WO2023243983A1 - 에너지 조절을 위한 배터리 관리 시스템 - Google Patents

에너지 조절을 위한 배터리 관리 시스템 Download PDF

Info

Publication number
WO2023243983A1
WO2023243983A1 PCT/KR2023/008093 KR2023008093W WO2023243983A1 WO 2023243983 A1 WO2023243983 A1 WO 2023243983A1 KR 2023008093 W KR2023008093 W KR 2023008093W WO 2023243983 A1 WO2023243983 A1 WO 2023243983A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
resistance
balancing
battery management
management system
Prior art date
Application number
PCT/KR2023/008093
Other languages
English (en)
French (fr)
Inventor
이동영
최광찬
Original Assignee
스탠다드에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스탠다드에너지 주식회사 filed Critical 스탠다드에너지 주식회사
Publication of WO2023243983A1 publication Critical patent/WO2023243983A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
    • H01C3/14Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids the resistive element being formed in two or more coils or loops continuously wound as a spiral, helical or toroidal winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices

Definitions

  • the present invention relates to a battery management system for energy control, and more specifically, to optimize charging and discharging of battery cells through a new current management means for battery conditions that change due to internal or external factors during the charging and discharging process of battery cells. It is about a battery management system to manage and control energy as stably as possible.
  • the batteries that make up the ESS used in this way use secondary batteries that charge and discharge electrochemical energy, which can provide cost-effective and clean energy storage solutions.
  • Examples of existing ESS configurations for electrochemical energy storage include lithium-ion, lead-acid, sodium sulfur, and redox-flow batteries.
  • ESS electrochemical energy storage
  • different storage times are required for different applications such as short-term storage, medium-term storage, and long-term storage. These different types have different physical and/or chemical properties.
  • balancing of the battery cells that make up the ESS has recently been recognized as an important factor in efficient management of the ESS. It is known that the stabilization state can be effectively achieved through balancing of battery cells and management of state of charge (SOC), especially temperature.
  • SOC state of charge
  • Korean Patent Registration No. 10-2004332 applies energy from high-voltage cells to low-voltage cells through a passive balancing resistor until the cell voltage reaches the target voltage.
  • a method of performing active balancing and passive balancing simultaneously is proposed.
  • this balancing method has limitations in use because it is uneconomical to use balancing resistance for active balancing.
  • the voltage deviation between cells is monitored through a voltage measurement unit, and according to the monitoring results, at least one of the cells is connected to the active cell balancing unit and the passive balancing unit through the balancing switching unit.
  • a discharge resistor that consumes the energy transferred from the cell as heat energy and a discharge switch that controls the current flowing through the discharge resistor are used. Technologies including: However, in this case as well, there is a problem in that the energy control means is complicated by performing active balancing in addition to passive balancing for cell balancing at the same time, so the efficiency of energy control for passive balancing is not good.
  • Patent Document 1 Korean Patent Registration No. 10-2004332
  • Patent Document 2 Korean Patent Registration No. 10-2373716
  • the present invention aims to propose a method of stably managing the ESS by controlling energy in an economical and simple manner for balancing the battery cells that constitute the ESS.
  • the purpose of the present invention is to provide a system for managing batteries based on cell balancing by controlling the energy of battery cells.
  • Another object of the present invention is to propose a method of controlling the balancing of battery cells in a quick, stable, economical and efficient manner by appropriately managing heat, such as using resistance in the battery.
  • Another object of the present invention is to provide a battery management system for minimizing cell deviation due to internal resistance through energy control in an ESS containing a plurality of battery cells and using relatively high current for battery charging and discharging. there is.
  • the object of the present invention is not limited to the above object, but includes all objects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention, or all objects that can be achieved by the description or technical idea of the present invention. It must be understood.
  • the present invention is a system for balancing the voltage of each cell in a connected state of a plurality of battery cells, including a voltage measuring device, a switch that can open and close according to the voltage, and a Provides a battery management system that enables temperature management, including current management means that can consume or utilize bypassed current.
  • a bypass resistance device may be included for temperature management.
  • the resistance equipment for bypass may include resistance means showing a resistance value of 1W or more.
  • the bypass resistance equipment may have a standard resistance area of 60 mm 2 or more when the standard resistance package number is 4000 or more.
  • the bypass resistance equipment when the standard resistance is 4000 or more, has a resistance of less than 1.5 ⁇ and more than 1 ⁇ , a width of the resistor of 0.09 to 0.34 mm, and a length of 140 to 210 mm.
  • the width and length of the resistor are configured to increase in direct proportion to each other in proportion to the decrease, and may include a resistor configured to maintain a proportional relationship at a regular or irregular rate within the above range.
  • the resistance equipment for bypass may be provided with a conductor resistance having one or more of the following forms: a snail structure, a spiral structure, a straight or curved structure in series or parallel, or a mixed dense structure thereof.
  • the bypass resistance device may include a short circuit means that causes a short circuit when the current exceeds a set threshold.
  • the bypass resistance equipment may be arranged in a single layer or multiple layers above and below the PCB (Printed Circuit Board), and may be configured so that currents in the resistors flow in opposite directions at corresponding positions. .
  • PCB Print Circuit Board
  • the battery management system may be provided with heat dissipation means.
  • a structure for sharing heat between battery cells may be included.
  • the heat dissipation means may have a heat dissipation plate attached to dissipate heat, or a fin structure may be applied for heat dissipation.
  • means for dissipating heat by driving the motor using balancing current may be included.
  • the emitted heat energy can be collected and used as an additional energy source.
  • a temperature sensor may be provided in the battery cell or around the battery cell.
  • the temperature sensor may include a temperature sensitive material.
  • the temperature-sensitive material can be applied as a paint or sheet.
  • the present invention includes the steps of measuring the voltage on battery cells connected to each other, wherein the voltage is measured by increasing the voltage on the battery cells to perform voltage uniformity matching between battery cells;
  • a battery management method including.
  • the relatively rapid cell balancing is performed after performing at least one of the measurement step, the operation change step, and the confirmation step, taking into account at least one of the following,
  • the bypass current has a relatively large magnitude to increase the balancing current when the amount of imbalance for the battery cell in question is severe;
  • the relatively large currents used for cell balancing generate relatively large amounts of heat
  • one or more loads may be of relatively large size, which increases cost and may involve increasing the printed circuit board (PCB) size of the BMS.
  • PCB printed circuit board
  • At least one of the loads may include one or more conductive lines with a specific layout integrated with the PCB instead of using conventional resistive components.
  • heat dissipation over the conductive lines can be achieved by employing at least one of a specific spacing between the conductive lines, the heat sink and the heat dissipation fin elements.
  • At least one of the loads is a motor load associated with a motor provided at or near the PCB, whereby operation of the motor may achieve temperature peak shaving within the BMS or direct heat away from the PCB. You can.
  • a temperature-sensitive paint or color-changing element may be applied or placed on or near the PCB to visually confirm that heat dissipation is effective.
  • the present invention is a method for balancing the voltage of each cell in a connected state of a plurality of vanadium-based battery cells, including a voltage measuring device and a switch that performs On-Off according to the voltage; A resistor means applied to the PCB in a laminated state as a current management means capable of consuming or utilizing the bypassed current when the switch is turned on; It includes a battery management system through energy control that performs cell balancing by controlling energy with the resistance means and stabilizes the battery charge and discharge state, including means for managing the temperature generated during the energy control process.
  • the cell balancing is performed by actively or passively maintaining the balance of the state of charge (SoC) value and using the heat generated from the PCB in the energy control process to lower the temperature of the vanadium-based battery to 5. It may include performing temperature management on vanadium-based battery cells by raising the temperature to above °C.
  • SoC state of charge
  • the temperature management may include maintaining an optimal operating efficiency temperature range of 15 to 40°C and controlling it to not exceed 50°C in any case.
  • heat and temperature are managed through stable energy control in response to physical and chemical changes such as the capacity and temperature of each cell that change due to internal or external factors during the charging and discharging process of the battery cell, thereby ensuring optimal performance of the battery cell. It can be managed stably to enable charging and discharging.
  • energy control is performed using bypass current, and temperature is managed stably by forming resistance under certain conditions, thereby effectively improving battery cell balancing and battery efficiency.
  • FIG. 1A schematically illustrates an example state of charge of a battery cell in an unmanaged state of energy regulation in an ESS.
  • FIG. 1B schematically depicts an example state of charge of a battery cell, which is a managed state of energy regulation in an ESS.
  • Figure 2A schematically shows an example of an active balancing method of battery cells in an ESS.
  • Figure 2B schematically shows an example of a passive balancing method of battery cells in an ESS.
  • FIG. 3 schematically shows an exemplary battery management system including a plurality of battery cells electrically connected to a battery system constituting an ESS and designed to enable energy control through the use of resistance.
  • Figure 4A conceptually shows an example configuration for an example resistor type applicable to a PCB of a BMS in accordance with the present invention.
  • FIG. 4B conceptually shows an example of application of a design for an exemplary resistor type applicable according to the present invention, where a cochlear-structure resistor design is applied to the PCB of a BMS.
  • Figure 5 is a diagram showing the configuration of a resistance design installed on the PCB of a BMS, comparing examples of the use of existing resistance elements and the resistance design applied to one side, both sides, and multi-layer surfaces of the PCB according to the present invention.
  • Figure 6 is a circuit diagram simply showing the configuration of a circuit applicable to a system that performs battery cell balancing using resistance design according to the present invention as an example.
  • Figure 7 is a diagram showing the comparison of heat generation test results under the same conditions in the case of applying a conventional resistance element and the case of performing cell balancing by applying the layered resistance design (linear resistance) according to the present invention.
  • each component is omitted or schematically shown for convenience and clarity, and the size of each component does not reflect the actual size and specifications.
  • the same terms refer to the same components throughout the specification, and descriptions of the same components may be included in the accompanying drawings, and specific reference numerals, etc. may be omitted.
  • the present invention is an example of a battery management system, and can typically provide a system for managing a battery based on heat or temperature control or management through energy control.
  • the present invention stably manages heat or temperature in response to physical and chemical changes such as the capacity and temperature of each cell that change due to internal or external factors during the charging and discharging process of the battery cell. It concerns a method of managing battery cells to operate within a stable range by stably controlling energy to enable optimized charging and discharging.
  • the battery management system is applied to an ESS including a plurality of battery cells, and includes one or more of a lithium-ion battery cell, a vanadium battery, a redox battery (RFB), and a lead battery.
  • a lithium-ion battery cell a lithium-ion battery cell
  • a vanadium battery a vanadium battery
  • a redox battery RFB
  • a lead battery a lead battery.
  • a method of controlling the balancing of battery cells in a quick and efficient manner is presented by appropriately managing heat caused by resistance as a preferred method of heat management through energy control of a battery management system (BMS). do.
  • BMS battery management system
  • the battery management system (BMS) of the present invention essentially refers to a control system electrically connected to a battery pack including a plurality of battery cells.
  • BMS battery management systems
  • These battery management systems (BMS) provide battery protection, including battery monitoring, estimate the operating state of the battery, continuously optimize battery performance, and communicate operating state to external devices.
  • a battery system includes multiple batteries that can be electrically connected in series and/or parallel within the battery pack so that the battery cells within the battery pack reach similar or identical states of charge (SoC). Involves balancing cells.
  • SoC states of charge
  • 1A and 1B respectively illustrate the charging state of a cell before and after balancing.
  • a battery module does not have a BMS
  • damage to battery cells that have deteriorated in various processes can be accelerated.
  • the capacity of battery cells that deteriorate during charging can cause the charging limit to be reached prematurely.
  • the entire battery pack can continue to be charged even when degraded battery cells have reached their charge limit. This overcharging can overcharge already aged battery cells, further worsening damage and accelerating the failure of the battery pack.
  • battery cells that deteriorate during discharge may reach their discharge limit prematurely due to their low capacity. Even though degraded battery cells have reached their discharge limit, the entire battery pack may continue to discharge. This overdischarge can further damage already deteriorated cells. Therefore, a BMS is needed for balancing battery cells.
  • some balancing schemes can be achieved by dissipation of energy, where energy is removed from the most charged cell and lost as heat.
  • some other balancing schemes can be non-dissipative in the sense that energy can be transferred to different cells, significantly reducing the energy lost as heat.
  • the balancing method by energy dissipation is also called passive balancing, and the non-dissipative balancing method is called active balancing.
  • FIGS. 2A and 2B schematically illustrate example methods of active and passive balancing for battery cells, respectively.
  • battery cells in a battery stack are monitored through passive and active balancing to maintain the same or similar state of charge (SoC) between battery cells.
  • SoC state of charge
  • passive balancing creates battery cells with similar or substantially the same state of charge by dissipating excess charge through a bleeder resistor.
  • Active balancing is a more complex balancing that redistributes charge across charge and discharge cycles, increasing the total charge available in the battery pack, thus increasing system operation time, reducing charging time compared to passive balancing, and dissipating the heat generated during balancing. Reduce.
  • passive balancing has several obvious disadvantages. For example, wasting energy can be environmentally bad. However, passive balancing has the advantage of being simple and low cost. On the other hand, active balancing has clear advantages because it does not waste energy, but it can also have disadvantages. For example, the use of more electrical components may be disadvantageous due to higher cost, lower reliability, and/or larger volume footprint. Additionally, the quiescent current generated by active balancing can result in much greater power losses than passive balancing.
  • the present invention proposes a preferred battery management system for performing passive balancing through energy control among the existing energy balancing methods described above.
  • this passive balancing method is more suitable for application to vanadium-based batteries that are charged and discharged at low voltage.
  • room temperature e.g., above approximately 30°C
  • the battery and BMS can be operated in a stable state under different conditions and environments.
  • FIG. 3 is an exemplary battery system including a plurality of battery cells electrically connected to a battery management system (BMS), and schematically shows a system designed by applying resistance as a current management means according to the system configuration of the present invention. It was done.
  • BMS battery management system
  • the battery management system proposed in the present invention proposes, for example, a new resistance design as a current control means to control energy in a stable state, and proposes various temperature and heat management methods through this. .
  • the illustrated BMS can be preferably applied to passive balancing, and a plurality of battery cells can be electrically connected to each other in series and/or parallel.
  • a case where battery cells are connected in parallel and the current flowing through the battery stack is large can be preferably applied to an energy dissipation system using resistance.
  • the battery system further includes a plurality of switches each connected to one of the battery cells.
  • the battery system further includes one or more resistors electrically connected to the switch and configured to dissipate power from the battery cell upon activation of the one or more switches.
  • the battery system further includes a controller configured to sense the state of charge (SoC) of the battery cell and selectively activate one or more switches based on the state of charge. For example, when the control unit detects that the charge state of one or more battery cells is above the threshold after charging for a certain period of time by measuring the voltage of one or more battery cells, it can activate each switch connected to one or more battery cells. there is. Alternatively, use individual resistors connected to more battery cells to selectively dissipate excess charge. The controller may discharge excess charge from one or more battery cells until the one or more battery cells have a similar or substantially the same state of charge as shown in FIG. 1 .
  • FIG. 3 illustrates an example battery management system (BMS) implemented on a circuit board (PCB) (busbars not shown).
  • PCB circuit board
  • switches and controllers are integrated into a circuit board (PCB).
  • the PCB includes terminals for electrically connecting a plurality of battery cells.
  • SoC state of charge
  • the battery management system of the present invention can be preferably applied as a system for balancing the voltage of each cell when a plurality of battery cells are connected, that is, when the battery of an energy storage system (ESS) is connected.
  • a battery management system that ensures stable management of battery cells, including, for example, a voltage measuring device, a switch that can open and close depending on the voltage, and a current management means that consumes or utilizes the bypassed current when the switch is closed. may include.
  • the BMS applied in ESS is a device necessary to adjust the voltage of each cell to a certain level when increasing the voltage by connecting battery cells in electrical series, and includes a voltage measuring device and a voltage It may include an element that includes a switch that can be opened and closed accordingly, and a load that can consume bypassed current when the switch is closed.
