WO2023245764A1 - 冷拌树脂、混合料及制备方法、超薄层路面及铺装方法 - Google Patents

冷拌树脂、混合料及制备方法、超薄层路面及铺装方法 Download PDF

Info

Publication number
WO2023245764A1
WO2023245764A1 PCT/CN2022/105271 CN2022105271W WO2023245764A1 WO 2023245764 A1 WO2023245764 A1 WO 2023245764A1 CN 2022105271 W CN2022105271 W CN 2022105271W WO 2023245764 A1 WO2023245764 A1 WO 2023245764A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
parts
open
mixture
resin
Prior art date
Application number
PCT/CN2022/105271
Other languages
English (en)
French (fr)
Inventor
郭留杰
李强
王闻
隋彦贺
张云帆
石扬
郝春磊
杨永财
崔新
Original Assignee
中公高科养护科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中公高科养护科技股份有限公司 filed Critical 中公高科养护科技股份有限公司
Publication of WO2023245764A1 publication Critical patent/WO2023245764A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/14Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present disclosure relates to the technical field of ultra-thin layer pavement materials, and in particular to a cold-mix resin, mixture and preparation method, ultra-thin layer pavement and paving method.
  • polymer resins can form macromolecular long-chain structures through polymerization and cross-linking at room temperature, and have ultra-high mechanical properties, anti-aging properties, and water damage resistance. Therefore, using polymer resin instead of asphalt as a binder for road paving will significantly reduce energy consumption and carbon dioxide emissions during the construction process and increase the service life of the road surface.
  • the existing cold-mix resin mixture technology is mostly concentrated in the field of steel bridge deck paving, and the construction process requirements are extremely demanding.
  • the construction time of cold-mix resin mixture generally does not exceed two hours.
  • the mixture needs to be cured for several days or even up to a month under closed traffic conditions, which brings a lot of inconvenience to construction workers and social traffic, and it is difficult to guarantee the quality of the project.
  • Embodiments of the present disclosure provide a cold mix resin, a mixture and a preparation method, an ultra-thin layer pavement and a paving method to solve the problems in the existing technology of using cold mix resin to pave ultra-thin layer pavement, which takes a long time to maintain and the project quality is difficult to guarantee. .
  • the first aspect provides a cold mix resin for ultra-thin layer pavement, including the following components by weight: 10 to 22 parts of epoxy resin, 25 to 35 parts of vegetable oil residue extract, and 10 to 10 parts of naphthenic oil. 20 parts and 35 to 45 parts of polymethylene polyphenyl polyisocyanate.
  • a second aspect provides a method for preparing cold-mix resin for ultra-thin layer pavement as described in the embodiment of the first aspect, including:
  • an open-grade cold-mix resin mixture for ultra-thin layer pavement including: mineral material and the cold-mix resin for ultra-thin layer pavement as described in the embodiment of the first aspect.
  • an open-grade cold mix resin ultra-thin layer pavement including: a bonding layer and a pavement layer that are stacked sequentially from bottom to top; the material of the pavement layer includes: as implemented in the third aspect The open-grade cold mix resin mixture and composite curing agent described in the example.
  • a method for paving an open-grade cold-mix resin ultra-thin layer pavement as described in the embodiment of the fourth aspect including:
  • the composite curing agent is evenly spread to form a pavement layer;
  • the embodiments of the present disclosure modify the cold mix resin system by rationally selecting the raw materials and dosage of the cold mix resin, thereby extending the construction time of the open-graded cold-mix resin mixture; through the split-graded cold mix
  • the resin mixture is sprayed with a composite curing agent to achieve the effect of quickly opening up traffic; compared with asphalt road paving materials, it greatly reduces fuel consumption and carbon dioxide emissions during the construction process, and extends the service life of the road surface.
  • Figure 1 is a flow chart of a method for preparing cold-mix resin for ultra-thin layer pavement according to an embodiment of the present disclosure
  • Figure 2 is a flow chart of a paving method for an open-grade cold-mix resin ultra-thin layer pavement according to an embodiment of the present disclosure
  • Figure 3 is a gradation curve of coarse aggregate and fine aggregate used in the application example of the present disclosure.
  • Embodiment 1 of the present disclosure discloses a cold mix resin for ultra-thin layer pavement.
  • the cold mix resin includes the following components by weight: 10 to 22 parts of epoxy resin, 25 to 35 parts of vegetable oil residue extract, 10 to 20 parts of naphthenic oil, and polymethylene polyphenyl polyisocyanate. 35 to 45 servings.
  • the upper limit of the weight parts of the epoxy resin may be 14, 15, 20, or 22 parts
  • the lower limit of the weight parts of the epoxy resin may be 10, 14, 15, or 20 parts. It can also change within the interval composed of the above-mentioned lower limit and upper limit.
  • the upper limit of the weight parts of the vegetable oil residue extract may be 26, 30, or 35 parts, and the lower limit of the weight parts of the vegetable oil residue extract may be 25, 26, or 30 parts. It can vary within the interval composed of the above-mentioned lower limit and upper limit.
  • the upper limit of the weight parts of naphthenic oil can be 14 or 20 parts
  • the lower limit of the weight parts of naphthenic oil can be 10 or 14 parts
  • the weight parts of naphthenic oil can also be within the above-mentioned lower limit and upper limit. changes within the composition interval.
  • the upper limit of the weight parts of polymethylene polyphenyl polyisocyanate may be 38, 40, or 45 parts
  • the lower limit of the weight parts of polymethylene polyphenyl polyisocyanate may be 35, 38, or 40 parts.
  • the weight portion of the polymethylene polyphenyl polyisocyanate can also be changed within the interval composed of the above-mentioned lower limit and upper limit.
  • the epoxy resin is E54 epoxy resin
  • the vegetable oil residue extract includes at least one of the following: castor oil, soybean oil and coconut oil grease waste
  • the naphthenic oil includes at least one of the following: KN4010, YT-6 and YT-10.
  • Embodiment 1 of the present disclosure also discloses a method for preparing cold mix resin for ultra-thin layer pavement. As shown in Figure 1, the preparation method is as follows:
  • Step S101 After heating the vegetable oil residue extract to 120-130°C, add naphthenic oil and stir evenly to obtain a first mixture.
  • the stirring time is generally 2h.
  • Step S102 After the temperature of the first mixture drops to 80°C, add epoxy resin and stir evenly to obtain a second mixture.
  • the stirring time is generally 2h.
  • Step S103 Add polymethylene polyphenyl polyisocyanate to the second mixture, stir evenly, and obtain cold mix resin.
  • the stirring time is generally 1h.
  • the above preparation process is generally carried out in a closed container.
  • Example 1 adds vegetable oil residue extract and naphthenic oil to epoxy resin and polymethylene polyphenyl polyisocyanate, which on the one hand reduces the construction viscosity of the resin system, prolongs the construction time, and ensures that the resin The mixture can be constructed smoothly; on the other hand, due to the reduction in resin viscosity, the degree of infiltration of the resin into the tiny gaps on the aggregate surface is increased, thereby increasing the interfacial adhesion, resulting in the high and low temperature performance and water damage resistance of the resin mixture. Not only has the capacity not been reduced, but it has been improved to a certain extent, which can extend the service life of the road surface.
  • Embodiment 2 of the present disclosure discloses an open-grade cold mix resin mixture for ultra-thin layer pavement.
