WO2023245961A1 - 一种用于光声光谱检测的光声池 - Google Patents

一种用于光声光谱检测的光声池 Download PDF

Info

Publication number
WO2023245961A1
WO2023245961A1 PCT/CN2022/131050 CN2022131050W WO2023245961A1 WO 2023245961 A1 WO2023245961 A1 WO 2023245961A1 CN 2022131050 W CN2022131050 W CN 2022131050W WO 2023245961 A1 WO2023245961 A1 WO 2023245961A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoacoustic
optical window
cavity
buffer
buffer cavity
Prior art date
Application number
PCT/CN2022/131050
Other languages
English (en)
French (fr)
Inventor
廖建平
蒲金雨
高帆
杨伟鸿
陈宇飞
高萌
徐永烨
成传晖
Original Assignee
南方电网科学研究院有限责任公司
中国南方电网有限责任公司超高压输电公司检修试验中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 中国南方电网有限责任公司超高压输电公司检修试验中心 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2023245961A1 publication Critical patent/WO2023245961A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Definitions

  • the present invention relates to the technical field of photoacoustic spectrum detection, and in particular to a photoacoustic pool used for photoacoustic spectrum detection.
  • Photoacoustic spectroscopy is a material-based spectroscopy technology.
  • the intensity produced by the effect is proportional to the light absorption coefficient of the irradiated substance.
  • the gas concentration of the gas to be measured is indirectly obtained by measuring the acoustic signal generated by the gas to be measured after absorbing light.
  • the performance of the photoacoustic cell has a non-negligible impact on the detection capability.
  • the light signal is weak and often submerged in the noise signal. Therefore, it is necessary to reduce the noise impact of gas photoacoustic spectrum detection and improve the sensitivity of trace gas detection.
  • the invention provides a photoacoustic cell for photoacoustic spectrum detection, which is used to solve the technical problem that the noise signal at the window of the existing photoacoustic cell is large, resulting in reduced sensitivity of trace gas photoacoustic spectrum detection.
  • the present invention provides a photoacoustic cell for photoacoustic spectrum detection, including a first buffer cavity, a second buffer cavity, a resonant cavity, a first optical window, a second optical window and a microphone. ;
  • the resonant cavity is laterally arranged on the top of the first buffer cavity and the second buffer cavity which are vertically arranged in parallel, and the insides of the resonant cavity, the first buffer cavity and the second buffer cavity are connected;
  • the top of the left end of the resonant cavity is provided with a first window for installing a first optical window at an angle of 45° with the horizontal direction, and the top of the right end of the resonant cavity is provided with a second optical window with an included angle of 135° with the horizontal direction. the second window of the film;
  • a microphone is installed in the middle of the bottom of the resonant cavity
  • the first buffer chamber is provided with an air inlet
  • the second buffer chamber is provided with an air outlet
  • the first optical window and the second optical window are CaF2 lenses.
  • the microphone is a condenser microphone.
  • the first buffer cavity, the second buffer cavity and the resonance cavity are all cylindrical cavity structures.
  • the radius of the resonant cavity is 3mm and the length is 120mm.
  • the radius of the first buffer cavity and the second buffer cavity is 35mm, and the length is 60mm.
  • the first buffer cavity, the second buffer cavity and the resonant cavity are made of copper.
  • the radius of the first optical window and the second optical window is smaller than the radius of the resonant cavity, and the thickness is 2 mm.
  • the resonant cavity is laterally arranged on the top of the first buffer cavity and the second buffer cavity arranged vertically in parallel, and the resonant cavity, the first buffer cavity and the second buffer cavity are Internally connected, the resonant cavity and the two buffer cavities form a ⁇ -shaped structure.
  • infrared light passes through the first optical window and the second optical window, light scattering occurs between the first optical window and the second optical window. causess noise.
  • the reflected light can be made as perpendicular to the resonant cavity as possible and enter the first buffer cavity and the third buffer cavity.
  • the second buffer cavity greatly reduces the window noise, improves the detection sensitivity, and solves the technical problem of the existing photoacoustic cell window where the noise signal is large, resulting in reduced sensitivity of trace gas photoacoustic spectrum detection.
  • Figure 1 is a schematic structural diagram of a photoacoustic pool used for photoacoustic spectrum detection provided by the present invention
