WO2023245928A1 - 一种磁刺激仪 - Google Patents

一种磁刺激仪 Download PDF

Info

Publication number
WO2023245928A1
WO2023245928A1 PCT/CN2022/125018 CN2022125018W WO2023245928A1 WO 2023245928 A1 WO2023245928 A1 WO 2023245928A1 CN 2022125018 W CN2022125018 W CN 2022125018W WO 2023245928 A1 WO2023245928 A1 WO 2023245928A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
resistor
terminal
capacitor
magnetic
Prior art date
Application number
PCT/CN2022/125018
Other languages
English (en)
French (fr)
Inventor
戚自辉
蒋田仔
杨正宜
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Publication of WO2023245928A1 publication Critical patent/WO2023245928A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue

Definitions

  • the present application relates to the field of magnetic stimulation technology, and in particular to a magnetic stimulator.
  • Transcranial Magnetic Stimulation is a non-invasive neuromodulation technology that has been widely used in clinical and research and has proven its effectiveness.
  • Transcranial magnetic stimulation technology uses a powerful alternating magnetic field to penetrate the skull and induce current in the cerebral cortex, thereby stimulating the brain nerves. Since the skin and skull have little resistance to the magnetic field, a sufficiently large current can be induced in the cerebral cortex. To activate neurons, it is a suprathreshold stimulus.
  • Transcranial magnetic stimulation requires the coil to be accurately placed in the target area. The traditional method is for the doctor to hold the coil in the target area and maintain it at a certain position and angle for a long time. Handheld coils have shortcomings such as inaccurate target positioning, inability to accurately follow the patient's head movements, and fatigue caused by long-term holding.
  • robotic arms are increasingly used to hold coils in clinical practice. This not only frees up doctors, but also has the advantages of high positioning accuracy and real-time compensation for patient head movements. Moreover, since the robotic arms can load heavier coils, There is no need to impose strict weight restrictions on TMS coils.
  • a TMS host is used to power the traditional TMS coil.
  • a long high-current high-voltage cable is required to connect the TMS host and the TMS coil.
  • the high-current high-voltage cable is thick in diameter and heavy in weight. It is not easy to bend and is not convenient for installation and wiring. At the same time, because the cable is long and the peak current is large, the power loss of the cable is large.
  • This application provides a magnetic stimulator to solve the problems of inconvenient installation and wiring of connecting cables and large power loss.
  • This application provides a magnetic stimulator, including: a host, a high-current discharge component and a magnetic stimulation coil, wherein the host includes a charging module and a control module, and the high-current discharge component includes an energy storage module and a discharge switch;
  • the output end of the charging module is connected to the energy storage module, the energy storage module is connected to the first end of the discharge switch, and the second end of the discharge switch is connected to the power supply end of the magnetic stimulation coil,
  • the control module is connected to the control end of the discharge switch;
  • the high current discharge component is arranged at a position where the distance from the magnetic stimulation coil is less than a first threshold.
  • the high-current discharge component is configured to be connected to the magnetic stimulation coil in an integrated manner.
  • the charging module includes a power factor correction PFC circuit and a boost circuit;
  • the output terminal of the PFC circuit is connected to the input terminal of the boost circuit, and the output terminal of the boost circuit serves as the output terminal of the charging module.
  • the PFC circuit includes a power supply, a rectifier module, a first inductor, a first switch, a first resistor, a second resistor, a third resistor, a first capacitor and a PFC controller;
  • the power supply is connected to the input end of the rectifier module, the positive output end of the rectifier module is connected to the first end of the first inductor, and the second end of the first inductor is connected to the first end of the first switch.
  • the first end, the second end of the first switch is connected to the negative output end of the rectifier module, the second end of the first inductor is also connected to the first end of the second resistor, the second The second end of the resistor is connected to the first end of the third resistor, the second end of the third resistor is connected to the second end of the first switch, and the first end of the second resistor is also connected to The first end of the first capacitor, the second end of the first capacitor are connected to the second end of the third resistor, and the second end of the first capacitor is also connected to the first end of the first resistor.
  • the second end of the first resistor and the first end of the first capacitor serve as the output end of the PFC circuit
  • the voltage sampling end of the PFC controller is connected to the first end of the third resistor
  • the current sampling terminal of the PFC controller is connected to the second terminal of the first resistor
  • the output terminal of the PFC controller is connected to the control terminal of the first switch.
  • the PFC circuit further includes a first diode
  • the second end of the first inductor is connected to the first end of the second resistor through the first diode, and the second end of the first inductor is connected to the anode of the first diode, The cathode of the first diode is connected to the first terminal of the second resistor.
  • the boost circuit is a Boost circuit
  • the Boost circuit includes: a second inductor, a second switch, a fourth resistor, a fifth resistor, a sixth resistor, Second capacitor and Boost controller;
  • the second end of the second inductor is connected to the first end of the second switch, and the first end of the second inductor and the second end of the second switch serve as the input end of the boost circuit,
  • the second end of the second inductor is also connected to the first end of the fourth resistor, the second end of the fourth resistor is connected to the first end of the fifth resistor, and the third end of the fifth resistor is
  • Two terminals are connected to the second terminal of the second switch, the first terminal of the fourth resistor is also connected to the first terminal of the second capacitor, and the second terminal of the second capacitor is connected to the first terminal of the second switch.
  • the boost circuit is a charge pump circuit, and the output voltage of the charge pump circuit is N times the input voltage of the charge pump circuit, where N is an integer greater than 1.
  • the charge pump circuit when N is 2, includes: a third switch, a fourth switch, a fifth switch, a sixth switch, a third capacitor, a fourth capacitor, seventh resistor, eighth resistor and charge pump controller;
  • the first end of the third switch serves as the input end of the boost circuit
  • the second end of the third switch is connected to the first end of the fourth switch
  • the second end of the fourth switch is connected to
  • the first end of the fourth capacitor is connected to the first end of the sixth switch
  • the second end of the sixth switch is connected to the first end of the fifth switch.
  • the charge pump controller is connected to the control end of the third switch, the fourth switch, the fifth switch and the sixth switch respectively, and the PFC control The doubled output voltage sampling terminal of the device is connected to the first terminal of the eighth resistor.
  • the magnetic stimulation coil is a magnetic core coil.
  • the high-current discharge component is not integrated into the host, but is set at a position where the distance from the magnetic stimulation coil is less than the first threshold.
  • the high-current discharge component The device is integrated in the TMS host, and the distance between the TMS host and the magnetic stimulation coil is usually set far away. Therefore, the TMS host needs to be connected to the magnetic stimulation coil through a long high-current high-voltage cable.
  • the embodiment of the present application shortens the time required.
  • the distance between the current discharge component and the magnetic stimulation coil shortens the length of the high-current and high-voltage cables that need to be installed, which facilitates installation and wiring. Moreover, shortening the length of the high-current and high-voltage cables that need to be installed can effectively reduce cable power loss.
  • Figure 1 is a schematic diagram of the principle of transcranial magnetic stimulation
  • Figure 2 is a schematic structural diagram of a transcranial magnetic stimulator in the prior art
  • FIG. 3 is one of the structural schematic diagrams of the magnetic stimulator provided by this application.
  • Figure 4 is a schematic diagram of the circuit structure between the high current discharge component and the magnetic stimulation coil in the magnetic stimulator provided by this application;
  • FIG. 5 is the second structural schematic diagram of the magnetic stimulator provided by this application.
  • FIG. 6 is the third structural schematic diagram of the magnetic stimulator provided by this application.
  • Figure 7 is one of the circuit structure diagrams of the charging module in the magnetic stimulator provided by this application.
  • Figure 8 is the second circuit structure diagram of the charging module in the magnetic stimulator provided by this application.
  • FIG 1 is a schematic diagram of the principle of transcranial magnetic stimulation. It can be seen that transcranial magnetic stimulation requires the coil to be accurately placed in the target area. The traditional method is for the doctor to hold the coil in the target area and maintain the position and angle for a long time. However, handheld coils have the disadvantages of inaccurate target area positioning, inability to accurately follow the patient's head movements, and fatigue caused by long-term holding.
