WO2023245422A1 - 化合物、含有其的二次电池、电池模块、电池包及用电装置 - Google Patents

化合物、含有其的二次电池、电池模块、电池包及用电装置 Download PDF

Info

Publication number
WO2023245422A1
WO2023245422A1 PCT/CN2022/100148 CN2022100148W WO2023245422A1 WO 2023245422 A1 WO2023245422 A1 WO 2023245422A1 CN 2022100148 W CN2022100148 W CN 2022100148W WO 2023245422 A1 WO2023245422 A1 WO 2023245422A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
compound
secondary battery
group
active material
Prior art date
Application number
PCT/CN2022/100148
Other languages
English (en)
French (fr)
Inventor
邹海林
陈培培
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/100148 priority Critical patent/WO2023245422A1/zh
Publication of WO2023245422A1 publication Critical patent/WO2023245422A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives

Definitions

  • the present application relates to the field of battery technology, and in particular to a compound, a secondary battery, a battery module, a battery pack and an electrical device containing the compound.
  • This application was made in view of the above technical problems, and its purpose is to provide a compound, a secondary battery, a battery module, a battery pack and an electrical device containing the same, which can effectively protect the battery when used in the secondary battery.
  • Cathode active material improves the dissolution of metal ions from the cathode active material during the battery cycle and reduces the attenuation of secondary battery capacity and life caused by the dissolution of metal ions in the cathode active material, thus helping to improve the cycle performance and service life of the secondary battery. .
  • R1-R12 are each independently selected from a halogen atom, an alkyl group having 1 to 20 carbon atoms, a substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a substituted Alkenyl group with 2-20 carbon atoms, aryl group with 6-26 carbon atoms, substituted aryl group with 6-26 carbon atoms, carboxyl group with 1-20 carbon atoms, substituted carbon atoms A carboxyl group with 1-20 carbon atoms, a carbonyl group with 1-20 carbon atoms, a substituted carbonyl group with 1-20 carbon atoms, an aryloxy group with 6-26 carbon atoms, or a substituted carbonyl group with 6-26 carbon atoms
  • nitrogen-containing borate ester compounds such as formula (I), formula (II) and formula (III) are provided.
  • Nitrogen-containing borate ester compounds have strong properties on the surface of metals or substances containing metal ions. Adsorption capacity, and has good antioxidant properties and hydrolysis resistance. When used in secondary batteries, it can use its adsorption capacity, good antioxidant properties and anti-hydrolysis properties to protect the positive active material of the secondary battery, improve the dissolution of metal ions of the positive active material in the positive electrode during battery cycles, and reduce the The dissolution of metal ions affects the cycle capacity and service life of secondary batteries, thereby improving the cycle stability and service life of secondary batteries.
  • R1-R18 are each independently selected from an alkyl group with 1-20 carbon atoms, an alkenyl group with 2-20 carbon atoms, and a carbon atom substituted by a halogen atom, a sulfonic acid group or a sulfonyl group. At least one of an aryl group with 6-26 carbon atoms, a carboxyl group with 1-20 carbon atoms, a carbonyl group with 1-20 carbon atoms, or an aryloxy group with 6-26 carbon atoms.
  • the stability of the compound can be improved and the antioxidant performance of the compound can be further improved;
  • Introducing a sulfonic acid group or sulfonyl group into the compound can introduce sulfur element into the cathode active material, helping to improve the stability of the electrochemical reaction interface of the cathode active material.
  • R5 and R6 are not C n H 2n+1 at the same time, where 1 ⁇ n ⁇ 4.
  • the compound is selected from at least one of the following:
  • the compound of formula (III) is a compound having at least one branch chain at R13-R18, and the branch chain contains a halogen atom.
  • the compound of formula (III) with a cyclic structure will not cause nitrogen elements and The spatial distance between boron elements is too large, which helps improve the stability of the compound.
  • the stability and antioxidant properties of the compound can be further improved.
  • the halogen atom on the branch chain of the compound of formula (III) is a fluorine atom.
  • the compounds are used in secondary batteries.
  • a second aspect provides a secondary battery, which includes the compound in any embodiment of the first aspect.
  • the secondary battery includes a positive electrode sheet, the positive electrode sheet includes a current collector and a positive electrode material layer disposed on the current collector, the positive electrode material layer contains a positive electrode active material and the compound.
  • the nitrogen-containing borate ester compound is added to the secondary battery as an additive to the cathode material layer, and can be adsorbed on the surface of the cathode active material and form a protective layer to avoid direct contact between the cathode active material and the electrolyte. contact to prevent metal ions in the positive electrode active material from dissolving.
  • the cathode active material contains transition metal elements.
  • the transition metal element includes at least one of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc.
  • the positive active material contains an alkali metal compound, and the alkali metal includes at least one of lithium, sodium, potassium, and magnesium.
  • the compound satisfies the following formula:
  • S is the specific surface area of the cathode active material, in m 2 /g
  • W 1 is the ratio of the mass of the compound to the mass of the cathode active material, in wt%.
  • the amount of the nitrogen-containing borate ester compound used in the secondary battery is set according to the specific surface area of the positive electrode active material.
  • the nitrogen-containing borate ester compound is used in too small a quantity and cannot completely cover the entire surface of the cathode active material, causing some of the surface of the cathode active material to still be in contact with the electrolyte, resulting in metal dissolution; on the other hand, it can This effectively avoids the situation where excessive dosage of nitrogen-containing borate ester compounds leads to a decrease in the ion conductivity of the cathode active material.
  • the specific surface area of the cathode active material can be controlled within an appropriate range to avoid the reduction in volume density or loss of the cathode active material caused by excessive specific surface area of the cathode active material.
  • the problem of insufficient electrochemical reaction interface area of the cathode material caused by too small specific surface area helps to improve the energy density and battery performance of secondary batteries.
  • the quality of the nitrogen-containing borate ester compound can be controlled within an appropriate range according to the quality of the cathode active material, and the nitrogen-containing boric acid ester compound can be avoided.
  • the mass of the ester compound is too large and takes up the space and mass of the positive active material, resulting in a reduction in the capacity of the secondary battery.
  • the secondary battery includes an electrolyte containing the compound.
  • the compound by adding a nitrogen-containing borate compound to the electrolyte, the compound can be adsorbed on the surface of the positive electrode active material to form a protective layer, thereby isolating the direct contact between the positive electrode active material and the electrolyte, effectively Avoid dissolution of metal ions in the positive active material.
  • the compound satisfies the following formula:
  • W 2 is the ratio of the mass of the compound to the mass of the electrolyte, in wt%.
  • the secondary battery includes a separator containing the compound.
  • the compound is added to the separator or a film layer formed of the compound is provided on the side of the separator facing the cathode active material, so that the compound can migrate to the surface of the cathode active material through the electrolyte.
  • a protective layer is formed on the surface of the positive active material to isolate the direct contact between the positive active material and the electrolyte, effectively improving the dissolution of metal ions in the positive active material.
  • the loading amount of the compound on the separator is 0.01g/m 2 to 100g/m 2 ; preferably 0.1g/m 2 to 10g/m 2 .
  • a third aspect provides a battery module including the secondary battery of the second aspect.
  • a fourth aspect provides a battery pack including at least one of the secondary battery of the second aspect or the battery module of the third aspect.
  • a fifth aspect provides an electrical device, which includes at least one of the secondary battery in the second aspect, the battery module in the third aspect, or the battery pack in the fourth aspect.
  • a sixth aspect provides a use of the compound in any embodiment of the first aspect in preparing a secondary battery.
  • Figure 1 is a schematic diagram of a secondary battery of the present application.
  • Figure 2 is a schematic structural diagram of a secondary battery of the present application.
  • FIG. 3 is a schematic structural diagram of a battery module of the present application.
  • Figure 4 is a schematic diagram of a battery pack of the present application.
  • Figure 6 is a schematic diagram of an electrical device of the present application.
  • Figure 7 is a comparison chart of battery cycle performance between Comparative Example 1 and Example 5 of the present application.
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • alkyl refers to a monovalent saturated hydrocarbon group having one or more carbon atoms, optionally from 1 to 20 carbon atoms.
  • alkyl groups include straight-chain hydrocarbon groups and branched-chain hydrocarbon groups, such as methyl (CH 3 -), ethyl (CH 3 CH 2 -), n-propyl (CH 3 CH 2 CH 2 -), isopropyl ((CH 3 ) 2 CH-), n-butyl (CH 3 CH 2 CH 2 CH 2 -), isobutyl ((CH 3 ) 2 CHCH 2 -), sec-butyl ((CH 3 ) (CH 3 CH 2 )CH-), tert-butyl ((CH 3 ) 3 C-), n-pentyl (CH 3 CH 2 CH 2 CH 2 -), neopentyl ((CH 3 ) 3 CCH 2 -) wait.
  • Substituents include alkoxy, cycloalkyl, cycloalkenyl, acyl, amido, acyloxy, amino, azide, cyano, halogen, hydroxyl, oxo, thione, carboxyl, carboxyalkyl , thioaryloxy, thioheteroaryloxy, thioheterocyclicoxy, thiol, thioalkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclyl , Heterocyclic oxy, hydroxylamino, nitro, -SO-alkyl, -SO-substituted alkyl, -SO-aryl, -SO-heteroaryl, -SO 2 -alkyl, -SO 2 - Substituted alkyl, -SO 2 -aryl and -SO 2 -heteroaryl, etc.
  • Aryl or “Ar” refers to an aromatic compound having a single ring or multiple condensed rings, optionally having 6 to 26 carbon atoms.
  • aryl groups include phenyl, naphthyl, indenyl, and the like.
  • Aryl groups also include monocyclic rings fused to aryl groups, for example, tetrahydronaphthyl, indanyl, and the like.
  • Substituents include acyloxy, hydroxyl, thiol, acyl, alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, amino, aminoacyl, amido, alkaryl, aryl , aryloxy, azide, carboxyl, carboxyalkyl, cyano, halogen, nitro, heteroaryl, heteroaryloxy, heterocyclyl, heterocyclicoxy, thioalkoxy, thioaryl Oxygen, thioheteroaryloxy, -SO-alkyl, -SO-substituted alkyl, -SO-aryl, -SO-heteroaryl, -SO 2 -alkyl, -SO 2 -aryl , -SO 2 -Heteroaryl and trihalomethyl, etc.
  • Carboxyl refers to a group having one or more carbon atoms, optionally having a carbon number of 1-20, and having a -CO2H functionality.
  • Substituted carboxyl refers to a carboxyl group in which the hydrogen atoms in the -CO2H functionality are replaced by heteroatoms or substituents.
  • Heteroatoms include oxygen atoms (-O-), nitrogen atoms (-N-), sulfur atoms (-S-), etc.
  • Substituents include alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, etc.
  • Carbonyl refers to a group having one or more carbon atoms, optionally from 1 to 20 carbon atoms, and having a -CO- functionality.
  • Substituted carbonyl refers to a carbonyl group in which at least one carbon atom (other than the carbon atom in the -CO- functional group) is replaced by a heteroatom or substituent.
  • Heteroatoms include oxygen atoms (-O-), nitrogen atoms (-N-), sulfur atoms (-S-), etc.
  • Substituents include hydrogen atoms, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, cycloalkyl groups, cycloalkenyl groups, heteroaryl groups, heterocyclyl groups, and the like.
  • Aryloxy group refers to a group formed by connecting at least one carbon atom on the aromatic ring of an aryl group to an oxygen atom, and optionally, the number of carbon atoms is 6-26.
  • Substituted aryloxy refers to an aryloxy group in which at least one carbon atom is replaced by a heteroatom or substituent.
  • Substituents include acyloxy, hydroxyl, thiol, acyl, alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, amino, aminoacyl, amido, alkaryl, aryl , aryloxy, azide, carboxyl, carboxyalkyl, cyano, halogen, nitro, heteroaryl, heteroaryloxy, heterocyclyl, heterocyclicoxy, thioalkoxy, thioaryl Oxygen, thioheteroaryloxy, -SO-alkyl, -SO-substituted alkyl, -SO-aryl, -SO-heteroaryl, -SO 2 -alkyl, -SO 2 -aryl , -SO 2 -
  • Sulfonic acid group refers to -SO3H .
  • a secondary battery includes a positive electrode plate, a negative electrode plate, an electrolyte and a separator.
  • active ions are inserted and detached back and forth between the positive electrode piece and the negative electrode piece.
  • the electrolyte plays a role in conducting ions between the positive electrode piece and the negative electrode piece.
  • the separator is disposed between the positive electrode piece and the negative electrode piece, preventing the positive and negative electrodes from being short-circuited and allowing ions to pass therethrough, allowing the electrochemical reaction of the secondary battery to proceed normally.
  • the lithium-ion battery is a typical secondary battery. Because it relies on the chemical reaction of lithium ions to deintercalate between the positive and negative electrodes for charging and discharging, the lithium-ion battery is also called a rocking chair battery. .
  • the lithium-ion battery is also called a rocking chair battery. .
  • lithium ions are released from the positive electrode, move through the conduction of the electrolyte, and are embedded in the negative active material; while during the discharge process, lithium ions are released from the negative electrode, move through the conduction of the electrolyte, and are embedded in the positive active material.
  • lithium insertion and “embedding” processes mentioned in this application refer to the process of lithium ions being embedded in the positive active material or negative active material due to electrochemical reactions.
  • extraction”, “delithiation” and “delithiation” processes mentioned in this application refer to
  • deintercalation refers to the process in which lithium ions are deintercalated from the positive active material or the negative active material due to electrochemical reactions.
  • the cathode active material of a lithium ion battery usually uses a transition metal oxide containing lithium ions, a transition metal compound containing lithium ions, or a composite containing the foregoing substances.
  • cathode active materials containing transition metals will inevitably elute metal ions in the electrochemical environment.
  • the dissolution of metal ions in the positive electrode active material will destroy the structural stability of the positive electrode material layer, leading to a decrease in battery capacity; on the other hand, the dissolved metal ions will migrate and deposit to the surface of the negative electrode material layer, destroying the electronic insulation properties of the negative electrode.
  • SEI Solid electrolyte interphase
  • cathode active materials containing transition metal oxides As an example, the inventors studied the reasons for metal dissolution of cathode active materials and found that the metal ion elution of cathode active materials is directly related to the stability of oxygen ions on the surface of cathode active materials. . In the lattice structure of the cathode active material, transition metal ions and oxygen ions interact to stably exist in the gaps where oxygen ions accumulate.
  • the oxygen ions on the surface of the cathode active material When the oxygen ions on the surface of the cathode active material are affected by the external environment, they will break away from the surface of the cathode active material, thereby losing their binding effect on the transition metal ions, causing the transition metal ions to migrate into the electrolyte under the action of the electric field, that is, transition metal ions occur. Ions dissolve.
  • the external environment on the surface of the positive active material is mainly determined by the electrolyte.
  • the electrolyte can easily generate acid when it undergoes an oxidation reaction on the surface of the positive active material or reacts with trace amounts of water in the battery. In an acidic environment, the oxygen ions on the surface of the positive active material easily break away from the surface of the positive active material, resulting in transition metal ions in the positive active material. of dissolution.
  • the embodiments of the present application provide a compound, which has a nitrogen-containing borate compound structure as shown in formula (I), formula (II) and formula (III).
  • the compound is in metal or contains metal ions.
  • the surface of the material has strong adsorption capacity, and has good anti-sintering, anti-oxidation and anti-hydrolysis properties.
  • the compound can be adsorbed on the surface of the positive active material containing transition metal ions, thereby isolating direct contact between the positive active material and the electrolyte.
  • the impact of the external environment on the surface of the positive active material on the positive active material is reduced, effectively suppressing the dissolution of transition metal ions of the positive active material, and helping to improve the cycle performance and use of secondary batteries. life.
  • R1-R12 are each independently selected from a halogen atom, an alkyl group having 1 to 20 carbon atoms, a substituted alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a substituted Alkenyl group with 2-20 carbon atoms, aryl group with 6-26 carbon atoms, substituted aryl group with 6-26 carbon atoms, carboxyl group with 1-20 carbon atoms, substituted carbon atoms A carboxyl group with 1-20 carbon atoms, a carbonyl group with 1-20 carbon atoms, a substituted carbonyl group with 1-20 carbon atoms, an aryloxy group with 6-26 carbon atoms, or a substituted carbonyl group with 6-26 carbon atoms
  • Nitrogen-containing borate ester compounds refer to a class of compounds in which nitrogen element is introduced into borate ester compounds.
  • Borate ester compounds have the characteristics of anti-corrosion, anti-static, sterilization, and non-toxicity. They are widely used as lubricating oil additives and key intermediates for active pharmaceutical ingredients.
  • nitrogen-containing borate esters have strong adsorption capacity on metal surfaces, so they are often used as metal rust inhibitors.
  • the boron element in conventional boric acid ester compounds is sp2 hybridized, it has an empty p orbital and is easily attacked by functional groups containing lone electron pairs, causing boric acid ester compounds to easily decompose or hydrolyze.
  • Nitrogen-containing borate ester compounds introduce nitrogen element (N) into borate ester compounds.
  • Nitrogen element (N) can form N-B internal coordination bonds or chelate-coordination bonds with boron element (B) to fill the boron element ( B)
  • the hollow p orbital effectively improves the stability of the compound.
  • the bond between nitrogen element (N) and boron element (B) avoids the unbonded lone electron pairs on nitrogen element (N) and improves the antioxidant properties of the compound.
  • the nitrogen-containing borate ester compounds represented by formula (I), formula (II) and formula (III) provided in this embodiment have strong adsorption capacity on the surface of metal or substances containing metal ions, and have Good antioxidant properties and hydrolysis resistance.
  • the nitrogen-containing borate ester compound When used in a secondary battery, it can be adsorbed on the surface of the cathode active material, thereby effectively isolating the direct contact between the cathode active material and the electrolyte, and preventing the acid in the electrolyte from destroying the oxygen ions on the surface of the cathode active material.
  • R1-R18 are each independently selected from an alkyl group with 1-20 carbon atoms, an alkene group with 2-20 carbon atoms substituted by a halogen atom, a sulfonic acid group or a sulfonyl group. group, an aryl group having 6 to 26 carbon atoms, a carboxyl group having 1 to 20 carbon atoms, a carbonyl group having 1 to 20 carbon atoms, or an aryloxy group having 6 to 26 carbon atoms.
  • the stability, antioxidant performance and hydrolysis resistance of the borate ester compounds can be further improved.
  • a halogen-like group such as a sulfonic acid group or a sulfonyl group can also be introduced into R13-R18, which can promote the electrochemical reaction of the positive electrode active material.
  • Sulfur element is introduced into the interface to improve the stability of the electrochemical reaction interface of the cathode active material.
  • the stability, antioxidant performance, and hydrolysis resistance of the compound can be improved, allowing the compound to exist more stably when used in secondary batteries. Improving transition metal dissolution of the cathode active material on the surface of the cathode active material, forming a more effective protection for the cathode active material, thereby helping to improve the cycle performance and service life of the secondary battery.
  • R5 and R6 in the compound of formula (I) are not C n H 2n+1 at the same time, where 1 ⁇ n ⁇ 4.