  • the present invention provides an embodiment of a photoacoustic cell for photoacoustic spectrum detection, including a first buffer cavity 1, a second buffer cavity 7, a resonant cavity 3, a first optical Window 2, second optical window 8 and microphone 6;
  • the resonant cavity 3 is disposed laterally on the top of the first buffer cavity 1 and the second buffer cavity 7 which are vertically arranged in parallel, and the interiors of the resonant cavity 3, the first buffer cavity 1 and the second buffer cavity 7 are connected;
  • the top of the left end of the resonant cavity 3 is provided with a first window for installing the first optical window 2 at an angle of 45° with the horizontal direction, and the top of the right end of the resonant cavity 3 is provided with a first window for installing the first optical window 2 with an angle of 135° with the horizontal direction.
  • a microphone 6 is installed at the middle position of the bottom of the resonant cavity 3;
  • the first buffer chamber 1 is provided with an air inlet 4
  • the second buffer chamber 7 is provided with an air outlet 5 .
  • the resonant cavity 3 is transversely arranged on the top of the first buffer cavity 1 and the second buffer cavity 7 which are arranged vertically and parallelly, and the resonant cavity 3 and the second buffer cavity 7 are arranged in parallel.
  • the first buffer cavity 1 and the second buffer cavity 7 are connected internally, so the resonant cavity 3 forms a ⁇ -shaped structure with the two buffer cavities.
  • the middle position of the bottom of the resonant cavity 3 is at the standing wave of the sound wave, and the microphone 6 is arranged at the resonance
  • the strongest acoustic signal can be obtained at the middle position of the bottom of the cavity 3 to ensure the accuracy of the detection results.
  • the first optical window 2 and the second optical window 8 When the infrared light passes through the first optical window 2 and the second optical window 8, the first optical window 2 and the second optical window 8 The optical window 8 will cause light scattering to cause noise. Since the first optical window 2 is at an angle of 45° with the horizontal direction, and the second optical window 8 is at an angle of 135° with the horizontal direction, the reflected light can be as close as possible to the horizontal direction.
  • the resonant cavity 3 is vertical and enters the first buffer cavity 1 and the second buffer cavity 7, thereby greatly reducing the window noise, improving the detection sensitivity, and solving the problem of large noise signals at the window of the existing photoacoustic pool, resulting in trace Technical problem of reduced sensitivity of gas photoacoustic spectroscopy detection.
  • the first optical window 2 and the second optical window 8 are CaF2 lenses.
  • the microphone 6 is a capacitive microphone 6 .
  • the capacitive microphone 6 has high detection accuracy and is conducive to improving the sensitivity of trace gas photoacoustic spectrum detection.
  • the first buffer cavity 1, the second buffer cavity 7 and the resonant cavity 3 are all cylindrical cavity structures.
  • the radius of the resonant cavity 3 is 3 mm and the length is 120 mm.
  • the radius of the first buffer cavity 1 and the second buffer cavity 7 is 35mm, and the length is 60mm.
  • the first buffer cavity 1, the second buffer cavity 7 and the resonant cavity 3 are made of copper.
  • the radius of the first optical window 2 and the second optical window 8 is smaller than the radius of the resonant cavity 3, and the thickness is 2 mm.
  • the resonant cavity 3 can be designed to have a cavity length of 120mm and a radius of 3mm, the first buffer cavity 1 and the second buffer cavity 7 have a cavity length of 60mm and a radius of 35mm.
  • the optical window 2 and the second optical window 8 are designed to be smaller than the radius of the resonant cavity 3 and have a thickness of 2 mm.
  • the standing wave of the sound field is just at the center, the response signal value is larger, and the signal-to-noise ratio becomes larger.
  • the first buffer chamber 1, the second buffer chamber 7 and the resonant chamber 3 are made of copper, which has a small adsorption of gas, which can avoid interference caused by repeated detection of adsorbed residual gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种用于光声光谱检测的光声池,共振腔(3)横向设置在垂直平行设置的第一缓冲腔(1)和第二缓冲腔(7)的顶部,且共振腔(3)、第一缓冲腔(1)和第二缓冲腔(7)的内部贯通,因而共振腔(3)与两个缓冲腔形成了Π形结构,当红外光经过第一光学窗片(2)和第二光学窗片(8)时,第一光学窗片(2)和第二光学窗片(8)会发生光散射现象引起噪声,由于第一光学窗片(2)与水平方向呈45°夹角,第二光学窗片(8)与水平方向呈135°夹角,可以使得反射光尽可能与共振腔(3)垂直,进入第一缓冲腔(1)和第二缓冲腔(7),从而大幅度降低了窗口噪声,提高了检测的灵敏度,解决了现有的光声池窗口处噪声信号较大,导致痕量气体光声光谱检测灵敏度降低的技术问题。