  • robotic arms are increasingly used in clinical practice to clamp coils, which not only liberates doctors, but also has the advantages of high positioning accuracy and real-time compensation for patient head movements. Since the robotic arm can carry heavier coils, there is no longer a strict limit on the weight of the TMS coil.
  • FIG 2 is a schematic structural diagram of a transcranial magnetic stimulator in the prior art.
  • high-current discharge devices such as energy storage capacitors and discharge switches included in high-current discharge devices
  • the traditional TMS A long high-current high-voltage cable is required to connect the coil and the TMS host.
  • the high-current high-voltage cable In order to transmit currents up to several thousand amperes, the high-current high-voltage cable is thick in diameter, heavy, and difficult to bend, making it difficult to integrate well with the robotic arm. Or pass inside the robotic arm.
  • the power loss of the cable is very large, which can reach about 50% of the total loss.
  • FIG 3 is one of the structural schematic diagrams of the magnetic stimulator provided by this application.
  • the magnetic stimulator 300 includes a host 301, a high current discharge component 302 and a magnetic stimulation coil 303.
  • the host 301 includes a charging module 3011. and control module 3012.
  • the high current discharge component 302 includes an energy storage module 3021 and a discharge switch 3022.
  • the output end of the charging module 3011 is connected to the energy storage module 3021.
  • the energy storage module 3021 is connected to the first end of the discharge switch 3022.
  • the second end of the discharge switch 3022 is connected to the power supply end of the magnetic stimulation coil 303.
  • the control module 3012 is connected to the discharge end. The control end of switch 3022;
  • the large current discharge component 302 is set at a position where the distance from the magnetic stimulation coil 303 is less than the first threshold.
  • the above host 301 is, for example, a TMS host.
  • the above-mentioned energy storage module 3021 is, for example, a film capacitor with small internal resistance and high current.
  • the above-mentioned discharge switch 3022 includes, for example, a thyristor, a MOS transistor, an igbt or other high current switching device.
  • the TMS host since high-current discharge devices are integrated into the TMS host, and the distance between the TMS host and the magnetic stimulation coil is usually set far away, the TMS host needs to be connected to the magnetic stimulation coil through a long high-current high-voltage cable. , to power the magnetic stimulation coil.
  • high-current high-voltage cables are thick in diameter, heavy, and difficult to bend, making it difficult to integrate well with the robotic arm or pass within the robotic arm.
  • the power loss of the cable is very large.
  • embodiments of the present application propose: no longer integrating the high-current discharge component into the host, but setting it at a position where the distance from the magnetic stimulation coil is less than a first threshold, where the first threshold It can be set by technicians as needed.
  • Figure 4 is a schematic diagram of the circuit structure between the high current discharge component and the magnetic stimulation coil in the magnetic stimulator provided by this application.
  • Figure 4 takes the energy storage module 3021 as a capacitor C, the discharge switch 3022 including a thyristor SCR1 and a diode D, and the magnetic stimulation coil 303 as an inductor L. It shows the circuit structure between the high current discharge component 302 and the magnetic stimulation coil 303. Schematic diagram.
  • the control module 3012 can specifically control whether the capacitor C discharges to the inductor L by controlling SCR1 to be turned on or off.
  • the charging module 3011 and the energy storage module 3021 are connected through a small current high-voltage cable, the control module 3012 and the discharge switch 3022 are connected through a signal cable, and the discharge switch 3022 in the high current discharge component 302 and the magnetic stimulation coil 303 are connected.
  • the connection structure of the magnetic stimulator 300 provided by this application is introduced as follows:
  • FIG. 5 is the second structural schematic diagram of the magnetic stimulator provided by this application.
  • the charging module 5011 in the host 501 is connected to the energy storage module 5021 in the large current discharge component 502 through a small current high-voltage cable.
  • a smaller charging current charges the energy storage module 5021.
  • the charging module 5011 charges the energy storage module 5021 with a charging current less than 1 A, for example.
  • the energy storage module 5021 is connected to the first end of the discharge switch 5022, and the second end of the discharge switch 5022 in the high current discharge assembly 502 is connected to the power supply end of the magnetic stimulation coil 503 through a high current high voltage cable.
  • the control module 5012 in the host 501 is connected to the control end of the discharge switch 5022 in the high current discharge component 502 to control the discharge switch 5022 to be turned on or off.
  • control module 5012 controls the discharge switch 5022 to turn off, the circuit between the energy storage module 5021 and the magnetic stimulation coil 503 is turned off. At this time, the energy storage module 5021 cannot discharge to the magnetic stimulation coil 503 to provide magnetic stimulation. Coil 503 supplies power, and charging module 5011 will charge energy storage module 5021 at this time.
  • control module 5012 determines that the electric energy stored in the energy storage module 5021 meets certain conditions, for example, when it is determined that the electric energy stored in the energy storage module 5021 is greater than a preset threshold, the control module 5012 can control the discharge switch 5022 to turn on. At this time, The circuit between the energy storage module 5021 and the magnetic stimulation coil 503 is conductive, and the energy storage module 5021 can discharge to the magnetic stimulation coil 503 to provide power to the magnetic stimulation coil 503.
  • the high-current discharge component 502 is arranged close to the magnetic stimulation coil 503. Compared with related technologies, the distance between the high-current discharge component 502 and the magnetic stimulation coil 503 is shortened, thereby shortening the length of the high-current high-voltage cable that needs to be installed. length, but increasing the distance between the high-current discharge component 502 and the host 501 is equivalent to increasing the distance between the high-current discharge component 502 and the charging module 5011 and the control module 5012.
  • the charging module 5011 charges the energy storage module 5021 through a small charging current
  • a small current with a small diameter, light weight, and a soft and easy-to-bend cable is provided between the charging module 5011 and the energy storage module 5021.
  • Connecting high-voltage cables can meet the requirements and facilitate installation and wiring. For example, it can be laid well outside or inside the robot arm.
  • the peak current of the charging current flowing through the small-current high-voltage cable is very small, the cable can be effectively reduced.
  • the resistance loss caused by the low-current high-voltage cables in the embodiment of the present application is even negligible.
  • control module 5012 can control the discharge switch 5022 in the high-current discharge component 502 to be turned on or off by only passing a small current signal
  • the control module 5012 and the discharge switch 5022 are provided with a small diameter, light weight and The connection of soft and easy-to-bend signal cables can meet the requirements, so that the control module 5012 controls the discharge switch 5022, which is convenient for installation and wiring. Since the current of the signal sent by the control module 5012 is very small, it can effectively reduce Cable power loss.
  • the magnetic stimulator provided by the embodiment of the present application can be installed and applied to electronic equipment such as a robotic arm, and the magnetic stimulator provided by the embodiment of the present application can not only be used in the field of transcranial magnetic stimulation, but also in the field of transcranial magnetic stimulation. It can be used in fields such as peripheral nerve and muscle stimulation, and is not limited here.
  • the high-current discharge component is not integrated into the host, but is set at a position where the distance from the magnetic stimulation coil is less than the first threshold.
  • the high-current discharge component is integrated in the TMS.
  • the distance between the TMS host computer and the magnetic stimulation coil is usually set far, so the TMS host computer needs to be connected to the magnetic stimulation coil through a long high-current high-voltage cable.
  • the embodiment of the present application shortens the connection between the high-current discharge component and the magnetic stimulation coil.
  • the distance between the magnetic stimulation coils shortens the length of the high-current and high-voltage cables that need to be installed, which facilitates installation and wiring.
  • shortening the length of the high-current and high-voltage cables that need to be installed can effectively reduce the cable power loss.
  • the magnetic stimulator is set up and applied to a robotic arm, the large load capacity of the robotic arm can also be fully utilized, and the weight of the magnetic stimulation coil no longer needs to be strictly limited.
  • the high-current discharge component is configured to be integrated with the magnetic stimulation coil.
  • Figure 6 is the third structural schematic diagram of the magnetic stimulator provided by the present application.
  • Figure 6 shows an example in which a large current discharge component and a magnetic stimulation coil are integrated into the same coil component.
  • the magnetic stimulator 600 includes a host 601, a high current discharge component 602 and a magnetic stimulation coil 603.
  • the host 601 includes a charging module 6011 and a control module 6012
  • the high current discharge component 602 includes an energy storage module 6021 and a discharge module. Switch 6022.
  • circuit connection structure of the magnetic stimulator 600 is substantially the same as the circuit connection structure of the magnetic stimulator 500, and will not be described again in order to avoid duplication.