  • the open-graded cold-mix resin mixture includes: mineral material and the cold-mix resin used for ultra-thin layer pavement in the aforementioned embodiment 1.
  • the weight percentage of mineral materials and cold-mix resin is 100:3-6, preferably 100:4.5.
  • the open-grade cold-mix resin mixture is used for ultra-thin layer pavement, making the overall performance of the pavement better.
  • the mineral materials include: coarse aggregates and fine aggregates, with the weight percentage of coarse aggregates accounting for 65 to 80% of the mineral materials.
  • the maximum particle size of the synthetic gradation of mineral materials is 9.5mm.
  • the particle size requirements of coarse aggregate and fine aggregate are determined in accordance with the "Technical Specification for Highway Asphalt Pavement Construction JTG F40-2004".
  • the addition of mineral materials makes the cold mix resin mixture have certain gaps.
  • the void ratio of the open-grade cold-mix resin mixture is not less than 18%.
  • the open-graded cold-mix resin mixture of Example 2 has the beneficial effects of Example 1 when used in ultra-thin layer pavement because it contains the cold-mix resin of Example 1; in addition, due to the use of large-gap open-grade This type of mixture has many interconnected gaps on the surface, which can quickly discharge accumulated water on the road surface in rainy days, greatly improving the anti-skid performance of the road surface and ensuring driving safety; in addition, compared with ordinary densely graded mixtures, it can also significantly reduce the Reduce road noise and improve driving comfort.
  • Embodiment 3 of the present disclosure discloses an open-grade cold-mix resin ultra-thin layer pavement.
  • the pavement includes: a bonding layer and a pavement layer that are stacked sequentially from bottom to top.
  • the material of the pavement layer includes: the open-grade cold mix resin mixture and composite curing agent as described in Example 2.
  • the material of the adhesive layer is cold mix resin.
  • the cold mix resin is the same as the cold mix resin described in Example 1, and will not be described again.
  • the amount of material for the adhesive layer is 0.3 to 0.8 kg/m 2 , that is, 0.3 to 0.8 kg of cold mix resin is spread per square meter of road surface to form an adhesive layer.
  • the amount of composite curing agent spread on the road surface is 0.2 to 0.4 kg/m 2 , that is, 0.2 to 0.4 kg of composite curing agent is spread per square meter of road surface to form a pavement layer.
  • the composite curing agent includes the following components by weight: 1 to 5 parts of tetrabutylammonium chloride, 65 to 80 parts of triethylenetetramine, and 15 to 33 parts of water.
  • the upper limit of the weight parts of tetrabutylammonium chloride can be 2 or 5 parts, and the lower limit of the weight parts of tetrabutylammonium chloride can be 1 or 2 parts.
  • the number can also vary within the interval composed of the above-mentioned lower limit and upper limit.
  • the upper limit of the weight parts of water can be 19, 30, or 33 parts, and the lower limit of the weight parts of water can be 15, 19, or 30 parts.
  • the weight parts of water can also be composed of the above lower limit and upper limit. changes within the interval.
  • the preparation method of the composite curing agent is as follows: mix tetrabutylammonium chloride, triethylenetetramine and water, stir evenly, and then let stand to obtain the composite curing agent. Among them, the stirring time is generally 2h.
  • the composite curing agent used in the embodiments of the present disclosure contains a large amount of water, which can dilute the entire composite curing agent system and facilitate the flow of the composite curing agent.
  • the paving thickness of the open-grade cold-mix resin mixture is 0.01 to 0.02m.
  • the paving thickness refers to the thickness paved on the adhesive layer without compaction.
  • the compacted thickness of open-grade cold mix resin mixture is 0.007 ⁇ 0.02m.
  • Embodiment 3 of the present disclosure also discloses a paving method for an ultra-thin layer pavement of open-graded cold-mix resin. As shown in Figure 1, the method includes the following steps:
  • Step S201 Spread the adhesive layer material evenly on the road surface to form an adhesive layer.
  • Step S202 Spread the open-grade cold mix resin mixture on the adhesive layer.
  • the mineral materials and cold-mix resin are uniformly mixed in an asphalt mixing plant in advance to obtain an open-grade cold-mix resin mixture.
  • Step S203 After statically pressing the paved open-graded cold mix resin mixture, evenly spread the composite curing agent to form a pavement layer.
  • the composite curing agent can be spread immediately after static pressing.
  • Step S204 Curing the road surface after spreading the composite curing agent to obtain an open-grade cold-mix resin ultra-thin layer road surface.
  • the construction time of open-grade cold mix resin mixture is not less than 6 hours, and the curing time is not more than 1 hour. Traffic can be opened after recuperation.
  • the thickness of the ultimately formed open-grade cold-mix resin ultra-thin layer pavement is mainly provided by the open-grade cold-mix resin mixture. Therefore, the thickness of the open-grade cold-mix resin ultra-thin layer pavement is also 0.007 to 0.02m.
  • the bonding strength (35°C) between the open-grade cold-mix resin ultra-thin layer pavement and the original pavement in the disclosed embodiment is not less than 1.0MPa.
  • the ultra-thin layer pavement has the beneficial effects of Example 2 due to the open-graded cold-mix resin mixture of Example 2; in addition, when paving the road, the composite curing agent is sprayed on the surface with a void ratio of not less than 18 % of the surface of the open-grade cold-mix resin mixture, on the one hand, it can ensure that the resin mixture undergoes a rapid curing reaction, greatly shortening the curing time of the resin mixture, and at the same time, it also helps the composite curing agent penetrate into the bonding layer. In this way, the original pavement, adhesive layer and resin mixture are firmly bonded into one, improving the inter-layer shear strength of the ultra-thin pavement and avoiding diseases such as shifting and peeling.
  • An application example is paving an ultra-thin layer pavement of open-graded cold-mix resin, which adopts the cold-mix resin preparation method of the aforementioned embodiment, and the paving method of an ultra-thin layer pavement of open-graded cold-mix resin.
  • the spreading amount of the bonding layer material is 0.8kg/m 2
  • the weight percentage of the mineral material and cold mix resin in the pavement layer is 100:4.5
  • the spreading amount of the composite curing agent is 0.2kg/ m 2
  • the weight percentage of coarse aggregate in the mineral material is 65%.
  • the cold mix resin includes the following components by weight: 20 parts of E54 epoxy resin, 25 parts of castor oil waste, 10 parts of KN4010 naphthenic oil, and 45 parts of polymethylene polyphenyl polyisocyanate.
  • the preparation method of cold mix resin is as follows: add castor oil grease waste into a closed container, heat it to 120°C, add naphthenic oil, and stir for 2 hours. After the temperature drops to 80°C, add epoxy resin and stir for 2 hours. Finally, add polymethylene polyphenyl polyisocyanate and stir for 1 hour to obtain cold mix resin.
  • the composite curing agent includes the following components by weight: 1 part of tetrabutylammonium chloride, 80 parts of triethylenetetramine, and 19 parts of water.
  • the preparation method of the composite curing agent is: accurately measure tetrabutylammonium chloride, triethylenetetramine and water, stir for 2 hours and let it stand.
  • Example 3 of the present disclosure an open-grade cold-mix resin ultra-thin layer pavement is obtained.
  • the amount of binder spread is 0.3kg/m 2
  • the weight percentage of mineral aggregate and cold mix resin in the pavement layer is 100:4.5
  • the amount of composite curing agent spread is 0.4kg/m 2
  • the weight percentage of coarse aggregate in the mineral material is 75%.