Description

一种用于光声光谱检测的光声池
本申请要求于2022年6月20日提交中国专利局、申请号为202210699659.5、发明名称为“一种用于光声光谱检测的光声池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光声光谱检测技术领域,尤其涉及一种用于光声光谱检测的光声池。
背景技术
光声光谱技术是一种基于物质的光谱技术。当用光束或脉冲光束照射物质时,通过效应产生强度正比于被照射物质的光吸收系数。在对待测气体的检测过程中,通过测得待测气体在吸收光后产生的声信号间接得到待测气体的气体浓度。光声池作为光声光谱检测系统中气体与光反应的场所,其性能的好坏对检测能力有着不可忽视的影响。在痕量气体的检测过程中,光信号较弱,常常会淹没在噪声信号之中,因此,需要降低气体光声光谱检测的噪声影响,提高对痕量气体检测的灵敏度。
发明内容
本发明提供了一种用于光声光谱检测的光声池,用于解决现有的光声池窗口处噪声信号较大,导致痕量气体光声光谱检测灵敏度降低的技术问题。
有鉴于此,本发明提供了一种用于光声光谱检测的光声池,包括第一缓冲腔、第二缓冲腔、共振腔、第一光学窗片、第二光学窗片和微音器;
共振腔横向设置在垂直平行设置的第一缓冲腔和第二缓冲腔的顶部,且共振腔、第一缓冲腔和第二缓冲腔的内部贯通;
共振腔的左端顶部开设用于安装与水平方向呈45°夹角的第一光学窗片的第一窗口,共振腔的右端顶部开设用于安装与水平方向呈135°夹角的第二光学窗片的第二窗口;
共振腔的底部中间位置安装有微音器;
第一缓冲腔上设置有进气口,第二缓冲腔上设置有出气口。
可选地,第一光学窗片和第二光学窗片为CaF2透镜。
可选地,微音器为电容式微音器。
可选地,第一缓冲腔、第二缓冲腔和共振腔均为圆柱腔结构。
可选地,共振腔的半径为3mm,长度为120mm。
可选地,第一缓冲腔和第二缓冲腔的半径为35mm,长度为60mm。
可选地,第一缓冲腔、第二缓冲腔和共振腔的材质为铜。
可选地,第一光学窗片和第二光学窗片的半径小于共振腔的半径,厚度为2mm。
从以上技术方案可以看出,本发明提供的用于光声光谱检测的光声池具有以下优点:
本发明提供的用于光声光谱检测的光声池,共振腔横向设置在垂直平行设置的第一缓冲腔和第二缓冲腔的顶部,且共振腔、第一缓冲腔和第二缓冲腔的内部贯通,因而共振腔与两个缓冲腔形成了Π形结构,当红外光经过第一光学窗片和第二光学窗片时,第一光学窗片和第二光学窗片会发生光散射现象引起噪声,由于第一光学窗片与水平方向呈45°夹角,第二光学窗片与水平方向呈135°夹角,可以使得反射光尽可能与共振腔垂直,进入第一缓冲腔和第二缓冲腔,从而大幅度降低了窗口噪声,提高了检测的灵敏度,解决了现有的光声池窗口处噪声信号较大,导致痕量气体光声光谱检测灵敏度降低的技术问题。
附图说明
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明提供的一种用于光声光谱检测的光声池的结构示意图;
其中,附图标记为:
1、第一缓冲腔;2、第一光学窗片;3、共振腔;4、进气口;5、出气口;6、微音器;7、第二缓冲腔;8、第二光学窗片。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了便于理解,请参阅图1,本发明中提供了一种用于光声光谱检测的光声池的实施例,包括第一缓冲腔1、第二缓冲腔7、共振腔3、第一光学窗片2、第二光学窗片8和微音器6;
共振腔3横向设置在垂直平行设置的第一缓冲腔1和第二缓冲腔7的顶部,且共振腔3、第一缓冲腔1和第二缓冲腔7的内部贯通;
共振腔3的左端顶部开设用于安装与水平方向呈45°夹角的第一光学窗片2的第一窗口,共振腔3的右端顶部开设用于安装与水平方向呈135°夹角的第二光学窗片8的第二窗口;
共振腔3的底部中间位置安装有微音器6;
第一缓冲腔1上设置有进气口4,第二缓冲腔7上设置有出气口5。