  • the length of the high current and high voltage cables that need to be installed is significantly shortened. At this time, it can even be approximately considered that there is no need to install an external large current cable.
  • Current high-voltage cables, and the small current high-voltage cables and signal cables are small in diameter, light in weight, and the cables are soft and easy to bend, which is convenient for installation and wiring.
  • the length of the high-current high-voltage cables that need to be installed is significantly shortened, which can effectively reduce Cable power loss.
  • the high-current discharge components that is, the energy storage module and the discharge switch are directly integrated with the magnetic stimulation coil, which significantly shortens the distance between the discharge switch and the magnetic stimulation coil, thereby significantly shortening the large amount of equipment that needs to be set.
  • the length of high-current high-voltage cables facilitates installation and wiring, and significantly shortens the length of high-current high-voltage cables that need to be installed, which can effectively reduce cable power loss.
  • the energy storage module and discharge switch are large in size, and the magnetic stimulation coil also needs to dissipate heat, it would be bloated to install them all at the end of the robotic arm.
  • the energy storage module and discharge switch that is, the high-current discharge component, can also be installed on the machine.
  • a short high-current high-voltage cable is used to connect the coil on the arm closer to the coil to form a three-body magnetic stimulator.
  • the shorter high-current high-voltage cable has less loss and is easy to install and fix.
  • the high current discharge component 502, the magnetic stimulation coil 503 and the host 501 are not connected in an integrated manner, and in Figure 6, the high current discharge component 602 and the magnetic stimulation coil 603 are integrated into the same coil component.
  • the embodiment of the present application integrates the high-current discharge component, the magnetic stimulation coil and the host, which can significantly shorten the length of the high-current and high-voltage cables while also significantly shortening the length of the low-current and high-voltage cables.
  • the length of the cable and the length of the signal cable facilitate installation and wiring while further reducing cable power loss.
  • the above-mentioned magnetic stimulation coil may be a magnetic core coil.
  • the magnetic stimulation coil can be an air-core coil or a magnetic core coil.
  • the magnetic core coil increases the volume and weight of the magnetic core, it also reduces the required capacitance and significantly reduces the loss and temperature rise of the magnetic stimulation coil.
  • Figure 7 is one of the circuit structure diagrams of the charging module in the magnetic stimulator provided by this application.
  • the charging module 701 includes a power factor correction (Power Factor Correction, PFC) circuit 7011 and a boost circuit. 7012;
  • PFC Power Factor Correction
  • the output terminal of the PFC circuit 7011 is connected to the input terminal of the boost circuit 7012, and the output terminal of the boost circuit 7012 serves as the output terminal of the charging module 701.
  • the PFC circuit 7011 includes a power supply 1, a rectifier module 2, a first inductor L1, a first switch Q1, a first resistor R1, a second resistor R2, a third resistor R3, and a first capacitor C1. and PFC controller 3;
  • the above-mentioned power supply 1 is, for example, an alternating current power supply AC.
  • Figure 7 shows that the power supply 1 is an alternating current power supply AC.
  • the AC power supply AC is, for example, the power supply in a robotic arm powered by AC220V, or the power supply in a magnetic stimulator powered by AC220V. .
  • the above-mentioned rectifier module 2 includes, for example, a bridge rectifier circuit
  • FIG. 7 shows that the rectifier module 2 includes a bridge rectifier circuit as an example.
  • the rectifier module 2 includes four diodes D1-D4, and the specific rectification principle will not be elaborated.
  • the above-mentioned first switch Q1 is, for example, a MOS transistor.
  • FIG. 7 an example is shown in which the first switch Q1 is an NMOS transistor.
  • the power supply 1 is connected to the input end of the rectifier module 2.
  • the positive output end of the rectifier module 2 is connected to the first end of the first inductor L1.
  • the second end of the first inductor L1 is connected to the first end of the first switch Q1.
  • the second end of the switch Q1 is connected to the negative output end of the rectifier module 2
  • the second end of the first inductor L1 is also connected to the first end of the second resistor R2
  • the second end of the second resistor R2 is connected to the third resistor R3.
  • the first end of the third resistor R3 is connected to the second end of the first switch Q1.
  • the first end of the second resistor R2 is also connected to the first end of the first capacitor C1.
  • the third end of the first capacitor C1 The two ends are connected to the second end of the third resistor R3, the second end of the first capacitor C1 is also connected to the first end of the first resistor R1, the second end of the first resistor R1 and the first end of the first capacitor C1
  • the voltage sampling terminal of the PFC controller 3 is connected to the first terminal of the third resistor R3, and the current sampling terminal of the PFC controller 3 is connected to the second terminal of the first resistor R1.
  • the output terminal of is connected to the control terminal of the first switch Q1.
  • the PFC controller 3 can control the first switch Q1 to turn on or off based on the sampling data of the voltage sampling terminal of the PFC controller 3 and the current sampling terminal of the PFC controller 3, thereby realizing closed-loop current control and closed-loop voltage of the PFC. control.
  • the robotic arm is generally powered by AC220V, and the magnetic stimulator can also be powered by AC220V.
  • the above-mentioned PFC circuit 7011 designed in the embodiment of this application can convert AC220V output by the AC power supply into DC350V for output.
  • the PFC circuit 7011 can be regarded as a regulated power supply with an output voltage of DC350V.
  • the PFC circuit 7011 may also include a first diode D5;
  • the second end of the first inductor L1 is connected to the first end of the second resistor R2 through the first diode D5.
  • the second end of the first inductor L1 is connected to the anode of the first diode D5.
  • the first diode The negative electrode of D5 is connected to the first terminal of the second resistor R2.
  • the second end of the second inductor L2 is connected to the first end of the second switch Q2.
  • the first end of the second inductor L2 and the second end of the second switch Q2 serve as the input end of the boost circuit 7012.
  • the second end of the second inductor L2 The second terminal is also connected to the first terminal of the fourth resistor R4.
  • the second terminal of the fourth resistor R4 is connected to the first terminal of the fifth resistor R5.
  • the second terminal of the fifth resistor R5 is connected to the third terminal of the second switch Q2.
  • the Boost controller 4 can control the second switch Q2 to turn on or off based on the sampling data of the voltage sampling terminal of the Boost controller 4 and the current sampling terminal of the Boost controller 4, thereby realizing closed-loop current control and closed-loop voltage of Boost. control.
  • the above-mentioned Boost circuit can boost the DC350V output by the above-mentioned PFC circuit 7011 to a target voltage, where the target voltage can be set by technicians as needed.
  • combining PFC control and Boost control can form a more flexible and efficient charging strategy:
  • Constant power charging uses the closed-loop current control of the PFC controller and the closed-loop voltage control of the Boost controller. This combination of control can achieve the fastest charging speed without the device being saturated.
  • the boost circuit 8012 may be a charge pump circuit.
  • the output voltage of the charge pump circuit is N times the input voltage of the charge pump circuit, where N is an integer greater than 1.
  • the first terminal of the third switch Q3 serves as the input terminal of the boost circuit 8012.
  • the second terminal of the third switch Q3 is connected to the first terminal of the fourth switch Q4.
  • the second terminal of the fourth switch Q4 is connected to the fourth capacitor C4.
  • the first terminal of the fourth capacitor C4 is connected to the first terminal of the sixth switch Q6, the second terminal of the sixth switch Q6 is connected to the first terminal of the fifth switch Q5, and the second terminal of the fifth switch Q5
  • the terminal is connected to the first terminal of the third switch Q3, the first terminal of the third capacitor C3 is connected to the second terminal of the third switch Q3, the second terminal of the third capacitor C3 is connected to the first terminal of the fifth switch Q5,
  • the first end of the fourth capacitor C4 is also connected to the first end of the seventh resistor R7, the second end of the seventh resistor R7 is connected to the first end of the eighth resistor R8, and the second end of the eighth resistor R8 is connected to the first end of the seventh resistor R7.
  • the above-mentioned PFC controller 3 can control the first switch Q1 to turn on or off based on the sampling data of the voltage sampling terminal of the PFC controller 3, the current sampling terminal of the PFC controller 3 and the voltage doubler output voltage sampling terminal of the PFC controller 3, Closed-loop current control and closed-loop voltage control of PFC can be realized. Since the first inductor in the PFC circuit can store energy, freewheel and realize voltage regulation, the charging module including the PFC circuit and the charge pump circuit can achieve wide-range, high-efficiency voltage regulation and voltage stabilization functions.
  • the charging module obtained in this embodiment can obtain a smaller volume.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