  • the compound is selected from the group consisting of formula (I-I), formula (I-II), formula (I-III), formula (I-IV), formula (II-I), formula (II -II), at least one of the compounds of formula (II-III), formula (II-IV), formula (III-I), formula (III-II), and formula (III-III), that is, selected from the group consisting of Ethanolamine borate, monoisopropanolamine borate, mono-n-propanolamine borate, monoisobutanolamine borate, diethanolamine borate, diisopropanolamine borate, di-n-propanolamine borate Alcoholamine borate, diisobutanolamine borate, tritrifluoroisopropanolamine borate, tridifluoroisopropanolamine borate, tritrifluoroisobutanolamine borate At least one of:
  • the compound of formula (III) has a branched chain at R13-R18, and the branched chain contains a halogen atom.
  • compounds of formula (III) have at least one branch at R13-R18.
  • the compound of formula (III) may have a branch chain at at least one of R13 and R14, may have a branch chain at at least one of R15 and R16, or may have a branch chain at at least one of R17 and R18.
  • the compound of formula (III) has branches at one of R13 or R14, one of R15 or R16, and one of R17 or R18. That is, the compound of formula (III) has multiple branch chains, and each branch chain contains a halogen atom. When each branch chain contains a halogen atom, the halogen atoms contained in each branch chain may be the same or different.
  • the branch chain contains halogen atoms may mean that R13-R18 contains halogen atoms only on the branch chain, or it may contain halogen atoms at both the positions of R13-R18 and the branch chain of R13-R18.
  • the nitrogen element (N) and the boron element (B) can be avoided. Excessive spatial distance causes the coordination bond strength between nitrogen (N) and boron (B) to decrease, thereby helping to improve the stability and antioxidant properties of the compound.
  • halogen into the branch chain, when at least one position of R13-R18 contains a halogen atom, the stability and antioxidant properties of the compound can be further improved by introducing more halogen atoms.
  • the number of halogen atoms in each branch chain is 1-5.
  • the halogen atom on the branch chain of the compound of formula (III) is a fluorine atom.
  • the tritrifluoroisopropanolamine cycloborate listed in the examples of this application has branched chains at R14, R16 and R18, and each branched chain contains 3 fluorine atoms.
  • the most electronegative fluorine atom among halogens is selected to be introduced into the branch chain of the compound of formula (III), which can further improve the stability and antioxidant properties of the compound.
  • fluorine atoms are introduced into all three chains of the compound of formula (III).
  • the compound of formula (III) has a cyclic structure, and fluorine atoms are introduced into its three chains, so that each branch chain has strong stability and can reduce the occurrence of ring opening.
  • the number of fluorine atoms in the three branch chains does not exceed 5.
  • halogen has a strong interaction with lithium ions at the same time
  • by controlling the number of fluorine atoms introduced into the branch chain, when the compound is used in secondary batteries can reduce the impact of compounds adsorbed on the surface of the cathode active material on lithium ion transmission efficiency, thereby helping to improve lithium ion transmission efficiency.
  • the compounds are used in secondary batteries.
  • the secondary battery, battery module, battery pack and electrical device of the present application will be described below with appropriate reference to the drawings.
  • a secondary battery In one embodiment of the application, a secondary battery is provided.
  • a secondary battery includes a positive electrode plate, a negative electrode plate, an electrolyte and a separator.
  • the positive electrode sheet usually includes a positive electrode current collector and a positive electrode material layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode material layer contains a positive electrode active material.
  • the positive electrode current collector has two surfaces opposite in its own thickness direction, and the positive electrode material layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the cathode material layer contains transition metal elements.
  • the transition metal element includes at least one of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc.
  • the cathode material layer contains an alkali metal compound, wherein the alkali metal includes at least one of lithium, sodium, potassium, and magnesium.
  • inhibiting the elution of metal ions refers to inhibiting the elution of metal ions other than active metal ions in the cathode active material, for example, inhibiting the elution of transition metal ions in the cathode active material.
  • suppressing the dissolution of metal ions refers to suppressing the dissolution of iron ions.
  • the cathode active material may be a cathode active material known in the art for batteries.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM333), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM523), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM211), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM622), LiNi 0.8 Co 0.1 Mn 0.1 O 2 (can also be referred to as NCM811), at least one of lithium nickel cobalt aluminum oxide (such as LiNi 0.8 5
  • lithium-containing phosphates with an olivine structure can include but are not limited to lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composite materials of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), composite materials of lithium manganese phosphate and carbon, manganese phosphate At least one composite material of lithium iron, lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composite materials of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate
  • manganese phosphate At least one composite material of lithium iron, lithium iron manganese phosphate and carbon.
  • the cathode material layer optionally also contains a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene tripolymer. At least one of a meta-copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer and a fluorine-containing acrylate resin.
  • the cathode material layer optionally also contains a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the cathode material layer further contains additives.
  • additives for example, the compounds in any of the examples of this application.
  • the nitrogen-containing borate ester compounds provided by this application can be used as additives for the cathode material layer.
  • the compound can dissolve in the electrolyte, move through the electrolyte and be adsorbed to the surface of the positive active material, forming a protective layer on the surface of the positive active material, thus isolating the positive active material from the electrolyte. direct contact.
  • the nitrogen-containing borate compound is used in secondary batteries as an additive for the cathode material layer. It can be dissolved in the electrolyte and adsorbed on the surface of the cathode active material to form a protective layer, which can avoid the interaction between the cathode active material and the electrolyte. Direct contact, thereby effectively preventing metal ions in the positive active material from dissolving, helping to improve the cycle performance and service life of the secondary battery.
  • the compound as an additive to the cathode material layer satisfies the following formula:
  • S is the specific surface area of the cathode material (m 2 /g)
  • W 1 is the ratio of the mass of the compound to the mass of the cathode material (wt%).
  • W 1 /S can be 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or its value is within the range obtained by combining any two of the above values .
  • the nitrogen-containing borate ester compound When used as a positive electrode material layer additive in a secondary battery, its usage amount can be set according to the specific surface area of the positive electrode active material.
  • the nitrogen-containing borate ester compound improves the nature of the metal dissolution phenomenon of the cathode active material.
  • the compound is adsorbed on the surface of the cathode active material and isolates the cathode active material from direct contact with the electrolyte. Therefore, the specific surface area of the cathode active material is related to the compound as an additive in the cathode material.
  • the usage in the layer is positively correlated. In other words, the greater the specific surface area of the positive active material, the greater the amount of the compound required.
  • the specific surface area of the cathode active material is constant, the amount of the compound is not always better.
  • W 1 /S ⁇ 0.001
  • W 1 /S >10
  • W 1 /S the specific surface area of the cathode active material is small, and the amount of the compound is large.
  • the amount of the compound used as an additive for the cathode material layer needs to be adjusted according to the specific surface area S of different cathode active materials, so as to ensure the effect of the compound in inhibiting the dissolution of metal ions.
  • the amount of the compound used as an additive for the cathode material layer is controlled within an appropriate range based on the specific surface area of the cathode active material, which can effectively improve the compound's effect of inhibiting the dissolution of metal ions and help improve the cycle performance of the secondary battery. service life.
  • 0.1m 2 /g ⁇ S ⁇ 40m 2 /g preferably, 0.5m 2 /g ⁇ S ⁇ 20m 2 /g.
  • S can be 0.1m 2 /g, 0.2m 2 /g, 0.3m 2 /g, 0.4m 2 /g, 0.5m 2 /g, 0.6m 2 /g, 0.7m 2 /g , 0.8 m 2 /g, 0.9m 2 /g, 1m 2 /g, 2m 2 /g, 3m 2 /g, 4m 2 /g, 5m 2 /g, 6m 2 /g, 7m 2 /g, 8m 2 / g , 9m 2 /g, 10m 2 /g, 12m 2 /g, 14m 2 /g, 16m 2 /g, 18m 2 /g, 20m 2 /g, 22m 2 /g, 24m 2 /g, 26m 2 /g , 28m 2 /g, 30m 2 /g, 32m 2 /g, 34m 2 /g, 36m 2 /g, 38m 2 /g, 40m 2 /g
  • the specific surface area S of the positive electrode active material in the secondary battery also needs to be set within an appropriate range. For example, when S ⁇ 0.1, the specific surface area S of the cathode active material is too small, and there is insufficient interface area for electrochemical reactions to occur on the surface of the cathode active material, which affects the capacity of the secondary battery; when S>40, the cathode active material The specific surface area S is too large, which affects the compaction density of the positive electrode piece, thereby affecting the volume density of the secondary battery. Therefore, the specific surface area S of the positive electrode active material needs to be set within an appropriate range to ensure the capacity and performance of the secondary battery.
  • the specific surface area S of the cathode active material can be controlled within an appropriate range to avoid the reduction in volume density or the loss of the cathode caused by the excessive specific surface area S of the cathode active material. Problems such as insufficient electrochemical reaction interface area of the cathode active material caused by too small specific surface area S of the active material help improve the energy density and battery performance of secondary batteries.
  • W 1 can be 0.01wt%, 0.02wt%, 0.03wt%, 0.04wt%, 0.05wt%, 0.06wt%, 0.07wt%, 0.08wt%, 0.09wt%, 0.1wt%, 0.2wt %, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt% , 8wt%, 9wt%, 10wt%, or its value is within the range obtained by combining any two of the above values.
  • the amount of the compound can also be adjusted according to the quality of the cathode active material, so that the mass ratio W 1 of the compound to the cathode active material is within an appropriate range.
  • W 1 ⁇ 0.01 it means that the mass ratio of the compound in the cathode active material is too small, and the dosage is too small, which will lead to the situation that the surface of the cathode active material is not completely covered by the compound, thus affecting the effect of the compound on the metal. Inhibition effect of ion dissolution.
  • the inhibitory effect of the compound on the metal elution of the cathode active material can be further improved.
  • the compound can also be used as an additive in the slurry of the positive electrode material, coated on the surface of the positive electrode active material, or form a surface on the surface of the positive electrode sheet with the positive electrode active material.
  • Independent film layers and other methods are applied to the positive electrode of secondary batteries. When it is provided as an independent film layer on the surface of the cathode active material, the thickness of the film layer usually does not exceed 10 ⁇ m.
  • the nitrogen-containing borate ester compound provided by this application can form an independent film layer and be directly disposed on the surface of the cathode material.
  • a substance containing the compound can be used as a coating and coated on the surface of the cathode material to form a film layer containing the compound, thereby avoiding direct contact between the cathode active material and the electrolyte, thereby effectively improving the electrolyte in the cathode active material.
  • the problem of metal ion dissolution helps improve the cycle performance and service life of secondary batteries.
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as positive active materials, conductive agents, binders, additives and any other components in a solvent (for example, N-methylpyrrolidone) is used to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent For example, N-methylpyrrolidone
  • the negative electrode sheet usually includes a negative electrode current collector and a negative electrode material layer disposed on at least one surface of the negative electrode current collector.
  • the negative electrode material layer contains a negative electrode active material.
  • the negative electrode current collector has two surfaces opposite in its own thickness direction, and the negative electrode material layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative electrode material layer optionally also contains a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), polymethyl At least one of acrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode material layer optionally also contains a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode material optionally also includes other auxiliaries, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active materials, conductive agents, binders and any other components in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is an electrolyte solution.
  • the electrolyte solution includes electrolyte salts and solvents.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally also includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the electrolyte contains the compound.
  • the nitrogen-containing borate ester compound can be used as an electrolyte additive in secondary batteries.
  • the compound in the electrolyte can move and adsorb to the surface of the positive electrode active material to form a protective layer, thereby isolating the direct contact between the positive electrode active material and the electrolyte, and effectively improving the metal dissolution problem in the positive electrode active material.
  • the compound satisfies the following formula:
  • W 2 is the ratio of the mass of the compound to the mass of the electrolyte.
  • it can be 0.0001wt%, 0.0002wt%, 0.0003wt%, 0.0004wt%, 0.0005wt%, 0.0006wt%, 0.0007wt%, 0.0008wt%, 0.0009wt%, 0.001wt%, 0.002wt%, 0.003wt%, 0.004wt%, 0.005wt%, 0.006wt%, 0.007wt%, 0.008wt%, 0.009wt%, 0.01wt%, 0.02wt%, 0.03wt%, 0.04wt%, 0.05wt%, 0.06wt %, 0.07wt%, 0.08wt%, 0.09wt%, 0.1wt%, or its value is within the range obtained by combining any two of the above values.
  • the compound in the separator can also move and adsorb to the surface of the positive electrode active material through diffusion of the electrolyte to form a protective layer, thus isolating the direct contact between the positive electrode active material and the electrolyte.
  • the loading amount of the compound on the separator is 0.01g/m 2 to 100g/m 2 ; preferably 0.1g/m 2 to 10g/m 2 .
  • the loading amount of the compound on the separator can be 0.01g/m 2 , 0.02g/m 2 , 0.03g/m 2 , 0.04g/m 2 , 0.05g/m 2 , 0.06g/m 2 ,0.07g/m 2 ,0.08g/ m 2 ,0.09g/m 2 ,0.1g/m 2 ,0.2g/m 2 ,0.3g/m 2 ,0.4g/m 2 ,0.5g/m 2 ,0.6 g/m 2 , 0.7g/m 2 , 0.8g/m 2 , 0.9g/m 2 , 1g/m 2 , 2g/m 2 , 3g/m 2 , 4g/m 2 , 5g/ m 2 , 6g/ m 2 , 7g/m 2 , 8g/m 2 , 9g/m 2 , 10g/m 2 , 15g/m 2 , 20g/m 2 , 25g/m 2 , 30g/m 2 ,
  • FIG. 1 shows a square-structured secondary battery 10 as an example.
  • the secondary batteries 10 can be assembled into a battery module, and the number of secondary batteries 10 contained in the battery module can be one or more. The specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • the battery pack 400 may include a battery box and a plurality of battery modules 300 disposed in the battery box.
  • the battery box includes an upper box 401 and a lower box 402.
  • the upper box 401 can be covered with the lower box 402 and form a closed space for accommodating the battery module 300.
  • Multiple battery modules 300 can be arranged in the battery box in any manner.
  • the power device 600 includes at least one of the secondary battery 10 , the battery module 300 , or the battery pack 400 provided in this application.
  • the secondary battery 10, the battery module 300, or the battery pack 400 may be used as a power source for the power-consuming device 600, or may be used as an energy storage unit of the power-consuming device 600.
  • the power-consuming device 600 may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, Electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • the electric device 600 is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or the like.
  • a battery pack 400 or a battery module 300 may be used.
  • Positive electrode sheet 2 The positive electrode active material lithium manganate with a D V 50 of 5 ⁇ m, the conductive agent acetylene black, the binder polyvinylidene fluoride (PVDF), and the compound of formula (II-I) (diethanolamine borate ) was dissolved in the solvent N-methylpyrrolidone (NMP) at a mass ratio of 89.99:5:5:0.01, stir thoroughly and mix evenly to obtain a positive electrode slurry. Then, the positive electrode slurry is evenly coated on the positive electrode current collector aluminum foil, and then dried, cold pressed, and cut to obtain the positive electrode sheet 2.
  • the specific surface area of the positive electrode material in the positive electrode piece 2 is 1.1m 2 /g.
  • Positive electrode plate 4 The positive electrode active material lithium manganate with a D V 50 of 5 ⁇ m, the conductive agent acetylene black, the binder polyvinylidene fluoride (PVDF), and the compound of formula (II-I) (diethanolamine borate ) was dissolved in the solvent N-methylpyrrolidone (NMP) at a mass ratio of 80:5:5:10, stir thoroughly and mix evenly to obtain a positive electrode slurry. Then, the positive electrode slurry is evenly coated on the positive electrode current collector aluminum foil, and then dried, cold pressed, and cut to obtain the positive electrode piece 4.
  • the specific surface area of the positive electrode material in the positive electrode piece 4 is 1.1m 2 /g.
  • Positive electrode piece 6 The positive electrode active material lithium manganate with a D V 50 of 5 ⁇ m, the conductive agent acetylene black, the binder polyvinylidene fluoride (PVDF), and the compound of formula (II-I) (diethanolamine borate ) was dissolved in the solvent N-methylpyrrolidone (NMP) at a mass ratio of 89:5:5:1, stir thoroughly and mix evenly to obtain a positive electrode slurry. Then, the positive electrode slurry is evenly coated on the positive electrode current collector aluminum foil, and then dried, cold pressed, and cut to obtain the positive electrode piece 6. The specific surface area of the positive electrode material in the positive electrode piece 6 was measured to be 0.05 m 2 /g.
  • Positive electrode piece 8 The positive electrode active material lithium manganate with a D V 50 of 5 ⁇ m, the conductive agent acetylene black, the binder polyvinylidene fluoride (PVDF), and the compound of formula (III-I) (tritrifluoroisopropyl Alcoholamine cyclic borate) was dissolved in the solvent N-methylpyrrolidone (NMP) at a mass ratio of 89:5:5:1, stirred thoroughly and mixed evenly to obtain a positive electrode slurry. Then, the positive electrode slurry is evenly coated on the positive electrode current collector aluminum foil, and then dried, cold pressed, and cut to obtain the positive electrode piece 8.
  • the specific surface area of the positive electrode material in the positive electrode piece 8 is 1.1 m 2 /g.
  • Negative electrode sheet 1 Dissolve the negative active material graphite, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), and thickener sodium carboxymethyl cellulose (CMC) in a mass ratio of 90:4:4:2.
  • the solvent is deionized water, and the negative electrode slurry is obtained after mixing evenly.
  • the negative electrode slurry is evenly coated on the negative electrode current collector copper foil one or more times, and then dried, cold pressed, and cut to obtain the negative electrode sheet 1.
  • Example 5 The secondary battery obtained by assembling the positive electrode sheet 6, the separator 1, the negative electrode sheet 1, and the electrolyte 1 according to the above method is Example 6.
  • Example 9 The secondary battery obtained by assembling the positive electrode sheet 8, the separator 1, the negative electrode sheet 1, and the electrolyte 1 according to the above method is Example 9.
  • Sodium-ion battery internal resistance test At 25°C, charge the sodium-ion battery to 4.2V at a constant current of 1C, then charge at a constant voltage of 4.2V until the current is less than 0.05C, and then discharge it at 1C for 30 minutes, which is the capacity of the battery cell. Adjust to 50% SOC. Then touch the positive and negative probes of the TH2523A AC internal resistance tester to the positive and negative terminals of the battery respectively, and read the internal resistance value of the battery through the internal resistance tester.