  • the element containing this load may preferably include a resistance device for bypass.
  • the bypass current can be increased to perform rapid cell balancing while maintaining the stability of temperature, heat, and energy.
  • performing cell balancing by increasing the bypass current means preventing overall battery performance deterioration and resulting current disconnection due to delayed cell balancing, and rapid passive cell balancing by increasing the bypass current. It can be said to be an important technological element in that it makes it possible to maintain a stable charging state. In the present invention, such rapid cell balancing can be easily achieved by increasing the bypass current.
  • the resistance of the load since the battery cell voltage is constant depending on the cell type, the resistance of the load must be adjusted low to increase the balancing current of the battery cell. At this time, if the load resistance is to be low, the size of the BMS board may increase and the cost may increase.
  • problems generally occur in ESS due to differences in voltage or state of charge (SoC) of the battery stack. For example, if the internal resistance is outside a certain range, voltage deviation between cells occurs, and if any of the cells reaches the upper voltage limit, the battery may be shut off.
  • SoC state of charge
  • a condition for a low resistance value of the resistor in order to dissipate energy by flowing a high current, a condition for a low resistance value of the resistor must be created.
  • the element with a low resistance value is usually small in size and has a low durability capacity. , problems arise that make it unsuitable for flowing high currents.
  • designing and utilizing a laminated resistor as a current management means on the circuit board (PCB) within the BMS not only simplifies the process but also secures space by not applying devices.
  • a new system has been implemented that is possible and allows the thickness to be reduced by not using thick, high-capacity resistance elements.
  • a bypass resistance device can be included as a method for controlling the state of charge (SoC) of the battery cell, for example, as a current management means for cell balancing.
  • SoC state of charge
  • the present invention can be configured as a BMS in which the resistor applied as a current management means is a stacked resistor, more preferably a stacked conductor resistance, instead of a general resistor.
  • This type of resistor can reduce the price of the resistor component and can be made integrated with the PCB board, eliminating the height and minimizing the BMS volume.
  • the resistance can be adjusted by the thickness, length, and material of the conductors for forming resistance, and it is advantageous to crowd the conductors to reduce the size of the substrate, but when the conductors are crowded, heat is not dissipated. Damage to resistance or boards may occur due to excessive temperature rise. In this case, it is necessary to lower the temperature of the resistor.
  • the bypass resistance device may include resistance means indicating an allowable power value of 2W or more. These resistance means may be formed, for example, on the PCB surface.
  • the present invention can enable efficient ESS battery management by adjusting the voltage value difference between cells through passive balancing, which performs balancing by burning energy by flowing a high current through a resistor to balance battery cells.
  • the bypass resistance equipment may have a standard resistance area of 60 mm 2 or more when the standard resistance number is 4000 or more. If the standard resistance area is too small, it may be difficult to control energy to maintain desirable cell balancing.
  • the resistance equipment for bypass has a resistance of less than 1.5 ⁇ and 1 ⁇ , a width of the resistor of 0.09 to 0.34 mm, and a length of 140 to 210 mm.
  • the resistor may include a resistor configured such that the width and length of the resistor increase in direct proportion to each other in proportion to the decrease, and the proportional relationship is maintained at a regular or irregular rate within the above range.
  • the above standard resistance refers to IPC-2221 and IPC-9592B.
  • the standard resistor package number is expressed in inches. For example, if the standard resistor package number is 4012, the size of the resistor is 0.4 inch ⁇ 0.12 inch.
  • the standard resistance of 4012 can be seen as equivalent to 10130 (mm).
  • the corresponding standard resistance package number is presented with reference to standards such as JEDEC, EIAJ, and IEC60115-8, but there may be slight differences depending on the standard, and the standard resistance package number of the present invention is not limited to a specific standard.
  • the resistance is too low or too high, energy control may not be sufficient or unnecessary power consumption may occur. If the width and length of the resistor are outside the range of the above ratio, the resistance may be insufficient, energy control may not be possible due to overload, or defects may occur due to heat generation. This resistor configuration induces efficient resistance generation in a limited PCB area, enabling stable energy control.
  • the bypass resistance equipment may be provided with a wire resistance having one or more of the following forms: a snail structure, a spiral structure, a straight or curved structure in series or parallel, or a mixed dense structure thereof.
  • such bypass resistance equipment can be configured in various forms as shown in FIG. 4.
  • various types of resistance wires can be constructed.
  • the conductor resistance may be provided in a snail structure (or clip type), spiral structure, straight dense structure, etc.
  • Figure 4a conceptually shows an example of a configuration for an example resistor type applicable to the PCB of such a BMS.
  • the clip type can be used by applying heat management
  • the check type parallel type
  • the coil type shows a structure suitable for wireless charging.
  • Figure 4b is an application example of this resistance design, conceptually showing an example of applying a snail structure resistance design to the PCB of a BMS.
  • the resistor design in terms of efficiency, it is preferable to apply a series resistor design when the substrate temperature specification is higher than the heat generation temperature of the resistor. If the heat generation is large, the resistor design is preferable in terms of efficiency. In one resistor design, heat generation can be reduced by increasing the width and length of the resistance wire.
  • the resistor of the present invention may preferably be made of copper.
  • the common resistor currently used is a nichrome wire wrapped with a ceramic such as cement.
  • the nichrome wire must prevent oxidation and withstand high temperatures, but the temperature of ceramics rises easily due to low heat conductivity, making it difficult to dissipate heat. . Therefore, it is difficult to utilize the heat generated from the resistance.
  • the copper materials are arranged in a stack. Even if the same heat is generated, the heat generation density per unit area is lower and heat conduction is faster. Therefore, it is easy to utilize the generated heat source, and the heat can be quickly dissipated when not needed, making it easy to manage heat and temperature.
  • the bypass resistance device may include a short circuit means that causes a short circuit when the current exceeds a set threshold.
  • Figure 5 is a diagram showing the configuration of a resistance design installed on the PCB of a BMS, comparing examples of the use of existing resistance elements and the resistance design applied to one side, both sides, and multi-layer surfaces of the PCB according to the present invention.
  • the bypass resistance equipment may be arranged in a single layer or multiple layers above and below the PCB, and may be configured so that currents in the resistors flow in opposite directions at corresponding positions.
  • This type of resistor configuration can be formed as a single layer or multiple layers on one or both sides of the PCB, as illustrated in FIG. 5.
  • conventional high-power devices are generally mounted on a PCB and require heat dissipation by the device itself. Therefore, the volume increases for heat dissipation, and if a heat sink is added to the device, more area is required.
  • the resistor is designed in a stacked form on the PCB as exemplified in the present invention, it is very advantageous to secure space.
  • the resistance can be applied to one side, both sides, and multilayer sides of the PCB, respectively.
  • arranging the resistors in layers above and below the PCB is very advantageous in that heat generated by the resistance can be dissipated to one or both sides of the board.
  • a method of designing a resistance between the boards is used to further expand the resistance area to suppress heat generation.
  • the present invention includes all types of layered resistor designs on such substrates.
  • the present invention in relation to the case where the resistor is designed in a laminated form on the PCB as described above, can apply a method of using a copper wire as a resistance wire formed in layers on the PCB. That is, according to one embodiment of the present invention, for example, an insulating layer can be formed between the copper foil, which is a copper resistor formed in a PCB, using glass fiber, epoxy, etc.
  • the resistance equipment for bypass according to the present invention is arranged in a single layer or multiple layers on the top and bottom of the PCB, and is configured so that the current of the resistors flows in opposite directions at corresponding positions on both sides of the PCB board. It can be included. If the straight pattern continues in the same direction, a magnetic field is formed in the direction in which the current flows. Therefore, in the resistance design of the present invention, when designing a double-sided PCB and a multi-layer PCB, the formation of a magnetic field can be suppressed by designing the patterns to cross each other so that current flows in the opposite direction at the corresponding position. However, on the contrary, if power must be transmitted through a magnetic field, such as wireless charging, the connection direction can be configured to be the same in all layers. The present invention includes all these methods and a battery management device applicable to these methods.
  • an embodiment of the present invention is a battery management device for balancing the voltage of each cell in a connected state of a plurality of battery cells, including a voltage measuring device, a switch that can open and close according to the voltage, and a switch that can open and close according to the voltage and a
  • a current management means that consumes or utilizes the bypassed current
  • a resistance facility installed in a single or multi-layer stack on the circuit board (PCS) of the battery management system (BMS), and the charging state is monitored in a passive manner using the resistance facility.
  • PCS circuit board
  • BMS battery management system
  • It includes a battery management device for energy regulation to ensure temperature management, including means for stabilizing cell balancing.
  • the resistance equipment in the battery management device as described above, may be formed in layers using copper conductors on one side, both sides, or in multiple layers of the PCB with an insulating layer in between.
  • a circuit configuration as shown in FIG. 6 may be exemplified.
  • Figure 6 is a circuit diagram simply showing the configuration of a circuit applicable to a system that performs battery cell balancing through energy control using resistor design according to the present invention as an example.
  • the degree of imbalance of the battery cell is severe, it may be necessary to partially or entirely increase the balancing current to bypass a large amount of current. In this process, the larger the current flows, the faster the cell balancing. Although this is possible, heat may be generated, and if a lot of this heat is generated, appropriate measures may be needed to manage the heat and temperature.
  • the balancing current is more than 0.5% of the main current, the balancing current can be considered large, and using a large balancing current allows relatively rapid cell balancing.
  • the heat generated when energy is controlled by such a resistance means, the heat generated can be maintained in a stable state through temperature control.
  • a method of discharging heat can be an example, and the heat emitted in this way can be used as another means of thermal management of battery cells through heat dissipation.
  • the present invention preferably performs passive balancing using a resistance device to control the energy of the battery cell as described above, so the configuration is simple and the cost is low. However, because power loss occurs and power is released as heat, heat management is necessary.
  • a heat dissipation means may be provided in case heat is generated in the battery cell by using the above resistance equipment or by other means.
  • a structure for sharing heat between battery cells can be applied as part of the heat dissipation means or for stable temperature management.
  • an individual heat sink may be attached to the conductor resistance to dissipate heat, or a fin structure may be applied for heat dissipation.
  • a method of lowering the average temperature by sharing heat with peripheral resistors that have lower temperatures by not performing balancing using a common heat sink may be preferably applied.
  • a method for dissipating heat or preventing concentration of heat using a driving unit such as a motor using balancing current as a means for heat management can be applied.
  • a driving unit such as a motor using balancing current as a means for heat management
  • some or all of the resistance can be replaced with a motor load.
  • the heat generated by the BMS balancing current can be shared inside the BMS to shave the temperature peak of a specific channel (resistance) or the heat can be extracted to the outside of the BMS or to a specific location depending on the motor direction.
  • heat energy emitted due to resistance or other reasons can be collected and utilized as an additional energy source.
  • a temperature sensor may be provided in the battery cell or around the battery cell for such heat management. Temperature-sensitive materials can be used as components of such temperature sensors.
  • a temperature-sensitive material that changes color depending on temperature is used to detect heat generated when the BMS operates in the form of a paint or sheet. It can be implemented to perform the following function.
  • the reactive and non-reactive parts of the material can be distinguished by the discoloration of the temperature-sensitive material.
  • a temperature-sensitive material for example, any material that changes permanently or a material whose color is restored when the temperature is restored can be used.
  • a section of thinning thickness is added to a specific position of the conductor pattern to configure the set threshold current or more.
  • it may include a short-circuiting means that causes a short circuit. If configured in this way, the system can be managed more stably from overcurrent during the balancing process by using a short-circuiting means that operates like a fuse.
  • it is possible to add a function that recognizes when the fuse function operates and is disconnected due to the short circuit means and transmits an abnormal signal to the main control system.
  • the present invention includes measuring the voltage of battery cells connected to each other, wherein the voltage is measured by increasing the voltage of the battery cells to perform voltage uniformity matching between battery cells;
  • a battery management method including.
  • the relatively fast cell balancing can be performed by considering at least one of the following after performing at least one of the measurement step, the operation change step, and the confirmation step.
  • the bypass current has a relatively large size to increase the balancing current when the amount of imbalance for the corresponding battery cell is severe;
  • the relatively large currents used for cell balancing generate relatively large amounts of heat;
  • a correspondingly low load resistance is required;
  • one or more loads may be relatively large in size, which increases cost and may involve increasing the printed circuit board (PCB) size of the BMS.
  • PCB printed circuit board
  • At least one of the above-mentioned loads may comprise one or more conductive lines with a specific layout integrated with the PCB instead of using conventional resistive components. With these conductive lines, the resistance design mentioned above can be applied.
  • heat dissipation over the conductive lines can be achieved by employing at least one of a specific spacing between the conductive lines, the heat sink and the heat dissipation fin elements.
  • the heat dissipation means or temperature sensitive sensor can be applied.
  • temperature-sensitive paint or color-changing elements could be applied or placed on or near the PCB to visually confirm whether heat dissipation is effective.
  • At least one of the loads is a motor load associated with a motor provided at or near the PCB, whereby operation of the motor may achieve temperature peak shaving within the BMS or direct heat away from the PCB. You can.
  • the present invention as described above is a very suitable system for controlling the energy deviation of the cell due to the internal resistance of a vanadium-based battery cell, such as a vanadium ion battery (VIB), to minimize it, and for using a relatively high current for charging and discharging the battery.
  • a vanadium-based battery cell such as a vanadium ion battery (VIB)
  • the present invention is a method for balancing the voltage of each cell in a connected state of a plurality of vanadium-based battery cells, including a voltage measuring device and a switch that performs On-Off according to the voltage; Resistor means stacked on the PCB as a current management means capable of consuming or utilizing the bypassed current when the switch is turned on; It includes a battery management system for energy control that performs cell balancing by controlling energy with the resistance means, and includes means for managing the temperature generated during the energy control process to stabilize the battery charge and discharge state.
  • the cell balancing of the vanadium-based battery cell as described above is performed, for example, by actively or passively balancing the state of charge (SoC) value and increasing the temperature of the vanadium-based battery by more than 5 ° C.
  • SoC state of charge
  • Temperature management of the base battery cell can be performed. In this case, the heat generated during the passive balancing process through energy control using a resistance facility is released and the released heat is managed, which can have a desirable effect in improving the performance of the vanadium-based battery.
  • the temperature management can preferably be adjusted to maintain an optimal operating efficiency temperature range of 15-40°C and in no case exceed 50°C.
  • the temperature of the battery can be maintained within the optimal operating efficiency temperature range of 15 to 40°C, and the temperature of the PCB can be adjusted so as not to exceed a temperature outside the specifications of the PCB.
  • the temperature of the PCB can be adjusted so as not to exceed a temperature outside the specifications of the PCB.
  • Low T g Glass transition temperature
  • Middle T g is 150°C ⁇ 160°C
  • High T g is 170°C ⁇ 180°C, controlled to the temperature that the PCB can withstand. Needs to be.
  • the battery management system through energy control applies a resistance facility in a laminated form to the PCB in performing balancing of the battery cells of the ESS to simply and efficiently control energy in a stable state. Balancing can be performed.
  • the battery management system according to the present invention is in a laminated form in which the resistance within the PCB board is printed or inserted, for example, and has the advantage of simplifying the process by eliminating the need for mounting separate components such as resistance elements, and has a double-sided resistance design due to the layered resistance. Since heat can be released from both sides, it is advantageous for heat generation and temperature control.
  • the horizontal and vertical volumes may be similar to those of a general resistor, but the height is dramatically lowered, making it possible to secure a significantly advantageous space, and because it is possible to utilize the secured space, for example, heat sinks for temperature control in the secured space, etc. Necessary equipment can be installed.
  • the corresponding standard resistance package number is presented with reference to standards such as JEDEC, EIAJ, and IEC60115-8, but there may be slight differences depending on the standard, and the standard resistance package number of the present invention is not limited to a specific standard.
  • the battery cell used was a vanadium ion battery, and the test specifications, resistance calculation, and resistance comparison test results are shown in the following table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 에너지 조절을 위한 배터리 관리 시스템에 관한 것으로서, 더욱 상세하게는 배터리 셀의 충방전 과정에서 내부 또는 외부 요인에 의해 변화되는 배터리의 조건을 새로운 전류관리수단을 통하여 배터리 셀의 최적화된 충방전이 가능하도록 안정적으로 관리하여 에너지를 조절하기 위한 베터리 관리시스템에 관한 것이다.

