WO2023243490A1 - ナノ粒子体、ナノ粒子体を含む複合体、ならびにナノ粒子体に含まれる高分子膜の形成方法 - Google Patents

ナノ粒子体、ナノ粒子体を含む複合体、ならびにナノ粒子体に含まれる高分子膜の形成方法 Download PDF

Info

Publication number
WO2023243490A1
WO2023243490A1 PCT/JP2023/021018 JP2023021018W WO2023243490A1 WO 2023243490 A1 WO2023243490 A1 WO 2023243490A1 JP 2023021018 W JP2023021018 W JP 2023021018W WO 2023243490 A1 WO2023243490 A1 WO 2023243490A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle
group
polymer
substance
plasmon resonance
Prior art date
Application number
PCT/JP2023/021018
Other languages
English (en)
French (fr)
Inventor
隆章 矢野
遼 加藤
上杉 充弘
由枝 小松
文久 北脇
Original Assignee
国立大学法人徳島大学
Phc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学, Phc株式会社 filed Critical 国立大学法人徳島大学
Publication of WO2023243490A1 publication Critical patent/WO2023243490A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention relates to nanoparticles (particularly nanoparticles used in plasmon-excited fluorescence analysis), composites containing nanoparticles, and methods for forming polymer films contained in nanoparticles.
  • a biosensor specifically reacts a specific test substance to be detected with a specific specific binding substance to form a complex, and detects the test substance using a signal resulting from the specific binding in the complex.
  • the complex comprises, for example, a test substance, a specific binding substance, a fluorescent substance, and a metal particle.
  • surface plasmon resonance is induced in the metal particles within the complex, and a near field is formed near the surface of the metal particles. This near field increases the fluorescence intensity of the fluorescent substance.
  • the composite particles for immunochromatography described in Patent Document 1 have a structure in which the outside of fine particles made of metal is covered with at least one layer of silica containing at least one type of fluorescent substance, and specifically recognizes a target substance. Consists of fine particles whose surface is modified with a labeling substance.
  • the surface of the metal particle is covered with a silica layer and the fluorescent substance is fixed to the silica layer, so that the fluorescent substance excited by a near field formed by surface plasmon resonance comes into contact with the metal particle. This is prevented. This suppresses quenching of the excited fluorescent substance.
  • the main object of the present invention is to select an appropriate fluorescent substance and sufficiently enhance the fluorescence emitted by the fluorescent substance in the complex by plasmon resonance, thereby providing a nanoparticle body that increases detection sensitivity. .
  • the nanoparticle body according to one embodiment of the present invention is metal nanoparticles, a polymer film covering the surface of the metal nanoparticles; a specific binding substance that specifically binds to the test substance in the sample; A nanoparticle body comprising a fluorescent substance labeled on the surface of the polymer membrane or the specific binding substance, The fluorescent substance is excited by light having an emission wavelength of plasmon resonance in a complex in which two or more of the nanoparticles are bonded via the test substance.
  • a complex according to another embodiment of the invention comprises:
  • the nanoparticle body includes two or more of the nanoparticle bodies, the two or more nanoparticle bodies include a first nanoparticle body and a second nanoparticle body, and the first nanoparticle body and the second nanoparticle body are Bound via the test substance.
  • a method for forming a polymer film according to another embodiment of the present invention includes: The method includes the step of bringing a polymer having a disulfide bond in a side chain into contact with a metal nanoparticle to form a polymer film in which the polymer is bonded to the surface of the metal nanoparticle via a sulfur atom.
  • the present invention can provide nanoparticles that increase detection sensitivity by selecting an appropriate fluorescent substance and sufficiently enhancing the fluorescence emitted by the fluorescent substance in the complex by plasmon resonance.
  • FIG. 1 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state and an absorption spectrum of a fluorescent substance.
  • FIG. 2 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state, a plasmon resonance spectrum derived from a metal nanoparticle in a composite, and an absorption spectrum of a fluorescent substance.
  • FIG. 3 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state, a plasmon resonance spectrum derived from a metal nanoparticle in a composite, and an absorption spectrum of a fluorescent substance.
  • FIG. 1 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state and an absorption spectrum of a fluorescent substance.
  • FIG. 2 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state, a
  • FIG. 4 is a cross-sectional view schematically showing the nanoparticle body according to the first embodiment.
  • FIG. 5 is an enlarged sectional view of section A in FIG. 4.
  • FIG. 6 is a schematic diagram showing a method for forming the polymer film 3.
  • FIG. 7 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state, a plasmon resonance spectrum derived from a metal nanoparticle in a composite, and a fluorescence spectrum of a fluorescent substance.
  • FIG. 7 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state, a plasmon resonance spectrum derived from a metal nanoparticle in a composite, and a fluorescence spectrum of a fluorescent substance.
  • FIG. 8 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state, a plasmon resonance spectrum of the metal nanoparticle in a composite, and an absorption spectrum and a fluorescence spectrum of a fluorescent substance.
  • FIG. 9 is a cross-sectional view schematically showing the composite.
  • FIG. 10 is a cross-sectional view schematically showing the composite.
  • FIG. 11 is a cross-sectional view schematically showing a composite composed of two nanoparticle bodies.
  • FIG. 12 is a cross-sectional view schematically showing a composite composed of three nanoparticle bodies.
  • FIG. 13 is a diagram showing the measuring device.
  • FIG. 14 shows a schematic diagram showing the method for forming the polymer film of Example 1.