  • the cold mix resin includes the following ingredients in parts by weight: 22 parts of E54 epoxy resin, 26 parts of coconut oil grease waste, 14 parts of YT-6 naphthenic oil, and 38 parts of polymethylene polyphenyl polyisocyanate.
  • the preparation method of cold mix resin is as follows: add coconut oil and grease waste into a closed container, heat it to 130°C, add naphthenic oil, and stir for 2 hours. After the temperature drops to 80°C, add epoxy resin and stir for 2 hours. Finally, add polymethylene polyphenyl polyisocyanate and stir for 1 hour to obtain cold mix resin.
  • the composite curing agent includes the following components by weight: 5 parts of tetrabutylammonium chloride, 65 parts of triethylenetetramine, and 30 parts of water.
  • the preparation method of the composite curing agent is: accurately measure tetrabutylammonium chloride, triethylenetetramine and water, stir for 2 hours and let it stand.
  • Example 3 of the present disclosure an open-grade cold-mix resin ultra-thin layer pavement is obtained.
  • the amount of binder spread is 0.6kg/m 2
  • the weight percentage of mineral aggregate and cold mix resin is 100:4.5
  • the amount of composite curing agent spread is 0.3kg/m 2
  • the coarse aggregate is The weight percentage in the mineral material is 80%.
  • the cold mix resin includes the following ingredients in parts by weight: 14 parts of E54 epoxy resin, 26 parts of coconut oil grease waste, 20 parts of KN4010 naphthenic oil, and 40 parts of polymethylene polyphenyl polyisocyanate.
  • the preparation method of cold mix resin is as follows: add coconut oil and grease waste into a closed container, heat it to 125°C, add naphthenic oil, and stir for 2 hours. After the temperature drops to 80°C, add epoxy resin and stir for 2 hours. Finally, add polymethylene polyphenyl polyisocyanate and stir for 1 hour to obtain cold mix resin.
  • the composite curing agent includes the following components by weight: 5 parts of tetrabutylammonium chloride, 80 parts of triethylenetetramine, and 15 parts of water.
  • the preparation method of the composite curing agent is: accurately measure tetrabutylammonium chloride, triethylenetetramine and water, stir for 2 hours and let it stand.
  • Example 3 of the present disclosure an open-grade cold-mix resin ultra-thin layer pavement is obtained.
  • the amount of binder spread is 0.4kg/m 2
  • the weight percentage of mineral aggregate and cold mix resin is 100:4.5
  • the amount of composite curing agent spread is 0.3kg/m 2
  • the coarse aggregate is The weight percentage in the mineral material is 70%.
  • the cold mix resin includes the following components by weight: 15 parts of E54 epoxy resin, 30 parts of soybean oil and grease waste, 20 parts of YT-10 naphthenic oil, and 35 parts of polymethylene polyphenyl polyisocyanate.
  • the preparation method of cold mix resin is as follows: add soybean oil and grease waste into a closed container, heat it to 120°C, add naphthenic oil, and stir for 2 hours. After the temperature drops to 80°C, add epoxy resin and stir for 2 hours. Finally, add polymethylene polyphenyl polyisocyanate and stir for 1 hour to obtain cold mix resin.
  • the composite curing agent includes the following components by weight: 2 parts of tetrabutylammonium chloride, 65 parts of triethylenetetramine, and 33 parts of water.
  • the preparation method of the composite curing agent is: accurately measure tetrabutylammonium chloride, triethylenetetramine and water, stir for 2 hours and let it stand.
  • Example 3 of the present disclosure an open-grade cold-mix resin ultra-thin layer pavement is obtained.
  • the amount of binder spread is 0.4kg/m 2
  • the weight percentage of mineral aggregate and cold mix resin is 100:4.5
  • the amount of composite curing agent spread is 0.3kg/m 2
  • the coarse aggregate is The weight percentage in the mineral material is 70%.
  • the cold mix resin includes the following components by weight: 10 parts of E54 epoxy resin, 35 parts of soybean oil and grease waste, 10 parts of YT-10 naphthenic oil, and 45 parts of polymethylene polyphenyl polyisocyanate.
  • the preparation method of cold mix resin is as follows: add soybean oil and grease waste into a closed container, heat it to 120°C, add naphthenic oil, and stir for 2 hours. After the temperature drops to 80°C, add epoxy resin and stir for 2 hours. Finally, add polymethylene polyphenyl polyisocyanate and stir for 1 hour to obtain cold mix resin.
  • the composite curing agent includes the following components by weight: 2 parts of tetrabutylammonium chloride, 65 parts of triethylenetetramine, and 33 parts of water.
  • the preparation method of the composite curing agent is: accurately measure tetrabutylammonium chloride, triethylenetetramine and water, stir for 2 hours and let it stand.
  • Example 3 of the present disclosure an open-grade cold-mix resin ultra-thin layer pavement is obtained.
  • the indoor test method for the open-graded cold-mix resin ultra-thin layer pavement for the above application examples is: determine the proportion of coarse aggregate and fine aggregate according to the gradation curve shown in Figure 3, and mix it with the cold-mix resin at room temperature. The time is 180s, and then the mixed mixture is placed in the air. The time required to observe the mixture losing fluidity due to agglomeration is the construction time. Make the mixed mixture into a cohesion test sample with a thickness of 1 cm. The time interval from the time when the composite curing agent is spread to the time when the cohesion test sample is not damaged is the curing time. The mixture sprinkled with the composite curing agent is compacted according to the molding method of hot mix asphalt mixture Marshall test piece, and the Marshall test piece sample is prepared.
  • the number of compactions is 50 times on both sides, and then left at room temperature for 2 hours before demoulding. , test the volume index of the Marshall specimen, and calculate the theoretical maximum relative density of the cold-mix resin mixture, and then obtain the void ratio of the specimen.
  • the above Marshall specimen was subjected to a freeze-thaw splitting test, and the freeze-thaw splitting strength ratio of the mixture was calculated.
  • Double-layer composite panel specimens were prepared to test the tensile strength of the cold-mixed resin mixture at 35°C.
  • the curing time of each application example is within 1 hour.
  • the resin mixture after rolling on site has a large void ratio and a thin thickness.
  • the method of spraying the composite curing agent on site can allow the curing agent to fully penetrate and interact with the resin mixture.
  • the resin undergoes a curing reaction; on the other hand, the combination of the composite curing agent not only reduces the viscosity of the curing agent and ensures the fluidity of the curing agent, but does not affect the process of the curing reaction, thus greatly shortening the time of closed traffic.
  • the degree of infiltration of the resin into the tiny gaps on the surface of the aggregate is increased, thereby increasing the interfacial adhesion between the resin and the aggregate, resulting in
  • the strength of the resin mixture not only did not decrease, but was improved to a certain extent.
  • the degree of infiltration reaches saturation, and the content of active groups plays a major role in the strength of the mixture. dominance, the intensity shows a downward trend.
  • the embodiments of the present disclosure can significantly improve the energy consumption and carbon dioxide emission problems caused by existing road construction, effectively solve the problems of short construction time and long curing time of existing cold-mix resin mixtures, and take into account Due to the high and low temperature properties of the resin mixture, the paved open-grade cold-mix resin ultra-thin layer pavement has good road performance and is a reliable new pavement maintenance technology.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the present disclosure may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the element claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Road Paving Structures (AREA)