Description

에너지 조절을 위한 배터리 관리 시스템
본 발명은 에너지 조절을 위한 배터리 관리 시스템에 관한 것으로서, 더욱 상세하게는 배터리 셀의 충방전 과정에서 내부 또는 외부 요인에 의해 변화되는 배터리의 조건을 새로운 전류관리수단 통하여 배터리 셀의 최적화된 충방전이 가능하도록 안정적으로 관리하여 에너지를 조절하기 위한 배터리 관리시스템에 관한 것이다. 
본 명세서에서 달리 표시되지 않는 한, 이 섹션에 설명되는 내용들은 이 출원의 청구항들에 대한 종래 기술이 아니며, 이 섹션에 포함된다고 하여 종래 기술이라고 인정되는 것은 아니다.
산업의 급속한 발달로 인하여 에너지의 소비가 급격이 증가하면서, 환경의 변화가 일어나고 지구 온난화가 수반되고 있다.
세계 경제 성장이 지속됨에 따라, 태양광, 풍력 등을 기반으로 하는 신재생에너지를 활용하는 비율이 증가하고 있다. 이러한 신재생에너지를 포함하는 에너지원을 활용하기 위한 여러가지 장치 중에서 에너지 저장 시스템(ESS: Energy Storage Systems)의 사용이 활발하게 전개되고 있다.
이러한 ESS를 지속 가능한 신재생에너지의 저장 시스템으로 이용하는 경우 여러 형태의 에너지를 간헐적으로 이용하는 경우가 많다. 이러한 신재생에너지의 간헐적 가용성으로 인한 변동에 대비하여 그리드 네트워크들의 안정성을 향상시키기 위해, ESS를 사용하여 잉여 전기를 저장하며, 필요한 경우 저장된 전기를 최종 고객이나 전력 그리드로 전달하여 이용하도록 할 수 있다.
이렇게 이용하는 ESS를 구성하는 배터리는 전기화학 에너지를 충전 및 방전하는 이차전지를 사용하는데, 이는 비용효율이 높고 깨끗한 형태의 에너지 저장 솔루션들을 제공할 수 있다.
기존의 전기화학 에너지 저장을 위한 ESS의 구성은들의 예로서, 리튬 이온, 납산, 나트륨 황 및 산화환원 흐름(redox-flow) 배터리들을 들 수 있다. 그러나ESS를 이용하는 과정에서 단기 저장(short-term storage), 중기 저장(medium-term storage), 및 장기 저장(long-term storage)과 같은 서로 다른 적용들에 대해서는 서로 다른 저장 횟수가 필요하다. 이렇게 서로 다른 유형들은 서로 다른 물리적 및/또는 화학적 성질 들을 갖는다.
그러므로, 이러한 상기 전기화학 ESS들의 특정한 적용에 대한 적합성을 판단하는 요인들에 관하여 몇 가지 예를 들면, 투자 비용, 전력, 에너지, 수명, 재활용 가능성, 효율성, 확장성(scalability) 및 유지 관리 비용 등이 있다. 따라서 적절한 전기화학 ESS를 선택하고 설계할 때 이러한 경쟁 요인들이 고려된다.
이 중에서 최근 ESS의 관리를 효율적으로 하기 위해서는 ESS를 구성하는 배터리 셀의 밸런싱 등이 중요한 요소로 인식되고 있다. 이러한 배터리 셀의 밸런싱과 충전상태(SOC) 등 특히, 온도의 관리를 통해 안정화 상태가 효과적으로 이루어질 수 있다는 사실이 알려지고 있다.
그러나 이러한 배터리의 기능을 효율적으로 관리하기 위하여 온도를 안정적으로 관리하는 것은 용이하지 않을 뿐만 아니라, ESS를 구성하는 배터리 셀의 특성과 구성에 따라 밸런싱 등을 조절하여 기능을 효율적으로 관리하게 위한 적절한 조건을 설정하는데 어려움이 많다.
종래 ESS의 배터리 셀에 대한 에너지 조절 기술로서, 한국특허등록 제10-2004332호에서는 전압이 높은 셀의 에너지를 패시브 밸런싱 저항을 통해 전압이 낮은 셀에 인가하여 셀 전압이 목표 전압에 도달할 때까지 액티브 밸런싱과 패시브 밸런싱을 동시에 수행하는 방법을 제안하고 있다. 그러나 이러한 밸런싱 방법은 밸런싱 저항을 액티브 밸런싱에 활용하기 위한 방법이 비경제적이어서 사용에 제약이 있다.
또한, 다른 예로서 한국특허등록 제10-2373716호에서는 전압 측정부를 통해 셀 간 전압편차를 모니티링하고, 모니터링 결과에 따라 밸런싱 스위칭부를 통해 셀 중 적어도 하나를 액티브 셀 밸런싱부와 패시브 밸런싱부에 연결하여 액티브 셀 밸런싱부와 상기 패시브 밸런싱부 중 어느 하나를 통해 셀의 전압을 밸런싱하는 방법의 일예로서 셀로부터 전달된 에너지를 열에너지로 소비하는 방전저항 및 상기 방전저항에 흐르는 전류를 단속하는 방전스위치를 포함하는 기술이 제안되어 있다. 그러나 이 경우도 셀 밸런싱을 위하여 패시브 밸런싱 이외에 액티브 밸런싱을 동시에 수행하도록 하여 에너지 조절 수단이 복잡해지는 문제가 있어서 패시브 밸런싱을 위한 에너지 조절에 효율성이 좋지 않다.
{선행기술문헌}
[특허문헌]
(특허문헌 1) 한국특허등록 제10-2004332호
(특허문헌 2) 한국특허등록 제10-2373716호
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여, ESS를 구성하는 배터리 셀의 밸런싱을 위하여 경제적이고 간단한 방법으로 에너지를 조절하여 안정적으로 ESS를 관리하는 방안을 제시하는 것을 해결과제로 한다.
따라서 본 발명의 목적은 배터리 셀의 에너지를 조절을 통해 셀 밸런싱하는 것을 기반으로 하여 배터리를 관리하는 시스템을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 배터리에 대하여 저항을 이용하는 등 열을 적절히 관리함으로써, 배터리 셀의 밸런싱을 신속하고 안정적이며 경제적이고 효율적인 방법으로 컨트롤하는 방안을 제시하는데 있다. 
또한, 본 발명의 또 다른 목적은 다수의 배터리 셀을 포함하는 ESS에서 에너지 조절을 통해 내부저항으로 인한 셀 편차를 최소화하고, 상대적으로 고전류를 배터리 충방전에 사용하기 위한 배터리 관리시스템을 제공하는 데 있다.
본 발명의 목적은 상기한 목적으로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 목적이나 본 발명의 설명이나 기술사상에 의해 달성 가능한 모든 목적을 포함하는 것으로 이해되어야 한다.
본 발명은 위와 같은 과제해결을 위하여, 다수의 배터리 셀의 연결 상태에서 각 셀들의 전압을 밸런싱하기 위한 시스템으로서, 전압 측정 장치와, 전압에 따라 열고 닫을 수 있는 스위치와, 스위치가 닫혔을 때 바이패스(bypass)된 전류를 소모 또는 활용할 있는 전류 관리수단을 포함하여 온도 관리가 이루어지도록 하는 배터리 관리시스템을 제공한다.
본 발명의 바람직한 실시예에 의하면, 바이패스 전류를 높여 신속한 셀 밸런싱을 수행하면서 온도 안정성을 유지하도록 할 수 있다.
본 발명의 바람직한 실시예에 의하면, 온도 관리를 위하여 바이패스용 저항설비를 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 1W이상의 저항값을 나타내는 저항수단을 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 표준저항 패키지 번호가 4000이상인 경우, 표준저항면적이 60mm2 이상의 비율을 가질 수 있다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 표준저항이 4000 이상인 경우 저항이 1.5Ω미만 1μΩ 이상이고 저항체의 폭이 0.09~0.34mm이며 길이가 140~210mm인 조건에서, 상기 저항의 감소에 비례하여 상기 저항체의 폭과 길이가 상호 정비례 비율로 증가하는 구성의 비율로 이루어지되, 상기 범위에서 규칙적 또는 불규칙적인 비율로 비례관계가 이루어지도록 구성된 저항체를 포함할 수 있다.본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 달팽이 구조, 스파이럴 구조, 직렬 또는 병렬 방식의 직선형, 곡선형 또는 이들의 혼합형 밀집구조 중의 하나이상의 형태를 가지는 도선저항을 구비할 수 있다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 설정된 임계 전류 이상인 경우 단락이 이루어지도록 하는 단락수단을 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 PCB (Printed Circuit Board) 상하에서 단층 또는 다층으로 배치되어 있되 저항체의 전류가 서로 대응되는 위치에서 반대방향으로 흐르도록 구성된 것을 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 베터리 관리 시스템은 방열수단을 구비할 수 있다.
본 발명의 바람직한 실시예에 의하면, 배터리 셀 간의 열을 공유하는 구조를 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 상기 방열수단은 방열판을 부착하여 발열을 소산하거나 방열을 위해 핀 구조가 적용될 수 있다.
본 발명의 바람직한 실시예에 의하면, 밸런싱 전류를 이용하여 모터를 구동하여 열을 방출하는 수단을 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 방출되는 열에너지를 수집하여 추가적인 에너지 원으로 활용할 수 있다.
본 발명의 바람직한 실시예에 의하면, 배터리 셀이나 배터리 셀 주변에 온도센서를 구비할 수 있다.
본 발명의 바람직한 실시예에 의하면, 온도센서는 온도감응 소재를 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 온도감응 소재는 도료 또는 시트로 적용할 수 있다.
또한, 본 발명은 서로 연결된 배터리 셀들에 대한 전압을 측정하는 단계로서, 상기 전압은 배터리 셀들 간의 전압 균일성 매칭을 수행하기 위해 상기 배터리 셀들에 전압을 증가시켜 측정하는 단계;
각 배터리 셀에 각각 연결된 하나 이상의 부하에 바이패스 전류가 선택적으로 흐르도록 선택적으로 스위칭하는 단계;
각각의 부하에 대해 각각의 스위치가 동작된 후 바이패스 전류가 소비되거나 활용되는 하나 이상의 각각의 부하를 확인하는 단계; 그리고
바이패스 전류를 사용하지 못하는 기존 방식에 비해 안정적인 열 관리를 달성하도록 배터리 셀에 대한 상대적으로 신속한 셀 밸런싱을 수행하는 단계
를 포함하는 배터리 관리 방법을 제공한다.
본 발명의 바람직한 실시예에 의하면, 상기 상대적으로 신속한 셀 밸런싱은 상기 측정 단계, 상기 동작 전환 단계 및 상기 확인 단계 중 적어도 하나를 수행한 후, 다음 중 적어도 하나를 고려하여 수행하고,
바이패스 전류는 해당 배터리 셀에 대한 불균형 양이 심할 경우 밸런싱 전류를 증가시키기 위해 상대적으로 큰 크기를 가지며;
셀 밸런싱에 사용되는 상대적으로 큰 전류는 상대적으로 많은 양의 열을 생성하고;
셀 밸런싱을 위해 전류를 증가시키기 위해서 그에 상응하는 낮은 부하 저항이 요구되며; 그리고
상대적으로 낮은 저항을 달성하기 위해 하나 이상의 부하가 상대적으로 큰 크기를 가지며 이때 비용이 증가하고 BMS의 인쇄 회로 기판(PCB) 크기가 증가하는 것을 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 부하 중 적어도 하나는 종래의 저항 부품을 사용하는 대신 PCB와 통합된 특정 레이아웃을 갖는 하나 이상의 전도성 라인을 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 전도성 라인에 대한 방열은 전도성 라인, 방열판 및 방열 핀 요소 사이의 특정 간격 중 적어도 하나를 채용함으로써 달성될 수 있다.
본 발명의 바람직한 실시예에 의하면, 부하 중 적어도 하나는 PCB에 또는 그 근처에 제공된 모터와 관련된 모터 부하이고, 이에 의해 모터의 작동은 BMS 내에서 온도 피크 쉐이빙을 달성하거나 열이 PCB로부터 멀리 향하게 할 수 있다.
본 발명의 바람직한 실시예에 의하면, 열 소산이 효과적인지 시각적으로 확인할 수 있도록 온도에 민감한 페인트 또는 색이 변하는 요소가 PCB 또는 그 근처에 적용되거나 배치될 수 있다.
또한, 본 발명은 다수의 바나듐 기반 배터리 셀의 연결 상태에서 각 셀들의 전압을 밸런싱하기 위한 방법으로서, 전압 측정 장치와, 전압에 따라 On-Off를 수행하는 스위치; 상기 스위치가 On 상태에서 바이패스(bypass)된 전류를 소모 또는 활용할 있는 전류 관리수단으로 PCB에 적층 상태로 적용된 저항 수단; 상기 저항 수단으로 에너지를 조절하여 셀 밸런싱을 수행하고, 에너지 조절 과정에서 발생되는 온도를 관리하는 수단을 포함하여 배터리 충방전 상태를 안정화하는 에너지 조절을 통한 배터리 관리시스템을 포함한다.
본 발명의 바람직한 실시예에 의하면, 상기 셀 밸런싱 수행은, 능동적 또는 수동적으로 충전 상태(SoC) 값의 균형을 유지하고 상기 에너지 조절과정에서 PCB에서 발생된 열을 이용하여 바나듐 기반 배터리의 온도를 5℃ 이상 상승시켜 바나듐 기반 배터리 셀에 온도 관리를 수행하는 것을 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 상기 온도 관리는 15~40℃의 최적 작동 효율 온도 범위를 유지하고 어떠한 경우에도 50℃를 초과하지 않도록 조절하는 것을 포함할 수 있다.