  • FIG. 14 shows a schematic diagram showing the method for forming the polymer film of Example 1.
  • FIG. 15 shows a schematic diagram showing the method for forming the polymer film of Example 1.
  • FIG. 16 is a schematic diagram showing the structure of nanoparticles bound to fluorescently labeled antibodies of Example 1.
  • FIG. 17 is a schematic diagram showing an immunochromatography strip.
  • FIG. 18 is a diagram ((a) blank preparation and (b) measurement preparation) showing the plasmon resonance spectrum of Example 1.
  • FIG. 19 is a diagram showing the plasmon resonance spectrum of Example 1, and the absorption spectrum and fluorescence spectrum of the Ru complex.
  • FIG. 20 is a diagram showing the plasmon resonance spectrum of Example 2 ((a) blank preparation and (b) measurement preparation).
  • FIG. 21 is a diagram showing the plasmon resonance spectrum of Example 2, and the absorption spectrum and fluorescence spectrum of the Ru complex.
  • FIG. 22 is a diagram showing the absorption spectrum and fluorescence spectrum of the fluorescent substance of Example 3, and the plasmon resonance spectrum of Example 1.
  • FIG. 23 shows the fluorescence spectrum of the test substance-nanoparticle system of Example 3.
  • FIG. 24 shows the plasmon resonance spectrum of Comparative Example 1 ((a) silica-coated silver nanoparticles in a primary particle state and (b) an aggregate in which three silica-coated silver nanoparticles are arranged substantially linearly).
  • FIG. 25 shows the plasmon resonance spectrum of Comparative Example 2 ((a) silica-coated silver nanoparticles in a primary particle state and (b) an aggregate in which three silica-coated silver nanoparticles are arranged in the form of ozone molecules).
  • Numerical ranges referred to herein are intended to include the lower and upper limits themselves, unless specific terms such as “less than/less than/less than” and “exceeding/greater than” are included. are doing. That is, taking a numerical range of 1 nm to 10 nm as an example, the numerical range is interpreted as including the lower limit value "1 nm” and the upper limit value "10 nm”.
  • the expression that the target member is substantially made of a specific material or that the target member is made of a specific material means that the target member is 95% by mass or more, 97% by mass or more, 99% by mass or more, or 100% by mass.
  • nanoparticles made of gold mean that the nanoparticles contain gold in a proportion of 95% by mass or more, 97% by mass or more, 99% by mass or more, or 100% by mass.
  • nanoparticle body> [Basic composition of nanoparticle body]
  • the nanoparticle body according to the first embodiment includes metal nanoparticles, a polymer membrane, a specific binding substance, and a fluorescent substance.
  • Metal nanoparticles cause plasmon resonance when irradiated with excitation light.
  • the polymer film coats the surface of the metal nanoparticles.
  • the specific binding substance specifically binds to the test substance in the sample to form a complex.
  • the fluorescent substance is labeled on the surface of a polymer membrane or on a specific binding substance, and emits fluorescence derived from plasmon resonance.
  • the nanoparticle body according to the present embodiment includes a metal nanoparticle, a polymer membrane that covers the surface of the metal nanoparticle, a specific binding substance that specifically binds to a test substance in a specimen, and a surface of the polymer membrane or a polymer membrane that covers the surface of the metal nanoparticle. It comprises a specific binding substance and a labeled fluorescent substance.
  • the nanoparticles according to this embodiment are dispersed in a specimen, and the test substance contained in the specimen is captured to form a complex (fourth embodiment). More specifically, the complex is formed by specific binding between the specific binding substance of the nanoparticle and the test substance.
  • a complex has a structure in which, for example, two nanoparticles are bonded via a test substance. In this complex, for example, two metal nanoparticles are spaced apart at a certain distance by binding to their respective specific binding substances for the same test substance.
  • SPFS Surface Plasmon Fluorescence Spectroscopy
  • LSPR Localized Surface Plasmon Resonance
  • the near-field and dipole-dipole mechanisms efficiently excite the fluorophores in the complex, resulting in enhanced fluorescence.
  • FIG. 1 is a conceptual diagram showing a plasmon resonance spectrum derived from a metal nanoparticle in a single particle state and an absorption spectrum of a fluorescent substance.
  • the plasmon resonance spectrum 201 derived from the metal nanoparticle in a single particle state has, for example, one peak as the second emission wavelength range WR E2 .
  • the absorption spectrum 202 of the fluorescent substance has, for example, one peak as the absorption wavelength range WRA .
  • Plasmon resonance originating from metal nanoparticles in a single particle state is a dipole resonance
  • plasmon resonance induced in a complex is a dipole-dipole resonance.
  • This is plasmon resonance (higher-order resonance, that is, multipole resonance) derived from child interactions.
  • multipole resonance include quadrupole resonance.
  • the plasmon resonance that mainly contributes to the detection of the test substance is the multipole resonance induced by the proximity of the metal nanoparticles in the complex. Therefore, in order to efficiently increase the detection sensitivity in detecting a test substance, it is necessary to enhance the fluorescence mainly caused by multipole resonance rather than the fluorescence caused by dipole resonance.
  • FIG. 2 is a conceptual diagram showing a plasmon resonance spectrum 201 derived from a metal nanoparticle in a single particle state, a plasmon resonance spectrum 206 derived from a metal nanoparticle in a composite, and an absorption spectrum 202 of a fluorescent substance.
