发明还提供了一种使用如上所说的反应釜的涂层制备方法,
S1、调节调节部至第三工位,自调节部处注入盐酸到釜本体内;
S2、调节调节部至第二工位,将聚丙烯酸以及硫酸铵分别自上隔板以及下隔板注入并混合;
S3、调节调节部至第一工位,将包含Zn/C复合球形颗粒以及苯胺单体的溶液分别自上隔板以及下隔板注入并混合形成混合溶液;
S4、将混合溶液滴覆在工件表面并进行旋涂形成旋涂溶液表面;
S5、加热工件并蒸发形成旋涂层;
S6、将聚乙烯亚胺溶液涂覆在所述旋涂层表面并加热工件,蒸发形成保护涂层。
作为优选,还包括步骤:
S7、往复步骤S4~步骤S6至20次。
作为优选,旋涂转速为1300rpm~3000rpm,单个保护涂层的厚度为2μm~3μm。
本发明的有益效果是,本发明的使用反应釜的涂层制备方法,制备过程简单快捷,制备效果良好。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的一种反应釜的优选实施例的主视图;
图2是本发明的上隔板的优选实施例的主视图;
图3是本发明的下隔板的优选实施例的主视图;
图4是本发明的调节部的优选实施例的局部剖视图;
图5是本发明的处于第一工位时,上隔板上的液体以及下隔板上的液体的流动示意图;
图6是本发明的处于第二工位时,上隔板上的液体以及下隔板上的液体的流动示意图;
图7是本发明的处于第三工位时,上隔板上的液体以及下隔板上的液体的流动示意图。
图中:100、釜本体,110、入料口,120、出料口,
200、上隔板,201、上射流中心,202、上流口,203、螺纹通槽,204、
U形槽,205、主流道,206、干流道,207、次流道,208、支流道,
300、下隔板,301、下射流中心,302、下流口,303、通流口,304、
主涌道,305、干涌道,306、支涌道,
400、调节部,401、盲孔管,402、下三通管道,403、上三通管道,
404、外套壁,405、外套口。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
为了便于理解本发明的相关技术方案,现对本申请的使用环境做阐述,本申请的使用场景是反应釜内部,常规的做法是采用电磁阀喷洒,但是反应釜内部的酸碱情况是不确定的,此时电磁阀的寿命会大大缩减,或者不工作,电磁阀工作和不工作的状态不可控制,一旦不工作的状态发生在反应期间则会导致反应失败,投入的生产原料都会作废,相对于电磁阀的成本,生产原料的成本是远大于电磁阀的成本的,这个不确定的因素会增加原材料的损耗和废品率。
实施例一
如图1至图7所示,本发明提供了一种反应釜,包括,釜本体100,设置在釜本体100内部腔体内的上隔板200,设置在上隔板200下方并与上隔板200贴合的下隔板300和设置在上隔板200与下隔板300中间的调节部400。其中釜本体100适于制备复合涂层溶液;上隔板200适于引导 流入上隔板200上表面的溶液向四周铺开,均匀流入釜本体100;下隔板300适于引导流入下隔板300上表面的溶液向四周铺开,均匀流入釜本体100;调节部400能够切换不同的工位,从而调整上隔板200和下隔板300内的溶液进入釜本体100的先后顺序,进而调整溶液的混合过程。针对以上各部件,下面进行一一详述。
釜本体
釜本体100外形呈一个圆柱形,且釜本体100内部中空,形成一腔体,釜本体100下方具有若干只支撑腿,釜本体100能够通过支撑腿固定到工作面上,并保持竖直放置。釜本体100的顶部具有入料口110,且釜本体100侧部具有出料口120,制备复合涂层的原溶液能够通过入料口110倒入釜本体100内,并分别通过上隔板200和下隔板300,继而进入釜本体100内混合,混合完成后的涂层溶液能够从出料口120倒出。
上隔板
上隔板200呈圆盘形,上隔板200可转动地设置在釜本体100的腔体内,具体地,上隔板200位于釜本体100腔体上方,且位于入料口110下方,将涂层原溶液从入料口110倒入后,部分涂层原溶液能够流经上隔板200上端面,并通过上隔板200向周向扩散,继而穿过上隔板200均匀向下流入釜本体100内。上隔板200位于上隔板200上端面分别开设有一上射流中心201和环绕上射流中心201设置的若干上流口202,每个上射流中心201至上流口202的流通路径长度相等。具体表现为,上射流中心201位于上隔板200上端面中心,在本实施例中,上射流中心201为正六边形,上射流中心201每条边的中点向外开设有一主流道205,各主流道205均垂直于上射流中心201对应边。一个主流道205向两侧划分出两干流道206,两干流道206沿相反方向延伸,一个干流道206又再向四周分出三个次流道207,一个次流道207继续向四周分出三个支流道208,一个上流口202位于一个支流道208末端。其中主流道205和干流道206为涂层原溶液的公共流道,每个次流道207的长度均为X,每个支流道208的长度均为R,由此能够保证涂层原溶液从上射流中心201到达每个上流口202的长度均相等,即涂层原溶液到达每个上流口202的时间相同。