본 발명에 따르면, 배터리 셀의 충방전 과정에서 내부 또는 외부 요인에 의해 변화되는 각 셀의 용량 및 온도 등 물리 화학적 변화에 대하여 안정적으로 에너지 조절을 통해 열이나 온도를 관리함으로써, 배터리 셀의 최적화된 충방전이 가능하도록 안정적으로 관리할 수 있다.
특히, 본 발명에서는 바이패스 전류를 이용하여 에너지 조절을 수행하되 일정 조건으로 저항을 형성하여 온도를 안정적으로 관리하여 배터리 셀의 밸런싱과 배터리 효율을 효과적으로 개선할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1A는 ESS에서 에너지 조절의 비관리 상태인 배터리 셀의 예시적인 충전 상태를 개략적으로 도시한 것이다.
도 1B는 ESS에서의 에너지 조절의 관리 상태인 배터리 셀의 예시적인 충전 상태를 개략적으로 도시한 것이다.
도 2A는 ESS에서 배터리 셀의 액티브 밸런싱 방식에 대한 일례를 개략적으로 도시한 것이다.
도 2B는 ESS에서 배터리 셀의 패시브 밸런싱 방식에 대한 일례를 개략적으로 도시한 것이다.
도 3은 ESS를 구성하는 배터리 시스템에 전기적으로 연결되고 저항의 활용으로 에너지 조절이 가능하도록 설계된 복수의 배터리 셀을 포함하는 예시적인 배터리 관리 시스템을 개략적으로 도시한 것이다.
도 4A는 본 발명에 따라 BMS의 PCB상에 적용 가능한 예시의 저항 형태에 대한 구성의 예를 개념적으로 보여준다. 
도 4B는 본 발명에 따라 적용 가능한 예시의 저항 형태에 대한 설계의 적용 예로서, 달팽이 구조의 저항 설계를 BMS의 PCB 상에 적용한 예를 개념적으로 도시한 것이다.
도 5는 BMS의 PCB 상에 설치된 저항설계의 구성에로서, 기존의 저항 소자 사용과 본 발명에 따라 PCB의 일측, 양측, 다층면에 적용된 저항 설계의 예를 비교하여 보여주는 도면이다.
도 6은 본 발명에 따라 저항 설계를 이용하여 배터리 셀 밸런싱을 수행하는 시스템에 적용 가능한 회로의 구성을 일예로서 간단하게 보여주는 회로 구성도이다.
도 7은 기존의 저항 소자를 적용한 경우와 본 발명에 따른 층상의 저항 설계(직선형 저항)를 적용하여 셀 밸런싱을 수행한 경우를 동일한 조건에서 발열 실험결과를 비교하여 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 바람직한 실시예에 따른 에너지 조절을 위한 배터리 관리시스템에 대하여 상세하게 설명한다.
참고로, 이하 도면에서, 각 구성요소는 편의 및 명확성을 위하여 생략되거나 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기와 사양을 반영하는 것은 아니다. 또한, 명세서 전체에 걸쳐 동일 용어는 동일 구성요소를 지칭하며 첨부 도면에서 동일 구성에 대하여 설명이 포함될 수 있고 구체적인 도면 부호 등은 생략될 수 있다.
본 발명은 배터리 관리 시스템의 일예로서, 전형적으로는 에너지 조절을 통해 열이나 온도 조절 또는 관리하는 것을 기반으로 하여 배터리를 관리하는 시스템을 제공할 수 있다.
본 발명의 바람직한 실시예에 의하면, 본 발명은 배터리 셀의 충방전 과정에서 내부 또는 외부 요인에 의해 변화되는 각 셀의 용량 및 온도 등 물리 화학적 변화에 대하여 안정적으로 열이나 온도를 관리하여 배터리 셀의 최적화된 충방전이 가능하도록 안정적으로 에너지를 조절하여 배터리 셀이 안정적이 범위에서 운용되도록 관리하는 방법에 관한 것이다.
본 발명의 바람직한 실시예에 의하면, 상기 배터리 관리 시스템은 다수의 배터리 셀을 포함하는 ESS에 적용되는 것으로서, 리튬이온 베터리 셀, 바나듐 배터리, 산화환원배터리(RFB), 납배터리 중 하나이상을 포함하는 배터리에 적용될 수 있다. 더 바람직하게는 바나듐 기반 배터리에 효율적으로 적용할 수 있다.
본 발명의 바람직한 일 구현예에 의하면, 배터리 관리 시스템(BMS)의 에너지 조절을 통한 열관리의 바람직한 방법으로 저항에 의한 열을 적절히 관리함으로써, 배터리 셀의 밸런싱을 신속하고 효율적인 방법으로 컨트롤하는 방안을 제시한다. 
본 발명의 바람직한 실시예에 의하면, 본 발명의 배터리 관리 시스템(BMS)은 본질적으로 복수의 배터리 셀을 포함하는 배터리 팩에 전기적으로 연결된 제어 시스템을 말한다. 이러한 배터리 관리 시스템(BMS)은 배터리 모니터링을 포함하여 배터리 보호를 제공하고, 배터리의 작동 상태를 추정하고, 지속적으로 배터리 성능을 최적화하고, 작동 상태를 외부 장치에 전달한다.
본 발명의 바람직한 실시예에 의한 배터리 시스템은 배터리 팩에 결합되어 배터리 팩 내의 배터리 셀이 유사하거나 동일한 충전 상태(SoC)에 도달하도록 배터리 팩 내에서 전기적으로 직렬 및/또는 병렬로 연결될 수 있는 여러 배터리 셀을 밸런싱하는 것을 포함한다.
첨부도면 도1A 와 도 1B는 각각 밸런싱 전 후 셀의 충전 상태를 예시적으로 도시한 것이다.
일반적으로 배터리 모듈에 BMS가 없으면 다양한 과정에서 열화된 배터리 셀의 손상이 가속될 수 있다. 예를 들어, 충전 동안에 열화된 배터리 셀의 용량 감소로 인해 충전 한계에 조기에 도달할 수 있다. 성능이 저하된 배터리 셀이 충전 한계에 도달했음에도 불구하고 전체 배터리 팩은 계속해서 충전될 수 있다. 이러한 과충전이 이미 노후화된 배터리 셀을 과충전하여 손상을 더욱 악화시키고, 배터리 팩의 고장을 가속화시킬 수 있다. 마찬가지로 방전 중에 열화된 배터리 셀도 적은 용량으로 인해 조기에 방전 한계에 도달할 수 있다. 성능이 저하된 배터리 셀이 방전 한계에 도달했음에도 불구하고 배터리 팩 전체가 계속해서 방전될 수 있다. 이러한 과방전으로 인해 이미 열화된 셀은 더욱 손상될 수 있다. 따라서 배터리 셀의 밸런싱을 위한 BMS가 필요하다.
이러한 다수의 배터리 셀 구성 중에서 가장 많이 충전된 셀에서 에너지가 제거되고 열로 손실되는 일부 밸런싱 체계는 에너지의 소산에 의해서 달성될 수 있다. 반면에, 다른 일부 밸런싱 체계는 에너지가 서로 다른 셀로 전달되어 열로 손실되는 에너지를 상당히 줄일 수 있다는 점에서 비소산적일 수 있다. 에너지 소산에 의한 밸런싱 방식은 패시브 밸런싱이라고도 하고, 비소산 밸런싱 방식은 액티브 밸런싱이라고 한다.
도 2A 와 도 2B는 각각 배터리 셀에 대한 액티브 및 패시브 밸런싱의 예시적인 방법을 개략적으로 도시한 것이다.
일반적으로 패시브 및 액티브 밸런싱을 통해 배터리 스택의 배터리 셀을 모니터링 하여 배터리 셀 간의 충전 상태(SoC)를 동일 혹은 비슷하게 유지한다. 이렇게 하면 배터리 수명이 연장되고 상기에서 설명한 바와 같이 과충전 및/또는 과방전으로 인해 발생할 수 있는 배터리 셀의 손상을 방지할 수 있다. 이 중에서 패시브 밸런싱은 블리더 저항을 통해 과잉 전하를 소산함으로써 유사하거나 실질적으로 동일한 충전상태를 갖는 배터리 셀을 생성한다. 그러나 시스템 운영 시간을 증가시키지는 않는다. 반면에, 액티브 밸런싱은 충전 및 방전 싸이클에서 전하를 재분배하는 보다 복잡한 밸런싱으로, 배터리 팩에서 사용가능한 총 충전량을 증가시켜 시스템 운영 시간을 늘리고 패시브 밸런싱에 비해 충전 시간을 줄이고, 밸런싱 동안 발생된 열을 줄인다.
상기와 같은 에너지의 밸런싱 방법 중에서 패시브 밸런싱은 여러가지 명백히 불리한 점이 있다. 예를 들어, 에너지 낭비는 친환경적으로 나쁠 수 있다. 그러나 패시브 밸런싱은 간단하고 비용이 적게 든다는 장점이 있다. 반면에, 액티브 밸런싱은 에너지를 낭비하지 않기 때문에 분명한 이점이 있지만 단점이 있을 수 있다. 예를 들어, 더 많은 전기 부품을 사용하므로 더 높은 비용, 더 낮은 신뢰성 및/또는 더 큰 부피 차지로 인해 불리할 수 있다. 또한 액티브 밸런싱에서 생성된 대기 전류는 패시브 밸런싱보다 훨씬 더 큰 전력 손실을 초래할 수 있다.
본 발명에서는 상기와 같은 기존의 에너지 밸런싱 방법 중에서 에너지 조절을 통하여 패시브 밸런싱을 수행하기 위한 바람직한 배터리 관리시스템을 제안한다. 특히, 이러한 패시브 밸런싱 방법은 전압이 낮은 상태로 충방전이 이루어지는 바나듐 기반 배터리에 적용하기 더 적합하다.
일부 배터리 셀은 저온에서 충전 및 방전을 제어하는 비교적 느린 화학적 반응으로 인해 용량을 잃는다. 예를 들어, 0°C(32°F) 미만에서 리튬 이온 배터리 셀을 충전하는 것은 어는점 아래 온도에서 충전 중에 음극에서 리튬 석출이 발생할 수 있기 때문에 문제가 될 수 있다. 이것은 영구적인 손상이며, 용량 감소를 초래할 뿐만 아니라 셀이 진동이나 기타 스트레스 조건에 노출될 경우 고장에 더욱 취약하다. 또한, 리튬 이온 배터리 셀은 실온보다 훨씬 높은 온도(예: 약 30°C 이상)에서 작동할 때 성능 손실이 발생할 수 있다. 리튬 이온 배터리 셀이 지속적으로 충전되고 이 온도 이상에서 재충전되면 성능 손실이 엄청나게 증가할 수 있다(예: 최대 50%). 특히 신속한 충전 및 방전 싸이클 동안 과도한 열에 지속적으로 노출되면 배터리 수명이 조기 노후화 및 저하될 수 있다.
그러나 바나듐 기반의 배터리의 경우 이와는 다른 조건과 환경에서 안정적인 상태로 배터리와 BMS 가 운용될 수 있다.
본 발명의 바람직한 실시예에 의하면, 배터리 셀의 에너지를 안정적으로 운영하기 위한 방안으로 특정 조건으로 설계된 저항을 이용한 안정적인 상태로의 에너지 조절이 가능하다.
첨부도면 도 3은 배터리 관리 시스템(BMS)에 전기적으로 연결된 복수의 배터리 셀을 포함하는 예시적인 배터리 시스템으로서, 본 발명의 시스템 구성에 따라 전류관리수단으로서 저항을 적용하여 설계한 시스템을 개략적으로 도시한 것이다.
본 발명의 바람직한 실시예에 의하면, 본 발명에서 제안되는 배터리 관리시스템은 안정적인 상태로 에너지를 조절하기 위하여 전류조절수단으로 예컨대, 새로운 저항 설계를 제시하고 이를 통하여 다양한 온도와 열 관리 방법을 제안하는 것이다.
본 발명의 바람직한 실시예에 의하면, 예시된 BMS는 패시브 밸런싱에 바람직하게 적용될 수 있으며, 복수의 배터리 셀은 서로 전기적으로 직렬 및/또는 병렬로 연결될 수 있다.
본 발명의 바람직한 실시예에 의하면, 패시브 BMS로서, 배터리 셀이 병렬로 연결되어 배터리 스택에 흐르는 전류가 큰 경우가 저항을 이용한 에너지 소산 시스템에 바람직하게 적용될 수 있다.
본 발명의 바람직한 실시예에 의하면, 배터리 시스템은 배터리 셀 중 하나에 각각 연결된 복수의 스위치를 추가로 포함한다. 배터리 시스템은 스위치에 전기적으로 연결되고 하나 이상의 스위치의 활성화 시 배터리 셀로부터 전력을 소산시키도록 구성된 하나 이상의 저항기를 추가로 포함한다. 배터리 시스템은 배터리 셀의 충전 상태(SoC)를 감지하고 충전상태에 기초하여 하나 이상의 스위치를 선택적으로 활성화하도록 구성된 제어기를 더 포함한다. 예를 들어, 제어부는 하나 이상의 배터리 셀의 전압 측정 등을 통해 일정 시간 동안 충전한 후 하나 이상의 배터리 셀의 충전상태가 임계값 이상임을 감지하면, 하나 이상의 배터리 셀에 연결된 각각의 스위치를 활성화할 수 있다. 또는 더 많은 배터리 셀에 연결된 각각의 저항기를 사용하여 초과 전하를 선택적으로 소산한다. 컨트롤러는 하나 이상의 배터리 셀이 도 1에 도시된 바와 같이 유사하거나 실질적으로 동일한 충전상태를 가질 때까지 하나 이상의 배터리 셀로부터 초과 전하를 방출할 수 있다.
도 3은 회로 기판(PCB) 상에 구현된 예시적인 배터리 관리 시스템(BMS)을 도시한 것이다(버스바는 도시되어 있지 않음). 여기서, 스위치 및 컨트롤러는 회로 기판(PCB)에 통합된다. PCB는 복수의 배터리 셀을 전기적으로 연결하기 위한 단자를 포함한다. 본 발명에서는 이러한 PCB에 저항을 설계하는 방법으로 패시브 밸런싱 방식을 적용하여 다수의 배터리 셀에 대한 충전상태(SoC)를 동일 또는 유사한 상태가 되도록 안정적인 상태로 조절할 수 있다.
본 발명의 바람직한 실시예로서, 본 발명의 배터리 관리시스템은 다수의 배터리 셀의 연결 상태, 즉 에너지 저장장치(ESS)의 배터리 연결 상태에서 각 셀들의 전압을 밸런싱하기 위한 시스템으로 바람직하게 적용될 수 있는 것으로서, 예컨대 전압 측정 장치와, 전압에 따라 열고 닫을 수 있는 스위치와, 스위치가 닫혔을 때 바이패스된 전류를 소모 또는 활용할 있는 전류관리수단을 포함하여 안정적인 배터리 셀의 관리가 이루어지도록 하는 배터리 관리시스템을 포함할 수 있다.
본 발명의 바람직한 일 구현예에 의하면, 예컨대 ESS에서 적용되는 BMS는 배터리 셀을 전기적 직렬로 연결하여 전압을 높이는 경우, 각 셀들의 전압을 일정한 수준으로 맞추기 위해 필요한 장치로 전압 측정 장치와, 전압에 따라 열고 닫을 수 있는 스위치와, 스위치가 닫혔을 때 바이패스(bypass)된 전류가 소모될 수 있는 부하(load)를 포함하는 요소를 구비할 수 있다. 이러한 부하를 포함하는 요소는 바람직하게는 바이패스용 저항설비를 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 바이패스 전류를 높여 신속한 셀 밸런싱을 수행하면서 온도와 열, 그리고 에너지의 안정성을 유지하도록 할 수 있다. 여기서 바이패스 전류를 높여 셀 밸런싱을 수행한다고 하는 것의 의미는 셀 밸런싱이 늦어짐으로 인하여 전체적인 배터리 성능 저하와 그로인한 전류의 단절 발생을 사전에 예방하고 바이패스의 전류를 높여서 신속한 패시브 방식의 셀 밸런싱이 가능하게 하여 안정된 충전상태를 유지하도록 하는 것을 의미하는 점에서 중요한 기술요소라고 할 수 있다. 본 발명에서는 이러한 신속한 셀 밸런싱은 바이패스의 전류를 높여 줌으로써 용이하게 달성이 가능하다.