  • the plasmon resonance spectrum (hereinafter also referred to as multipole resonance spectrum) 206 of the metal nanoparticles in the composite has, for example, one peak in the first emission wavelength range WR E1 , and It is located on the longer wavelength side compared to the peak of the plasmon resonance spectrum (hereinafter also referred to as dipole resonance spectrum) 201 derived from the metal nanoparticles in the state.
  • the first emission wavelength range WR E1 of plasmon resonance is the second emission wavelength range WR E2 of plasmon resonance originating from a single-particle metal nanoparticle (that is, plasmon resonance induced in a single-particle metal nanoparticle). It is located on the long wavelength side compared to . That is, there is no overlap between the absorption spectrum 202 of the fluorescent substance and the plasmon resonance spectrum 206 derived from the metal nanoparticles in the composite (overlap between the absorption wavelength range WRA and the first emission wavelength range WR E1 ).
  • the inventors believe that the spectral overlap 204 (also described in FIG. 1) is an apparent overlap. From the viewpoint of increasing the detection sensitivity of the test substance, it is important to select a fluorescent substance that allows the first region R1 to exist, and preferably an overlap 208 between the multipole resonance spectrum 206 and the absorption spectrum 202 of the fluorescent substance. It has been found that it is important to select a fluorescent substance that has a large value (see FIG. 3, which will be described later).
  • the first region R1 refers to a region where the multipole resonance spectrum 206 and the absorption spectrum 202 of the fluorescent material overlap (a region corresponding to the overlap 208), as shown in FIG. 3, which will be described later.
  • FIG. 3 is a conceptual diagram showing a plasmon resonance spectrum 201 derived from a metal nanoparticle in a single particle state, a plasmon resonance spectrum 206 derived from a metal nanoparticle in a composite, and an absorption spectrum 202 of a fluorescent substance.
  • the fluorescent substance is selected so that there is (preferably, a large overlap) 208 between the absorption spectrum 202 of the fluorescent substance and the resonance spectrum 206 derived from the metal nanoparticles in the composite.
  • the absorption wavelength range WRA of the fluorescent substance overlaps with the first emission wavelength range WR E1 of plasmon resonance, the fluorescent substance is sufficiently excited, the fluorescence is enhanced, and the detection sensitivity is greatly improved. Therefore, it is thought that the nanoparticle body according to this embodiment can improve detection sensitivity.
  • the present inventors focused on adjusting the spectral characteristics of fluorescent substances and investigated specific means for increasing detection sensitivity. As a result, the present inventors found that "a fluorescent substance is excited by light at the emission wavelength of localized surface plasmon resonance in a complex in which two or more nanoparticles are bonded via a test substance.” I came to the idea.
  • the nanoparticle body according to the first embodiment is metal nanoparticles, a polymer film covering the surface of the metal nanoparticles; a specific binding substance that specifically binds to the test substance in the sample; A nanoparticle body comprising a fluorescent substance labeled on the surface of the polymer membrane or the specific binding substance, The fluorescent substance is excited by light having an emission wavelength of localized surface plasmon resonance in a complex in which two or more of the nanoparticles are bonded via the test substance.
  • the nanoparticle body according to this embodiment can increase detection sensitivity.
  • the reason is assumed to be as follows.
  • the fluorescent substance is excited by light at the emission wavelength of plasmon resonance in a complex in which two or more nanoparticles are bonded via a test substance. This causes an overlap between the absorption spectrum of the fluorescent substance and the plasmon resonance spectrum derived from the metal nanoparticles in the composite, and fluorescence for detecting the test substance is induced by the Förster mechanism and near field (hereinafter referred to as This kind of fluorescence is also called "excitation-induced fluorescence").
  • fluorescence for detecting the test substance is also induced by the overlap between the fluorescence spectrum of the fluorescent substance and the plasmon resonance spectrum derived from the metal nanoparticles in the complex (hereinafter, such fluorescence is referred to as "luminescence-induced fluorescence"). (also called “fluorescence”).
  • the emission-induced fluorescence will be described in detail in the second embodiment.
  • Scheme 1 of the process of detecting a test substance using nanoparticles according to this embodiment: (In the elementary processes (1) to (3) of Scheme 1, S 0 represents the ground state, S 1 represents the excited singlet state, * represents the excited state, and Flu represents the fluorescent substance (in the complex). and M indicates metal nanoparticles (in the complex) Fluorescence enhancement in this embodiment will be further explained with reference to .
  • Scheme 1 includes elementary processes (1) to (3).
  • elementary process (1) a fluorescent substance is excited by light at the emission wavelength of plasmon resonance in a complex in which two or more nanoparticles are bonded via a test substance.
  • excitation light hereinafter also referred to as "external irradiated light”
  • plasmon resonance multipole resonance
  • plasmon resonance in the complex is induced by externally irradiated light.
  • the test substance includes, for example, a test substance derived from a specimen such as blood, plasma, urine, or saliva.
  • the fluorescent substance is excited by the dipole-dipole mechanism and near field.
  • the absorption wavelength range WR A of the fluorescent material overlaps with the first emission wavelength range WR E1 of plasmon resonance, the fluorescent material is efficiently excited.
  • the fluorescent substance in the excited state relaxes and emits fluorescence.
  • the maximum absorption wavelength of the fluorescent material in the first emission wavelength range WR E1 is located in a range of 500 to 700 nm (more preferably 550 to 700 nm).