Abstract

一种冷拌树脂、混合料及制备方法、超薄层路面及铺装方法,该冷拌树脂包括按如下重量份数计的成分:环氧树脂10~22份,植物油渣提取物25~35份,环烷油10~20份和多亚甲基多苯基多异氰酸酯35~45份。该开级配冷拌树脂混合料包括:矿料和冷拌树脂。该开级配冷拌树脂超薄层路面包括:从下到上依次层叠设置的粘结层和铺装层;所述铺装层的材料包括:开级配冷拌树脂混合料和复合固化剂。通过对冷拌树脂的原料及其用量合理选择,延长了开级配冷拌树脂混合料的可施工时间;通过对树脂混合料喷洒复合固化剂的方式达到快速开放交通的效果;大幅降低施工过程中的燃油消耗和二氧化碳排放,延长了路面使用寿命。

Description

冷拌树脂、混合料及制备方法、超薄层路面及铺装方法
相关申请的交叉引用
本公开要求在2022年6月24日提交中国专利局、申请号为202210725775.X、名称为″冷拌树脂、混合料及制备方法、超薄层路面及铺装方法″的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及超薄层路面材料技术领域,尤其涉及一种冷拌树脂、混合料及制备方法、超薄层路面及铺装方法。
背景技术
与沥青类材料相比,高分子树脂可以在常温下通过聚合、交联等方式形成大分子长链结构,而具有超高的力学性能、抗老化性能、耐水损坏性能等。因此,采用高分子树脂代替沥青作为胶结料用于道路铺装,将会大幅度降低施工过程中的能源消耗和二氧化碳排放,提高路面的使用寿命。但受制于工程造价高等原因,现有的冷拌树脂混合料技术大多集中在钢桥面铺装领域,且施工工艺要求极为苛刻,冷拌树脂混合料的可施工时间一般不超过两个小时,且混合料需在封闭交通的情况下养生数天,甚至长达一个月,给施工人员和社会交通都带来很多不便,工程质量也难以保证。
发明内容
本公开实施例提供一种冷拌树脂、混合料及制备方法、超薄层路面及铺装方法,以解决现有技术采用冷拌树脂铺装超薄层路面养生时间长且工程质量难以保证的问题。
第一方面,提供一种用于超薄层路面的冷拌树脂,包括按如下重量份数计的成分:环氧树脂10~22份,植物油渣提取物25~35份,环烷油10~20份和多亚甲基多苯基多异氰酸酯35~45份。
第二方面,提供一种如第一方面实施例所述的用于超薄层路面的冷拌树脂的制备方法,包括:
将植物油渣提取物加热到120~130℃后,加入环烷油,搅拌均匀,得到第一混合物;
待第一混合物的温度降至80℃后,加入环氧树脂,搅拌均匀,得到第二混合物;
将多亚甲基多苯基多异氰酸酯加入第二混合物,搅拌均匀,得到冷拌树脂。
第三方面,提供一种用于超薄层路面的开级配冷拌树脂混合料,包括:矿料和如第一方面实施例所述的用于超薄层路面的冷拌树脂。
第四方面,提供一种开级配冷拌树脂超薄层路面,包括:从下到上依次层叠设置的粘结层和铺装层;所述铺装层的材料包括:如第三方面实施例所述的开级配冷拌树脂混合料和复合固化剂。
第五方面,提供一种如第四方面实施例所述的开级配冷拌树脂超薄层路面的铺装方法,包括:
在路面上均匀洒布粘接层的材料,形成粘结层;
将开级配冷拌树脂混合料摊铺在粘接层上;
对摊铺的开级配冷拌树脂混合料静压后,均匀洒布复合固化剂,形成铺装层;
对洒布复合固化剂后的路面养生得到开级配冷拌树脂超薄层路面。
这样,本公开实施例,通过对冷拌树脂的原料及其用量合理选择,对冷拌树脂体系改性,延长了开级配冷拌树脂混合料的可施工时间;通过对开级配冷拌树脂混合料喷洒复合固化剂的方式达到快速开放交通的效果;与沥青类道路铺装材料相比,大幅降低施工过程中的燃油消耗和二氧化碳排放,延长了路面使用寿命。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动 性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例的用于超薄层路面的冷拌树脂的制备方法的流程图;
图2是本公开实施例的开级配冷拌树脂超薄层路面的铺装方法的流程图;
图3是本公开应用例采用的粗集料、细集料的级配曲线。
具体实施例
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获取的所有其他实施例,都属于本公开保护的范围。
实施例1
本公开实施例1公开一种用于超薄层路面的冷拌树脂。具体的,冷拌树脂包括按如下重量份数计的成分:环氧树脂10~22份,植物油渣提取物25~35份,环烷油10~20份,多亚甲基多苯基多异氰酸酯35~45份。
优选的,环氧树脂的重量份数的上限可以是14、15、20、22份,环氧树脂的重量份数的下限可以是10、14、15、20份,环氧树脂的重量份数还可以在上述的下限和上限组成的区间内变化。
优选的,植物油渣提取物的重量份数的上限可以是26、30、35份,植物油渣提取物的重量份数的下限可以是25、26、30份,植物油渣提取物的重量份数还可以在上述的下限和上限组成的区间内变化。
优选的,环烷油的重量份数的上限可以是14、20份,环烷油的重量份数的下限可以是10、14份,环烷油的重量份数还可以在上述的下限和上限组成的区间内变化。
优选的,多亚甲基多苯基多异氰酸酯的重量份数的上限可以是38、40、45份,多亚甲基多苯基多异氰酸酯的重量份数的下限可以是35、38、40份,多亚甲基多苯基多异氰酸酯的重量份数还可以在上述的下限和上限组成的区间内变化。
优选的,环氧树脂为E54环氧树脂;植物油渣提取物包括如下的至少一种:蓖麻油、大豆油和椰子油油脂废弃物;环烷油包括如下的至少一种:KN4010、YT-6和YT-10。
本公开实施例1还公开了一种用于超薄层路面的冷拌树脂的制备方法。如图1所示,该制备方法如下:
步骤S101:将植物油渣提取物加热到120~130℃后,加入环烷油,搅拌均匀,得到第一混合物。