下隔板
下隔板300呈圆盘形,且下隔板300与上隔板200大小相同,下隔板300设置在上隔板200下方,且下隔板300与上隔板200贴合。由于下隔板300上端面与上隔板200下端面形成封闭空间,因此下隔板300能够倒入挥发性涂层原溶液,不会使得涂层原溶液在流通过程中由于挥发而造成浓度降低。上隔板200转动时,下隔板300能够与上隔板200同步转动。将涂层原溶液从入料口110倒入后,部分涂层原溶液能够流经下隔板300上端面,并通过下隔板300向周向扩散,继而穿过下隔板300均匀向下流入釜本体100内。下隔板300位于下隔板300上分别开设有一下射流中心301,环绕下射流中心301设置的若干下流口302和若干通流口303,每个下射流中心301至下流口302的流通路径长度相等,每个上流口202与一通流口303连通。具体表现为下射流中心301位于下隔板300上端面中心,在本实施例中,下射流中心301也为正六边形,下射流中心301每条边的中点向外开设有一主涌道304,各主涌道304均垂直于下射流中心301对应边。一个主涌道304向两侧划分出两干涌道305,两干涌道305沿相反方向延伸,一个干涌道305又再向四周分出四个支涌道306,一个下流口302位于一个支涌道306末端。其中主涌道304和干涌道305为涂层原溶液的公共流道,每个支涌道306的长度均为L。由此能够保证涂层原溶液从下射流中心301到达每个下流口302的长度均相等,即涂层原溶液到达每个下流口302的时间相同。
需要指出的是,多个通流口303的周向包围设置若干下流口302,多个通流口303呈横纵排列。且上隔板200开设的主流道和下隔板300开设的主涌道水平投影重合,上隔板200开设的干流道和下隔板300开设的主涌道水平投影重合,而上隔板200次流道和支流道长度之和大于下隔板300支涌道长度,即在不加干涉的情况下同时向上隔板200和下隔板300通涂层原溶液,下隔板300上的涂层原溶液总是能够先进入釜本体100内,为了调节上隔板200和下隔板300内涂层原溶液流入釜本体100内的先后顺序,本实施例所示反应釜还具有一调节部400。
调节部
调节部400螺纹连接在上射流中心201处,调节部400与螺纹通槽203相适配,涂层原溶液适于自调节部400分别向上射流中心201以及下 射流中心301流动,调节部400伸出入料口110。调节部400能够切换不同的工位,从而调整上隔板200和下隔板300内的溶液进入釜本体100的先后顺序,进而调整溶液的混合过程。
下面具体说明调节部400的结构,调节部400包括内部形成盲孔的盲孔管401,自盲孔管401的底部向上具有一下三通管道402和一上三通管道403,位于下三通管道402的中心向下开设有一流通管口,位于上三通管道403的中心向上连通盲孔管401,环盲孔管401的外圈具有一外套壁404,环外套壁404上开设有外套口405,外套口405能够与上隔板200的上射流中心201相通。其中倒入盲孔管401的涂层原溶液能够流入下隔板300;倒入盲孔管401与外套壁404之间的涂层原溶液能够通过外套口405流向上射流中心201。流入盲孔管401的涂层原溶液能够依次通过一上三通管道403、一下三通管道402和流通管口流入下射流中心301。
为了补偿涂层原溶液从下射流中心301到达下流口302与涂层原溶液从上射流中心201到达上流口202之间的差值,上隔板200中部还具有一螺纹通槽203,螺纹通槽203沿上隔板200厚度方向贯穿上隔板200,位于螺纹通槽203的内壁具有一横截面呈U形的U形槽204,盲孔管401螺纹连接在螺纹通槽203内。上三通管道403与下三通管道402之间的间隙与U形槽204的槽隙适配。通过转动外套壁404能够调节上三通管道403和下三通管道402与U形槽204的之间的相对位置选取其中临界位置,将调节部400分为三种状态,分别为上三通管道403和下三通管道402位于U形槽204下方;上三通管道403和下三通管道402与U形槽204平齐;上三通管道403和下三通管道402位于U形槽204上方。以上三种状态分别对应调节部400的第一工位、第二工位以及第三工位。