Abstract

本申请提供了一式(I)、式(II)或式(III)的化合物,其在金属以及含有金属离子的物质表面具有良好的吸附能力,将其应用于二次电池中时能够帮助提升二次电池的循环性能以及使用寿命。

Description

化合物、含有其的二次电池、电池模块、电池包及用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种化合物、含有其的二次电池、电池模块、电池包及用电装置。
背景技术
近年来,二次电池由于其较高的能量密度以及可循环性能,被广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。随着二次电池取得的极大发展以及广泛应用,对其循环性能、使用寿命等性能也提出了更高的要求。
因此,如何提升二次电池的循环性能和使用寿命是一项丞待解决的技术问题。
发明内容
本申请是鉴于上述技术问题而进行的,其目的在于,提供一种化合物、含有其的二次电池、电池模块、电池包以及用电装置,该化合物应用于二次电池时能够有效保护电池的正极活性材料,改善正极活性材料在电池循环过程中金属离子溶出的现象,减少正极活性材料中的金属离子溶出造成的二次电池容量、寿命衰减,从而帮助提高二次电池的循环性能和使用寿命。
第一方面,提供一式(I)、式(II)或式(III)的化合物:
Figure PCTCN2022100148-appb-000001
Figure PCTCN2022100148-appb-000002
Figure PCTCN2022100148-appb-000003
其中,R1-R12各自独立地选自卤原子、碳原子数为1-20的烷基、取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、取代的碳原子数为2-20的烯基、碳原子数为6-26的芳基、取代的碳原子数为6-26的芳基、碳原子数为1-20的羧基、取代的碳原子数为1-20的羧基、碳原子数为1-20的羰基、取代的碳原子数为1-20的羰基、碳原子数为6-26的芳氧基或取代的碳原子数为6-26的芳氧基中的至少一个,R1-R2、R5-R7还各自独立地选自氢原子;R13-R18各自独立地选自卤原子、碳原子数为1-20的烷基、取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、取代的碳原子数为2-20的烯基、碳原子数为6-26的芳基、取代的碳原子数为6-26的芳基、碳原子数为1-20的羧基、取代的碳原子数为1-20的羧基、碳原子数为1-20的羰基、取代的碳原子数为1-20的羰基、碳原子数为6-26的芳氧基或取代的碳原子数为6-26的芳氧基中的至少一个,且R13-R18中的至少一个含有卤原子。
本申请的实施例中,提供了如式(I)、式(II)以及式(III)的含氮硼酸酯类化合物,含氮硼酸酯类化合物在金属或含有金属离子的物质表面具有较强的吸附能力,且具有良好的抗氧化性能以及抗水解性能。当其应用于二次电池时,能够利用其吸附能力、良好的抗氧化性能以及抗水解性能保护二次电池的正极活性材料,改善正极活性材料在电池循环中正极的金属离子溶出现象,降低了金属离子溶出对二次电池的循环容量以及使用寿命的影响,从而提高了二次电池的循环稳定性以及使用寿命。
在一些实施例中,R1-R18各自独立地选自被卤原子、磺酸基或磺酰基取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、碳原子数为6-26的芳基、碳原子数为1-20的羧基、碳原子数为1-20的羰基或碳原子数为6-26的芳氧基种的至少一个。
本申请的实施例中,通过在式(I)、式(II)以及式(III)的含氮硼酸酯类化合物中引入卤原子,能够提高化合物的稳定性,进一步提升化合物的抗氧化性能;在化合物中引入磺酸基或磺酰基,能够在正极活性材料中引入硫元素,帮助提高正极活性材料电化学反应界面的稳定性。
在一些实施例中,式(I)的化合物中R5和R6不同时为C nH 2n+1,其中,1≤n≤ 4。
在一些实施例中,所述化合物选自以下物质中的至少一种:
Figure PCTCN2022100148-appb-000004
Figure PCTCN2022100148-appb-000005
Figure PCTCN2022100148-appb-000006
Figure PCTCN2022100148-appb-000007
Figure PCTCN2022100148-appb-000008
Figure PCTCN2022100148-appb-000009
Figure PCTCN2022100148-appb-000010
Figure PCTCN2022100148-appb-000011
Figure PCTCN2022100148-appb-000012
Figure PCTCN2022100148-appb-000013
Figure PCTCN2022100148-appb-000014
在一些实施例中,式(III)的化合物为在R13-R18处具有至少一条支链的化合物,所述支链上含有卤原子。
本申请的实施例中,通过提供在R13-R18处具有支链的化合物,使得具有环状结构的式(III)的化合物中,不会因R13-R18处的碳原子过多造成氮元素和硼元素之间的空间距离过大,帮助提升化合物的稳定性。通过在支链上引入卤素,能够进一步提高化合物的稳定性以及抗氧化性能。
在一些实施例中,式(III)的化合物的所述支链上的卤原子为氟原子。
本申请的实施例中,通过引入卤素中原子半径最小、电负性最强的氟原子,能够进一步提升含氮硼酸酯类化合物的稳定性和抗氧化性能。
在一些实施例中,所述化合物用于二次电池。
第二方面,提供一种二次电池,所述二次电池包括第一方面任一种实施例中的化合物。
在一些实施例中,所述二次电池包括正极极片,所述正极极片包括集流体和设 置于所述集流体上的正极材料层,所述正极材料层中含有正极活性材料和所述化合物。
本申请的实施例中,该含氮硼酸酯类化合物作为正极材料层的添加剂加入至二次电池中,能够吸附在正极活性材料的表面并形成一层保护层,避免正极活性材料与电解质的直接接触,从而防止正极活性材料中的金属离子溶出。
在一些实施例中,所述正极活性材料含有过渡金属元素。
在一些实施例中,所述过渡金属元素包括钛,钒,铬,锰,铁,钴,镍,铜,锌中的至少一种。
在一些实施例中,所述正极活性材料含有碱金属化合物,所述碱金属包括锂、钠、钾、镁中的至少一种。
在一些实施例中,所述化合物满足下式:
0.001≤W 1/S≤10;优选地,0.01≤W 1/S≤5;
其中,S为所述正极活性材料的比表面积,单位为m 2/g,W 1为所述化合物的质量与所述正极活性材料的质量的比值,单位为wt%。
本申请的实施例中,根据正极活性材料的比表面积设置二次电池中使用的含氮硼酸酯类化合物的量。一方面,可以有效避免含氮硼酸酯类化合物用量过少,无法完全覆盖正极活性材料的整个表面导致的仍有部分正极活性材料的表面与电解质接触从而存在金属溶出的情况;另一方面,可以有效避免含氮硼酸酯类化合物的用量过多从而导致正极活性材料的离子传导能力下降的情况。
在一些实施例中,0.1m 2/g≤S≤40m 2/g,优选地,0.5m 2/g≤S≤20m 2/g。
本申请的实施例中,通过设置正极活性材料的比表面积范围,能够将正极活性材料的比表面积控制在合适的范围内,避免正极活性材料的比表面积过大造成的体积密度降低或正极活性材料的比表面积过小造成的正极材料电化学反应界面面积不足等问题,帮助提升二次电池的能量密度以及电池性能。
在一些实施例中,0.01wt%≤W 1≤10wt%,优选地,0.05wt%≤W 1≤5wt%。
本申请的实施例中,通过设置含氮硼酸酯类化合物与正极活性材料的质量比值,能够根据正极活性材料的质量将含氮硼酸酯类化合物的质量控制在合适的范围内,避免含氮硼酸酯类化合物的质量过大、占用正极活性材料的空间和质量,造成二次电池的容量降低。另外,同时也能够避免含氮硼酸酯类化合物的质量过小,正极活性材料的表面的含氮硼酸酯不足以覆盖正极活性材料表面,无法对正极活性材料的金属溶出 起到有效抑制的情况。
在一些实施例中,所述二次电池包括电解质,所述电解质中含有所述化合物。
本申请的实施例中,通过在电解质中添加含氮硼酸酯类化合物,使得该化合物能够在吸附在正极活性材料的表面从而形成一层保护层,进而隔绝正极活性材料与电解质的直接接触,有效避免正极活性材料中的金属离子溶出。
在一些实施例中,所述化合物满足下式:
0.0001wt%≤W 2≤0.1wt%;优选地,0.001wt%≤W 2≤0.05wt%;
其中,W 2为所述化合物的质量与所述电解质的质量的比值,单位为wt%。
在一些实施例中,所述二次电池包括隔离件,所述隔离件中含有所述化合物。
本申请的实施例中,通过在隔离件中添加该化合物或在隔离件面向正极活性材料的一侧设置该化合物形成的膜层,使得该化合物能够通过电解质迁移至正极活性材料的表面,从而在正极活性材料表面形成一层保护层,隔绝正极活性材料与电解质的直接接触,有效改善正极活性材料中的金属离子溶出。
在一些实施例中,所述化合物在所述隔离件上的负载量为0.01g/m 2至100g/m 2;优选为0.1g/m 2至10g/m 2
第三方面,提供一种电池模块,所述电池模块包括第二方面中的二次电池。
第四方面,提供一种电池包,所述电池包包括第二方面中的二次电池或第三方面中的电池模块中的至少一个。
第五方面,提供一种用电装置,所述用电装置包括第二方面中的二次电池、第三方面中的电池模块或第四方面中的电池包中的至少一种。
第六方面,提供一种如第一方面任一实施例中的化合物在制备二次电池中的用途。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。在附图中,附图并未按照实际的比例绘制。
图1是本申请一种二次电池的示意图。
图2是本申请一种二次电池的示意性结构图。
图3是本申请一种电池模块的示意性结构图。
图4是本申请一种电池包的示意图。
图5是本申请一种电池包的示意性结构图。
图6是本申请一种用电装置的示意图。
图7是本申请对比例1与实施例5的电池循环性能对比图。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的化合物、含有其的二次电池、电池模块、电池包及用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、 6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,以下术语具有以下含义。任何未定义的术语具有它们在技术上公认的含义。
“烷基”指的是具有一个或多个碳原子的单价饱和烃基,可选地,碳原子数为1-20。举例来说,烷基包括直链烃基和支链烃基,例如甲基(CH 3-),乙基(CH 3CH 2-),正丙基(CH 3CH 2CH 2-),异丙基((CH 3) 2CH-),正丁基(CH 3CH 2CH 2CH 2-),异丁基((CH 3) 2CHCH 2-),仲丁基((CH 3)(CH 3CH 2)CH-),叔丁基((CH 3) 3C-),正戊基(CH 3CH 2CH 2CH 2CH 2-),新戊基((CH 3) 3CCH 2-)等。
“取代的烷基”指的是直链或支链中的一个或多个碳原子被任意杂原子或取代基替换的烷基。举例来说,杂原子包括氧原子(-O-)、氮原子(-N-)、硫原子(-S-)等。取代基包括烷氧基,环烷基,环烯基,酰基,酰氨基,酰氧基,氨基,酰氨基,叠氮基,氰基,卤素,羟基,氧代基,硫酮基,羧基,硫代芳氧基,硫代杂芳氧基,硫代杂环氧基,硫醇基,硫代烷氧基,芳基,芳氧基,杂芳基,杂芳杂环基,杂环氧基,硝基,-S(O)n-(其中n为0-2),-NR-(其中R为氢或烷基),-SO-烷基,-SO-芳基,-SO-杂芳基,-SO2-烷基,-SO 2-芳基,-SO 2-杂芳基,和-NRaRb等,其中Ra和Rb 可以是相同的或不同的且选自氢、任选取代的烷基、环烷基、烯基、环烯基、炔基、芳基、杂芳基、和杂环基。
“烯基”指的是具有一个或多个碳原子且具有至少一个双键不饱和位点的直链或支链烃基,可选地,碳原子数为2-20。例如乙烯基(CH 2=CH-),丙烯基(CH 3CH=CH-),烯丙基(CH 2=CH-CH 2-),正丁烯基(-CH 3CH 2CH=CH-)等。
“取代的烯基”指的是直链或支链上的一个或多个碳原子被任意杂原子或取代基替换的烯基。举例来说,杂原子包括氧原子(-O-)、氮原子(-N-)、硫原子(-S-)等。取代基包括烷氧基,环烷基,环烯基,酰基,酰氨基,酰氧基,氨基,叠氮基,氰基,卤素,羟基,氧代基,硫酮基,羧基,羧基烷基,硫代芳氧基,硫代杂芳氧基,硫代杂环氧基,硫醇基,硫代烷氧基,芳基,芳氧基,杂芳基,杂芳氧基,杂环基,杂环氧基,羟基氨基,硝基,-SO-烷基,-SO-取代的烷基,-SO-芳基,-SO-杂芳基,-SO 2-烷基,-SO 2-取代的烷基,-SO 2-芳基和-SO 2-杂芳基等。
“芳基”或“Ar”指的是具有单环或多个缩合环的芳香族化合物,可选地,碳原子数为6-26。举例来说,芳基包括苯基、萘基、茚基等。芳基还包括与芳基稠合的单环,例如,四氢萘基、2,3-二氢化茚基等。
“取代的芳基”指的是芳基的芳环上至少一个或多个碳原子、至少一个或多个与芳环上的碳原子连接的位置由杂原子或取代基替换的芳基。杂原子包括氧原子(-O-)、氮原子(-N-)、硫原子(-S-)等。取代基包括酰氧基,羟基,硫醇基,酰基,烷基,烷氧基,烯基,炔基,环烷基,环烯基,氨基,氨基酰基,酰氨基,烷芳基,芳基,芳氧基,叠氮基,羧基,羧基烷基,氰基,卤素,硝基,杂芳基,杂芳氧基,杂环基,杂环氧基,硫代烷氧基,硫代芳氧基,硫代杂芳氧基,-SO-烷基,-SO-取代的烷基,-SO-芳基,-SO-杂芳基,-SO 2-烷基,-SO 2-芳基,-SO 2-杂芳基和三卤代甲基等。
“羧基”指的是具有一个或多个碳原子且具有-CO 2H官能团的基团,可选地,碳原子数为1-20。
“取代的羧基”指的是-CO 2H官能团中的氢原子由杂原子或取代基替换的羧基。杂原子包括氧原子(-O-)、氮原子(-N-)、硫原子(-S-)等。取代基包括烷基,烯基,炔基、芳基、环烷基、环烯基、杂芳基、杂环基等。
“羰基”指的是具有一个或多个碳原子且具有-CO-官能团的基团,可选地,碳原子数为1-20。