其中,搅拌时间一般为2h。
步骤S102:待第一混合物的温度降至80℃后,加入环氧树脂,搅拌均匀,得到第二混合物。
其中,搅拌时间一般为2h。
步骤S103:将多亚甲基多苯基多异氰酸酯加入第二混合物,搅拌均匀,得到冷拌树脂。
其中,搅拌时间一般为1h。
上述的制备过程一般在密闭容器中进行。
综上,实施例1通过在环氧树脂和多亚甲基多苯基多异氰酸酯中加入植物油渣提取物和环烷油,一方面降低了树脂体系的施工粘度,延长了可施工时间,保证树脂混合料能够顺利施工;另一方面,由于树脂粘度的降低,增加了树脂对集料表面微小空隙的浸润程度,从而增加了界面粘附力,导致树脂混合料的高、低温性能和抗水损害能力不仅没有下降,反而得到了一定程度的提升,可延长路面的使用寿命。
实施例2
本公开实施例2公开了一种用于超薄层路面的开级配冷拌树脂混合料。具体的,开级配冷拌树脂混合料包括:矿料和前述实施例1的用于超薄层路面的冷拌树脂。
具体的,矿料和冷拌树脂的重量百分比为100:3~6,优选为100:4.5。在前述的重量百分比范围内,随着冷拌树脂用量的提高,该开级配冷拌树脂混合料用于超薄层路面,使路面的综合性能更好。
具体的,矿料包括:粗集料和细集料,粗集料占矿料的重量百分比为65~80%。矿料的合成级配最大粒径为9.5mm。粗集料和细集料的粒径要求按照《公路沥青路面施工技术规范JTG F40-2004》确定。矿料的加入,使得冷拌树脂混合料具有一定的空隙。优选的,铺装的路面中,开级配冷拌树脂混合料的空隙率不低于18%。
综上,实施例2的开级配冷拌树脂混合料由于具有实施例1的冷拌树脂,在用于超薄层路面时具有实施例1的有益效果;此外,由于采用了大空隙开级配混合料类型,表面连通空隙较多,雨天能够迅速排出路表积水,大幅提高了路面的抗滑性能,保障行车安全;再者,与普通密级配混合料相比,还能大幅度降低路面行车噪声,提高行车舒适性。
实施例3
本公开实施例3公开了一种开级配冷拌树脂超薄层路面。该路面包括:从下到上依次层叠设置的粘结层和铺装层。其中,铺装层的材料包括:如实施例2所述的开级配冷拌树脂混合料和复合固化剂。
其中,粘结层的材料为冷拌树脂。该冷拌树脂与实施例1所述的冷拌树脂相同,在此不再赘述。粘结层的材料的洒布量为0.3~0.8kg/m 2,即每平方米路面洒布0.3~0.8kg的冷拌树脂,以形成粘结层。
其中,复合固化剂在路面上的洒布量为0.2~0.4kg/m 2,即每平方米路面洒布0.2~0.4kg的复合固化剂,以形成铺装层。具体的,复合固化剂包括按如下重量份数计的成分:四丁基氯化铵1~5份,三乙烯四胺65~80份,水15~33份。
优选的,四丁基氯化铵的重量份数的上限可以是2、5份,四丁基氯化铵的重量份数的下限可以是1、2份,四丁基氯化铵的重量份数还可以在上述的下限和上限组成的区间内变化。
优选的,水的重量份数的上限可以是19、30、33份,水的重量份数的下限可以是15、19、30份,水的重量份数还可以在上述的下限和上限组成的区间内变化。
具体的,复合固化剂的制备方法如下:将四丁基氯化铵、三乙烯四胺和水混合搅拌均匀后,静置即可得到复合固化剂。其中,搅拌时间一般为2h。相较于常规的固化剂,本公开实施例采用的复合固化剂中,还有大量的水,从而可稀释整个复合固化剂体系,有利于复合固化剂的流动。
其中,开级配冷拌树脂混合料的铺装厚度为0.01~0.02m,铺装厚度指的是铺装到粘接层上且未经过压实的厚度。开级配冷拌树脂混合料的压实厚度为0.007~0.02m。
本公开实施例3还公开了一种开级配冷拌树脂超薄层路面的铺装方法。 如图1所示,该方法包括如下的步骤:
步骤S201:在路面上均匀洒布粘接层的材料,形成粘结层。
在洒布粘接层的材料冷拌树脂前,预先将路面的裂缝、坑槽等病害进行彻底处治。
步骤S202:将开级配冷拌树脂混合料摊铺在粘接层上。
具体的,预先在沥青拌合楼中将矿料和冷拌树脂拌和均匀得到开级配冷拌树脂混合料。
步骤S203:对摊铺的开级配冷拌树脂混合料静压后,均匀洒布复合固化剂,形成铺装层。
具体可通过双钢轮压路机静压一遍,静压后立即洒布复合固化剂。
步骤S204:对洒布复合固化剂后的路面养生得到开级配冷拌树脂超薄层路面。
其中,开级配冷拌树脂混合料的可施工时间不少于6h,养生时间不超过1h。养生后可开放交通。
最终形成的开级配冷拌树脂超薄层路面的厚度主要由开级配冷拌树脂混合料提供,因此,开级配冷拌树脂超薄层路面的厚度也为0.007~0.02m。
本公开实施例的开级配冷拌树脂超薄层路面与原路面的粘结强度(35℃)不低于1.0MPa。
综上,该超薄层路面由于具有实施例2的开级配冷拌树脂混合料,具有实施例2的有益效果;此外,铺装路面时,将复合固化剂喷洒在空隙率不低于18%的开级配冷拌树脂混合料的表面,一方面能够保证树脂混合料发生快速的固化反应,大大缩短了树脂混合料的养生时间,同时也有助于复合固化剂下渗进入粘结层,从而将原路面、粘接层和树脂混合料三者牢固粘结为一体,提高超薄层路面的层间抗剪强度,避免出现推移、剥落等病害。
下面以具体应用例对本公开的技术方案做进一步的阐述。应用例为铺装开级配冷拌树脂超薄层路面,均采用前述实施例的冷拌树脂的制备方法,以及,开级配冷拌树脂超薄层路面的铺装方法。
应用例1
本应用例中的粘结层的材料的洒布量为0.8kg/m 2,铺装层的矿料和冷拌树脂的重量百分比为100:4.5,复合固化剂的洒布量为0.2kg/m 2,粗集料在矿料 中的重量百分比为65%。
冷拌树脂包括按如下重量份数计的成分:E54环氧树脂20份,蓖麻油油脂废弃物25份,KN4010环烷油10份,多亚甲基多苯基多异氰酸酯45份。冷拌树脂的制备方法为:将蓖麻油油脂废弃物加入到密闭容器中,加热到120℃,加入环烷油,搅拌2h,待温度降至80℃后,再加入环氧树脂,搅拌2h,最后加入多亚甲基多苯基多异氰酸酯,搅拌1h,即可得到冷拌树脂。