为了便于操作人员调整调节部400位置,靠近螺纹通槽203处的上隔板200的端面上具有第一标注、第二标注以及第三标注,位于盲孔管401的侧壁上具有第一对应标注、第二对应标注和第三对应标注。当第一标注与第一对应标注相互适配时,盲孔管401位于第一工位;当第二标注与第二对应标注相互适配时,盲孔管401位于第二工位;当第三标注与第三对应标注相互适配时,盲孔管401位于第三工位。
转动调节部400至第一工位,即上三通管道403和下三通管道402 位于U形槽204下方时,上三通管道403与U形槽204部分相通,此时通过盲孔管401流入上三通管道403的部分涂层原溶液被限制流动而在盲孔管401下端堆积,使得单位时间内流出调节部400的涂层溶液减小,涂层原溶液到达下流口302的时间增大,从而使得位于上隔板200上的液体领先于位于下隔板300上的液体流入釜本体100内。
转动调节部400至第二工位,即上三通管道403和下三通管道402与U形槽204平齐时,上三通管道403与U形槽204完全相通,此时通过盲孔管401流入上三通管道403的涂层原溶液通过U形槽204距离补偿后,流向下流口302,从而使得位于上隔板200上的液体协同位于下隔板300上的液体同时流入釜本体100内。
转动调节部400至第三工位,即上三通管道403和下三通管道402位于U形槽204上方时,此时上三通管道403与下三通管道402直接相通,U形槽204距离补偿功能失效,原溶液直接通过盲孔管401流向下流口302,从而使得位于下隔板300上的液体领先于位于上隔板200上的液体流入釜本体100内。
实施例二
本实施例在实施例一的基础上,还提供了一种运用该反应釜的涂层制备方法,其中的一种反应釜与实施例一相同,此处不在赘述。
具体的一种涂层制备方法如下,
S1、调节调节部400至第三工位,自调节部400处注入盐酸到釜本体100内;
S2、调节调节部400至第二工位,将聚丙烯酸以及硫酸铵分别自上隔板200以及下隔板300注入并混合;
S3、调节调节部400至第一工位,将包含Zn/C复合球形颗粒以及苯胺单体的溶液分别自上隔板200以及下隔板300注入并混合形成混合溶液。
S4、将混合溶液滴覆在工件表面并进行旋涂形成旋涂溶液表面;
S5、加热工件并蒸发形成旋涂层;
S6、将聚乙烯亚胺溶液涂覆在所述旋涂层表面并加热工件,蒸发形成保护涂层。
S7、往复步骤S4~步骤S6至20次。
旋涂转速为1300rpm~3000rpm,单个保护涂层的厚度为2μm~3μm。
本发明的使用反应釜的涂层制备方法,制备过程简单快捷,制备效果良好。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

  1. 一种反应釜,其特征在于,包括,
    釜本体(100),所述釜本体(100)的顶部具有入料口(110),侧部具有出料口(120);
    上隔板(200),所述上隔板(200)可转动地设置在所述釜本体(100)的腔体内,位于所述上隔板(200)上分别开设有一上射流中心(201)和环绕所述上射流中心(201)设置的若干上流口(202),每个所述上射流中心(201)至所述上流口(202)的流通路径长度相等;
    下隔板(300),所述下隔板(300)与所述上隔板(200)贴合,位于所述下隔板(300)上分别开设有一下射流中心(301),环绕所述下射流中心(301)设置的若干下流口(302)和若干通流口(303),每个所述下射流中心(301)至所述下流口(302)的流通路径长度相等,每个所述上流口(202)与一所述通流口(303)连通;
    调节部(400),所述调节部(400)螺纹连接在所述上射流中心(201)处,液体适于自所述调节部(400)分别向所述上射流中心(201)以及所述下射流中心(301)流动,所述调节部(400)伸出所述入料口(110);其中
    转动所述调节部(400)至第一工位,位于所述上隔板(200)上的液体领先于位于所述下隔板(300)上的液体流入所述釜本体(100)内;