“取代的羰基”指的是羰基中的至少一个碳原子(除-CO-官能团中的碳原子)被杂原子或取代基替换的羰基。杂原子包括氧原子(-O-)、氮原子(-N-)、硫原子(-S-)等。取代基包括氢原子、烷基、烯基、炔基、芳基、环烷基、环烯基、杂芳基、杂环基等。
“芳氧基”指的是芳基的芳环上的至少一个碳原子与氧原子连接形成的基团,可选地,碳原子数为6-26。
“取代的芳氧基”指的是芳氧基中的至少一个碳原子被杂原子或取代基替换的芳氧基。取代基包括酰氧基,羟基,硫醇基,酰基,烷基,烷氧基,烯基,炔基,环烷基,环烯基,氨基,氨基酰基,酰氨基,烷芳基,芳基,芳氧基,叠氮基,羧基,羧基烷基,氰基,卤素,硝基,杂芳基,杂芳氧基,杂环基,杂环氧基,硫代烷氧基,硫代芳氧基,硫代杂芳氧基,-SO-烷基,-SO-取代的烷基,-SO-芳基,-SO-杂芳基,-SO 2-烷基,-SO 2-芳基,-SO 2-杂芳基和三卤代甲基等。
“卤原子”指的是氟(F)、氯(Cl)、溴(Br)、碘(I)、砹(At)。
“磺酸基”指的是-SO 3H。
“磺酰基”指的是R-S(=O) 2-,其中,R包括氢原子、烷基、烯基、炔基、芳基、环烷基、环烯基、杂芳基、杂环基等。
接下来,对本申请的各个实施例进行介绍。
近年来,二次电池由于其较高的能量密度、较长的使用寿命被广泛应用于电动工具、电子产品、电动汽车、航空航天等多个领域,从而得到了长足的发展。通常情况下,二次电池包括正极极片、负极极片、电解质和隔离件。在电池的充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。其中,电解质在正极极片和负极极片之间起到传导离子的作用。隔离件设置于正极极片和负极极片之间,在防止正负极短路的同时使得离子能够从中通过,使得二次电池电化学反应正常进行。
本申请以锂离子电池为例,锂离子电池是一种典型的二次电池,由于其依靠锂离子在正负极之间脱嵌的化学反应进行充放电,锂离子电池又被成为摇椅式电池。锂离子电池的充电过程中,锂离子从正极脱出,经过电解质的传导移动并嵌入到负极活性材料中;而放电过程中,锂离子从负极脱出,经过电解质的传导移动并嵌入到正极活性材料中。
应理解,本申请所述“嵌锂”、“嵌入”过程指锂离子由于电化学反应在正极活 性材料或负极活性材料中嵌入的过程,本申请所述“脱出”、“脱锂”、“脱嵌”过程指锂离子由于电化学反应在正极活性材料或负极活性材料中脱出的过程。
应理解,锂离子电池仅仅是二次电池的一个示例,本申请所述的二次电池还可以是钠离子电池、钾离子电池、镁离子电池等。
锂离子电池的正极活性材料通常使用含锂离子的过渡金属氧化物、含有锂离子的过渡金属化合物或含有前述物质的复合物。但是含过渡金属的正极活性材料在电化学环境中不可避免地会发生金属离子溶出的现象。正极活性材料中的金属离子溶出一方面会破坏正极材料层的结构稳定性,导致电池容量的下降;另一方面溶出的金属离子会迁移并沉积至负极材料层的表面,破坏负极的电子绝缘特性且还会催化负极表面的SEI(Solid electrolyte interphase,SEI)膜分解,使得电化学反应中负极持续消耗电解质并不断生成SEI膜,损失大量的活性锂离子,严重损害电池的使用寿命。
基于此,以含有过渡金属氧化物的正极活性材料为示例,发明人对正极活性材料的金属溶出原因进行了研究并发现正极活性材料的金属离子溶出和正极活性材料表面氧离子的稳定性直接相关。在正极活性材料的晶格结构中,过渡金属离子和氧离子作用从而稳定地存在于氧离子堆积的间隙中。当正极活性材料表面的氧离子受到外界环境的作用时会脱离正极活性材料的表面,从而失去对过渡金属离子的束缚作用,导致过渡金属离子在电场的作用下迁移至电解质中,即发生过渡金属离子溶出。正极活性材料表面的外界环境主要由电解质决定。电解质在正极活性材料表面发生氧化反应或和电池中痕量的水反应均容易生成酸,在酸性环境下,正极活性材料表面的氧离子容易脱离正极材料的表面,从而导致正极活性材料过渡金属离子的溶出。
有鉴于此,本申请实施例提供了一种化合物,其具有如式(I)、式(II)以及式(III)所示的含氮硼酸酯类化合物结构,该化合物在金属或含有金属离子的物质表面具有较强的吸附能力,且具有良好的抗烧结、抗氧化性能以及抗水解性能。将其应用于二次电池时,该化合物能够吸附在含有过渡金属离子的正极活性材料的表面,从而隔绝正极活性材料与电解质的直接接触。通过避免正极活性材料与电解质的直接接触,降低了正极活性材料表面的外界环境对正极活性材料的影响,有效抑制正极活性材料的过渡金属离子溶出现象,帮助提升了二次电池的循环性能和使用寿命。
首先,本申请的实施例提供一种式(I)、式(II)或式(III)的化合物:
Figure PCTCN2022100148-appb-000015
Figure PCTCN2022100148-appb-000016
Figure PCTCN2022100148-appb-000017
其中,R1-R12各自独立地选自卤原子、碳原子数为1-20的烷基、取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、取代的碳原子数为2-20的烯基、碳原子数为6-26的芳基、取代的碳原子数为6-26的芳基、碳原子数为1-20的羧基、取代的碳原子数为1-20的羧基、碳原子数为1-20的羰基、取代的碳原子数为1-20的羰基、碳原子数为6-26的芳氧基或取代的碳原子数为6-26的芳氧基中的至少一个,R1-R2、R5-R7还各自独立地选自氢原子;R13-R18各自独立地选自卤原子、碳原子数为1-20的烷基、取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、取代的碳原子数为2-20的烯基、碳原子数为6-26的芳基、取代的碳原子数为6-26的芳基、碳原子数为1-20的羧基、取代的碳原子数为1-20的羧基、碳原子数为1-20的羰基、取代的碳原子数为1-20的羰基、碳原子数为6-26的芳氧基或取代的碳原子数为6-26的芳氧基中的至少一个,且R13-R18中的至少一个含有卤原子。
具体来说,式(I)、式(II)或式(III)的化合物均属于含氮硼酸酯类化合物。含氮硼酸酯类化合物指的是在硼酸酯类化合物中引入氮元素的一类化合物。硼酸酯类化合物具有防腐、抗静电、杀菌、无毒等特点,被作为润滑油添加剂、活性药物成分的关键中间体等得到了广泛的应用。另外,含氮硼酸酯能够在金属表面具有较强的吸附能力,因此常作为金属防锈剂被使用。常规的硼酸酯类化合物由于其中的硼元素是sp2杂化,其具有一个空的p轨道从而容易受到含有孤电子对的官能团的进攻,导致硼酸酯类化合物容易发生分解或水解。而含氮硼酸酯类化合物在硼酸酯类化合物中引入了氮元素(N),氮元素(N)能够与硼元素(B)形成N-B内配位键或螯合-配位键填充硼元素 (B)中空的p轨道从而有效提升化合物的稳定性。此外,氮元素(N)与硼元素(B)成键同时避免了氮元素(N)上含有未成键的孤电子对,同时提高了化合物的抗氧化性能。
由此,本实施例提供的如式(I)、式(II)以及式(III)所示的含氮硼酸酯类化合物在金属或含有金属离子的物质表面具有较强的吸附能力,且具有良好的抗氧化性能与抗水解性能。当该含氮硼酸酯类化合物应用于二次电池时,能够在吸附于正极活性材料的表面从而有效隔绝正极活性材料与电解质的直接接触,防止电解质中的酸破坏正极活性材料表面的氧离子的稳定性,从而有效抑制正极活性材料的过渡金属离子溶出现象,改善因过渡金属离子溶出导致正极材料层结构被破坏或负极材料层表面的绝缘性以及SEI膜被破坏的情况,有效提升二次电池的循环性能的同时还延长了二次电池的使用寿命。
可选地,在一些实施例中,R1-R18各自独立地选自被卤原子、磺酸基或磺酰基取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、碳原子数为6-26的芳基、碳原子数为1-20的羧基、碳原子数为1-20的羰基或碳原子数为6-26的芳氧基种的至少一个。
具体来说,式(I)、式(II)的化合物中,通过在R1-R12中引入卤素或类卤素的基团,能够进一步提高硼酸酯类化合物的稳定性、抗氧化性能以及抗水解性能。式(III)的化合物中,R13-R18在至少含有一个卤原子的基础上,R13-R18中还可以引入如磺酸基或磺酰基的类卤素基团,能够在正极活性材料的电化学反应界面中引入硫元素,从而提高正极活性材料电化学反应界面的稳定性。
本实施例中,通过在含氮硼酸酯类化合物中引入卤素或类卤素基团,能够提升化合物的稳定性、抗氧化性能以及抗水解性能,使得化合物应用于二次电池时能够更稳定地存在于正极活性材料的表面改善正极活性材料的过渡金属溶出,对正极活性材料形成更加有效的保护,从而帮助提供二次电池的循环性能以及使用寿命。
可选地,在一些实施例中,式(I)的化合物中R5和R6不同时为C nH 2n+1,其中,1≤n≤4。
可选地,在一些实施例中,该化合物选自式(I-I)、式(I-II)、式(I-III)、式(I-IV)、式(II-I)、式(II-II)、式(II-III)、式(II-IV)、式(III-I)、式(III-II)、式(III-III)的化合物中的至少一种,即选自单乙醇胺硼酸酯、单异丙醇胺硼酸酯、单正丙醇胺硼酸酯、单异丁醇 胺硼酸酯、二乙醇胺硼酸酯、二异丙醇胺硼酸酯、二正丙醇胺硼酸酯、二异丁醇胺硼酸酯、三三氟异丙醇胺环硼酸酯、三二氟异丙醇胺环硼酸酯、三三氟异丁醇胺环硼酸酯中的至少一种:
Figure PCTCN2022100148-appb-000018
Figure PCTCN2022100148-appb-000019
Figure PCTCN2022100148-appb-000020
Figure PCTCN2022100148-appb-000021
Figure PCTCN2022100148-appb-000022
Figure PCTCN2022100148-appb-000023
Figure PCTCN2022100148-appb-000024
Figure PCTCN2022100148-appb-000025
Figure PCTCN2022100148-appb-000026
Figure PCTCN2022100148-appb-000027
Figure PCTCN2022100148-appb-000028
应理解,本申请实施例提供的式(I)、式(II)以及式(III)的多种化合物仅作为示例,不应理解成对本申请化合物的限定。
可选地,在一些实施例中,式(III)的化合物在R13-R18处具有支链,该支链含有卤原子。
具体来说,式(III)的化合物在R13-R18处具有至少一个支链。例如,式(III)的化合物可以在R13与R14中的至少一个处具有支链,可以在R15与R16中的至少一处具有支链,也可以在R17与R18中的至少一处具有支链。优选地,式(III)的化合物同时在R13或R14中的一处、R15或R16中的一处以及R17或R18中的一处均具有支链。即式(III)的化合物具有多条支链,每条该支链上均含有卤原子。每条该支链上均含有卤原子时,各个支链所含有的卤原子可以相同,也可以不同。
应理解,“该支链含有卤原子”可以是R13-R18处仅在支链上含有卤原子,也可以是在R13-R18的位置和R13-R18的支链上同时含有卤原子。
本实施例中,对于具有环状结构的式(III)的化合物,通过在氮元素(N)和硼 元素(B)之间设计支链,能够避免氮元素(N)和硼元素(B)之间的空间距离过大造成氮元素(N)和硼元素(B)之间的配位键强度下降,从而帮助提升化合物的稳定性以及抗氧化性能。另,通过在支链上引入卤素,能够在R13-R18的至少一个位置处含有卤原子的情况下,进一步通过引入更多的卤原子提高化合物的稳定性以及抗氧化性能。
可选地,每条支链三的卤原子个数为1-5个。可选地,在一些实施例中,式(III)的化合物的支链上的卤原子为氟原子。
具体来说,如本申请实施例所列举的三三氟异丙醇胺环硼酸酯,其在R14、R16以及R18处均具有支链,每条支链上均含有3个氟原子。
本实施例中,选择卤素中电负性最强的氟原子引入式(III)的化合物的支链,能够进一步提高化合物的稳定性和抗氧化性能。优选地,在式(III)的化合物的三条链中均引入氟原子。式(III)的化合物为环状结构,在其三条链中均引入氟原子,使得每条支链均具有较强的稳定性,能够降低开环的发生。另外,三条支链中的氟原子均不超过5个,由于卤素同时与锂离子之间有较强的相互作用,通过控制支链上引入的氟原子的数量,在化合物应用于二次电池时,能够降低吸附于正极活性材料表面的化合物对锂离子传输效率的影响,从而帮助提高锂离子传输效率。
可选地,在一些实施例中,该化合物用于二次电池。以下适当参照附图对本申请的二次电池、电池模块、电池包以及用电装置进行说明。
在申请的一个实施方式中,提供一种二次电池。通常情况下,二次电池包括正极极片、负极极片、电解质和隔离件。
[正极极片]
正极极片通常包括正极集流体以及设置在正极集流体至少一个表面的正极材料层,正极材料层中含有正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极材料层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲 酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
可选地,在一些实施例中,正极材料层含有过渡金属元素。过渡金属元素包括钛,钒,铬,锰,铁,钴,镍,铜,锌中的至少一种。
可选地,在一些实施例中,正极材料层含有碱金属化合物,其中,碱金属包括锂、钠、钾、镁中的至少一种。
应理解,本申请所述的“抑制金属离子溶出”指的是抑制正极活性材料中除活性金属离子外的金属离子溶出,例如,抑制正极活性材料中的过渡金属离子溶出。以锂离子电池为示例,对于采用磷酸铁锂作为正极活性材料的锂离子电池,抑制金属离子溶出指的是抑制铁离子溶出。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极材料层还可选地含有粘结剂。作为示例,粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极材料层还可选地含有导电剂。作为示例,导电剂可以 包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
可选地,在一些实施例中,正极材料层还含有添加剂。例如,本申请任一实施例中的化合物。