需要说明的是,本发明提供的用于光声光谱检测的光声池,共振腔3横向设置在垂直平行设置的第一缓冲腔1和第二缓冲腔7的顶部,且共振腔3、第一缓冲腔1和第二缓冲腔7的内部贯通,因而共振腔3与两个缓冲腔形成了Π形结构,共振腔3的底部中间位置处于声波的驻波处,微音器6设置在共振腔3的底部中间位置,可获得最强的声信号,保证检测结果的准确性,当红外光经过第一光学窗片2和第二光学窗片8时,第一光学窗片2和第二光学窗片8会发生光散射现象引起噪声,由于第一光学窗片2与水平方向呈45°夹角,第二光学窗片8与水平方向呈135°夹角,可以使得反射光尽可能与共振腔3垂直,进入第一缓冲腔1和第二缓冲腔7,从而大幅度降低了窗口噪声,提高了检测的灵敏度,解决了现有的光声池窗口处噪声信号较大,导致痕量气体光声光谱检测灵敏度降低的技术问题。
在一个实施例中,第一光学窗片2和第二光学窗片8为CaF2透镜。
在一个实施例中,微音器6为电容式微音器6。电容式微音器6的检测精度高,有利于提高痕量气体光声光谱检测灵敏度。
在一个实施例中,第一缓冲腔1、第二缓冲腔7和共振腔3均为圆柱腔结构。
在一个实施例中,共振腔3的半径为3mm,长度为120mm。
第一缓冲腔1和第二缓冲腔7的半径为35mm,长度为60mm。
在一个实施例中,第一缓冲腔1、第二缓冲腔7和共振腔3的材质为铜。
在一个实施例中,第一光学窗片2和第二光学窗片8的半径小于共振腔3的半径,厚度为2mm。
本发明中,为保证更好的声场分布,可设计为共振腔3腔长为120mm、半径为3mm,第一缓冲腔1和第二缓冲腔7的腔长为60mm、半径为35mm,第一光学窗片2和第二光学窗片8设计小于共振腔3的半径,厚度2mm。这样的设计声场驻波刚好处于中心位置,响应的信号值更大,信噪比随着越大。第一缓冲腔1、第二缓冲腔7和共振腔3腔体的材质为铜,对气体的吸附较小,可避免因多次检测吸附残余气体造成的干扰。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种用于光声光谱检测的光声池,其特征在于,包括第一缓冲腔、第二缓冲腔、共振腔、第一光学窗片、第二光学窗片和微音器;
    共振腔横向设置在垂直平行设置的第一缓冲腔和第二缓冲腔的顶部,且共振腔、第一缓冲腔和第二缓冲腔的内部贯通;
    共振腔的左端顶部开设用于安装与水平方向呈45°夹角的第一光学窗片的第一窗口,共振腔的右端顶部开设用于安装与水平方向呈135°夹角的第二光学窗片的第二窗口;
    共振腔的底部中间位置安装有微音器;
    第一缓冲腔上设置有进气口,第二缓冲腔上设置有出气口。
  2. 根据权利要求1所述的用于光声光谱检测的光声池,其特征在于,第一光学窗片和第二光学窗片为CaF2透镜。
  3. 根据权利要求1所述的用于光声光谱检测的光声池,其特征在于,微音器为电容式微音器。
  4. 根据权利要求1所述的用于光声光谱检测的光声池,其特征在于,第一缓冲腔、第二缓冲腔和共振腔均为圆柱腔结构。
  5. 根据权利要求4所述的用于光声光谱检测的光声池,其特征在于,共振腔的半径为3mm,长度为120mm。
  6. 根据权利要求5所述的用于光声光谱检测的光声池,其特征在于,第一缓冲腔和第二缓冲腔的半径为35mm,长度为60mm。
  7. 根据权利要求6所述的用于光声光谱检测的光声池,其特征在于,第一缓冲腔、第二缓冲腔和共振腔的材质为铜。
  8. 根据权利要求7所述的用于光声光谱检测的光声池,其特征在于,第一光学窗片和第二光学窗片的半径小于共振腔的半径,厚度为2mm。
PCT/CN2022/131050 2022-06-20 2022-11-10 一种用于光声光谱检测的光声池 WO2023245961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210699659.5 2022-06-20
CN202210699659.5A CN115032153A (zh) 2022-06-20 2022-06-20 一种用于光声光谱检测的光声池