  • the maximum absorption wavelength of the fluorescent substance is located in the first emission wavelength region WRE1 of the plasmon resonance spectrum of the composite at 500 to 700 nm.
  • fluorescent substances include fluorescein derivatives, rhodamine derivatives, cyanine dyes, and Alexa Flouor (registered trademark) manufactured by Molecular Probes.
  • examples of fluorescent substances having a maximum absorption wavelength of 500 to 700 nm include 532, 546, 555, 568, 594, and 640 of the Alexa Flour (registered trademark) series.
  • the maximum absorption wavelength can be determined as follows. The absorption spectrum of an aqueous solution of a fluorescent substance (solvent: deionized water) is measured, and the peak position of the obtained absorption spectrum is defined as the maximum absorption wavelength.
  • the composite comprises two nanoparticle bodies 1
  • the fluorescent substance is positioned in the composite between the first nanoparticle body and the second nanoparticle body.
  • FIG. 4 is a cross-sectional view schematically showing the nanoparticle body according to this embodiment.
  • the nanoparticle body 1 according to the present embodiment includes metal nanoparticles 2, a polymer film 3 that covers the surface of the metal nanoparticles 2, a specific binding substance 4 that specifically binds to a test substance in a specimen, and a polymer film 3 that covers the surface of the metal nanoparticles 2.
  • the fluorescent substance 6 is labeled on the surface of the molecular membrane 3.
  • the nanoparticle body 1 can be used for plasmon excitation fluorescence analysis.
  • the nanoparticle body 1 can be used for surface plasmon excitation enhanced fluorescence spectroimmunoassay.
  • the nanoparticles 1 can capture the test substance in the subject and form a complex containing two or more nanoparticles 1 and the test substance.
  • the complex is irradiated with excitation light, plasmon resonance occurs and a near field is formed. Near-field and dipole-dipole mechanisms enhance fluorescence.
  • the nanoparticles 1 capture one test substance in the subject and form a complex containing two nanoparticles 1 and the test substance.
  • the nanoparticle body 1 includes a first nanoparticle body and a second nanoparticle body, and the first nanoparticle body and the second nanoparticle body are bonded via the test substance. form a complex.
  • the nanoparticle body 1 may also have non-specific binding sites blocked with a blocking agent.
  • the blocked nanoparticle body 1 suppresses the formation of non-specific binding of the specific binding substance 4 to a substance other than the detection target (that is, a substance other than the test substance), reducing background and false positive signals. , the signal-to-noise ratio (SN ratio) can be improved.
  • Blocking agents include, for example, proteins such as bovine serum albumin (BSA), skim milk, and casein, as well as chemically synthesized polymers.
  • the dispersion of the nanoparticles 1 may further contain a dispersant for the purpose of improving the dispersibility of the nanoparticles 1.
  • a dispersant for the purpose of improving the dispersibility of the nanoparticles 1.
  • examples of such dispersants include heparin sodium.
  • metal nanoparticles The surface of the metal nanoparticles 2 is coated with a polymer film 3.
  • the metal nanoparticles 2 interact with light having a specific wavelength, depending on the type of metal, and cause plasmon resonance.
  • Silver nanoparticles have a plasmon resonance peak at 400 nm to 530 nm
  • gold nanoparticles have a plasmon resonance peak at 510 nm to 580 nm. This varies depending on the particle size. For example, nanoparticles made of silver and having a particle size of 20 nm resonate with light having a wavelength of 405 nm, and nanoparticles made of gold and having a particle size of 20 nm resonate with light having a wavelength of 524 nm.
  • the particle size (average primary particle size) of the metal nanoparticles 2 is, for example, 5 nm to 100 nm, 40 nm to 90 nm, and 50 nm to 80 nm.
  • the particle size of the metal nanoparticles 2 is determined by capturing an image of the metal nanoparticles 2 using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and measuring the particle size of the metal nanoparticles 2 in the image. It can be obtained by calculating the average value of a plurality of particle diameters (number of measurements: for example, at least 10 or more).
  • the metal nanoparticles 2 preferably contain gold or silver, and more preferably contain silver.
  • the polymer film 3 covers the surface of the metal nanoparticles 2.
  • the polymer film 3 functions as a metal quenching molecular film.
  • the polymer film 3 can space the fluorescent substance 6 from the surface of the metal nanoparticles 2 by at least the thickness of the polymer film 3 . Therefore, it is possible to suppress the excited fluorescent substance 6 from coming into contact with the surface of the metal nanoparticle 2 and being quenched (quenching due to the Dexter mechanism (Dexter Electron Transfer)), thereby suppressing a decrease in detection sensitivity.
  • the presence of the polymer film 3 can be confirmed by capturing an image of the nanoparticle body 1 using a SEM or TEM and observing the nanoparticle body 1 in the image.
  • the polymer membrane 3 will be explained with reference to FIG. FIG. 5 is an enlarged view of part A in FIG. 4, and is an enlarged cross-sectional view of the vicinity of the interface between the polymer film 3 of the nanoparticle body 1 and the surface of the metal nanoparticle 2.
  • the polymer membrane 3 includes at least one selected from the group consisting of a bonding site 3a via a sulfur atom, a positively charged group 3b, and a hydrophobic group 3c between the polymer membrane 3 and the surface of the metal nanoparticle 2. More specifically, the polymer film 3 has a bonding site 3a with the surface of the metal nanoparticle 2 via a sulfur atom, and a primary ammonium group (-NH 3 + ) as a positively charged group 3b.