본 발명의 바람직한 실시예에 의하면, 배터리셀 전압은 셀 종류에 따라 일정하므로 배터리셀의 밸런싱 전류를 크게 하려면 부하(load)의 저항이 낮게 조절되어야 한다. 이때, 부하 저항이 낮으려면 사이즈가 커져서 BMS 보드의 크기도 커지고 비용도 올라갈 수 있다. 
본 발명에 따르면, 일반적으로 ESS에서는 배터리 스택의 전압 또는 충전상태(SoC) 차이로 인한 문제가 발생한다. 예컨대, 내부저항이 특정범위에서 벗어나면 셀간 전압 편차가 발생하고, 만일 셀 중 하나라도 상한 전압에 도달하게 되면 배터리가 차단될 수 있다.
그러므로, 셀 간 전압 차이 줄이는 방법으로 설계가 간단한 패시브 밸런싱 적용하여 전류를 흘려 에너지를 소산하는 방식으로 문제를 해결하는 방안이 바람직하게 적용될 수 있다.
본 발명에 의하면, 예컨대 고전류를 흘려 에너지를 소산하기 위해서는 저항기의 낮은 저항값 조건을 만들어야 하는데, 만일 BMS 내에 저항 소자를 적용하는 경우는 낮은 저항값을 가지는 소자는 보통 크기가 작아 내구 용량이 작으며, 고전류를 흘리기에 부적합한 문제가 발생한다.
본 발명에서는 일반적인 저항소자에 비해 다루기 쉽고 비교적 저항성분이 큰 BMS 내 단순 도선형태의 저항을 적용하여 이러한 문제를 해결할 수 있다는 사실을 알게 되었다. 다만, 이러한 도선 저항의 경우에도 제단 및 관리에 어려움이 있고 도선에 생기는 고전류로 인하여 발열 관리가 어려워서 피복이 녹아 도선이 노출되거나 기판 쇼트가 발생할 수 있다.
따라서 본 발명의 바람직한 일 실시예에 의하면, 상기한 문제 해결을 위해 BMS 내 회로기판(PCB)에 전류관리수단으로서 적층 형태의 저항을 설계하여 활용하면 공정 간소화는 물론 소자를 적용하지 않기 때문에 공간확보가 가능하고, 두께가 큰 고용량 저항소자 사용하지 않아 두께가 감소할 수 있는 새로운 시스템을 구현한 것이다.
본 발명의 바람직한 실시예에 의하면, 상기와 같은 문제 해결을 통해 배터리 셀이 안정적인 관리를 위하여, 바이패스 전류를 높여 셀 밸런싱을 수행하면서 에너지와 온도 안정성을 유지하는 BMS를 제공할 수 있다. 
상기와 같은 안정적인 BMS 구성을 위해 본 발명의 바람직한 실시예에 의하면, 배터리 셀의 충전상태(SoC) 조절을 위한 방법으로 예컨대, 셀의 밸런싱을 위한 전류관리수단으로 바이패스용 저항설비를 포함할 수 있다. 이러한 저항 수단을 통해 에너지 조절이 가능하고 열 발생을 유도하여 배터리 셀의 온도 안정성을 유지할 수 있다. 
본 발명의 바람직한 구현예에 의하면, 본 발명은 전류관리수단으로 적용하는 저항을 일반적인 저항 대신 적층형 저항, 더 좋기로는 적층형 도선 저항으로 사용한 BMS로 구성할 수 있다. 이러한 저항의 형태는 저항 부품 가격을 절감할 수 있고, PCB 기판과 일체형으로 만들 수 있어 높이를 제거하여 BMS 부피를 줄여 최소화할 수 있다.  
본 발명의 바람직한 구현예에 의하면, 저항 형성을 위한 도선의 두께와 길이 및 재질로 저항을 조절할 수 있고, 기판의 크기를 줄이기 위해 도선을 밀집하는 것이 유리하나, 도선이 밀집되면 열 방출이 안 되어 지나친 온도 상승으로 인한 저항이나 기판의 손상이 발생할 수 있다. 이 경우 저항의 온도를 내리는 것이 필요하다. 
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 2W이상의 허용 전력값을 나타내는 저항수단을 포함할 수 있다. 이러한 저항 수단은 예컨대 PCB 표면에 형성될 수 있다.
이와 같이 본 발명은 배터리 셀의 밸런싱을 위하여 고전류를 저항으로 흘려 에너지를 태워서 밸런싱을 수행하는 패시브 밸런싱으로 셀 간 전압값 편차 조정함으로서 효율적인 ESS 배터리 관리가 가능하도록 할 수 있다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 표준저항 번호가 4000이상인 경우, 표준저항면적이 60mm2이상의 비율을 가질 수 있다. 만일, 여기서 표준 저항면적이 너무 작을 경우 바람직한 셀 밸런싱이 유지되도록 하기 위한 에너지 조절이 어려울 수 있다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 표준저항 번호가 4000 이상인 경우 저항이 1.5Ω미만 1μΩ이고 저항체의 폭이 0.09~0.34mm이며 길이가 140~210mm인 조건에서, 상기 저항의 감소에 비례하여 상기 저항체의 폭과 길이가 상호 정비례 비율로 증가하는 구성의 비율로 이루어지되, 상기 범위에서 규칙적 또는 불규칙적인 비율로 비례관계가 이루어지도록 구성된 저항체를 포함할 수 있다. 상기 표준저항은 IPC-2221과 IPC-9592B를 참고하였다. 표준 저항 패키지 번호는 인치 단위로 표현되는 것으로 예를들어 상기 표준 저항 패키지 번호가 4012인 경우 저항의 크기는 0.4 inch × 0.12 inch 임을 의미한다. 이를 미터법으로 표현하기도 하는데, 4012 (in) 의 표준 저항은 10130 (mm) 에 해당한다고 볼 수 있다. 본 발명에서는 JEDEC, EIAJ, IEC60115-8 등의 규격을 참고하여 해당 표준 저항 패키지 번호를 제시했으나, 규격에 따라 미세한 차이가 있을 수 있으며, 본 발명의 표준 저항 패키지 번호는 특정 규격에 한정되는 것은 아니다
만일, 상기 저항이 너무 낮거나 너무 높으면 에너지 조절이 충분하게 이루어지지 않거나 불필요한 전력 소모가 나타날 수 있다. 저항체의 폭과 길이가 상기 비율의 범위를 벗어나면 저항이 충분하지 않거나 과부하로 인하여 에너지 조절이 불가하거나 발열 등으로 불량이 발생할 수 있다. 이러한 저항의 구성은 제한된 PCB 면적에서 효율적인 저항 발생을 유도하여 안정적인 에너지 조절이 가능한 구성이다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 달팽이 구조, 스파이럴 구조, 직렬 또는 병렬 방식의 직선형, 곡선형 또는 이들의 혼합형 밀집구조 중의 하나이상의 형태를 가지는 도선저항을 구비할 수 있다.
본 발명의 바람직한 실시예에 의하면, 이러한 바이패스용 저항설비는 도 4와 같은 다양한 형태로 구성할 수 있다. 이러한 저항설비로서 다양한 형태의 저항선을 구성할 수 있다. 예컨대 달팽이 구조(또는 클립형), 또는 스파이럴 구조, 직선형 밀집구조 등으로 도선 저항을 구비할 수 있다.
도 4a는 이러한 BMS의 PCB상에 적용 가능한 예시의 저항 형태에 대한 구성의 일예를 개념적으로 보여준 것이다.  예시도면에서 클립형은 열 관리를 적용하여 활용 가능하고, 체크형(병렬형)은 열관리가 용이하나 비교적 면적이 넓게 적용되어야 하고, 코일형은 무선충전용에 적용하기 적합한 구조를 예시한 것이다.
도 4b는 이러한 저항 서계의 적용 예로서, 달팽이 구조의 저항 설계를 BMS의 PCB 상에 적용한 예를 개념적으로 도시한 것이다.
본 발명의 바람직한 실시예에 의하면, 상기와 같은 저항의 적용 형태는 저항의 발열 온도보다 기판 온도 스펙이 높을 경우 직렬 형태의 저항 설계를 적용하는 것이 효율면에서 바람직하며, 만일 발열이 큰 경우는 상기한 저항 설계에서 저항선의 폭과 길이를 늘려 발열을 낮추는 형태로 구성할 수 있다.
본 발명의 저항은 바람직하게는 구리 소재를 사용할 수 있다. 기존에 사용되는 일반적인 저항은 니크롬 선에 시멘트 등의 세라믹을 감싼 형태로서 니크롬선은 산화를 막고 높은 온도에 견디도록 하여야 하고, 세라믹은 낮은 열전도로 인하여 온도가 쉽게 상승하며 열배출이 어려운 문제가 있다. 그러므로 저항에서 발생한 열을 활용하기에도 어려움이 있다. 그러나 본 발명에서와 같이 구리 소재의 저항을 사용하게 되면, 구리 소재가 적층 배치되므로 같은 열이 발생하더라도 단위 면적당 열발생 밀도는 더 낮고 열전도 빠르다. 따라서 발생한 열원을 활용하기도 좋고, 필요 없을 때 빠르게 열이 소산될 수 있어서 열과 온도관리에 용이하다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 설정된 임계 전류 이상인 경우 단락이 이루어지도록 하는 단락수단을 포함할 수 있다.
도 5는 BMS의 PCB 상에 설치된 저항설계의 구성에로서, 기존의 저항 소자 사용과 본 발명에 따라 PCB의 일측, 양측, 다층면에 적용된 저항 설계의 예를 비교하여 보여주는 도면이다.
본 발명의 바람직한 실시예에 의하면, 바이패스용 저항설비는 PCB 상하에서 단층 또는 다층으로 배치되어 있되 저항체의 전류가 서로 대응되는 위치에서 반대방향으로 흐르도록 구성된 것을 포함할 수 있다. 이러한 형태의 저항 구성은 도 5에 예시한 바와 같이 PCB의 일면이나 양면의 단층 또는 다층으로 형성될 수 있다.
본 발명의 바람직한 실시예에 의하면, 일반적으로 기존의 고전력 소자는 PCB 위에 실장되는 형태로 소자 자체적으로 열 방출을 필요로 한다. 그러므로 열 방출을 위해 부피가 커지며, 해당 소자에 방열 판을 추가할 경우 더욱 많은 면적 필요한 문제가 있다. 그러나 본 발명에서 예시한 바와 같은 PCB에 적층 형태로 저항을 설계하면, 공간 확보에 매우 유리하다.
본 발명의 바람직한 실시예에 의하면, 저항은 PCB 일면, 양면, 다층면에 각각 적용할 수 있다. 이와 같이, 저항을 PCB 위아래로 층상 배치하면 저항으로 인한 발열에 대하여 기판 한쪽이나 양쪽으로 열 방출 가능한 점에서 매우 유리하다. 또한, PCB를 다층 기판으로 작용하는 경우 기판사이에 저항을 설계하는 방법을 활용하여 저항 면적을 더욱 넓혀 발열 억제를 가능하게 한다. 그 뿐만 아니라, 고전력 소자가 빠진 공간에 방열 구조를 추가로 설치할 수 있는 공간 확보도 가능하다. 본 발명에서는 이러한 기판상의 층상 저항 설계의 모든 형태를 포함한다.
본 발명의 바람직한 실시예에 의하면, 상기와 같이 PCB에 적층 형태로 저항을 설계하는 경우와 관련하여, 본 발명에서는 PCB에 층상으로 구성하는 저항선으로 구리선을 사용하는 방안을 적용할 수 있다. 즉, 본 발명의 일 실시예에 의하면, 예컨대 PCB에서 형성되는 구리 저항체인 동박과 동박 사이는 유리 섬유와 에폭시 등으로 절연층을 형성할 수 있다.
본 발명의 바람직한 실시예에 의하면, 본 발명에 따른 바이패스용 저항설비는 PCB 상하에서 단층 또는 다층으로 배치되어 있되 PCB 기판의 양면에서 저항체의 전류가 서로 대응되는 위치에서 반대방향으로 흐르도록 구성된 것을 포함할 수 있다. 만일, 일직선의 패턴이 같은 방향으로 이어지게 되면 전류가 흐르는 방향 쪽으로 자기장이 형성된다. 그러므로 본 발명의 저항 설계에서는 바람직하게도 양면 PCB와 다층 PCB 설계 시, 패턴의 방향을 서로 교차시켜 대응위치에서 반대방향으로 전류가 흐르도록 설계함으로써 자기장 형성을 억제할 수 있다. 다만, 반대로 무선 충전과 같이 자기장을 통해 전력 전달을 해야 하는 경우 모든 레이어에서 연결 방향을 동일하게 구성할 수도 있다. 본 발명은 이러한 모든 방법과 이러한 방법에 적용 가능한 배터리 관리장치를 포함한다.
그러므로 본 발명의 일실시예는 다수의 배터리 셀의 연결 상태에서 각 셀들의 전압을 밸런싱하기 위한 배터리 관리 장치로서, 전압 측정 장치와, 전압에 따라 열고 닫을 수 있는 스위치와, 스위치가 닫혔을 때 바이패스(bypass)된 전류를 소모 또는 활용할 있는 전류 관리수단으로 배터리 관리장치(BMS)의 회로기판(PCS)에 단층 또는 다층으로 적층 설치된 저항설비와, 상기 저항설비를 이용하여 패시브 방식으로 충전상태를 안정화시키는 셀 밸런싱 시행수단을 포함하여, 온도 관리가 이루어지도록 하는 에너지 조절을 위한 배터리 관리장치를 포함한다.
본 발명의 바람직한 실시예에 의하면, 상기와 같은 배터리 관리장치에서 상기 저항설비는 구리 도선을 이용하여 PCB 일측, 양측 또는 다층으로 절연층을 사이에 두고 층상으로 적층 형성될 수 있다.
본 발명의 바람직한 실시예에 의하면, 이러한 시스템을 실현하기 위하여, 예컨대 첨부도면 도 6과 같은 회로 구성을 예시할 수 있다. 
도 6은 본 발명에 따라 저항 설계를 이용하여 에너지 조절을 통한 배터리 셀 밸런싱을 수행하는 시스템에 적용 가능한 회로의 구성을 일예로서 간단하게 보여주는 회로 구성도이다.
본 발명의 바람직한 실시예에 의하면, 배터리 셀의 밸런싱이 틀어진 정도가 심하면 부분적으로 또는 전체적으로 밸런싱 전류를 크게 하여 많은 전류를 바이패스 하는 것이 필요할 수 있다, 이러한 과정에서, 전류가 크게 흐를 수록 신속한 셀 밸런싱이 가능하지만, 열이 발생할 수 있으며, 이러한 열이 많이 발생하는 경우 이에 대한 열과 온도 관리를 위한 적절한 조치가 필요할 수 있다. 통상적으로 밸런싱 전류가 주 전류의 0.5% 이상이면 밸런싱 전류가 크다고 볼 수 있으며, 큰 밸런싱 전류를 사용하면 상대적으로 신속한 셀 밸런싱이 가능하다.