复合固化剂包括按如下重量份数计的成分:四丁基氯化铵1份,三乙烯四胺80份,水19份。复合固化剂的制备方法为:将四丁基氯化铵、三乙烯四胺和水进行精确计量,搅拌2h静置即可。
按照本公开实施例3的铺装方法铺装得到开级配冷拌树脂超薄层路面。
应用例2
本应用例中的粘结剂洒布量为0.3kg/m 2,铺装层的矿料和冷拌树脂的重量百分比为100:4.5,复合固化剂的洒布量为0.4kg/m 2,粗集料在矿料中的重量百分比为75%。
冷拌树脂包括按如下重量份数计的成分:E54环氧树脂22份,椰子油油脂废弃物26份,YT-6环烷油14份,多亚甲基多苯基多异氰酸酯38份。冷拌树脂的制备方法为:将椰子油油脂废弃物加入到密闭容器中,加热到130℃,加入环烷油,搅拌2h,待温度降至80℃后,再加入环氧树脂,搅拌2h,最后加入多亚甲基多苯基多异氰酸酯,搅拌1h,即可得到冷拌树脂。
复合固化剂包括按如下重量份数计的成分:四丁基氯化铵5份,三乙烯四胺65份,水30份。复合固化剂的制备方法为:将四丁基氯化铵、三乙烯四胺和水进行精确计量,搅拌2h静置即可。
按照本公开实施例3的铺装方法铺装得到开级配冷拌树脂超薄层路面。
应用例3
本应用例中的粘结剂洒布量为0.6kg/m 2,矿料和冷拌树脂的重量百分比为100:4.5,复合固化剂的洒布量为0.3kg/m 2,粗集料在矿料中的重量百分比为80%。
冷拌树脂包括按如下重量份数计的成分:E54环氧树脂14份,椰子油油脂废弃物26份,KN4010环烷油20份,多亚甲基多苯基多异氰酸酯40份。冷拌树脂的制备方法为:将椰子油油脂废弃物加入到密闭容器中,加热到125 ℃,加入环烷油,搅拌2h,待温度降至80℃后,再加入环氧树脂,搅拌2h,最后加入多亚甲基多苯基多异氰酸酯,搅拌1h,即可得到冷拌树脂。
复合固化剂包括按如下重量份数计的成分:四丁基氯化铵5份,三乙烯四胺80份,水15份。复合固化剂的制备方法为:将四丁基氯化铵、三乙烯四胺和水进行精确计量,搅拌2h静置即可。
按照本公开实施例3的铺装方法铺装得到开级配冷拌树脂超薄层路面。
应用例4
本应用例中的粘结剂洒布量为0.4kg/m 2,矿料和冷拌树脂的重量百分比为100:4.5,复合固化剂的洒布量为0.3kg/m 2,粗集料在矿料中的重量百分比为70%。
冷拌树脂包括按如下重量份数计的成分:E54环氧树脂15份,大豆油油脂废弃物30份,YT-10环烷油20份,多亚甲基多苯基多异氰酸酯35份。冷拌树脂的制备方法为:将大豆油油脂废弃物加入到密闭容器中,加热到120℃,加入环烷油,搅拌2h,待温度降至80℃后,再加入环氧树脂,搅拌2h,最后加入多亚甲基多苯基多异氰酸酯,搅拌1h,即可得到冷拌树脂。
复合固化剂包括按如下重量份数计的成分:四丁基氯化铵2份,三乙烯四胺65份,水33份。复合固化剂的制备方法为:将四丁基氯化铵、三乙烯四胺和水进行精确计量,搅拌2h静置即可。
按照本公开实施例3的铺装方法铺装得到开级配冷拌树脂超薄层路面。
应用例5
本应用例中的粘结剂洒布量为0.4kg/m 2,矿料和冷拌树脂的重量百分比为100:4.5,复合固化剂的洒布量为0.3kg/m 2,粗集料在矿料中的重量百分比为70%。
冷拌树脂包括按如下重量份数计的组分:E54环氧树脂10份,大豆油油脂废弃物35份,YT-10环烷油10份,多亚甲基多苯基多异氰酸酯45份。冷拌树脂的制备方法为:将大豆油油脂废弃物加入到密闭容器中,加热到120℃,加入环烷油,搅拌2h,待温度降至80℃后,再加入环氧树脂,搅拌2h,最后加入多亚甲基多苯基多异氰酸酯,搅拌1h,即可得到冷拌树脂。
复合固化剂包括按如下重量份数计的组分:四丁基氯化铵2份,三乙烯四胺65份,水33份。复合固化剂的制备方法为:将四丁基氯化铵、三乙烯四 胺和水进行精确计量,搅拌2h静置即可。
按照本公开实施例3的铺装方法铺装得到开级配冷拌树脂超薄层路面。
针对上述应用例的开级配冷拌树脂超薄层路面的室内试验方法为:按照图3所示的级配曲线确定粗集料、细集料的比例,并与冷拌树脂常温拌和,拌和时间为180s,然后将拌和好的混合料放置于空气中,观察混合料因结块而失去流动性所需要的时间即为可施工时间。将拌和好的混合料制成1cm厚度的粘聚力试验样品,从洒布复合固化剂开始,到粘聚力试验样品无破坏的时间间隔即为养生时间。将洒布复合固化剂的混合料按照热拌沥青混合料马歇尔试件的成型方法进行击实,制备马歇尔试件样品,击实次数为双面击实50次,然后室温放置2小时后脱模,测试马歇尔试件的体积指标,并计算冷拌树脂混合料的理论最大相对密度,进而得出试件的空隙率。将上述马歇尔试件进行冻融劈裂试验,计算出混合料的冻融劈裂强度比。制备双层复合板试件,测试冷拌树脂混合料在35℃下的拉拔强度。
对上述各应用例的开级配冷拌树脂混合料进行室内试验测试,其性能如
表1所示。
表1开级配冷拌树脂混合料的性能
试验项目 应用例1 应用例2 应用例3 应用例4 应用例5
25℃胶结料粘度(Pa·s) 1.53 1.25 0.88 0.74 0.92
可施工时间(h) 6 8 8.5 9.5 9
养生时间(min) 35 35 40 35 40
空隙率(%) 21.7 19.5 20.5 20.2 20.8
15℃劈裂强度(MPa) 3.14 3.25 3.51 3.44 3.48
-10℃低温弯曲应变(με) 12726 15175 16602 18244 16365
冻融劈裂强度比(%) 95.6 96.4 99.8 95.2 97.3
35℃复合件拉拔强度(MPa) 1.7 1 1.4 1.2 1.2
从表1的性能测试结果可知:
(1)在环氧树脂和异氰酸酯中加入植物油渣提取物和环烷油,降低了树脂体系的施工粘度,延长了可施工时间,各应用例的可施工时间均在6小时 以上,保证了树脂混合料的施工和易性。从应用例1到应用例4的结果可以看出,随着植物油渣提取物和环烷油含量的不断增大,冷拌树脂的粘度不断降低,树脂混合料的可施工时间不断增加,最长可以达到9.5h。原因在于植物油渣提取物和环烷油中的小分子烃类物质的加入降低了树脂活性基团的比例和反应活性,从而延缓了树脂的固化时间。各应用例的养生时间均在1h以内,一方面在于现场经过碾压后的树脂混合料的空隙率较大,且厚度较薄,现场喷洒复合固化剂的方式能够使得固化剂充分下渗并与树脂发生固化反应;另一方面在于复合固化剂的组合,既降低了固化剂的粘度,保证固化剂的流动性,又不影响固化反应的进程,从而大大缩短了封闭交通的时间。
(2)从应用例1到应用例4的结果可以看出,随着植物油渣提取物和环烷油含量的不断增加,树脂混合料的低温弯曲应变值不断增大,原因在于植物油渣提取物和环烷油含量的增加,使得树脂体系中软段部分的含量增大,增大了树脂在低温下的柔韧性。而随着植物油渣提取物和环烷油含量的不断增加,树脂混合料的劈裂强度和耐水稳定性则表现出先增大后降低的趋势,原因在于随着植物油渣提取物和环烷油含量的增加,冷拌树脂的粘度不断降低,在树脂与集料的拌合过程中,增大了树脂对集料表面微小空隙的浸润程度,从而增加了树脂与集料的界面粘附力,导致树脂混合料的强度不仅没有下降,反而得到了一定程度的提升,而当植物油渣提取物和环烷油含量超过一定范围时,浸润程度达到饱和,活性基团的含量对混合料强度的影响占据主导地位,则强度表现出下降的趋势。
(3)各应用例的35℃复合件拉拔强度均超过1.0MPa,表明洒布固化剂的方式能够大幅度提高开级配冷拌树脂超薄层路面的层间粘结强度,避免出现混合料推移、剥落等病害。
综上,本公开实施例,能够大幅改善现有路面施工带来的能源消耗与二氧化碳排放问题,有效解决现有冷拌树脂混合料的可施工时间过短、养生时间过长等问题,并兼顾树脂混合料的高低温性能,铺装的开级配冷拌树脂超薄层路面具有良好的路用性能,是一种可靠的新型路面养护技术。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应 以权利要求的保护范围为准。
本文中所称的″一个实施例″、″实施例″或者″一个或者多个实施例″意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里″在一个实施例中″的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词″包含″不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词″一″或″一个″不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种用于超薄层路面的冷拌树脂,其特征在于,包括按如下重量份数计的成分:环氧树脂10~22份,植物油渣提取物25~35份,环烷油10~20份和多亚甲基多苯基多异氰酸酯35~45份。
  2. 根据权利要求1所述的冷拌树脂,其特征在于,
    所述植物油渣提取物包括如下的至少一种:蓖麻油油脂废弃物、大豆油油脂废弃物和椰子油油脂废弃物;
    所述环烷油包括如下的至少一种:KN4010、YT-6和YT-10。
  3. 一种如权利要求1~2任一项所述的用于超薄层路面的冷拌树脂的制备方法,其特征在于,包括:
    将植物油渣提取物加热到120~130℃后,加入环烷油,搅拌均匀,得到第一混合物;
    待第一混合物的温度降至80℃后,加入环氧树脂,搅拌均匀,得到第二混合物;
    将多亚甲基多苯基多异氰酸酯加入第二混合物,搅拌均匀,得到冷拌树脂。
  4. 一种用于超薄层路面的开级配冷拌树脂混合料,其特征在于,包括:矿料和如权利要求1~2任一项所述的用于超薄层路面的冷拌树脂。
  5. 根据权利要求4所述的开级配冷拌树脂混合料,其特征在于:所述矿料和所述冷拌树脂的重量百分比为100∶3~6。
  6. 根据权利要求4所述的开级配冷拌树脂混合料,其特征在于,所述矿料包括:粗集料和细集料,所述粗集料占所述矿料的重量百分比为65~80%。
  7. 一种开级配冷拌树脂超薄层路面,其特征在于,包括:从下到上依次层叠设置的粘结层和铺装层;所述铺装层的材料包括:如权利要求4~6任一项所述的开级配冷拌树脂混合料和复合固化剂。
  8. 根据权利要求7所述的开级配冷拌树脂超薄层路面,其特征在于,所述复合固化剂包括按如下重量份数计的成分:四丁基氯化铵1~5份,三乙烯四胺65~80份,水15~33份;所述粘结层的材料为冷拌树脂。
  9. 根据权利要求1所述的开级配冷拌树脂超薄层路面,其特征在于:所述粘结层的材料的洒布量为0.3~0.8kg/m 2,所述复合固化剂的洒布量为0.2~0.4kg/m 2,所述开级配冷拌树脂混合料的压实厚度为0.007~0.02m。
  10. 一种如权利要求7~9任一项所述的开级配冷拌树脂超薄层路面的铺装方法,其特征在于,包括:
    在路面上均匀洒布粘接层的材料,形成粘结层;
    将开级配冷拌树脂混合料摊铺在粘接层上;
    对摊铺的开级配冷拌树脂混合料静压后,均匀洒布复合固化剂,形成铺装层;
    对洒布复合固化剂后的路面养生得到开级配冷拌树脂超薄层路面。
PCT/CN2022/105271 2022-06-24 2022-07-12 冷拌树脂、混合料及制备方法、超薄层路面及铺装方法 WO2023245764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210725775.X 2022-06-24
CN202210725775.XA CN115093533B (zh) 2022-06-24 2022-06-24 冷拌树脂、混合料及制备方法、超薄层路面及铺装方法