    转动所述调节部(400)至第二工位,位于所述上隔板(200)上的液体协同位于所述下隔板(300)上的液体同时流入所述釜本体(100)内;
    转动所述调节部(400)至第三工位,位于所述下隔板(300)上的液体领先于位于所述上隔板(200)上的液体流入所述釜本体(100)内。
  2. 如权利要求1所述的反应釜,其特征在于,
    多个所述通流口(303)的周向包围设置若干所述下流口(302),以及
    多个所述通流口(303)呈横纵排列。
  3. 如权利要求2所述的反应釜,其特征在于,
    所述调节部(400)包括内部形成盲孔的盲孔管(401),自所述盲孔管(401)的底部向上具有一下三通管道(402)和一上三通管道(403), 位于所述下三通管道(402)的中心向下开设有一流通管口,位于所述上三通管道(403)的中心向上连通所述盲孔管(401),环所述盲孔管(401)的外圈具有一外套壁(404),以及
    环所述外套壁(404)上开设有外套口(405);
    位于所述上射流中心(201)的中部开设有一螺纹通槽(203),位于所述螺纹通槽(203)的内壁具有一横截面呈U形的U形槽(204),所述盲孔管(401)螺纹连接在所述螺纹通槽(203)内,其中
    转动所述外套壁(404)适于至所述第一工位、所述第二工位以及第三工位。
  4. 如权利要求3所述的反应釜,其特征在于,
    所述上三通管道(403)与所述下三通管道(402)之间的间隙与所述U形槽(204)的槽隙适配。
  5. 如权利要求4所述的反应釜,其特征在于,
    靠近所述螺纹通槽(203)处的所述上隔板(200)的端面上具有第一标注、第二标注以及第三标注,位于所述盲孔管(401)的侧壁上具有第一对应标注、第二对应标注和第三对应标注;其中
    当所述第一标注与所述第一对应标注相互适配时,所述盲孔管(401)位于第一工位;
    当所述第二标注与所述第二对应标注相互适配时,所述盲孔管(401)位于第二工位;
    当所述第三标注与所述第三对应标注相互适配时,所述盲孔管(401)位于第三工位。
  6. 一种使用如权利要求1~5任一所述的反应釜的涂层制备方法,其特征在于,包括步骤:
    S1、调节调节部(400)至第三工位,自调节部(400)处注入盐酸到釜本体(100)内;
    S2、调节调节部(400)至第二工位,将聚丙烯酸以及硫酸铵分别自上隔板(200)以及下隔板(300)注入并混合;
    S3、调节调节部(400)至第一工位,将包含Zn/C复合球形颗粒以及苯胺单体的溶液分别自上隔板(200)以及下隔板(300)注入并混合形成混合溶液;
    S4、将混合溶液滴覆在工件表面并进行旋涂形成旋涂溶液表面;
    S5、加热工件并蒸发形成旋涂层;
    S6、将聚乙烯亚胺溶液涂覆在所述旋涂层表面并加热工件,蒸发形成保护涂层。
  7. 如权利要求6所述的涂层制备方法,其特征在于,还包括步骤:
    S7、往复步骤S4~步骤S6至20次。
  8. 如权利要求6所述的涂层制备方法,其特征在于,
    旋涂转速为1300rpm~3000rpm,单个保护涂层的厚度为2μm~3μm。
PCT/CN2023/075834 2022-06-23 2023-02-14 一种反应釜以及使用该反应釜的涂层制备方法 WO2023246125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210715865.0A CN114797649B (zh) 2022-06-23 2022-06-23 一种反应釜以及使用该反应釜的涂层制备方法
CN202210715865.0 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023246125A1 true WO2023246125A1 (zh) 2023-12-28

Family

ID=82522135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075834 WO2023246125A1 (zh) 2022-06-23 2023-02-14 一种反应釜以及使用该反应釜的涂层制备方法

Country Status (2)

Country Link
CN (1) CN114797649B (zh)