具体来说,本申请提供的含氮硼酸酯类化合物可以作为正极材料层的添加剂。在含有该化合物的二次电池中,该化合物能够在电解质中溶解,从而通过电解质移动并吸附至正极活性材料的表面,在正极活性材料的表面形成一层保护层,从而隔绝正极活性材料与电解质的直接接触。
本实施例中,该含氮硼酸酯类化合物作为正极材料层的添加剂被应用于二次电池中,能够溶解于电解质中并吸附于正极活性材料表面形成保护层,能够避免正极活性材料与电解质的直接接触,从而有效防止正极活性材料中的金属离子溶出,帮助提高二次电池的循环性能以及使用寿命。
可选地,在一些实施例中,作为正极材料层添加剂的该化合物满足下式:
0.001≤W 1/S≤10;优选地,0.01≤W 1/S≤5。
其中,S为正极材料的比表面积(m 2/g),W 1为该化合物的质量与正极材料的质量的比值(wt%)。
具体来说,W 1/S可以为0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2、3、4、5、6、7、8、9、10,或者其数值在上述任意两个数值组合所获得的范围之内。
在将该含氮硼酸酯类化合物作为正极材料层添加剂应用于二次电池中时,其使用量可以根据正极活性材料的比表面积进行设置。该含氮硼酸酯类化合改善正极活性材料金属溶出现象的本质该化合物吸附于正极活性材料表面隔绝正极活性材料与电解质的直接接触,因此,正极活性材料的比表面积与该化合物作为添加剂在正极材料层中的用量呈正相关。换言之,正极活性材料的比表面积越大,所需要的该化合物的用量越多。另外,在正极活性材料的比表面积一定时,该化合物的用量并不是越多越好。例如,当W 1/S<0.001,说明正极活性材料的比表面积较大,而该化合物的用量较少,此时存在正极活性材料表面没有被该化合物完全覆盖的情况,使得部分正极活性材料仍暴露于电解质中与电解质直接接触,无法有效抑制正极活性材料的金属离子溶出。 又例如,当W 1/S>10时,说明正极活性材料的比表面积较小,而该化合物的用量较多,此时存在大量的该化合物吸附于正极活性材料表面,影响正极活性材料表面锂离子的传导能力,且增大二次电池的内阻。由此,需要根据不同正极活性材料的比表面积S调整该化合物作为正极材料层添加剂时的用量,从而保证该化合物抑制金属离子溶出的效果。
本实施例中,根据正极活性材料的比表面积控制该化合物作为正极材料层添加剂时的用量在合适的范围内,能够有效提升该化合物抑制金属离子溶出的效果,帮助提高二次电池的循环性能以及使用寿命。
可选地,在一些实施例中,0.1m 2/g≤S≤40m 2/g,优选地,0.5m 2/g≤S≤20m 2/g。
具体来说,S可以为0.1m 2/g、0.2m 2/g、0.3m 2/g、0.4m 2/g、0.5m 2/g、0.6m 2/g、0.7m 2/g、0.8m 2/g、0.9m 2/g、1m 2/g、2m 2/g、3m 2/g、4m 2/g、5m 2/g、6m 2/g、7m 2/g、8m 2/g、9m 2/g、10m 2/g、12m 2/g、14m 2/g、16m 2/g、18m 2/g、20m 2/g、22m 2/g、24m 2/g、26m 2/g、28m 2/g、30m 2/g、32m 2/g、34m 2/g、36m 2/g、38m 2/g、40m 2/g,或者其数值在上述任意两个数值组合所获得的范围之内。
二次电池中正极活性材料的比表面积S也需要设置在合适的范围内。例如,当S<0.1时,正极活性材料的比表面积S过小,存在正极活性材料表面发生电化学反应的界面面积不足的情况,影响二次电池的容量;当S>40时,正极活性材料的比表面积S过大,影响正极极片的压实密度,从而影响二次电池的体积密度。由此,需要将正极活性材料的比表面积S设置在合适的范围内,从而保证二次电池的容量以及性能。
本实施例中,通过设置正极活性材料的比表面积S的范围,能够将正极活性材料的比表面积S控制在合适的范围内,避免正极活性材料的比表面积S过大造成的体积密度降低或正极活性材料的比表面积S过小造成的正极活性材料电化学反应界面面积不足等问题,帮助提升二次电池的能量密度以及电池性能。
可选地,在一些实施例中,0.01wt%≤W 1≤10wt%,优选地,0.05wt%≤W 1≤5wt%。
具体来说,W 1可以为0.01wt%、0.02wt%、0.03wt%、0.04wt%、0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%、0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、2wt%、3wt%、4wt%、5wt%、 6wt%、7wt%、8wt%、9wt%、10wt%,或者其数值在上述任意两个数值组合所获得的范围之内。
本申请提供的含氮硼酸酯类化合物作为正极材料层的添加剂时,还可以根据正极活性材料的质量来调整该化合物的用量,使得该化合物与正极活性材料的质量比W 1在合适的范围内。例如,当W 1<0.01时,说明该化合物在正极活性材料中所占的质量比过小,用量过少,会导致正极活性材料表面没有被该化合物完全覆盖的情况,从而影响该化合物对金属离子溶出的抑制效果。再例如,当W 1>10时,说明该化合物在正极活性材料中所占的质量比过大,即该化合物的用量过多。由于该化合物仅作为正极活性材料添加剂存在与二次电池中,并不会参与正极的电化学反应贡献容量,其用量过大会导致二次电池的能量密度降低。
本实施例中,通过设置含氮硼酸酯类化合物与正极活性材料的质量比值在合适的范围内,能够进一步提升该化合物对正极活性材料的金属溶出的抑制效果。
可选地,在一些其他的实现方式中,该化合物还可以以在正极材料的浆料中作为添加剂、在正极活性材料的表面进行包覆,或者在正极极片具有正极活性材料的表面形成一个独立的膜层等方式应用于二次电池的正极。当其作为独立的膜层设置于正极活性材料的表面时,该膜层的厚度通常不超过10μm。
具体来说,本申请提供的含氮硼酸酯类化合物能够形成独立的膜层直接设置于正极材料的表面。例如,可以将含有该化合物的物质作为涂层,涂布在正极材料的表面从而形成一层含有该化合物的膜层,避免了正极活性材料与电解质的直接接触,从而有效改善正极活性材料中的金属离子溶出问题,帮助提高二次电池的循环性能以及使用寿命。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂、添加剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片通常包括负极集流体以及设置在负极集流体至少一个表面上的负极材料层,负极材料层中含有负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极材料层设 置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极材料层还可选地含有粘结剂。粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极材料层还可选地含有导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极材料还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或 全固态的。
在一些实施方式中,电解质采用电解液。电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
可选地,在一些实施例中,电解质中含有该化合物。具体来说,该含氮硼酸酯类化合物可以作为电解液添加剂应用于二次电池中。电解质中的该化合物能够移动并吸附至正极活性材料的表面形成一层保护层,从而隔绝正极活性材料与电解质的直接接触,有效改善正极活性材料中的金属溶出问题。
可选地,在一些实施例中,在该化合物作为电解质添加剂的情况下,该化合物满足下式:
0.0001wt%≤W 2≤0.1wt%;优选地,0.001wt%≤W 2≤0.05wt%。
其中,W 2为该化合物的质量与电解质的质量的比值。
具体来说,可以为0.0001wt%、0.0002wt%、0.0003wt%、0.0004wt%、0.0005wt%、0.0006wt%、0.0007wt%、0.0008wt%、0.0009wt%、0.001wt%、0.002wt%、0.003wt%、0.004wt%、0.005wt%、0.006wt%、0.007wt%、0.008wt%、0.009wt%、0.01wt%、0.02wt%、0.03wt%、0.04wt%、0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%、0.1wt%,或者其数值在上述任意两个数值组合所获得的范围之内。
[隔离件]
在一些实施方式中,二次电池中还包括隔离件。本申请对隔离件的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离 件。
在一些实施方式中,隔离件的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离件可以是隔离膜,隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
可选地,在一些实施例中,隔离件中含有该化合物。具体来说,该含氮硼酸酯类化合物可以作为隔离件添加剂或隔离件表面的涂层应用于二次电池中。例如,其作为隔离膜添加剂,使得制备得到的隔离件中含有该化合物。由此,在二次电池中,隔离件中的该化合物能够溶解于电解质,随后移动并吸附至正极活性材料的表面形成一层保护层,从而隔绝正极活性材料与电解质的直接接触。又例如,其作为隔离件表面的涂层,涂布在隔离件面向正极极片的一侧。由此,在二次电池中,隔离件中的该化合物也能够经电解质的扩散,移动并吸附于正极活性材料的表面形成保护层,从而隔绝正极活性材料与电解质的直接接触。
本实施例中,通过在隔离件中添加该化合物或在隔离件面向正极极片的一侧设置含有该化合物的涂层,也可以使得该化合物在正极活性材料的表面形成一层保护层,从而有效改善正极活性材料中金属离子溶出的问题。
可选地,在一些实施例中,该化合物在隔离件上的负载量为0.01g/m 2至100g/m 2;优选为0.1g/m 2至10g/m 2
具体来说,该化合物在隔离件上的负载量可以为0.01g/m 2、0.02g/m 2、0.03g/m 2、0.04g/m 2、0.05g/m 2、0.06g/m 2、0.07g/m 2、0.08g/m 2、0.09g/m 2、0.1g/m 2、0.2g/m 2、0.3g/m 2、0.4g/m 2、0.5g/m 2、0.6g/m 2、0.7g/m 2、0.8g/m 2、0.9g/m 2、1g/m 2、2g/m 2、3g/m 2、4g/m 2、5g/m 2、6g/m 2、7g/m 2、8g/m 2、9g/m 2、10g/m 2、15g/m 2、20g/m 2、25g/m 2、30g/m 2、35g/m 2、40g/m 2、45g/m 2、50g/m 2、55g/m 2、60g/m 2、65g/m 2、70g/m 2、75g/m 2、80g/m 2、85g/m 2、90g/m 2、95g/m 2、100g/m 2,或者其数值在上述任意两个数值组合所获得的范围之内。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的二次电池10。
在一些实施方式中,参照图2,外包装可包括壳体21和盖板22。其中,壳体21可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体21具有与容纳腔连通的开口,盖板22能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件23。电极组件23封装于所述容纳腔内。电解液浸润于电极组件23中。二次电池10所含电极组件23的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池10可以组装成电池模块,电池模块所含二次电池10的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图3是作为一个示例的电池模块300。参照图3,在电池模块300中,多个二次电池10可以是沿电池模块300的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池10进行固定。
可选地,在一个实施例中,电池模块300还可以包括具有容纳空间的外壳,多个二次电池300容纳于该容纳空间。
可选地,在一个实施例中,上述电池模块300还可以组装成电池包,电池包所含电池模块300的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图4和图5是作为一个示例的电池包400。参照图4和图5,在电池包400中可以包括电池箱和设置于电池箱中的多个电池模块300。电池箱包括上箱体401和下箱体402,上箱体401能够盖设于下箱体402,并形成用于容纳电池模块300的封闭空间。多个电池模块300可以按照任意的方式排布于电池箱中。
图6为本身提供的一种用电装置600的示意图。
应理解,用电装置600包括本申请提供的二次电池10、电池模块300、或电池包400中的至少一种。二次电池10、电池模块300、或电池包400可以用作用电装置 600的电源,也可以用作用电装置600的能量存储单元。用电装置600可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为用电装置600,可以根据其使用需求来选择二次电池10、电池模块300或电池包400。
作为一个示例的用电装置600,如图6所示,该用电装置600为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置600对二次电池10的高功率和高能量密度的需求,可以采用电池包400或电池模块300。
作为另一个示例的用电装置600可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池10作为电源。
另外,本申请实施例还提供一种该化合物在制备二次电池中的用途。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
(1)式(I)、式(II)及式(III)化合物的合成
(1.1)式(I-I)的化合物(单乙醇胺硼酸酯)的合成