  • the bonding site 3a bonds between the surface of the metal nanoparticle 2 and the polymer film 3 via a sulfur atom.
  • the positively chargeable group 3b forms an electrostatic bond (ionic bond) b with the surface of the negatively chargeable metal nanoparticle 2.
  • the hydrophobic group 3c forms a hydrophobic bond c with the surface of the metal nanoparticle 2.
  • All of the above three bonds are relatively strongly bonded between the surface of the metal nanoparticle 2 and the polymer membrane 3, so the polymer membrane 3 can be bonded to the metal nanoparticle by at least one of the three bonds. It is stably fixed to the surface of 2. This prevents the polymer film 3 from peeling off from the surface of the metal nanoparticles 2, etc. As a result, desorption of the specific binding substance 4 due to peeling of the polymer membrane 3 is suppressed, and a decrease in detection sensitivity is suppressed. In addition, exposure of the surface of the metal nanoparticles 2 due to peeling of the polymer film 3, etc. is suppressed, quenching due to contact with the excited fluorescent substance 6 is suppressed, and a decrease in detection sensitivity is suppressed.
  • the polymer membrane 3 is configured to include the polymer 3A, it is easier to chemically modify than a silica layer, and there is less need for surface modification. Thereby, the film thickness can be made smaller than that of the silica layer, and the distance between two metal nanoparticles in the composite can be reduced. Therefore, a near field is formed more efficiently, and detection sensitivity can be improved. From the above, the nanoparticle body 1 according to this embodiment has excellent detection stability.
  • the polymer 3A constituting the polymer membrane 3 has a bonding site 3a with the surface of the metal nanoparticle 2 via a sulfur atom, a positively charged group 3b, and a hydrophobic group 3c.
  • At least one selected from the group consisting of: The presence of the bonding site 3a via the sulfur atom, the positively charged group 3b, and the hydrophobic group 3c can be used for infrared spectroscopy, nuclear magnetic resonance spectroscopy, energy dispersive X-ray spectroscopy (TEM-EDS), X-ray This can be confirmed by measuring signals derived from photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • XPS photoelectron spectroscopy
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the polymer 3A constituting the polymer membrane 3 can have a site containing a disulfide bond (-SS-) as a side chain.
  • the site containing a disulfide bond can have a positively charged group 3b and/or a hydrophobic group 3c.
  • the bonding site 3a via a sulfur atom is formed, for example, by mixing the metal nanoparticle 2 with a polymer having a site containing a disulfide bond as a side chain.
  • a polymer having a site containing a disulfide bond as a side chain.
  • the polymer as a raw material has a hydrophobic group 3c in the side chain via a disulfide bond, as shown in FIG. (See FIG. 5 and FIG. 15 described below).
  • the polymer membrane 3 can include at least positively chargeable groups 3b in the side chains of the polymer 3A constituting the polymer membrane 3.
  • the positively charged group 3b forms a relatively strong electrostatic bond with the surface of the metal nanoparticle 2.
  • a positively chargeable group is a group that has a valence of one or more and is completely positively ionized.
  • pKa is an electrically neutral group contained in the polymer 3A constituting the polymer membrane 3, and if it is positively charged, it is a positively charged group (more specifically, Indicates the pKa of a group that can be a primary ammonium group (-NH 3 + ), etc. (hereinafter also referred to as an electrically neutral group) (more specifically, a primary amino group (-NH 2 ), etc.).
  • pH indicates the pH of the environment in which the test substance is detected (more specifically, the sample, etc.)
  • B indicates the electrically neutral group contained in the polymer 3A
  • BH + indicates the electrically neutral group contained in the polymer 3A.
  • the positively charged group 3b is in an environment where the electrically neutral group and the positively charged group 3b of the polymer 3A constituting the polymer membrane 3 detect the test substance (for example, a sample with a pH of approximately 6 to 8).
  • the polymer membrane 3 can include at least a hydrophobic group 3c in the side chain of the polymer 3A constituting the polymer membrane 3.
  • the hydrophobic group 3c is, for example, at least one type selected from the group consisting of an aromatic cyclic group, an aliphatic cyclic group, and an aliphatic chain group.
  • aromatic cyclic group examples include aromatic carbocyclic groups and aromatic heterocyclic groups.
  • An aromatic carbocyclic group is a group that does not contain an aromatic heterocycle but contains an aromatic ring whose ring member atoms are all carbon atoms.
  • Examples of the aromatic carbocyclic group include an aryl group (more specifically, a phenyl group, etc.) and an arylalkyl group (more specifically, a benzyl group, etc.).
  • An aromatic heterocyclic group is a group containing an aromatic ring in which at least one of the ring member atoms is a heteroatom (more specifically, an oxygen atom, a sulfur atom, a nitrogen atom, etc.).
  • aromatic heterocyclic groups include nitrogen-containing aromatic heterocyclic groups (more specifically, imidazoyl groups and pyridyl groups (pyridinyl groups), etc.), sulfur-containing aromatic heterocyclic groups, and oxygen-containing aromatic heterocyclic groups. Examples include ring groups.
  • An aliphatic cyclic group is a group that does not contain an aromatic ring but contains a cyclic group consisting of a non-aromatic ring.
  • Examples of the aliphatic cyclic group include an aliphatic carbocyclic group and an aliphatic heterocyclic group.