WO (1) WO2023246125A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797649B (zh) * 2022-06-23 2022-09-20 海安南京大学高新技术研究院 一种反应釜以及使用该反应釜的涂层制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462719A (en) * 1994-06-08 1995-10-31 Atlantic Richfield Company Method and apparatus for mixing and distributing fluids in a reactor
US20070289879A1 (en) * 2004-10-01 2007-12-20 Polyone Corporation Use of Cathodic Protection Compounds on Treated Metal Articles
CN203935831U (zh) * 2014-07-04 2014-11-12 株洲冶炼集团股份有限公司 制备铟盐的反应釜
CN105903423A (zh) * 2016-06-29 2016-08-31 天津市天元机械制造有限公司 一种设有防止液体挥发和污染装置的反应釜
CN107469736A (zh) * 2017-10-12 2017-12-15 重庆农药化工(集团)有限公司 可调节反应压力的反应釜及可调压反应釜系统
CN212119990U (zh) * 2020-03-11 2020-12-11 江苏金茂源生物化工有限责任公司 乙酸乙酯反应釜
CN112892442A (zh) * 2021-01-13 2021-06-04 吕佳丽 一种改性酯化反应釜
WO2021143905A1 (zh) * 2020-01-18 2021-07-22 冯三林 缓蚀阻垢剂及其制备
CN214076221U (zh) * 2020-12-24 2021-08-31 威海鑫泉动力科技有限公司 一种高性能流体混合搅拌反应釜
CN114797649A (zh) * 2022-06-23 2022-07-29 海安南京大学高新技术研究院 一种反应釜以及使用该反应釜的涂层制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201537467U (zh) * 2009-03-20 2010-08-04 上海亦晨信息科技发展有限公司 交错组合式卧式固液预混罐
CN104874330A (zh) * 2015-05-09 2015-09-02 武汉源锦科技股份有限公司 一种反应釜反应液体滴加装置
CN106047465B (zh) * 2016-05-27 2018-09-18 上海寰得环保科技有限公司 一种废油再生用组合物,及废油再生方法、工艺和系统
CN107201456B (zh) * 2017-07-19 2019-07-05 安徽鹰龙工业设计有限公司 一种用于稀土料液的新式萃取装置
CN207546530U (zh) * 2017-12-08 2018-06-29 韶关市新科农生物科技有限公司 一种用于二硝托胺生产的反应釜
JP2020044466A (ja) * 2018-09-14 2020-03-26 住友金属鉱山株式会社 反応装置及び粒子の製造方法
CN112076706A (zh) * 2020-09-07 2020-12-15 杭州睿琦化工科技有限公司 一种反应釜配料控制装置的操作方法
CN112169725A (zh) * 2020-09-25 2021-01-05 孙国花 一种反应釜用机械除垢清洗装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462719A (en) * 1994-06-08 1995-10-31 Atlantic Richfield Company Method and apparatus for mixing and distributing fluids in a reactor
US20070289879A1 (en) * 2004-10-01 2007-12-20 Polyone Corporation Use of Cathodic Protection Compounds on Treated Metal Articles