본 발명에 따르면, 이러한 저항 수단에 의하여 에너지 조절이 이루어지는 경우 발생하는 열은 온도조절을 통하여 안정적인 상태를 유지하도록 할 수 있다. 예컨대 열을 방출하는 방법이 하나의 예가 될 수 있으며, 이렇게 방출되는 열은 열 소산에 의하여 배터리 셀의 다른 열관리 수단으로 활용될 수 있다.
본 발명은 상기와 같은 배터리 셀의 에너지 조절을 위하여 바람직하게도 저항 설비를 이용하여 패시브 밸런싱을 수행하므로 구성이 단순하고 비용이 저렴하다. 그러나 전력손실이 발생하고 열로 전력을 방출하기 때문에 발열 관리가 필요한 것이다.
본 발명의 바람직한 구현예에 의하면, 상기와 같은 저항설비를 이용하거나 다른 수단에 의해 배터리 셀에 열이 발생하는 경우에 대비하여 방열수단을 구비할 수도 있다.  
본 발명의 바람직한 실시예에 의하면, 상기 방열수단의 일환이나 또는 온도의 안정적 관리를 위하여 배터리 셀 간의 열을 공유하는 구조를 적용할 수 있다. 이를 위해, 예컨대 도선 저항에 개별 방열판을 부착하여 발열을 소산하거나 방열을 위해 핀(fin) 구조가 적용될 수 있다. 여기서, 공통 방열판으로 밸런싱을 수행하지 않아 온도가 낮은 주변 저항들과 열을 공유하여 평균 온도를 내리는 방법이 바람직하게 적용될 수 있다.
본 발명의 바람직한 구현예에 의하면, 열관리를 위한 수단으로 밸런싱 전류를 이용하여 모터 등 구동부를 이용하여 열을 발산시키기나 열의 집중을 막는 방법을 적용할 수 있다. 이 경우 일부 또는 전부의 저항을 모터 부하(load)로 대체할 수 있다. 
본 발명의 바람직한 실시예에 의하면, BMS 밸런싱 전류에 의한 열을 BMS 내부에서 공유하여 특정 채널(저항)의 온도 피크 쉐이빙을 하거나 모터 방향에 따라 열을 BMS 외부 또는 특정 위치로 빼낼 수 있다.
또한, 본 발명의 바람직한 실시예에 의하면, 이렇게 저항으로 인하여 또는 다른 이유로 발생하여 방출되는 열에너지를 수집하여 추가적인 에너지 원으로 활용할 수 있다. 
본 발명의 바람직한 실시예에 의하면, 이러한 열 관리를 위하여 배터리 셀이나 배터리 셀 주변에 온도센서를 구비할 수 있다. 이러한 온도센서의 구성요소로 온도감응 소재를 적용할 수 있다.  
본 발명의 일 실시예에 의하면, BMS가 제대로 작동하는지 파악할 수 있는 QC 방법에 대한 일환으로, 예를 들어 온도에 따라 색이 변하는 온도감응 소재로서 도료 또는 시트 형태로 BMS 작동시 발생하는 열을 감지하는 기능을 하도록 구현할 수 있다. 이 경우 온도감응 소재의 변색에 의하여 소재가 반응하는 부분과 반응하지 않는 부분을 구별할 수 있다. 이러한 온도감응 소재로서, 예컨대 영구적으로 변하는 재료 또는 온도의 복원에 따라 색이 복원되는 재료가 모두 사용 가능하다. 
상기와 같은 방법으로 BMS의 배터리셀 밸런싱 과정에서 발생되는 열을 관리하여 적용하는 경우 매우 효율적인 열관리가 가능하게 된다. 
본 발명의 일 실시예에 의하면, 예를 들어 본 발명의 관리 시스템에서 만일 '밸런싱 전류가 높다'고 인정되는 경우, 도선 패턴의 특정 위치에 두께가 얇아지는 구간을 추가하여 구성함으로써 설정된 임계 전류 이상인 경우 단락이 이루어지도록 하는 단락수단을 포함할 수 있다, 이렇게 구성하면 마치 퓨즈처럼 작동하도록 하는 단락 수단을 이용하여 밸런싱하는 과정에서 과전류로부터 시스템이 더욱 안정적으로 관리될 수 있도록 할 수 있다. 또한, 본 발명의 바람직한 실시예에 의하면, 이러한 단락수단으로 인해 퓨즈 기능이 동작하여 단선되는 경우 이를 인지하여 이상 신호를 메인 컨트롤 시스템에 전달하는 기능을 추가할 수 있다. 
한편, 본 발명은 다른 일 실시예로서, 서로 연결된 배터리 셀들에 대한 전압을 측정하는 단계로서, 상기 전압은 배터리 셀들 간의 전압 균일성 매칭을 수행하기 위해 상기 배터리 셀들에 전압을 증가시켜 측정하는 단계;
각 배터리 셀에 각각 연결된 하나 이상의 부하에 바이패스 전류가 선택적으로 흐르도록 선택적으로 스위칭하는 단계;
각각의 부하에 대해 각각의 스위치가 동작된 후 바이패스 전류가 소비되거나 활용되는 하나 이상의 각각의 부하를 확인하는 단계; 그리고
바이패스 전류를 사용하지 못하는 기존 방식에 비해 안정적인 열 관리를 달성하도록 배터리 셀에 대한 상대적으로 신속한 셀 밸런싱을 수행하는 단계
를 포함하는 배터리 관리 방법을 제공한다.
본 발명의 바람직한 실시예에 의하면, 상기 상대적으로 신속한 셀 밸런싱은 상기 측정 단계, 상기 동작 전환 단계 및 상기 확인 단계 중 적어도 하나를 수행한 후, 다음 중 적어도 하나를 고려하여 수행할 수 있다.
예컨대, 바이패스 전류는 해당 배터리 셀에 대한 불균형 양이 심할 경우 밸런싱 전류를 증가시키기 위해 상대적으로 큰 크기를 가지며; 셀 밸런싱에 사용되는 상대적으로 큰 전류는 상대적으로 많은 양의 열을 생성하고; 셀 밸런싱을 위해 전류를 증가시키기 위해서 그에 상응하는 낮은 부하 저항이 요구되며; 그리고 상대적으로 낮은 저항을 달성하기 위해 하나 이상의 부하가 상대적으로 큰 크기를 가지며 이때 비용이 증가하고 BMS의 인쇄 회로 기판(PCB) 크기가 증가하는 것을 포함할 수 있다.
본 발명의 바람직한 실시예에 의하면, 상기 언급된 부하 중 적어도 하나는 종래의 저항 부품을 사용하는 대신 PCB와 통합된 특정 레이아웃을 갖는 하나 이상의 전도성 라인을 포함할 수 있다. 이러한 전도성 라인으로 상기에서 언급한 저항 설계가 적용될 수 있다.
본 발명의 바람직한 실시예에 의하면, 전도성 라인에 대한 방열은 전도성 라인, 방열판 및 방열 핀 요소 사이의 특정 간격 중 적어도 하나를 채용함으로써 달성될 수 있다. 이러한 경우는 상기 방열수단이나 온도 감응 센서 등의 적용이 가능하다. 예컨대 열 소산이 효과적인지 시각적으로 확인할 수 있도록 온도에 민감한 페인트 또는 색이 변하는 요소가 PCB 또는 그 근처에 적용되거나 배치될 수 있다.
본 발명의 바람직한 실시예에 의하면, 부하 중 적어도 하나는 PCB에 또는 그 근처에 제공된 모터와 관련된 모터 부하이고, 이에 의해 모터의 작동은 BMS 내에서 온도 피크 쉐이빙을 달성하거나 열이 PCB로부터 멀리 향하게 할 수 있다.
상기와 같은 본 발명은 바나듐 기반 배터리 셀, 예컨대 바나듐 이온 배터리(VIB)의 내부저항으로 인한 셀의 에너지 편차를 최소화하도록 조절하고, 상대적으로 고전류를 배터리 충방전에 사용하기 위해 매우 적합한 시스템이다.
그러므로 본 발명은 다수의 바나듐 기반 배터리 셀의 연결 상태에서 각 셀들의 전압을 밸런싱하기 위한 방법으로서, 전압 측정 장치와, 전압에 따라 On-Off를 수행하는 스위치; 상기 스위치가 On 상태에서 바이패스(bypass)된 전류를 소모 또는 활용할 있는 전류 관리수단으로 PCB에 적층 상태로 적용된 저항 수단; 상기 저항 수단으로 에너지를 조절하여 셀 밸런싱을 수행하고, 에너지 조절 과정에서 발생되는 온도를 관리하는 수단을 포함하여 배터리 충방전 상태를 안정화하도록 에너지 조절을 위한 배터리 관리시스템을 포함한다.
본 발명의 바람직한 실시예에 의하면, 상기와 같은 바나듐 기반 배터리 셀의 셀 밸런싱 수행은, 예컨대 능동적 또는 수동적으로 충전 상태(SoC) 값의 균형을 유지하고 바나듐 기반 배터리의 온도를 5℃ 이상 상승시켜 바나듐 기반 배터리 셀의 온도 관리를 수행할 수 있다. 이렇게 하는 경우 저항 설비를 이용하여 에너지 조절을 통한 패시브 밸런싱 과정에서 발생하는 열을 방출하면서 이 방출된 열을 관리하여 바나듐 기반 배터리의 성능을 개선하는데 바람직한 영향을 줄 수 있다.
본 발명의 바람직한 실시예에 의하면, 상기 온도 관리는 바람직하게는 15~40℃의 최적 작동 효율 온도 범위를 유지하고 어떠한 경우에도 50℃를 초과하지 않도록 조절될 수 있다.
본 발명의 바람직한 실시예에 의하면, 배터리의 온도는 15~40℃의 최적 작동 효율 온도 범위를 유지하고, PCB의 온도는 해당 PCB의 스펙을 벗어나는 온도를 초과하지 않도록 조절될 수 있다. 예를 들어 Low Tg(Glass transition temperature) 기판의 경우 통상 130℃~ 140℃, Middle Tg는 150℃~ 160℃, High Tg는 170℃~ 180℃로, PCB가 견딜 수 있는 온도로 제어할 필요가 있다.
상기한 바와 같이, 본 발명에 따른 에너지 조절을 통한 배터리 관리시스템은 ESS의 배터리 셀에 대한 밸런싱을 수행함에 있어 PCB에 적층 형태로 저항 설비를 적용하여 안정적인 상태로 에너지 조절을 위해 간단하고 효율적으로 패시브 밸런싱을 수행할 수 있는 것이다.
따라서 본 발명에 따른 배터리 관리시스템은 PCB 기판 내 저항이 예컨대 프린팅 또는 삽입되어 있는 적층 형태로, 저항 소자와 같은 별도의 부품 실장 불필요하여 공정의 간소화가 가능한 장점이 있으며, 층상 저항으로 인하여 양측면 저항설계 등으로 발열을 양면으로 방출할 수 있어서 발열과 온도 조절에 유리하다.
실제로 이러한 발열 상태를 확인하기 위하여, 본 발명에서는 기존의 저항 소자를 적용한 경우와 본 발명에 따른 층상의 저항 설계(직선형 저항)를 적용한 경우를 동일한 조건에서 비교 실험하였다. 그 실험 결과는 도 7에 열화상 결과로 비교하여 나타내었다. 실험결과 약 20% 정도의 발열 감소 효과를 기대할 수 있었다. 이러한 실험결과로부터 본 발명의 에너지 조절 방식의 저항 설계가 발열 억제 측면에서만 하여도 현저하게 우수한 효과가 있는 것으로 확인되었다
또한, 본 발명은 가로 세로 부피는 일반 저항과 비슷할 수 있으나, 높이는 획기적으로 낮아져 현저하게 유리한 공간 확보가 가능하고, 확보된 공간 활용이 가능 하기 때문에 예컨대, 확보된 공간에 온도 조절을 위한 방열판 등 다른 필요 설비를 설치할 수 있다.
<실험예>
본 실험은 배터리 셀 밸런싱을 위하 전류관리수단으로 적층형 저항 설계를 구성하여 셀 밸런싱을 수행하는 경우 베터리 셀의 안정적인 상태로 에너지를 조절하는 경우 저항설계에서의 저항면적과 저항 도선의 폭과 길이 등의 상관관계를 확인하기 위하여 실험한 결과이다. 하기 표준 저항 패키지 번호는 인치 단위로 표현되는 것으로 예를들어 상기 표준 저항 패키지 번호가 4012인 경우 저항의 크기는 0.4 inch × 0.12 inch 임을 의미한다. 이를 미터법으로 표현하기도 하는데, 4012 (in) 의 표준 저항은 10130 (mm) 에 해당한다고 볼 수 있다. 본 발명에서는 JEDEC, EIAJ, IEC60115-8 등의 규격을 참고하여 해당 표준 저항 패키지 번호를 제시했으나, 규격에 따라 미세한 차이가 있을 수 있으며, 본 발명의 표준 저항 패키지 번호는 특정 규격에 한정되는 것은 아니다. 본 실험에서 배터리 셀은 바나듐 이온 배터리를 사용하였으며, 그 실험 사양과 저항계산 및 저항 비교 실험결과는 다음 표에 나타낸 바와 같다.
표준 저항 패키지 번호 (inch 기준) 실험 저항 (Ω) 통상 허용 전력 (W) 최대 밸런싱 전류 (A) 최대 전류에 따른 최소저항폭 (μm) 표준 저항 통상 면적 (㎟) 본 발명의 최소 저항면적 (㎟)
0201 45.0  0.05 0.033  0.581 0.18 9.31
0402 22.5  0.1 0.067  1.511 0.50 12.15
0603 22.5  0.1 0.067  1.511 1.28 12.15
0805 18.0  0.125 0.083  2.056 2.50 13.25
1206 9.0  0.25 0.167  5.349 5.12 17.45
1210 4.5  0.5 0.333  13.916 8.00 23.44
1218 2.3  1 0.667  36.020 14.72 32.96
2010 4.5  0.5 0.333  13.916 12.50 23.44
2512 2.3  1 0.667  36.020 20.48 32.96
3014 2.3  1 0.667  36.020 27.36 32.96
4014 1.5  1.5 1.000  63.331 36.00 41.96
4026 1.1  2 1.333  94.177 63.00 51.27
5012 1.1  2 1.333  94.177 62.50 51.27
5025 1.1  2 1.333  94.177 78.75 51.27
6432 0.8  3 2.000  164.752 128.00 71.70
6717 0.8  3 2.000  164.752 119.00 71.70
6720 0.8  3 2.000  164.752 153.00 71.70
8518 0.5  5 3.333  333.295 386.64 121.57
8532 0.5  5 3.333  333.295 686.88 121.57
8540 0.5  5 3.333  333.295 859.68 121.57
10202 0.3  7 4.667  530.133 1326.00 183.95
 