  • the aliphatic carbocyclic group is a group containing a non-aromatic ring in which all ring member atoms are carbon atoms, and includes, for example, a cycloalkyl group.
  • An aliphatic heterocyclic group is a group containing a non-aromatic ring in which at least one of the ring member atoms is a heteroatom.
  • the aliphatic chain group is a chain (more specifically, linear and branched) group that does not contain aromatic rings or non-aromatic rings.
  • Examples of the aliphatic chain group include aliphatic carbon chain groups (more specifically, alkyl groups, alkylene groups, etc.) and aliphatic hetero chain groups.
  • the polymer 3A constituting the polymer membrane 3 can form a hydrophobic bond c between the hydrophobic group 3c that the polymer 3A may have and the surface of the metal nanoparticle 2.
  • the polymer 3A constituting the polymer membrane 3 can also form other hydrophobic bonds c.
  • a hydrophobic group that is bonded to the surface of the metal nanoparticle 2 via a sulfur atom more specifically, a pyridyl group that is bonded to the surface of the metal nanoparticle 2 via a sulfur atom in FIG. 15, which will be described later.
  • 3c and a hydrophobic group (more specifically, an alkylene group that the polymer 3A in FIG.
  • the polymer 3A constituting the polymer membrane 3 may have can form a hydrophobic bond c.
  • the polymer film 3 is more stably fixed to the surface of the metal nanoparticles 2.
  • the hydrophobic group 3c bonded to the surface of the metal nanoparticle 2 via a sulfur atom is formed as follows.
  • the bonding site 3a via a sulfur atom can be formed, for example, by mixing a polymer having a hydrophobic group 3c in a side chain via a disulfide bond with the metal nanoparticle 2.
  • the hydrophobic group 3c bonded to the sulfur atom is also bonded to the surface of the metal nanoparticle 2. In this way, the hydrophobic group 3c bonded to the surface of the metal nanoparticle 2 via the sulfur atom is formed.
  • the polymer 3A constituting the polymer membrane 3 may form a bond via a sulfur atom via a site (linker portion) derived from a crosslinking agent.
  • crosslinking agents include amino group-sulfhydryl group crosslinking agents (more specifically, NHS-maleimide group crosslinking agents, etc.).
  • the thickness of the polymer film 3 is preferably 1 nm to 50 nm, more preferably 1 nm to 10 nm.
  • the film thickness of the polymer film 3 is 50 nm or less, for example, in a composite including two metal nanoparticles 2, a near field is efficiently formed in the space between the two metal nanoparticles 2. Detection sensitivity is further improved because the separation distance (separation distance) is smaller than that between the two.
  • the metal nanoparticles 2 and the fluorescent substance 6 in the composite are arranged with a predetermined distance, so that the excited fluorescent substance 6 does not emit light during measurement.
  • the separation distance is the minimum value (shortest distance) of the distance between two surfaces of metal nanoparticles contained in two nanoparticle bodies that are bonded via a test substance in a complex. means.
  • the method for forming the polymer film 3 is to bring a polymer having a disulfide bond in its side chain into contact with the metal nanoparticles 2 to form a polymer film 3 in which the polymer is bonded to the surface of the metal nanoparticles 2 via sulfur atoms.
  • the process includes the step of forming.
  • the polymer as a raw material contains, for example, at least one group selected from the group consisting of a positively charged group 3b and a hydrophobic group 3c bonded via a disulfide bond.
  • the step at the same time as forming the polymer film 3, at least one group selected from the group consisting of the positively charged group 3b and the hydrophobic group 3c is bonded to the surface of the metal nanoparticle 2.
  • the polymer 3A constituting the polymer membrane 3 may have positively chargeable groups 3b and/or hydrophobic groups 3c in the side chains via disulfide groups.
  • the positively charged groups 3b and/or the hydrophobic groups 3c in the polymer 3A are groups that have not fully reacted and remain in the method for forming the polymer film 3.
  • FIG. 6 is a schematic diagram showing a method for forming the polymer film 3.
  • the polymer 3B has a positively charged group 3b and a hydrophobic group 3c in its side chains, which are bonded via a disulfide bond.
  • the bond between the sulfur atoms in the disulfide bond is cleaved, and the polymer 3B is bonded to the surface of the metal nanoparticle 2 via the sulfur atom, and in parallel, positively charged.
  • Group 3b and hydrophobic group 3c are each bonded to the surface of metal nanoparticle 2 via a sulfur atom.
  • the method for forming the polymer film 3 includes forming the polymer film 3 on the surface of the metal nanoparticles 2 in one step, and modifying the surface of the metal nanoparticles 2 in parallel (for example, by adding a functional group to the surface of the metal nanoparticles 2). surface modification of positively charged groups 3b and/or hydrophobic groups 3c). Therefore, this method is excellent in cost.
  • the specific binding substance 4 is a nano-sized substance (with a length of 3 to 15 nm) that specifically binds to a test substance in a specimen (described in the fourth embodiment).
  • the specific binding substance 4 include antibodies (hereinafter referred to as nano-antibodies), ligands, enzymes, and nucleic acid chains (more specifically, DNA chains and RNA chains).
  • the nanoantibody as the specific binding substance 4 specifically binds to the antigen as the test substance at its tip (Antigen Binding Site) to form a complex through an antigen-antibody reaction.
  • the ligand as the specific binding substance 4 forms a complex with the protein as the test substance through a specific protein-ligand bond through a ligand-receptor reaction.