在带有分水回流装置、温度计的烧瓶中,加入一乙醇胺12g和硼酸12g,加热至90℃,并充分搅拌,使硼酸完全溶于一乙醇胺;继续搅拌,并缓慢升温至135℃,在135℃下保持5h,得到单乙醇胺硼酸酯。
(1.2)式(II-I)的化合物(二乙醇胺硼酸酯)的合成
在带有分水回流装置、温度计的烧瓶中,加入二乙醇胺44g和硼酸12g,加入甲苯,加热至120℃,搅拌使硼酸溶解,控制反应温度为130℃,反应4h左右。反应生成的水被甲苯带出并通过分水回流装置排出反应体系。随着反应的进行及反应中生成的水被抽出,体系中的反应液逐渐变得黏稠,蒸除甲苯后即制得二乙醇胺硼酸酯。
(1.3)式(III-I)的化合物(三三氟异丙醇胺环硼酸酯)的合成
在带有分水回流装置、温度计的烧瓶中,加入三三氟异丙醇胺70g和硼酸12 g,加入甲苯,加热至130℃,搅拌使硼酸溶解,控制反应温度为130℃,反应8h左右。反应生成的水被甲苯带出并通过分水回流装置排出反应体系。随着反应的进行及反应中生成的水被抽出,体系中的反应液逐渐变得黏稠,蒸除甲苯后即制得三三氟异丙醇胺环硼酸酯。
(2)二次电池的制备
(2.1)正极极片的制备
正极极片1:将D V50为5μm的正极活性材料锰酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按质量比90:5:5溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片1。其中正极极片1中正极材料的比表面积为1.1m 2/g。应理解,D V50指的是正极活性材料中累计体积粒度分布百分数达到50%的粒子所对应的粒径。
正极极片2:将D V50为5μm的正极活性材料锰酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、式(II-I)的化合物(二乙醇胺硼酸酯)按质量比89.99:5:5:0.01溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片2。其中正极极片2中正极材料的比表面积为1.1m 2/g。
正极极片3:将D V50为5μm的正极活性材料锰酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、式(II-I)的化合物(二乙醇胺硼酸酯)按质量比89:5:5:1溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片3。其中正极极片3中正极材料的比表面积为1.1m 2/g。
正极极片4:将D V50为5μm的正极活性材料锰酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、式(II-I)的化合物(二乙醇胺硼酸酯)按质量比80:5:5:10溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片4。其中正极极片4中正极材料的比表面积为1.1m 2/g。
正极极片5:将D V50为5μm的正极活性材料锰酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、式(II-I)的化合物(二乙醇胺硼酸酯)按质量比89:5:5:1溶解 于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片5。其中正极极片5中正极材料的比表面积为50m 2/g。
正极极片6:将D V50为5μm的正极活性材料锰酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、式(II-I)的化合物(二乙醇胺硼酸酯)按质量比89:5:5:1溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片6。测得正极极片6中正极材料的比表面积为0.05m 2/g。
正极极片7:将D V50为5μm的正极活性材料锰酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、式(I-I)的化合物(单乙醇胺硼酸酯)按质量比89:5:5:1溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片7。测得正极极片7中正极材料的比表面积为1.1m 2/g。
正极极片8:将D V50为5μm的正极活性材料锰酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、式(III-I)的化合物(三三氟异丙醇胺环硼酸酯)按质量比89:5:5:1溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片8。其中正极极片8中正极材料的比表面积为1.1m 2/g。
正极极片9:将D V50为12μm的正极活性材料Na 0.85Ni 0.25Mn 0.75O 2、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按质量比90:5:5溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片9。其中正极极片9中正极材料的比表面积为0.8m 2/g。
正极极片10:将D V50为12μm的正极活性材料Na 0.85Ni 0.25Mn 0.75O 2、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、式(II-I)的化合物(二乙醇胺硼酸酯)按质量比89:5:5:1溶解于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料。随后将正极浆料均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切得到正极极片10。其中正极极片10中正极材料的比表面积为0.8m 2/g。
(2.2)负极极片的制备
负极极片1:将负极活性材料石墨、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照质量比90:4:4:2溶解于溶剂去离子水中,混合均匀后得到负极浆料。将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,再经过烘干、冷压、分切得到负极极片1。
负极极片2:将负极活性材料硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照质量比90:4:4:2溶解于溶剂去离子水中,混合均匀后得到负极浆料。将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,再经过烘干、冷压、分切得到负极极片2。
(2.3)隔离膜的制备
隔离膜1:将Al 2O 3粉料和粘结剂按99:1分散在水中获得浆料,然后将浆料涂敷在PE隔膜上,干燥后获得隔离膜1。
隔离膜2:将式(II-I)的化合物(二乙醇胺硼酸酯)、Al 2O 3粉料和粘结剂按10:89:1分散在水中获得浆料,然后将浆料涂敷在PE隔膜上,干燥后获得隔离膜2。
(2.4)电解液的制备
电解液1:在氩气环境中,将有机溶剂EC和EMC按照体积比3:7混合均匀,加入质量比为12.5%的LiPF 6溶解于上述有机溶剂中,并加入质量比为2%的VC作为添加剂,混合均匀后得到电解液1。
电解液2:在氩气环境中,将有机溶剂EC和EMC按照体积比3:7混合均匀,加入质量比为12.5%的LiPF 6溶解于上述有机溶剂中,并加入质量比为2%的VC和质量比为1.5%的式(II-I)的化合物(二乙醇胺硼酸酯)作为添加剂,混合均匀后得到电解液2。
电解液3:将有机溶剂EC和EMC按照体积比3:7混合均匀,加入质量比为13.8%的NaPF 6溶解于上述有机溶剂中,并加入质量比为2%的VC作为添加剂,混合均匀后得到电解液3。
(2.5)二次电池的组装
将上述正极极片、隔离膜、负极极片按顺序叠放,使得隔离膜处于正极极片和负极极片之间并能够隔离正极极片与负极极片;然后将上述叠放好的部件卷绕得到电极组件,电极组件又称电芯;将电芯设置于电池壳体中,干燥后注入上述电解液;经过化成、静置等工艺后得到不同实施例与对比例中的二次电池。制得的每个二次电池 的正极材料质量均为450g,电解液质量为150g,隔离膜2.4m 2
对比例1:将正极极片1、隔离膜1、负极极片1、电解液1按照上述方法组装得到的二次电池为对比例1。
实施例1:将正极极片2、隔离膜1、负极极片1、电解液1按照上述方法组装得到的二次电池为实施例1。
实施例2:将正极极片3、隔离膜1、负极极片1、电解液1按照上述方法组装得到的二次电池为实施例2。
实施例3:将正极极片4、隔离膜1、负极极片1、电解液1按照上述方法组装得到的二次电池为实施例3。
实施例4:将正极极片5、隔离膜1、负极极片1、电解液1按照上述方法组装得到的二次电池为实施例4。
实施例5:将正极极片6、隔离膜1、负极极片1、电解液1按照上述方法组装得到的二次电池为实施例6。
实施例6:将正极极片1、隔离膜1、负极极片1、电解液2按照上述方法组装得到的二次电池为实施例6。
实施例7:将正极极片1、隔离膜2、负极极片1、电解液1按照上述方法组装得到的二次电池为实施例7。
实施例8:将正极极片7、隔离膜1、负极极片1、电解液1按照上述方法组装得到的二次电池为实施例8。
实施例9:将正极极片8、隔离膜1、负极极片1、电解液1按照上述方法组装得到的二次电池为实施例9。
实施例10:将正极极片9、隔离膜1、负极极片2、电解液3按照上述方法组装得到的二次电池为实施例10。
实施例11:将正极极片10、隔离膜1、负极极片2、电解液3按照上述方法组装得到的二次电池为实施例1。
不同实施例的产品参数详见表1。
表1:对比例及不同实施例的产品参数
Figure PCTCN2022100148-appb-000029
Figure PCTCN2022100148-appb-000030
接下来,对相关参数的测试过程进行说明。
(3)电池的性能测试
(3.1)体积能量密度测试
在25℃下,将二次电池以1C恒流充电至4.2V,然后以4.2V恒压充电至电流小于0.05C,然后再以0.33C放电到2.8V,得到放电能量Q。利用游标卡尺测量电芯的长,宽,高,计算得到体积V。由此,计算得到体积能量密度(Q/V)。
(3.2)电芯内阻测试
锂离子电池内阻测试:在25℃下,将锂离子电池以1C恒流充电至4.3V,然后以4.3V恒压充电至电流小于0.05C,然后再以1C放电30min,即将电芯的电量调整到50%SOC。然后将TH2523A交流内阻测试仪的正负表笔分别接触电池的正负极,通过内阻测试仪读取电池的内阻值(mΩ)。
钠离子电池内阻测试:在25℃下,将钠离子电池以1C恒流充电至4.2V,然后以4.2V恒压充电至电流小于0.05C,然后再以1C放电30min,即将电芯的电量调整到50%SOC。然后将TH2523A交流内阻测试仪的正负表笔分别接触电池的正负极,通过内阻测试仪读取电池的内阻值。
(3.3)45℃下的电池循环性能测试
锂离子电池:在45℃下,将锂离子电池以1C恒流充电至4.3V,然后以4.3V恒压充电至电流小于0.05C,然后将锂离子电池以1C恒流放电至3.0V,此为一个充放电过程。如此反复进行充电和放电,计算锂离子电池循环500次后的容量保持率。
其中,锂离子电池循环500次后的容量保持率(%)=(第500次循环的放电容量/首次循环的放电容量)×100%。
钠离子电池:在45℃下,将钠离子电池以1C恒流充电至4.2V,然后以4.2V恒压充电至电流小于0.05C,然后将钠离子电池以1C恒流放电至2.0V,此为一个充放电过程。如此反复进行充电和放电,计算钠离子电池循环500次后的容量保持率。
其中,钠离子电池循环500次后的容量保持率(%)=(第500次循环的放电容量/首次循环的放电容量)×100%。
(3.4)45℃下电池循环后的负极过渡金属含量测试
将上述在45℃下循环500次后的锂离子电池、钠离子电池拆解,取出负极极片,然后参照EPA 6010D-2014利用电感耦合等离子体原子发射光谱法测试负极极片上过渡金属的含量。
按照上述方法分别对制备得到的对比例1、实施例1-11进行电池性能测试,结果详见表2。图7展示了测得的对比例1与实施例5在45℃下循环500圈的电池循环性能图。
表2:对比例及不同实施例的性能测试结果
Figure PCTCN2022100148-appb-000031
从对比例1分别与实施例1、实施例8以及实施例9的结果比较可知,在锂离子电池的正极材料中引入本申请提供的含氮硼酸酯类化合物能够显著减少负极过渡金属的含量,说明其有效地抑制了正极材料中的过渡金属离子溶出,并且实施例1循环500次后的容量保持率明显提高,证明在锂离子电池中引入该化合物能够有效提升锂离子电池的循环性能,从而提高了锂离子电池的使用寿命。
从实施例1至实施例5的结果比较可知,通过根据正极材料的比表面积将该化合物的用量控制在合适的范围内能够进一步提高其抑制正极材料金属离子溶出性能,从而进一步提升锂离子电池的循环性能和使用寿命。
从对比例1分别与实施例6、实施例7的结果比较可知,在锂离子电池的隔离膜、电解液中引入本申请提供的含氮硼酸酯类化合物也能够显著减少负极过渡金属的含量,有效抑制正极材料中的金属离子溶出,帮助提升锂离子电池的循环性能和使用寿命。
从实施例10和实施例11的结果比较可知,在钠离子电池的正极材料中引入本申请提供的含氮硼酸酯类化合物同样能够显著减少钠离子电池中正极材料的金属离子溶出,有效抑提升钠离子电池的循环性能和使用寿命。
综上,在二次电池中引入本申请提供的式(I)、式(II)或式(III)的含氮硼酸酯类化合物,能够有效抑制正极材料中的金属离子溶出,降低金属离子溶出对二次电池的循环容量以及使用寿命的影响,从而提高了二次电池的循环稳定性以及使用寿命。
由图7更是可以明显看出具有本申请提供的式(II-I)的化合物的锂离子电池在45℃循环500圈后的容量保持率高达94%;而没有加入本申请提供的式(II-I)的化合物的锂离子电池在45℃下循环500圈后的容量保持率仅为78%。再次证明了本申请提供的含氮硼酸酯类化合物在二次电池中对电池的循环性能以及使用寿命具有有益影响。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (20)