CN203935831U (zh) * 2014-07-04 2014-11-12 株洲冶炼集团股份有限公司 制备铟盐的反应釜
CN105903423A (zh) * 2016-06-29 2016-08-31 天津市天元机械制造有限公司 一种设有防止液体挥发和污染装置的反应釜
CN107469736A (zh) * 2017-10-12 2017-12-15 重庆农药化工(集团)有限公司 可调节反应压力的反应釜及可调压反应釜系统
WO2021143905A1 (zh) * 2020-01-18 2021-07-22 冯三林 缓蚀阻垢剂及其制备
CN212119990U (zh) * 2020-03-11 2020-12-11 江苏金茂源生物化工有限责任公司 乙酸乙酯反应釜
CN214076221U (zh) * 2020-12-24 2021-08-31 威海鑫泉动力科技有限公司 一种高性能流体混合搅拌反应釜
CN112892442A (zh) * 2021-01-13 2021-06-04 吕佳丽 一种改性酯化反应釜
CN114797649A (zh) * 2022-06-23 2022-07-29 海安南京大学高新技术研究院 一种反应釜以及使用该反应釜的涂层制备方法

Also Published As

Publication number Publication date
CN114797649B (zh) 2022-09-20
CN114797649A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023246125A1 (zh) 一种反应釜以及使用该反应釜的涂层制备方法
JP2003504866A (ja) Cvdおよびpecvdプロセス中に基板に均一ガス送出を行う方法および装置
WO2014110958A1 (zh) 一种硫酸铜溶液逆向流动生产电解铜箔的方法及系统
JP3372211B2 (ja) 二液混合装置
CN101517132B (zh) 镀膜装置
CN110981167B (zh) 倾角型双铂金通道玻璃液处理输送系统
CN206104891U (zh) 一种用于制备微细球形粉体的气雾化喷嘴
CN101949007A (zh) 用于均匀出气的气体分配器
CN108167474B (zh) 一种混水阀芯
CN105169978A (zh) 溶液自动制备装置及粉体溶解方法
CN107739778B (zh) 一种钢包底吹氩装置及其精炼搅拌方法
CN102553502A (zh) 一种电子墨水微胶囊的制备装置及制备方法
JPH11347393A (ja) 二液混合方法
CN216445237U (zh) 玻璃窑炉
CN108654542A (zh) 一种改性沥青防水卷材连续配料装置及配料方法
CN212585560U (zh) 一种两段式布水系统
CN109052614B (zh) 一种用于调节超临界水氧化蒸发壁式反应器水膜覆盖率的系统及方法
CN208824298U (zh) 管道静态混合元件及含有该混合元件的管道静态混合器
CN208563445U (zh) 有压圆管直角弯头整流装置
CN206562541U (zh) 一种改变稀释水浓度调节纸张横幅定量的装置
CN113144925A (zh) 一种实时混气系统及其工作方法
KR100190909B1 (ko) 화학기상증착 반응기용 다구역 샤워헤드
CN106758471B (zh) 一种改变稀释水浓度调节纸张横幅定量的装置及方法
KR20110072928A (ko) 약액 혼합용 매니폴드 및 이를 포함하는 실시간 혼합 약액 공급 장치
EP3089826B1 (de) Beschichtungsvorrichtung und verfahren zur tauchbeschichtung von brillengläsern, verfahren zum nachdosieren und tauchbeschichten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825784

Country of ref document: EP

Kind code of ref document: A1