本申请提供一种磁刺激仪,涉及磁刺激技术领域,磁刺激仪包括:主机、大电流放电组件和磁刺激线圈,其中,主机包括充电模块和控制模块,大电流放电组件包括储能模块和放电开关;充电模块的输出端连接于储能模块,储能模块连接于放电开关的第一端,放电开关的第二端连接于磁刺激线圈的供电端,控制模块连接于放电开关的控制端;其中,大电流放电组件,被设置在与磁刺激线圈之间的距离小于第一阈值的位置。本申请实施例中大电流放电组件没有被集成于主机中,而是被设置在与磁刺激线圈之间的距离小于第一阈值的位置,缩短了需要设置的大电流高压电缆的长度,便于安装布线,也可以有效减小电缆功率损耗。

Description

一种磁刺激仪
相关申请的交叉引用
本申请要求于2022年06月21日提交的申请号为202210709105.9,发明名称为“一种磁刺激仪”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及磁刺激技术领域,尤其涉及一种磁刺激仪。
背景技术
经颅磁刺激(Transcranial Magnetic Stimulation,TMS)是一种非侵入神经调控的技术,已经在临床和研究中大量应用,并证明了其有效性。经颅磁刺激技术利用强大的交变磁场透过颅骨并在大脑皮层感应出电流,进而刺激到大脑神经,由于皮肤、颅骨对磁场的阻碍作用很小,大脑皮层中可以感应出足够大的电流来激活神经元,属于阈上刺激。经颅磁刺激需要将线圈准确地放置于目标靶区,传统的方法是医生手拿线圈放置于目标靶区,并长时间保持某一位置与角度。手持线圈存在目标靶区定位不准、无法精准地跟随患者头动及长时间手持所引起的劳累等缺点。
为了解决上述问题,临床上越来越多地采用机械臂夹持线圈,不仅解放了医生,同时还具有定位精度高及实时补偿患者头动等优点,并且由于机械臂可负载更重的线圈,因此无需对TMS线圈的重量进行严格的限制。
目前采用TMS主机为传统的TMS线圈供电,为传输高达数千安培的电流,TMS主机与TMS线圈之间需要采用较长的大电流高压电缆进行连接,设置的大电流高压电缆直径粗、重量大且不易弯折,不便于安装布线,同时由于电缆较长,且峰值电流大,故电缆功率损耗大。
发明内容
本申请提供一种磁刺激仪,用以解决连接电缆不便于安装布线及功率损耗大的问题。
本申请提供一种磁刺激仪,包括:主机、大电流放电组件和磁刺激线圈,其中,所述主机包括充电模块和控制模块,所述大电流放电组件包括储能模块和放电开关;
所述充电模块的输出端连接于所述储能模块,所述储能模块连接于所述放电开关的第一端,所述放电开关的第二端连接于所述磁刺激线圈的供电端,所述控制模块连接于所述放电开关的控制端;
其中,所述大电流放电组件,被设置在与所述磁刺激线圈之间的距离小于第一阈值的位置。
根据本申请提供的一种磁刺激仪,所述大电流放电组件被设置与所述磁刺激线圈采用集成方式连接。
根据本申请提供的一种磁刺激仪,所述大电流放电组件被设置与所述磁刺激线圈和所述主机采用集成方式连接。
根据本申请提供的一种磁刺激仪,所述充电模块包括功率因数校正PFC电路和升压电路;
所述PFC电路的输出端连接于所述升压电路的输入端,所述升压电路的输出端作为所述充电模块的输出端。
根据本申请提供的一种磁刺激仪,所述PFC电路包括电源、整流模块、第一电感、第一开关、第一电阻、第二电阻、第三电阻、第一电容和PFC控制器;
所述电源连接于所述整流模块的输入端,所述整流模块的正输出端连接于所述第一电感的第一端,所述第一电感的第二端连接于所述第一开关的第一端,所述第一开关的第二端连接于所述整流模块的负输出端,所述第一电感的第二端还连接于所述第二电阻的第一端,所述第二电阻的第二端连接于所述第三电阻的第一端,所述第三电阻的第二端连接于所述第一开关的第二端,所述第二电阻的第一端还连接于所述第一电容的第一端,所述第一电容的第二端连接于所述第三电阻的第二端,所述第一电容的第二端还连接于第一电阻的第一端,所述第一电阻的第二端和所述第一电容的第一端作为所述PFC电路的输出端,所述PFC控制器的电压采样端连接于所述第三电阻的第一端,所述PFC控制器的电流采样端连接于所述第一电阻的第二端,所述PFC控制器的输出端连接于所述第一开关的控制端。
根据本申请提供的一种磁刺激仪,所述PFC电路还包括第一二极管;
所述第一电感的第二端通过所述第一二极管连接于所述第二电阻的第一端,所述第一电感的第二端连接于所述第一二极管的正极,所述第一二极管的负极连接于所述第二电阻的第一端。
根据本申请提供的一种磁刺激仪,所述升压电路为Boost升压电路,所述Boost升压电路包括:第二电感、第二开关、第四电阻、第五电阻、第六电阻、第二电容和Boost控制器;
所述第二电感的第二端连接于所述第二开关的第一端,所述第二电感的第一端和所述第二开关的第二端作为所述升压电路的输入端,所述第二电感的第二端还连接于所述第四电阻的第一端,所述第四电阻的第二端连接于所述第五电阻的第一端,所述第五电阻的第二端连接于所述第二开关的第二端,所述第四电阻的第一端还连接于所述第二电容的第一端,所述第二电容的第二端连接于所述第五电阻的第二端,所述第二电容的第二端还连接于所述第六电阻的第一端,所述第六电阻的第二端和所述第二电容的第一端作为所述升压电路的输出端,所述Boost控制器的电压采样端连接于所述第五电阻的第一端,所述Boost控制器的电流采样端连接于所述第六电阻的第二端,所述Boost控制器的输出端连接于所述第二开关的控制端。
根据本申请提供的一种磁刺激仪,所述升压电路为电荷泵电路,所述电荷泵电路的输出电压是所述电荷泵电路的输入电压的N倍,N为大于1的整数。
根据本申请提供的一种磁刺激仪,在N为2的情况下,所述电荷泵电路包括:第三开关、第四开关、第五开关、第六开关、第三电容、第四电容、第七电阻、第八电阻和电荷泵控制器;
所述第三开关的第一端作为所述升压电路的输入端,所述第三开关的第二端连接于所述第四开关的第一端,所述第四开关的第二端连接于所述第四电容的第一端,所述第四电容的第二端连接于所述第六开关的第一端,所述第六开关的第二端连接于所述第五开关的第一端,所述第五开关的第二端连接于所述第三开关的第一端,所述第三电容的第一端连接于所述第三开关的第二端,所述第三电容的第二端连接于所述第五开关的第一端, 所述第四电容的第一端还连接于所述第七电阻的第一端,所述第七电阻的第二端连接于所述第八电阻的第一端,所述第八电阻的第二端连接于所述第四电容的第二端,所述第八电阻的第二端接地,所述第七电阻的第一端作为所述升压电路的输出端,所述电荷泵控制器分别连接于所述第三开关、所述第四开关、所述第五开关和所述第六开关的控制端,所述PFC控制器的倍压输出电压采样端连接于所述第八电阻的第一端。
根据本申请提供的一种磁刺激仪,所述磁刺激线圈是磁芯线圈。本申请提供的一种磁刺激仪,大电流放电组件没有集成于主机中,而是被设置在与磁刺激线圈之间的距离小于第一阈值的位置,相较于相关技术由于大电流放电的器件集成在TMS主机中,且通常设置TMS主机与磁刺激线圈之间的距离较远,故TMS主机需要通过较长的大电流高压电缆连接于磁刺激线圈的情况,本申请实施例缩短了大电流放电组件与磁刺激线圈之间的距离,进而缩短了需要设置的大电流高压电缆的长度,便于安装布线,并且,缩短需要设置的大电流高压电缆的长度,可以有效减小电缆功率损耗。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是经颅磁刺激原理的示意图;
图2是现有技术中经颅磁刺激仪的结构示意图;
图3是本申请提供的磁刺激仪的结构示意图之一;
图4是本申请提供的磁刺激仪中大电流放电组件与磁刺激线圈之间的电路结构示意图;
图5是本申请提供的磁刺激仪的结构示意图之二;
图6是本申请提供的磁刺激仪的结构示意图之三;
图7是本申请提供的磁刺激仪中充电模块的电路结构图之一;