상기 실험결과로부터 본 발명의 저항설계의 수치한정 범위에 대한 임계적 효과를 확인할 수 있었다.
이상 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상세한 설명보다는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (29)

  1. 다수의 배터리 셀의 연결 상태에서 각 셀들의 전압을 밸런싱하기 위한 시스템으로서, 전압 측정 장치와, 전압에 따라 열고 닫을 수 있는 스위치와, 스위치가 닫혔을 때 바이패스(bypass)된 전류를 소모 또는 활용할 있는 전류 관리수단을 포함하여 온도 관리가 이루어지도록 하는 에너지 조절을 위한 배터리 관리시스템.
  2. 청구항 1에 있어서, 바이패스 전류를 높여 신속한 셀 밸런싱을 수행하면서 온도 안정성을 유지하도록 하는 것을 특징으로 하는 배터리 관리시스템.
  3. 청구항 1에 있어서, 온도 관리를 위하여 바이패스용 저항설비를 포함하는 것을 특징으로 하는 배터리 관리시스템.
  4. 청구항 3에 있어서, 바이패스용 저항설비는 1W이상의 허용 전력값을 나타내는 저항수단을 포함하는 것을 특징으로 하는 배터리 관리시스템.
  5. 청구항 3에 있어서, 바이패스용 저항설비는 표준저항 번호가 4000이상인 경우, 표준저항면적이 60mm2 이상의 비율을 가지는 것을 특징으로 하는 배터리 관리시스템.
  6. 청구항 3에 있어서, 바이패스용 저항설비는 저항체가 1.5Ω미만 1μΩ이상인 저항값을 가지는 것을 특징으로 하는 배터리 관리 시스템.
  7. 상기 청구항 6에 있어서 상기 저항체의 폭이 0.09~0.34mm이며 길이가 140~210mm인 조건에서, 상기 저항의 감소에 비례하여 상기 저항체의 폭과 길이가 상호 정비례 비율로 증가하는 구성의 비율로 이루어지되, 상기 범위에서 규칙적 또는 불규칙적인 비율로 비례관계가 이루어지도록 구성된 저항체를 포함하는 것을 특징으로 하는 배터리 관리시스템.
  8. 청구항 3에 있어서, 바이패스용 저항설비는 달팽이 구조, 스파이럴 구조, 직렬 또는 병렬 방식의 직선형, 곡선형 또는 이들의 혼합형 밀집구조 중의 하나이상의 형태를 가지는 도선저항을 포함하는 것을 특징으로 하는 배터리 관리시스템.
  9. 청구항 3에 있어서, 바이패스용 저항설비는 설정된 임계 전류 이상인 경우 단락이 이루어지도록 하는 단락수단을 포함하는 것을 특징으로 하는 배터리 관리시스템.
  10. 청구항 3에 있어서, 바이패스용 저항설비는 PCB(Printed Circuit Board) 상하에서 단층 또는 다층으로 배치되어 있되 저항체의 전류가 서로 대응되는 위치에서 반대방향으로 흐르도록 구성된 것을 포함하는 것을 특징으로 하는 배터리 관리시스템.
  11. 청구항 1에 있어서, 방열수단을 포함하는 것을 특징으로 하는 배터리 관리시스템.
  12. 청구항 1에 있어서, 배터리 셀 간의 열을 공유하는 구조를 포함하는 것을 특징으로 하는 배터리 관리시스템.
  13. 청구항 11에 있어서, 상기 방열수단은 방열판을 부착하여 발열을 소산하거나 방열을 위해 핀(fin) 구조가 포함되는 것을 특징으로 하는 배터리 관리시스템.
  14. 청구항 1에 있어서, 밸런싱 전류를 이용하여 모터를 구동하여 열을 방출하는 수단을 포함하는 것을 특징으로 하는 배터리 관리시스템.
  15. 청구항 1에 있어서, 방출되는 열에너지를 수집하여 추가적인 에너지 원으로 활용하는 것을 특징으로 하는 배터리 관리시스템.
  16. 청구항 1에 있어서, 배터리 셀이나 배터리 셀 주변에 온도센서를 포함하는 것을 특징으로 하는 배터리 관리시스템.
  17. 서로 연결된 배터리 셀들에 대한 전압을 측정하는 단계로서, 상기 전압은 배터리 셀들 간의 전압 균일성 매칭을 수행하기 위해 상기 배터리 셀들에 전압을 증가시켜 측정하는 단계;
    각 배터리 셀에 각각 연결된 하나 이상의 부하에 바이패스 전류가 선택적으로 흐르도록 선택적으로 스위칭하는 단계;
    각각의 부하에 대해 각각의 스위치가 동작된 후 바이패스 전류가 소비되거나 활용되는 하나 이상의 각각의 부하를 확인하는 단계; 그리고
    바이패스 전류를 사용하지 못하는 기존 방식에 비해 안정적인 열 관리를 달성하도록 배터리 셀에 대한 상대적으로 신속한 셀 밸런싱을 수행하는 단계
    를 포함하는 배터리 관리 방법.
  18. 청구항 17에 있어서, 상기 상대적으로 신속한 셀 밸런싱은 상기 측정 단계, 상기 동작 전환 단계 및 상기 확인 단계 중 적어도 하나를 수행한 후, 다음 중 적어도 하나를 고려하여 수행하고,
    바이패스 전류는 해당 배터리 셀에 대한 불균형 양이 심할 경우 밸런싱 전류를 증가시키기 위해 상대적으로 큰 크기를 가지며;
    셀 밸런싱에 사용되는 상대적으로 큰 전류는 상대적으로 많은 양의 열을 생성하고;
    셀 밸런싱을 위해 전류를 증가시키기 위해서 그에 상응하는 낮은 부하 저항이 요구되며; 그리고
    상대적으로 낮은 저항을 달성하기 위해 하나 이상의 부하가 상대적으로 큰 크기를 가지며 이때 비용이 증가하고 BMS의 인쇄 회로 기판(PCB) 크기가 증가하는 것을 포함하는 배터리 관리 방법.
  19. 청구항 17에 있어서, 부하 중 적어도 하나는 종래의 저항 부품을 사용하는 대신 PCB와 통합된 특정 레이아웃을 갖는 하나 이상의 전도성 라인을 포함하는 것을 특징으로 하는 배터리 관리 방법.
  20. 청구항 19에 있어서, 전도성 라인에 대한 방열은 전도성 라인, 방열판 및 방열 핀 요소 사이의 특정 간격 중 적어도 하나를 채용함으로써 달성하는 것을 특징으로 하는 배터리 관리 방법.
  21. 청구항 17에 있어서, 부하 중 적어도 하나는 PCB에 또는 그 근처에 제공된 모터와 관련된 모터 부하이고, 이에 의해 모터의 작동은 BMS 내에서 온도 피크 쉐이빙을 달성하거나 열이 PCB로부터 멀리 향하게 하는 것을 포함하는 것을 특징으로 하는 배터리 관리 방법.
  22. 청구항 17에 있어서, 열 소산이 효과적인지 시각적으로 확인할 수 있도록 온도에 민감한 페인트 또는 색이 변하는 요소가 PCB 또는 그 근처에 적용되거나 배치하는 것을 포함하는 것을 특징으로 하는 관리 방법.
  23. 다수의 바나듐 기반 배터리 셀의 연결 상태에서 각 셀들의 전압을 밸런싱하기 위한 방법으로서, 전압 측정 장치와, 전압에 따라 On-Off를 수행하는 스위치; 상기 스위치가 On 상태에서 바이패스(bypass)된 전류를 소모 또는 활용할 있는 전류 관리수단으로 PCB에 적층 상태로 적용된 저항 수단; 상기 저항 수단으로 에너지를 조절하여 셀 밸런싱을 수행하고, 에너지 조절 과정에서 발생되는 온도를 관리하는 수단을 포함하여 배터리 충방전 상태를 안정화하는 에너지 조절을 통한 배터리 관리시스템.
  24. 청구항 23에 있어서, 상기 셀 밸런싱의 수행은, 능동적 또는 수동적으로 충전 상태(SoC) 값의 균형을 유지하고 바나듐 기반 배터리의 온도를 5℃ 이상 상승시켜 바나듐 기반 배터리 셀에 온도 관리를 수행하는 것을 포함하는 것을 특징으로 하는 배터리 관리시스템.
  25. 청구항 23에 있어서, 상기 온도 관리는 15~40℃의 최적 작동 효율 온도 범위를 유지하고 어떠한 경우에도 50℃를 초과하지 않도록 조절하는 것을 포함하는 것을 특징으로 하는 배터리 관리시스템.
  26. 청구항 23에 있어서, 저항 수단은 구리소재인 것을 특징으로 하는 배터리 관리시스템.
  27. 다수의 배터리 셀의 연결 상태에서 각 셀들의 전압을 밸런싱하기 위한 배터리 관리장치로서,
    전압 측정 장치와, 전압에 따라 열고 닫을 수 있는 스위치;와,
    스위치가 닫혔을 때 바이패스(bypass)된 전류를 소모 또는 활용할 있는 전류 관리수단으로 배터리 관리장치(BMS)의 회로기판(PCS)에 단층 또는 다층으로 적층 설치된 저항설비; 그리고
    상기 저항설비를 이용하여 패시브 방식으로 충전상태를 안정화시키는 셀 밸런싱 시행수단
    을 포함하여 온도 관리가 이루어지도록 하는, 에너지 조절을 위한 배터리 관리장치.
  28. 청구항 27에 있어서, 상기 저항설비는 구리 도선을 이용하여 PCB 일측, 양측 또는 다층으로 절연층을 사이에 두고 층상으로 적층 형성된 것을 특징으로 하는 배터리 관리장치.
  29. 청구항 27에 있어서, 상기 배터리 셀은 일부 또는 전부가 바나듐 기반 배터리 셀인 것을 특징으로 하는 배터리 관리장치.
PCT/KR2023/008093 2022-06-13 2023-06-13 에너지 조절을 위한 배터리 관리 시스템 WO2023243983A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0071705 2022-06-13
KR20220071705 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243983A1 true WO2023243983A1 (ko) 2023-12-21