Publications (1)

Publication Number Publication Date
WO2023245961A1 true WO2023245961A1 (zh) 2023-12-28

Family

ID=83124553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131050 WO2023245961A1 (zh) 2022-06-20 2022-11-10 一种用于光声光谱检测的光声池

Country Status (2)

Country Link
CN (1) CN115032153A (zh)
WO (1) WO2023245961A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032153A (zh) * 2022-06-20 2022-09-09 中国南方电网有限责任公司超高压输电公司检修试验中心 一种用于光声光谱检测的光声池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060123884A1 (en) * 2004-12-08 2006-06-15 Mark Selker System and method for gas analysis using doubly resonant photoacoustic spectroscopy
CN101949821A (zh) * 2010-08-12 2011-01-19 重庆大学 用于气体光声光谱监测的纵向共振光声池
CN213337310U (zh) * 2020-11-10 2021-06-01 巴卡拉能源科技有限公司 一种变压器油样在线监测系统
CN115032153A (zh) * 2022-06-20 2022-09-09 中国南方电网有限责任公司超高压输电公司检修试验中心 一种用于光声光谱检测的光声池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060123884A1 (en) * 2004-12-08 2006-06-15 Mark Selker System and method for gas analysis using doubly resonant photoacoustic spectroscopy
CN101949821A (zh) * 2010-08-12 2011-01-19 重庆大学 用于气体光声光谱监测的纵向共振光声池
CN213337310U (zh) * 2020-11-10 2021-06-01 巴卡拉能源科技有限公司 一种变压器油样在线监测系统
CN115032153A (zh) * 2022-06-20 2022-09-09 中国南方电网有限责任公司超高压输电公司检修试验中心 一种用于光声光谱检测的光声池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ULASEVICH A. L., GORELIK A. V., KOUZMOUK A. A., STAROVOITOV V. S.: "Compact Resonance Π-Shaped Photoacoustic Cell for Gas Detection", JOURNAL OF APPLIED SPECTROSCOPY, NEW YORK,NY, US, vol. 81, no. 3, 1 July 2014 (2014-07-01), US , pages 470 - 475, XP093120840, ISSN: 0021-9037, DOI: 10.1007/s10812-014-9956-z *
ULASEVICH A. L.; GORELIK A. V.; KOUZMOUK A. A.; STAROVOITOV V. S.: "A compact resonant Π-shaped photoacoustic cell with low window background for gas sen", APPLIED PHYSICS B, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 117, no. 2, 6 June 2014 (2014-06-06), Berlin/Heidelberg, pages 549 - 561, XP035406825, ISSN: 0946-2171, DOI: 10.1007/s00340-014-5867-1 *

Also Published As

Publication number Publication date
CN115032153A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2023245961A1 (zh) 一种用于光声光谱检测的光声池
Li et al. Absolute Raman cross sections for cyclohexane, acetonitrile, and water in the far-ultraviolet region
WO2017133045A1 (zh) 气溶胶实时监测仪
KR20080082479A (ko) 감쇠 전반사 프로브 및 이를 구비한 분광계
WO2021179592A1 (zh) 一种液体吸收系数测量装置及测量方法
JPS60105946A (ja) 赤外線ガス分析計
WO2021212931A1 (zh) 一种二维多点反射长光程气体传感器探头及气体传感器
WO2023213067A1 (zh) 一种用于气体光声光谱检测的喇叭形光声池
CN113218930B (zh) 一种拉曼光谱增强装置及气体分析系统
CN109765181A (zh) 一种提高气体光声光谱检测稳定性的差分式共振光声池
JPS63308541A (ja) 赤外線ガス分析計
WO2022213584A1 (zh) 一种基于单悬臂梁的差分式光声光谱气体检测装置
CN109799204B (zh) 一种基于光谱法的低浓度cod测量装置
CN207114434U (zh) 一种二氧化硫气体检测装置
KR20090086766A (ko) 광학식 가스센서
CN217586879U (zh) 一种用于光声光谱检测的光声池
CN112730403A (zh) 大气中氯及氯化物含量的便携测量装置及其气体测量方法
CA1122432A (en) Resonant subcavity differential spectrophone
Patel et al. Quantitative spectroscopy of micron‐thick liquid films
WO2024055377A1 (zh) 一种单激光双通道粉尘传感器
CN112098355A (zh) 一种适用于宽带发散光束的光声光谱痕量气体检测装置
CN106596444A (zh) 一种基于紫外宽带吸收光谱的氧气浓度测量系统及测量方法
CN108896519B (zh) 双光谱烟气汞分析装置及相应的方法
Dewey Design of optoacoustic systems
EP1102059B1 (en) Method and apparatus for measuring a scattered light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947697

Country of ref document: EP

Kind code of ref document: A1