图8是本申请提供的磁刺激仪中充电模块的电路结构图之二。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是经颅磁刺激原理的示意图。可以看出,经颅磁刺激需要将线圈准确的放置于目标靶区,传统的方法是医生手拿线圈放置于靶区,并长时间保持位置与角度。而手持线圈存在靶区定位不准、无法精准跟随患者头动、长时间手持所引起的劳累的缺点。
为了解决这一问题,目前,临床上越来越多地采用机械臂来夹持线圈,不仅解放了医生,同时还具有定位精度高及实时补偿患者头动的优点。由于机械臂可负载更重的线圈,因此不再对TMS线圈的重量进行严格的限制。
图2是现有技术中经颅磁刺激仪的结构示意图。如图2所示,由于大电流放电的器件,例如大电流放电的器件包括的储能电容和放电开关均集成在TMS主机中,且TMS主机与线圈之间的距离较远,故传统的TMS线圈和TMS主机之间需要采用较长的大电流高压电缆进行连接,为传输高达数千安培的电流,大电流高压电缆的直径粗、重量大且不易弯折,难以很好地与机械臂集成或者在机械臂内穿过。同时由于电缆较长,且峰值电流大,电缆功率损耗很大,可达总损耗的50%左右。
下面结合附图描述本申请的一种磁刺激仪。
图3是本申请提供的磁刺激仪的结构示意图之一,如图3所示,磁刺激仪300包括主机301、大电流放电组件302和磁刺激线圈303,其中,主机301包括,充电模块3011和控制模块3012,大电流放电组件302包括储能模块3021和放电开关3022。
充电模块3011的输出端连接于储能模块3021,储能模块3021连接于放电开关3022的第一端,放电开关3022的第二端连接于磁刺激线圈303的供电端,控制模块3012连接于放电开关3022的控制端;
其中,大电流放电组件302,被设置在与磁刺激线圈303之间的距离 小于第一阈值的位置。
上述主机301例如为TMS主机。
上述储能模块3021例如为内阻小、电流大的薄膜电容。
上述放电开关3022例如包括晶闸管、MOS管或igbt等大电流开关器件。
相关技术中,由于大电流放电的器件被集成在TMS主机中,且通常设置TMS主机与磁刺激线圈之间的距离较远,故TMS主机需要通过较长的大电流高压电缆连接于磁刺激线圈,以对磁刺激线圈供电。为传输高达数千安培的电流,大电流高压电缆的直径粗、重量大且不易弯折,难以很好地与机械臂集成或者在机械臂内穿过。同时由于大电流高压电缆较长,且峰值电流大,电缆功率损耗很大。
为了解决上述技术问题,本申请实施例提出:不再将大电流放电组件集成于主机中,而是将其设置在与磁刺激线圈之间的距离小于第一阈值的位置,其中,第一阈值可以由技术人员根据需要进行设置。
图4是本申请提供的磁刺激仪中大电流放电组件与磁刺激线圈之间的电路结构示意图。
图4是以储能模块3021为电容C,放电开关3022包括晶闸管SCR1和二极管D,磁刺激线圈303为电感L为例,示出的大电流放电组件302与磁刺激线圈303之间的电路结构示意图。控制模块3012具体可以通过控制SCR1导通或关断,来控制电容C是否向电感L放电。
下面以充电模块3011与储能模块3021之间通过小电流高压电缆连接,控制模块3012与放电开关3022之间通过信号电缆连接,且大电流放电组件302中的放电开关3022与磁刺激线圈303之间通过大电流高压电缆连接为例,对本申请提供的磁刺激仪300的连接结构介绍如下:
图5是本申请提供的磁刺激仪的结构示意图之二,如图5所示,主机501中的充电模块5011通过小电流高压电缆连接于大电流放电组件502中的储能模块5021,可以以较小的充电电流为储能模块5021充电,充电模块5011例如以小于1A的充电电流为储能模块5021充电。
大电流放电组件502中,储能模块5021连接于放电开关5022的第一端,大电流放电组件502中的放电开关5022的第二端通过大电流高压电 缆连接于磁刺激线圈503的供电端,主机501中的控制模块5012连接于大电流放电组件502中的放电开关5022的控制端,以控制放电开关5022导通或关断。
在控制模块5012控制放电开关5022关断的情况下,储能模块5021与磁刺激线圈503之间的线路的关断的,此时储能模块5021无法放电至磁刺激线圈503,以对磁刺激线圈503供电,而充电模块5011此时会为储能模块5021充电。
控制模块5012在确定储能模块5021存储的电能满足一定条件的情况下,例如在确定储能模块5021存储的电能大于预设的某一阈值的情况下,可以控制放电开关5022导通,此时储能模块5021与磁刺激线圈503之间的线路是导通的,储能模块5021可以放电至磁刺激线圈503,以对磁刺激线圈503供电。
大电流放电组件502被设置在靠近磁刺激线圈503的位置,相较于相关技术,缩短了大电流放电组件502与磁刺激线圈503之间的距离,进而缩短了需要设置的大电流高压电缆的长度,但增加了大电流放电组件502与主机501之间的距离,也就相当于增加了大电流放电组件502与充电模块5011和控制模块5012之间的距离。
尽管如此,由于充电模块5011是通过较小的充电电流为储能模块5021充电的,所以在充电模块5011与储能模块5021之间设置直径小、重量轻且线缆柔软易弯折的小电流高压电缆进行连接即可满足要求,便于安装布线,例如可以很好地沿机械臂外或内铺设,同时由于需要在小电流高压电缆上流过的充电电流的峰值电流很小,可以有效减小电缆的功率损耗,相较于相关技术中大电流高压电缆的损耗来说,本申请实施例中小电流高压电缆带来的电阻损耗甚至可以忽略不计。
同理,由于控制模块5012仅通过很小电流的信号,就可以控制大电流放电组件502中放电开关5022导通或关断,故控制模块5012与放电开关5022之间设置直径小、重量轻且线缆柔软易弯折的信号电缆进行连接即可满足要求,以由控制模块5012对放电开关5022进行控制,便于安装布线,且由于控制模块5012发送的信号的电流很小,故可以有效减小电缆的功率损耗。
还需要说明的是,本申请实施例提供的磁刺激仪,可以设置并应用于机械臂等电子器械上,并且,本申请实施例提供的磁刺激仪不仅可以应用于经颅磁刺激领域,也可以应用于外周神经和肌肉的刺激等领域,在此不作限制。
本申请实施例中,大电流放电组件没有集成于主机中,而是被设置在与磁刺激线圈之间的距离小于第一阈值的位置,相较于相关技术由于大电流放电的器件集成在TMS主机中,且通常设置TMS主机与磁刺激线圈之间的距离较远,故TMS主机需要通过较长的大电流高压电缆连接于磁刺激线圈的情况,本申请实施例缩短了大电流放电组件与磁刺激线圈之间的距离,进而缩短了需要设置的大电流高压电缆的长度,便于安装布线,并且,缩短需要设置的大电流高压电缆的长度,可以有效减小电缆功率损耗。
另外,如果将磁刺激仪设置并应用到机械臂上,还可以充分利用了机械臂负载能力大的特性,磁刺激线圈的重量将不再需要严格限制。
可选地,大电流放电组件被设置与磁刺激线圈采用集成方式连接。
图6是本申请提供的磁刺激仪的结构示意图之三,图6中以大电流放电组件与磁刺激线圈集成在同一线圈组件中为例示出。
如图6所示,磁刺激仪600包括主机601、大电流放电组件602和磁刺激线圈603,其中,主机601包括充电模块6011和控制模块6012,大电流放电组件602包括储能模块6021和放电开关6022。
需要说明的是,磁刺激仪600的电路连接结构与磁刺激仪500的电路连接结构大致相同,为了避免重复,在此不再赘述。
可以看出,在大电流放电组件602与磁刺激线圈603集成在同一线圈组件的情况下,显著缩短了需要设置的大电流高压电缆的长度,此时甚至可以近似认为不再需要设置外接的大电流高压电缆,而设置的小电流高压电缆和信号电缆均直径小、重量轻且线缆柔软易弯折,便于安装布线,并且,显著缩短需要设置的大电流高压电缆的长度,可以有效减小电缆功率损耗。