  • the nucleic acid strand as the specific binding substance 4 forms a pair (double strand) of a complementary nucleic acid strand and a nucleic acid strand based on the complementarity of base pairs.
  • the enzyme as the specific binding substance 4 forms an enzyme-substrate complex with the substrate as the test substance based on the substrate specificity (stereospecificity) at its active site (active center). These specific bonds are non-covalent, for example hydrogen bonds, as well as bonds due to intermolecular forces, hydrophobic interactions and charge interactions.
  • Nanobodies are, for example, VHH (variable domain of heavy chain antibody) antibodies, Fab (Fragment Antigen Binding) antibodies, and variants thereof.
  • VHH antibodies are single domain antibodies.
  • a variant is an antibody whose amino acid sequence has been partially recombined or a substituent has been introduced to the extent that the antibody has specific binding to the antigen.
  • the nanoantibody is preferably a VHH antibody.
  • the nanoantibody is a VHH antibody, since the VHH antibody has a relatively small volume, it narrows the distance (separation distance) between the two metal nanoparticles 2 in the complex, forms a near field more efficiently, and increases the fluorescence intensity. can be further increased.
  • the molecular mass of the nanoantibody is preferably 60,000 Da or less, more preferably 30,000 Da or less, and even more preferably 20,000 Da or less.
  • the volume of the nanoantibody is relatively small, which narrows the separation distance in the complex and makes the near field more efficient. can be formed to further increase the fluorescence intensity.
  • Methods for measuring molecular mass include electrophoresis (SDS-PAGE), gel filtration chromatography, and static light scattering.
  • the specific binding substance 4 may be directly bonded to the polymer membrane 3, and may be bonded directly to the polymer membrane 3, or may be linked to a linker portion derived from a crosslinking agent (more specifically, an NHS-maleimide group crosslinking agent, etc.) (more specifically, an SM (PEG) ) 6 etc.) may be indirectly bonded to the polymer membrane 3.
  • a crosslinking agent more specifically, an NHS-maleimide group crosslinking agent, etc.
  • the fluorescent substance 6 is labeled on the surface of the polymer membrane 3 and/or the specific binding substance 4.
  • the fluorescent substance 6 is excited by a near field formed by plasmon resonance and emits fluorescence.
  • Examples of the fluorescent substance 6 include complexes of metals (metal complexes) such as europium and ruthenium, and dyes of the Alexa Fluor series (registered trademark) (manufactured by Molecular Probes).
  • the fluorescent substance 6 has a large Stokes shift.
  • the Stokes shift is the difference between the absorption peak wavelength (maximum excitation wavelength) in the absorption spectrum of the fluorescent substance 6 and the fluorescence peak wavelength (maximum fluorescence wavelength) in the fluorescence spectrum.
  • the Stokes shift of the fluorescent substance 6 is large, the absorption spectrum and the fluorescence spectrum are less likely to overlap, and excitation light (scattered light) is less likely to enter the detected fluorescence, making it possible to measure the fluorescence intensity more accurately.
  • the fluorescent substance has a sharp fluorescence spectrum.
  • the fluorescence spectrum is sharp, it is less likely to overlap with the absorption spectrum, and therefore excitation light (scattered light) is less likely to enter the fluorescence to be detected, making it possible to measure fluorescence intensity more accurately.
  • FIG. 13 is a diagram showing the measuring device.
  • the measuring device 100 includes an excitation light source 110, an excitation light irradiation optical system 120, a reagent container 130, a light receiving optical system 140, and a light receiving element 150.
  • the excitation light source 110 emits excitation light 112.
  • the excitation light source 110 is, for example, a laser light source.
  • the excitation light irradiation optical system 120 performs adjustment of the cross-sectional diameter, etc., like focusing the excitation light 112, and outputs the incident excitation light 122.
  • the excitation light irradiation optical system 120 includes a lens 124 and a polarizing element ( ⁇ /2 plate) 126.
  • the incident excitation light 122 output from the excitation light irradiation optical system 120 enters the reagent container 130 and irradiates the measurement sample within the reagent container 130.
  • the reagent container 130 is, for example, a removable container (more specifically, a cell, a preparation, etc.) and a microchannel chip.
  • a microchannel chip is a chip that has minute channels.
  • the measurement sample irradiated with the incident excitation light 122 emits fluorescence (detection light 132).
  • the light receiving optical system 140 is arranged in a direction perpendicular to the traveling direction of the excitation light 122 incident on the reagent container 130.
  • the light receiving optical system 140 can adjust the cross-sectional diameter of the detection light 132 emitted from the measurement sample, remove scattered light of the incident excitation light 122, or adjust the amount of light.
  • the light receiving optical system 140 includes a lens 144 and an optical filter 146.
  • the optical filter 146 is, for example, a bandpass filter or a dichroic mirror.
  • the fluorescence 142 that has passed through the light receiving optical system 140 is detected by the light receiving element 150.
  • the light receiving element 150 is, for example, a PD, APD, PMT, CCD camera, or spectrometer.
  • the light receiving element 150 is capable of measuring the amount of fluorescence of a single wavelength, measuring a fluorescence spectrum, and creating a two-dimensional plane fluorescence image.
  • the second embodiment differs from the first embodiment in the spectral characteristics of the fluorescent substance. This different configuration will be mainly explained below. Note that in the second embodiment, the same reference numerals as those in the first embodiment have the same configurations as in the first embodiment, so the description thereof will be omitted.