Family

ID=89191603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008093 WO2023243983A1 (ko) 2022-06-13 2023-06-13 에너지 조절을 위한 배터리 관리 시스템

Country Status (2)

Country Link
KR (1) KR20230171401A (ko)
WO (1) WO2023243983A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190000142A (ko) * 2017-06-22 2019-01-02 주식회사 엘지화학 배터리 셀 밸런싱 회로와 이를 이용한 배터리 셀 밸런싱 장치 및 방법
US20190089023A1 (en) * 2017-09-15 2019-03-21 Dyson Technology Limited Energy storage system
KR20190050637A (ko) * 2017-11-03 2019-05-13 주식회사 엘지화학 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
KR20200021368A (ko) * 2018-08-20 2020-02-28 주식회사 뷰커뮤니케이션 셀 충전 전류 기반의 배터리 관리 시스템
KR20200044574A (ko) * 2018-10-19 2020-04-29 주식회사 엘지화학 배터리 관리 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004332B1 (ko) 2013-04-19 2019-07-26 에스케이이노베이션 주식회사 액티브 밸런싱과 패시브 밸런싱을 동시수행하는 셀 밸런싱 방법, 장치, 및 이를 이용한 에너지 저장 시스템
KR102373716B1 (ko) 2020-07-15 2022-03-17 한국철도기술연구원 배터리 모듈의 셀 밸런싱 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190000142A (ko) * 2017-06-22 2019-01-02 주식회사 엘지화학 배터리 셀 밸런싱 회로와 이를 이용한 배터리 셀 밸런싱 장치 및 방법
US20190089023A1 (en) * 2017-09-15 2019-03-21 Dyson Technology Limited Energy storage system
KR20190050637A (ko) * 2017-11-03 2019-05-13 주식회사 엘지화학 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
KR20200021368A (ko) * 2018-08-20 2020-02-28 주식회사 뷰커뮤니케이션 셀 충전 전류 기반의 배터리 관리 시스템
KR20200044574A (ko) * 2018-10-19 2020-04-29 주식회사 엘지화학 배터리 관리 장치

Also Published As

Publication number Publication date
KR20230171401A (ko) 2023-12-20

Similar Documents

Publication Publication Date Title
US9337671B2 (en) Protective element, protective element fabrication method, and battery module in which protective element is embedded
US9184609B2 (en) Overcurrent and overvoltage protecting fuse for battery pack with electrodes on either side of an insulated substrate connected by through-holes
WO2018194249A1 (ko) 과충전 방지 장치 및 방법
WO2018128257A1 (ko) 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템
WO2018143562A1 (ko) 배터리 팩 및 배터리 팩의 충전 제어 방법
KR20130143063A (ko) 배터리 밸런싱 시스템
WO2014030914A1 (ko) 전기 자동차용 파워 릴레이 어셈블리 및 파워 릴레이 어셈블리가 구비된 전기자동차용 에너지 시스템의 작동 방법
WO2017179879A1 (ko) 배터리 히터, 그를 포함하는 배터리 시스템 및 그의 제조 방법
WO2019160232A1 (ko) 이차 전지 상태 추정 장치 및 그것을 포함하는 배터리팩
WO2023153651A1 (ko) 배터리 충방전 장치
WO2021045376A1 (ko) 배터리 팩, 이를 포함하는 배터리 랙 및 전력 저장 장치
WO2021085759A1 (ko) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
WO2020145768A1 (ko) 배터리 팩 진단 장치
WO2023243983A1 (ko) 에너지 조절을 위한 배터리 관리 시스템
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2018128295A1 (ko) 전지시스템 및 이를 포함하는 자동차
CN108682887A (zh) 一种电池模组和动力电池系统
WO2023140671A1 (ko) 에너지 저장 장치
WO2023090926A1 (ko) 하부 냉각팬을 포함하는 전지셀 충방전장치
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
WO2024029983A1 (ko) 배터리 충전 관리 시스템 및 이를 이용한 충전 제어 방법
JP3749512B2 (ja) 電力安定供給装置
EP4325681A2 (en) Energy storage device and battery cabinet
WO2018080183A1 (ko) 전지시스템 및 이를 포함하는 전기자동차
WO2024043721A1 (ko) Soc에 따라 복수 동작 모드를 지원하는 배터리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824199

Country of ref document: EP

Kind code of ref document: A1