  1. 一种式(I)、式(II)或式(III)的化合物:
    Figure PCTCN2022100148-appb-100001
    其中,R1-R12各自独立地选自卤原子、碳原子数为1-20的烷基、取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、取代的碳原子数为2-20的烯基、碳原子数为6-26的芳基、取代的碳原子数为6-26的芳基、碳原子数为1-20的羧基、取代的碳原子数为1-20的羧基、碳原子数为1-20的羰基、取代的碳原子数为1-20的羰基、碳原子数为6-26的芳氧基或取代的碳原子数为6-26的芳氧基中的至少一个,R1-R2、R5-R7还各自独立地选自氢原子;R13-R18各自独立地选自卤原子、碳原子数为1-20的烷基、取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、取代的碳原子数为2-20的烯基、碳原子数为6-26的芳基、取代的碳原子数为6-26的芳基、碳原子数为1-20的羧基、取代的碳原子数为1-20的羧基、碳原子数为1-20的羰基、取代的碳原子数为1-20的羰基、碳原子数为6-26的芳氧基或取代的碳原子数为6-26的芳氧基中的至少一个,且R13-R18中的至少一个含有卤原子。
  2. 根据权利要求1所述的化合物,其中,R1-R18各自独立地选自被卤原子、磺酸基或磺酰基取代的碳原子数为1-20的烷基、碳原子数为2-20的烯基、碳原子数为6-26的芳基、碳原子数为1-20的羧基、碳原子数为1-20的羰基或碳原子数为6-26的芳氧基种的至少一个。
  3. 根据权利要求1或2所述的化合物,其中,式(I)的化合物中R5和R6不同时为C nH 2n+1,其中,1≤n≤4。
  4. 根据权利要求1-3中任一项所述的化合物,其中,所述化合物选自以下物质中的至少一种:
    Figure PCTCN2022100148-appb-100002
    Figure PCTCN2022100148-appb-100003
  5. 一种二次电池,其中,所述二次电池包括如权利要求1-4中任一项所述的化合物。
  6. 根据权利要求5所述的二次电池,其中,所述二次电池包括正极极片,所述正极极片包括集流体和设置于所述集流体上的正极材料层,所述正极材料层中含有正极活性材料和所述化合物。
  7. 根据权利要求6所述的二次电池,其中,所述正极活性材料含有过渡金属元素。
  8. 根据权利要求7所述的二次电池,其中,所述过渡金属元素包括钛,钒,铬,锰,铁,钴,镍,铜,锌中的至少一种。
  9. 根据权利要求6所述的二次电池,其中,所述正极活性材料含有碱金属化合物,所述碱金属包括锂、钠、钾、镁中的至少一种。
  10. 根据权利要求5-9中任一项所述的二次电池,其中,所述化合物满足下式:
    0.001≤W 1/S≤10;优选地,0.01≤W 1/S≤5;
    其中,S为所述正极活性材料的比表面积,单位为m 2/g,W 1为所述化合物的质量与所述正极活性材料的质量的比值,单位为wt%。
  11. 根据权利要求10所述的二次电池,其中,0.1m 2/g≤S≤40m 2/g,优选地,0.5m 2/g≤S≤20m 2/g。
  12. 根据权利要求10所述的二次电池,其中,0.01wt%≤W 1≤10wt%,优选地,0.05wt%≤W 1≤5wt%。
  13. 根据权利要求5所述的二次电池,其中,所述二次电池包括电解质,所述电解质中含有所述化合物。
  14. 根据权利要求13所述的二次电池,其中,所述化合物满足下式:
    0.0001wt%≤W 2≤0.1wt%;优选地,0.001wt%≤W 2≤0.05wt%;
    其中,W 2为所述化合物的质量与所述电解质的质量的比值,单位为wt%。
  15. 根据权利要求5所述的二次电池,其中,所述二次电池包括隔离件,所述隔离件中含有所述化合物。
  16. 根据权利要求15所述的二次电池,其中,所述化合物在所述隔离件上的负载量为0.01g/m 2至100g/m 2;优选为0.1g/m 2至10g/m 2
  17. 一种电池模块,其中,所述电池模块包括权利要求5-16中任一项所述的二次电池。
  18. 一种电池包,其中,所述电池包包括根据权利要求17所述的二次电池,或权利要求28所述的电池模块中的至少一种。
  19. 一种用电装置,其中,所述用电装置包括如权利要求5-16中任一项所述的二次电池、如权利要求17所述的电池模块或如权利要求18所述的电池包中的至少一种。
  20. 一种权利要求1-4中任一项化合物在制备二次电池中的用途。
PCT/CN2022/100148 2022-06-21 2022-06-21 化合物、含有其的二次电池、电池模块、电池包及用电装置 WO2023245422A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100148 WO2023245422A1 (zh) 2022-06-21 2022-06-21 化合物、含有其的二次电池、电池模块、电池包及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100148 WO2023245422A1 (zh) 2022-06-21 2022-06-21 化合物、含有其的二次电池、电池模块、电池包及用电装置