Publications (1)

Publication Number Publication Date
WO2023245764A1 true WO2023245764A1 (zh) 2023-12-28

Family

ID=83292960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105271 WO2023245764A1 (zh) 2022-06-24 2022-07-12 冷拌树脂、混合料及制备方法、超薄层路面及铺装方法

Country Status (2)

Country Link
CN (1) CN115093533B (zh)
WO (1) WO2023245764A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182006A (ja) * 1999-12-24 2001-07-03 Nippon Nsc Ltd 薄層舗装材及びその施工法
JP2013044206A (ja) * 2011-08-25 2013-03-04 Hanshin Expressway Co Ltd 樹脂モルタル組成物及び舗装構造
CN103232717A (zh) * 2013-05-15 2013-08-07 重庆市智翔铺道技术工程有限公司 一种复合改性沥青及其制备方法
CN104877357A (zh) * 2015-05-08 2015-09-02 湖北大学 一种环氧沥青增容剂的制备方法及其应用
CN105017726A (zh) * 2015-07-07 2015-11-04 武汉山虎涂料有限公司 路桥面薄层铺装用常温固化柔性环氧组合物及其制备方法
US20210253842A1 (en) * 2019-05-06 2021-08-19 Jiangsu Sinoroad Transportation Science And Technology Co., Ltd Anti-fatigue cold mixed epoxy resin material, preparation method and application thereof
CN113526906A (zh) * 2021-07-15 2021-10-22 郑州中科新兴产业技术研究院 一种潜伏固化冷拌冷铺沥青混合料的制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103114526B (zh) * 2013-03-07 2015-03-25 江苏省交通科学研究院股份有限公司 一种钢桥面铺装冷拌养护材料及其制备方法
CN103741599B (zh) * 2014-01-03 2015-12-02 江苏省交通科学研究院股份有限公司 一种轻质冷拌树脂钢桥面铺装材料
CN106927723B (zh) * 2017-04-11 2019-08-06 苏交科集团股份有限公司 一种大空隙冷拌环氧树脂混合料及其制备方法
CN108440981B (zh) * 2018-04-27 2020-10-16 哈尔滨工业大学 路用环保型环氧生物沥青材料及其制备方法
CN109180071B (zh) * 2018-08-30 2020-04-10 山东省交通规划设计院有限公司 一种道路面层用高性能冷拌混合料及其制备方法
CN112679145B (zh) * 2020-12-16 2022-07-08 中公高科养护科技股份有限公司 一种常温沥青改性剂及应用方法
CN114262524A (zh) * 2021-12-31 2022-04-01 江苏中路工程技术研究院有限公司 一种用于排水路面的复合改性沥青及其制备方法
CN114426416B (zh) * 2022-01-23 2022-11-08 山西省交通科技研发有限公司 一种可长期储存的反应型速凝沥青路面冷修补材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182006A (ja) * 1999-12-24 2001-07-03 Nippon Nsc Ltd 薄層舗装材及びその施工法
JP2013044206A (ja) * 2011-08-25 2013-03-04 Hanshin Expressway Co Ltd 樹脂モルタル組成物及び舗装構造
CN103232717A (zh) * 2013-05-15 2013-08-07 重庆市智翔铺道技术工程有限公司 一种复合改性沥青及其制备方法
CN104877357A (zh) * 2015-05-08 2015-09-02 湖北大学 一种环氧沥青增容剂的制备方法及其应用
CN105017726A (zh) * 2015-07-07 2015-11-04 武汉山虎涂料有限公司 路桥面薄层铺装用常温固化柔性环氧组合物及其制备方法
US20210253842A1 (en) * 2019-05-06 2021-08-19 Jiangsu Sinoroad Transportation Science And Technology Co., Ltd Anti-fatigue cold mixed epoxy resin material, preparation method and application thereof
CN113526906A (zh) * 2021-07-15 2021-10-22 郑州中科新兴产业技术研究院 一种潜伏固化冷拌冷铺沥青混合料的制备方法和应用

Also Published As

Publication number Publication date
CN115093533B (zh) 2023-07-18
CN115093533A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN107915427B (zh) 一种半柔性路面材料的施工工法
CN101913800A (zh) 用于桥面铺装的超薄磨耗层沥青混凝土材料及其制备方法
CN106587744B (zh) 一种cpc-ac复合路面纤维沥青混合料及其制备方法
CN113816653A (zh) 一种灌注式柔性路面及其制备方法
CN106065558A (zh) 一种布敦岩沥青改性沥青混合料加热拌和制作工艺
CN111170678A (zh) 一种聚氨酯为结合料的浇筑式混凝土及其制备方法
CN112174584A (zh) 一种半柔性路面材料及路面结构铺装方法
CN109594471A (zh) 钢桥面的铺装结构及其施工方法
CN106064901A (zh) 一种骨架密实型沥青混合料及其制造方法
CN104018404B (zh) 高速铁路无砟轨道用柔性基础结构及其铺装方法
CN111960728A (zh) 温拌再生混合料
CN113235351B (zh) 旧水泥机场跑道加铺沥青层的机场道面结构及其铺装方法
JP6875033B2 (ja) 浸透式アスファルトコンクリート及びその製造方法と適用
WO2023245764A1 (zh) 冷拌树脂、混合料及制备方法、超薄层路面及铺装方法
CN112553994A (zh) 一种剑麻纤维水泥基复合材料上覆沥青层复合式路面道路
WO2024021713A1 (zh) 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用
CN106927723A (zh) 一种大空隙冷拌环氧树脂混合料及其制备方法
RU2436888C2 (ru) Способ приготовления цементно-асфальтобетонной смеси и ее состав
CN115448644B (zh) 一种环氧沥青浇注式混凝土及其制备方法
CN115448642B (zh) 沥青冷补料及其制备方法
CN115045154A (zh) 一种冷拌冷铺超薄沥青磨耗层及其制备方法
CN107022198B (zh) 一种仿生自愈性沥青及其制备方法
CN115124279A (zh) 一种100%rap温拌再生沥青混合料的制备方法
CN211848924U (zh) 长效抗车辙半柔性钢桥面结构
CN113605169A (zh) 一种灌入式半柔性复合抗车辙路面施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947514

Country of ref document: EP

Kind code of ref document: A1