本申请实施例中,将大电流放电组件,即将储能模块和放电开关直接与磁刺激线圈集成在一起,显著缩短了放电开关与磁刺激线圈之间的距离,进而显著缩短了需要设置的大电流高压电缆的长度,便于安装布线,并且, 显著缩短需要设置的大电流高压电缆的长度,可以有效减小电缆功率损耗。
如果考虑到储能模块及放电开关的体积较大,且磁刺激线圈也需要散热,全部装在机械臂末端较臃肿,也可以将储能模块和放电开关,即将大电流放电组件,安装于机械臂上距线圈较近的位置,再使用较短的大电流高压电缆连接线圈,从而形成三体式磁刺激仪,较短的大电流高压电缆的损耗较小,也方便安装固定。
进一步地,大电流放电组件可以被设置与磁刺激线圈和主机采用集成方式连接。
相较于图5中,大电流放电组件502、磁刺激线圈503和主机501均未采用集成方式连接的情况,以及图6中大电流放电组件602和磁刺激线圈603集成于同一线圈组件,而未与主机601采用集成方式连接的情况,本申请实施例将大电流放电组件、磁刺激线圈和主机三者集成在一起,可以在显著缩短大电流高压电缆长度的同时,显著缩短小电流高压电缆的长度和信号电缆的长度,便于安装布线的同时,可以进一步减小电缆功率损耗。
可选地,上述磁刺激线圈可以是磁芯线圈。
具体地,磁刺激线圈可以是空心线圈,也可以是磁芯线圈。磁芯线圈虽然增加了磁芯的体积和重量,但同时也会减少所需的电容容量,并大幅降低损耗和磁刺激线圈的温升。
可选地,图7是本申请提供的磁刺激仪中充电模块的电路结构图之一,如图7所示,充电模块701包括功率因数校正(Power Factor Correction,PFC)电路7011和升压电路7012;
PFC电路7011的输出端连接于升压电路7012的输入端,升压电路7012的输出端作为充电模块701的输出端。
可选地,如图7所示,PFC电路7011包括电源1、整流模块2、第一电感L1、第一开关Q1、第一电阻R1、第二电阻R2、第三电阻R3、第一电容C1和PFC控制器3;
上述电源1例如为交流电源AC,图7中以电源1为交流电源AC为例示出,交流电源AC例如为使用AC220V供电的机械臂中的电源,或者为使用AC220V供电的磁刺激仪中的电源。
上述整流模块2例如包括桥式整流电路,
图7中以整流模块2包括桥式整流电路为例示出,整流模块2包括四个二极管D1-D4,具体整流原理不作展开。
上述第一开关Q1例如为MOS管,图7中以第一开关Q1为NMOS管为例示出。
下面对PFC电路7011的连接结构介绍如下:
电源1连接于整流模块2的输入端,整流模块2的正输出端连接于第一电感L1的第一端,第一电感L1的第二端连接于第一开关Q1的第一端,第一开关Q1的第二端连接于整流模块2的负输出端,第一电感L1的第二端还连接于第二电阻R2的第一端,第二电阻R2的第二端连接于第三电阻R3的第一端,第三电阻R3的第二端连接于第一开关Q1的第二端,第二电阻R2的第一端还连接于第一电容C1的第一端,第一电容C1的第二端连接于第三电阻R3的第二端,第一电容C1的第二端还连接于第一电阻R1的第一端,第一电阻R1的第二端和第一电容C1的第一端作为PFC电路7011的输出端,PFC控制器3的电压采样端连接于第三电阻R3的第一端,PFC控制器3的电流采样端连接于第一电阻R1的第二端,PFC控制器3的输出端连接于第一开关Q1的控制端。
具体地,PFC控制器3可以基于PFC控制器3的电压采样端和PFC控制器3的电流采样端的采样数据,控制第一开关Q1导通或关断,可以实现PFC的闭环电流控制和闭环电压控制。
机械臂一般采用AC220V供电,磁刺激仪也可以使用AC220V供电。本申请实施例设计的上述PFC电路7011,可以将交流电源AC输出的AC220V,转换为DC350V进行输出,PFC电路7011可以看作是一个输出电压为DC350V的稳压电源。
可选地,如图7所示,PFC电路7011还可以包括第一二极管D5;
第一电感L1的第二端通过第一二极管D5连接于第二电阻R2的第一端,第一电感L1的第二端连接于第一二极管D5的正极,第一二极管D5的负极连接于第二电阻R2的第一端。
上述第一二极管D5用于防倒灌,以保证PFC电路7011可以稳定输出直流电压。
可选地,如图7所示,升压电路7012可以为Boost升压电路,Boost升压电路可以包括:第二电感L2、第二开关Q2、第四电阻R4、第五电阻R5、第六电阻R6、第二电容C2和Boost控制器4;
下面对升压电路7012的连接结构介绍如下:
第二电感L2的第二端连接于第二开关Q2的第一端,第二电感L2的第一端和第二开关Q2的第二端作为升压电路7012的输入端,第二电感L2的第二端还连接于第四电阻R4的第一端,第四电阻R4的第二端连接于第五电阻R5的第一端,第五电阻R5的第二端连接于第二开关Q2的第二端,第四电阻R4的第一端还连接于第二电容C2的第一端,第二电容C2的第二端连接于第五电阻R5的第二端,第二电容C2的第二端还连接于第六电阻R6的第一端,第六电阻R6的第二端和第二电容C2的第一端作为升压电路7012的输出端,Boost控制器4的电压采样端连接于第五电阻R5的第一端,Boost控制器4的电流采样端连接于第六电阻R6的第二端,Boost控制器4的输出端连接于第二开关Q2的控制端。
具体地,Boost控制器4可以基于Boost控制器4的电压采样端和Boost控制器4的电流采样端的采样数据,控制第二开关Q2导通或关断,可以实现Boost的闭环电流控制和闭环电压控制。
上述Boost升压电路可以将上述PFC电路7011输出的DC350V升压至目标电压,其中,目标电压可以由技术人员根据需要进行设置。
可选地,将PFC控制和Boost控制进行组合,可以形成更加灵活高效地充电策略:
(1)恒电流充电,即仅使用Boost控制的闭环电流控制和电压控制,PFC控制器仅使用电压控制;
(2)恒功率充电,即使用PFC控制器的闭环电流控制和Boost控制器的闭环电压控制,这种组合控制可以在器件不饱和的条件下,获得最快的充电速度。
可选地,如图7所示,Boost升压电路还可以包括第二二极管D6;
第二电感L2的第二端通过第二二极管D6连接于第四电阻R4的第一端,第二电感L2的第二端连接于第二二极管D6的正极,第二二极管D6的负极连接于第四电阻R4的第一端。
本申请实施例中,在缩短了大电流放电组件与磁刺激线圈之间的距离,进而缩短了需要设置的大电流高压电缆的长度,便于安装布线,并且,缩短需要设置的大电流高压电缆的长度,可以有效减小电缆功率损耗的同时,充电模块可以包括PFC电路和Boost升压电路,可以形成更加灵活高效地充电策略,进而可以提高磁刺激仪的充电效率和功率因数。
可选地,图8是本申请提供的磁刺激仪中充电模块的电路结构图之二,如图8所示,充电模块801包括PFC电路8011和升压电路8012;
需要说明的是,本实施例中的PFC电路8011与上一实施例中的PFC电路7011的电路结构大致相同,为了避免重复,在此不再赘述。
可选地,如图8所示,升压电路8012可以为电荷泵电路,电荷泵电路的输出电压是电荷泵电路的输入电压的N倍,N为大于1的整数。
具体地,电荷泵电路可以按固定倍数进行升压,技术人员可以根据充电模块需要输出的电压,灵活选择不同升压倍数对应的电荷泵电路。
相较于PFC电路和Boost升压电路的组合,PFC电路和电荷泵电路的组合进一步提高了功率密度和充电效率。
可选地,如图8所示,在N为2的情况下,电荷泵电路包括:第三开关Q3、第四开关Q4、第五开关Q5、第六开关Q6、第三电容C3、第四电容C4、第七电阻R7、第八电阻R8和电荷泵控制器5;