Publications (1)

Publication Number Publication Date
WO2023245422A1 true WO2023245422A1 (zh) 2023-12-28

Family

ID=89378762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100148 WO2023245422A1 (zh) 2022-06-21 2022-06-21 化合物、含有其的二次电池、电池模块、电池包及用电装置

Country Status (1)

Country Link
WO (1) WO2023245422A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132946A (ja) * 2001-10-24 2003-05-09 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2009245830A (ja) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
CN104232245A (zh) * 2013-06-24 2014-12-24 中国石油天然气股份有限公司 一种水溶性含硼防锈剂的制备
CN106675698A (zh) * 2016-12-28 2017-05-17 长沙艾森设备维护技术有限公司 一种金属切削液及其制备方法
CN110556578A (zh) * 2019-09-06 2019-12-10 中国科学院福建物质结构研究所 一种电解液添加剂、含有其的电解液以及该电解液在锂离子电池中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132946A (ja) * 2001-10-24 2003-05-09 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2009245830A (ja) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
CN104232245A (zh) * 2013-06-24 2014-12-24 中国石油天然气股份有限公司 一种水溶性含硼防锈剂的制备
CN106675698A (zh) * 2016-12-28 2017-05-17 长沙艾森设备维护技术有限公司 一种金属切削液及其制备方法
CN110556578A (zh) * 2019-09-06 2019-12-10 中国科学院福建物质结构研究所 一种电解液添加剂、含有其的电解液以及该电解液在锂离子电池中的应用

Similar Documents

Publication Publication Date Title
WO2023221380A1 (zh) 负极极片及其制备方法、二次电池、电池模块、电池包及用电装置
EP4362156A1 (en) Lithium ion battery, battery module, battery pack, and electric apparatus
WO2023045379A1 (zh) 一种电解液、包括其的二次电池及该二次电池的制备方法
WO2023044934A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
US20230117520A1 (en) Electrolytic solution, secondary battery, and power consumption apparatus
WO2023225799A1 (zh) 二次电池以及包含其的电池模块、电池包及用电装置
WO2023206216A1 (zh) 非水电解液、二次电池、电池模块、电池包和用电装置
WO2023010927A1 (zh) 二次电池、电池模块、电池包及用电装置
WO2023060462A1 (zh) 正极极片、包括其的二次电池、电池模块、电池包和用电装置
WO2023050406A1 (zh) 锂离子电池及包含其的电池模块、电池包和用电装置
WO2022165780A1 (zh) 二次电池、及含有其的电池模块、电池包和装置
WO2023245422A1 (zh) 化合物、含有其的二次电池、电池模块、电池包及用电装置
WO2022133961A1 (zh) 锂二次电池及含有其的电池模块、电池包和用电装置
JP2023549998A (ja) リチウムイオン電池
WO2023245423A1 (zh) 化合物、含有其的二次电池、电池模块、电池包及用电装置
WO2023216130A1 (zh) 一种电解液、二次电池、电池模块、电池包和用电装置
WO2023130310A1 (zh) 电解液、二次电池和用电装置
WO2023130212A1 (zh) 一种锂离子二次电池、电池模块、电池包和用电装置
WO2023193230A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
WO2023184154A1 (zh) 一种电解液及其二次电池、电池模块、电池包和用电装置
WO2024098171A1 (zh) 电芯及其制备方法、二次电池和用电装置
WO2023044752A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2024082123A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947202

Country of ref document: EP

Kind code of ref document: A1