第三开关Q3的第一端作为升压电路8012的输入端,第三开关Q3的第二端连接于第四开关Q4的第一端,第四开关Q4的第二端连接于第四电容C4的第一端,第四电容C4的第二端连接于第六开关Q6的第一端,第六开关Q6的第二端连接于第五开关Q5的第一端,第五开关Q5的第二端连接于第三开关Q3的第一端,第三电容C3的第一端连接于第三开关Q3的第二端,第三电容C3的第二端连接于第五开关Q5的第一端,第四电容C4的第一端还连接于第七电阻R7的第一端,第七电阻R7的第二端连接于第八电阻R8的第一端,第八电阻R8的第二端连接于第四电容C4的第二端,第八电阻R8的第二端接地,第七电阻R7的第一端作为升压电路8012的输出端,电荷泵控制器5分别连接于第三开关Q3、第四开关Q4、第五开关Q5和第六开关Q6的控制端,PFC控制器3的倍压输出电压采样端连接于第八电阻R8的第一端。
具体地,以N为2为例,对电荷泵电路的工作原理进行说明:
上述电荷泵控制器5可以控制第三开关Q3、第四开关Q4、第五开关Q5和第六开关Q6导通或关断。
电荷泵控制器5首先控制第三开关Q3和第六开关Q6导通,并在此时控制第四开关Q4和第五开关Q5关断,在这种情况下,PFC电路8011输出的电压Vo会对第三电容C3充电,直至将第三电容C3充电至其两端的电压为Vo;之后,电荷泵控制器5控制第四开关Q4和第五开关Q5导通,并在此时控制第三开关Q3和第六开关Q6关断,此时相当于PFC电路8011输出的电压Vo与第三电容C3两端的电压Vo,同时对第四电容C4放电,上述步骤循环不断地高频重复进行,可以近似认为使得第四电容C4两端的电压稳定在2*Vo,从而实现了2倍升压的功能。
上述PFC控制器3可以基于PFC控制器3的电压采样端、PFC控制器3的电流采样端和PFC控制器3的倍压输出电压采样端的采样数据,控制第一开关Q1导通或关断,可以实现PFC的闭环电流控制和闭环电压控制。由于PFC电路中的第一电感能够储能、续流并实现调压,因此,包括PFC电路和电荷泵电路的充电模块可以实现宽范围、高效率的调压及稳压功能。
需要说明的是,由于电感的体积通常较大,而电荷泵电路中无需设置第二电感,故本实施例得到的充电模块可以获得更小的体积。
本申请实施例中,在缩短了大电流放电组件与磁刺激线圈之间的距离,进而缩短了需要设置的大电流高压电缆的长度,便于安装布线,并且,缩短需要设置的大电流高压电缆的长度,可以有效减小电缆功率损耗的同时,充电模块可以包括PFC电路和电荷泵电路,可以形成更加灵活高效地充电策略,进而可以提高磁刺激仪的充电效率和功率因数,并且,相较于包括PFC电路和Boost升压电路的充电模块,本申请实施例的充电模块减少了设置的电感的数量,可以获得更小的体积。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不 使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种磁刺激仪,包括:主机、大电流放电组件和磁刺激线圈,其中,所述主机包括充电模块和控制模块,所述大电流放电组件包括储能模块和放电开关;
    所述充电模块的输出端连接于所述储能模块,所述储能模块连接于所述放电开关的第一端,所述放电开关的第二端连接于所述磁刺激线圈的供电端,所述控制模块连接于所述放电开关的控制端;
    其中,所述大电流放电组件,被设置在与所述磁刺激线圈之间的距离小于第一阈值的位置。
  2. 根据权利要求1所述的磁刺激仪,其中,所述大电流放电组件被设置与所述磁刺激线圈采用集成方式连接。
  3. 根据权利要求1所述的磁刺激仪,其中,所述大电流放电组件被设置与所述磁刺激线圈和所述主机采用集成方式连接。
  4. 根据权利要求1至3任一项所述的磁刺激仪,其中,所述充电模块包括功率因数校正PFC电路和升压电路;
    所述PFC电路的输出端连接于所述升压电路的输入端,所述升压电路的输出端作为所述充电模块的输出端。
  5. 根据权利要求4所述的磁刺激仪,其中,所述PFC电路包括电源、整流模块、第一电感、第一开关、第一电阻、第二电阻、第三电阻、第一电容和PFC控制器;
    所述电源连接于所述整流模块的输入端,所述整流模块的正输出端连接于所述第一电感的第一端,所述第一电感的第二端连接于所述第一开关的第一端,所述第一开关的第二端连接于所述整流模块的负输出端,所述第一电感的第二端还连接于所述第二电阻的第一端,所述第二电阻的第二端连接于所述第三电阻的第一端,所述第三电阻的第二端连接于所述第一开关的第二端,所述第二电阻的第一端还连接于所述第一电容的第一端,所述第一电容的第二端连接于所述第三电阻的第二端,所述第一电容的第二端还连接于第一电阻的第一端,所述第一电阻的第二端和所述第一电容的第一端作为所述PFC电路的输出端,所述PFC控制器的电压采样端连接于所述第三电阻的第一端,所述PFC控制器的电流采样端连接于所述 第一电阻的第二端,所述PFC控制器的输出端连接于所述第一开关的控制端。
  6. 根据权利要求5所述的磁刺激仪,其中,所述PFC电路还包括第一二极管;
    所述第一电感的第二端通过所述第一二极管连接于所述第二电阻的第一端,所述第一电感的第二端连接于所述第一二极管的正极,所述第一二极管的负极连接于所述第二电阻的第一端。
  7. 根据权利要求6所述的磁刺激仪,其中,所述升压电路为Boost升压电路,所述Boost升压电路包括:第二电感、第二开关、第四电阻、第五电阻、第六电阻、第二电容和Boost控制器;
    所述第二电感的第二端连接于所述第二开关的第一端,所述第二电感的第一端和所述第二开关的第二端作为所述升压电路的输入端,所述第二电感的第二端还连接于所述第四电阻的第一端,所述第四电阻的第二端连接于所述第五电阻的第一端,所述第五电阻的第二端连接于所述第二开关的第二端,所述第四电阻的第一端还连接于所述第二电容的第一端,所述第二电容的第二端连接于所述第五电阻的第二端,所述第二电容的第二端还连接于所述第六电阻的第一端,所述第六电阻的第二端和所述第二电容的第一端作为所述升压电路的输出端,所述Boost控制器的电压采样端连接于所述第五电阻的第一端,所述Boost控制器的电流采样端连接于所述第六电阻的第二端,所述Boost控制器的输出端连接于所述第二开关的控制端。
  8. 根据权利要求6所述的磁刺激仪,其中,所述升压电路为电荷泵电路,所述电荷泵电路的输出电压是所述电荷泵电路的输入电压的N倍,N为大于1的整数。
  9. 根据权利要求8所述的磁刺激仪,其中,在N为2的情况下,所述电荷泵电路包括:第三开关、第四开关、第五开关、第六开关、第三电容、第四电容、第七电阻、第八电阻和电荷泵控制器;
    所述第三开关的第一端作为所述升压电路的输入端,所述第三开关的第二端连接于所述第四开关的第一端,所述第四开关的第二端连接于所述第四电容的第一端,所述第四电容的第二端连接于所述第六开关的第一 端,所述第六开关的第二端连接于所述第五开关的第一端,所述第五开关的第二端连接于所述第三开关的第一端,所述第三电容的第一端连接于所述第三开关的第二端,所述第三电容的第二端连接于所述第五开关的第一端,所述第四电容的第一端还连接于所述第七电阻的第一端,所述第七电阻的第二端连接于所述第八电阻的第一端,所述第八电阻的第二端连接于所述第四电容的第二端,所述第八电阻的第二端接地,所述第七电阻的第一端作为所述升压电路的输出端,所述电荷泵控制器分别连接于所述第三开关、所述第四开关、所述第五开关和所述第六开关的控制端,所述PFC控制器的倍压输出电压采样端连接于所述第八电阻的第一端。
  10. 根据权利要求1至3任一项所述的磁刺激仪,其中,所述磁刺激线圈是磁芯线圈。
PCT/CN2022/125018 2022-06-21 2022-10-13 一种磁刺激仪 WO2023245928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210709105.9 2022-06-21
CN202210709105.9A CN115282488B (zh) 2022-06-21 2022-06-21 一种磁刺激仪

Publications (1)

Publication Number Publication Date
WO2023245928A1 true WO2023245928A1 (zh) 2023-12-28

Family

ID=83820409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125018 WO2023245928A1 (zh) 2022-06-21 2022-10-13 一种磁刺激仪

Country Status (2)

Country Link
CN (1) CN115282488B (zh)
WO (1) WO2023245928A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201570977U (zh) * 2009-05-13 2010-09-01 上海复展照明科技有限公司 一种电荷泵升压电路
CN105879219A (zh) * 2015-02-10 2016-08-24 北京大学 用于经颅磁刺激的多路高压脉冲电源发生器
CN209696073U (zh) * 2018-11-26 2019-11-29 中国信息通信研究院 重复经颅磁刺激仪
CN209790622U (zh) * 2018-05-04 2019-12-17 南京亿高微波系统工程有限公司 一种适用于强磁环境的分体式微波治疗装置
CN216366329U (zh) * 2021-09-01 2022-04-26 深圳市臻上科技发展有限公司 一种导电面膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234231A (zh) * 2008-01-24 2008-08-06 武汉依瑞德医疗设备新技术有限公司 多个刺激线圈的经颅磁场刺激器
JP2016198261A (ja) * 2015-04-09 2016-12-01 帝人ファーマ株式会社 経頭蓋磁気刺激装置
CN104740781A (zh) * 2015-04-10 2015-07-01 中国医学科学院生物医学工程研究所 基于神经纤维走向的矢量经颅磁刺激方法
KR102121673B1 (ko) * 2016-03-04 2020-06-10 고쿠리츠다이가쿠호우진 도쿄다이가쿠 코일 및 그것을 사용한 자기 자극 장치
CN107929938B (zh) * 2017-12-27 2020-11-20 首都医科大学宣武医院 一种经颅电磁同步刺激系统
CN109756208A (zh) * 2018-12-24 2019-05-14 北京神畅科技发展有限公司 一种多电容串联的经颅磁刺激系统及其电容充电管理方法
CN216737010U (zh) * 2022-01-05 2022-06-14 北京脑泰科技发展有限公司 一种经颅磁刺激仪的线缆收纳装置
CN114534108A (zh) * 2022-02-25 2022-05-27 宜春有为生物医疗科技有限责任公司 一种经颅磁刺激仪的扫掠控制方法及装置系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201570977U (zh) * 2009-05-13 2010-09-01 上海复展照明科技有限公司 一种电荷泵升压电路
CN105879219A (zh) * 2015-02-10 2016-08-24 北京大学 用于经颅磁刺激的多路高压脉冲电源发生器
CN209790622U (zh) * 2018-05-04 2019-12-17 南京亿高微波系统工程有限公司 一种适用于强磁环境的分体式微波治疗装置
CN209696073U (zh) * 2018-11-26 2019-11-29 中国信息通信研究院 重复经颅磁刺激仪
CN216366329U (zh) * 2021-09-01 2022-04-26 深圳市臻上科技发展有限公司 一种导电面膜

Also Published As

Publication number Publication date
CN115282488B (zh) 2023-09-12
CN115282488A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
TWI443957B (zh) 高效率電源轉換器系統
WO2021136545A1 (zh) 心脏起搏装置、存储介质、电源设备及输出电压控制方法
TWI231088B (en) Control IC for low power auxiliary supplies
US11273315B2 (en) Method and device for defibrillation
US8157718B2 (en) Electric circuit, having transformer which can function as a buffer inductor, and magnetic stimulator therewith
CN1078065C (zh) 电吸尘器
WO2022117052A1 (zh) 一种无线充电电路及系统、电子设备及控制方法
CN103647448B (zh) 集成降压-反激式高功率因数恒流电路及装置
US20230208279A1 (en) Active diode circuit and ac/dc power conversion circuit
JPH06209570A (ja) 多出力dc−dcコンバータ
CN108781036A (zh) 降低位于开关电源的一次侧的整流二极管中产生的噪声的方法和装置
EP3576271A1 (en) Dc charging system for storage battery of electric vehicle
WO2023245928A1 (zh) 一种磁刺激仪
WO2023231633A1 (zh) 一种填谷电路的驱动电路、电源模组和电子设备
Peterchev Circuit topology comparison and design analysis for controllable pulse parameter transcranial magnetic stimulators
CN209016940U (zh) 同步整流电路和整流装置
WO2020062247A1 (zh) 同步整流电路和整流装置
CN103190896B (zh) 可控恒流脉冲发生电路
CN103138719B (zh) 可控恒压脉冲发生电路
CN112439128B (zh) 超低压储能型心脏除颤器
CN214256137U (zh) 一种低功耗混合式双输出dc-dc变换器
US20220200480A1 (en) Power conversion system, method for controlling the power conversion system, and program
CN107693942A (zh) 一种医用低频电脉冲治疗仪
CN117582605B (zh) 一种电场耦合式神经刺激系统
CN218733909U (zh) 一种dc-dc升压结合控制算法的电刺激装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947665

Country of ref document: EP

Kind code of ref document: A1