  • the fluorescence for detecting the test substance was "excitation-induced fluorescence” induced by the overlap 208 of the absorption spectrum 202 of the fluorescent substance 6 and the plasmon resonance spectrum 206.
  • the fluorescence for detecting the test substance is "emission-induced fluorescence” induced by the overlap between the fluorescence spectrum of the fluorescent substance 6A and the plasmon resonance spectrum 206.
  • fluorescent material 6A in order to indicate and distinguish that the fluorescent substance in the nanoparticle body according to the second embodiment has different spectral characteristics from the fluorescent substance 6 in the nanoparticle body according to the first embodiment.
  • the nanoparticles according to this embodiment can increase detection sensitivity.
  • the reason is assumed to be as follows.
  • the fluorescent substance 6A is excited by light having the emission wavelength of plasmon resonance in a complex in which two or more nanoparticle bodies are bonded via a test substance. This causes an overlap between the fluorescence spectrum of the fluorescent substance 6A and the plasmon resonance spectrum 206 derived from the metal nanoparticles in the composite, and the test substance is detected by the dipole-dipole mechanism and Purcell effect due to multipole resonance. fluorescence is induced. Therefore, since the fluorescent substance 6A is sufficiently excited by the light having the emission wavelength of plasmon resonance originating from the complex, detection sensitivity can be increased.
  • FIG. 7 is a conceptual diagram showing a plasmon resonance spectrum 201 derived from the metal nanoparticle 2 in a single particle state, a plasmon resonance spectrum 206 derived from the metal nanoparticle 2 in a composite, and a fluorescence spectrum 210 of the fluorescent substance 6A.
  • the fluorescent substance 6A is selected such that there is (preferably a large overlap) 212 between the fluorescence spectrum 210 of the fluorescent substance 6A and the resonance spectrum 206 derived from the metal nanoparticles in the composite. Ru.
  • the nanoparticle body can improve detection sensitivity.
  • the second region R2 refers to a region where the multipole resonance spectrum 206 and the fluorescence spectrum 210 of the fluorescent material overlap (a region corresponding to the overlap 212), as shown in FIG. From the viewpoint of further increasing the detection sensitivity of the test substance, it is important to select a fluorescent substance 6A that preferably has a large second region R2 .
  • Scheme 2 of the process of detecting a test substance using nanoparticles according to this embodiment: (In the elementary processes (1) to (3) of Scheme 2, S 0 represents the ground state, S 1 represents the excited singlet state, * represents the excited state, and Flu represents the fluorescent substance (in the complex). 6A and M indicates metal nanoparticle 2 (in the composite)) is shown below.
  • Scheme 2 includes elementary processes (1) to (3).
  • elementary process (1) for example, the fluorescent substance 6A is excited by external irradiation light.
  • elementary process (2) the fluorescent substance 6A in the excited state relaxes and emits fluorescence.
  • elementary process (3) the emitted fluorescence induces plasmon resonance (multipole resonance) on the surface of the metal nanoparticle 2 (in other words, the plasmon resonance in the complex is caused by the emission of the fluorescent material 6A). (induced by fluorescence).
  • plasmon resonance multipole resonance
  • the maximum fluorescence wavelength of the fluorescent substance 6A in the first emission wavelength range WR E1 is located in the range of 500 to 700 nm (more preferably 550 to 700 nm, still more preferably 600 to 700 nm). That is, the maximum fluorescence wavelength of the fluorescent substance 6A is located in the first emission wavelength region WRE1 of the plasmon resonance spectrum derived from the metal nanoparticles 2 in the composite, from 500 to 700 nm.
  • fluorescent substances include fluorescein derivatives, rhodamine derivatives, cyanine dyes, and Alexa Flouor (registered trademark) manufactured by Molecular Probes.
  • examples of the fluorescent substance 6A having a maximum fluorescence wavelength of 500 to 700 nm include "Ruthenium(II) tris(Bipyridyl)-C5-NHS ester” manufactured by Tokyo Chemical Industry Co., Ltd., and the Alexa Flour (registered trademark) series. 430, 488, 532, 546, 555, 568, 594, and 640.
  • the maximum fluorescence wavelength can be determined as follows. The absorption spectrum of an aqueous solution of a fluorescent substance (solvent: deionized water) is measured, and the peak position of the obtained absorption spectrum is determined.
  • the fluorescent substance 6A is irradiated with excitation light having a wavelength at the peak position, the fluorescence spectrum of the aqueous solution of the fluorescent substance is measured, and the peak position of the obtained fluorescence spectrum is taken as the maximum fluorescence wavelength.
  • the third embodiment differs from the first and second embodiments in the spectral characteristics of the fluorescent substance. This different configuration will be mainly explained below. Note that in the third embodiment, the same reference numerals as in the first embodiment and the second embodiment have the same configurations as in the first embodiment and the second embodiment, so the description thereof will be omitted.
  • fluorescence for detecting the test substance is induced by the overlap 208 between the absorption spectrum 202 of the fluorescent substance 6 shown in the first embodiment and the plasmon resonance spectrum 206, and the fluorescence shown in the second embodiment It is induced by the overlap 212 of the fluorescence spectrum 210 of the fluorescent substance 6A and the plasmon resonance spectrum 206. That is, plasmon resonance in the complex is excitation-induced fluorescence induced by external irradiation light and emission-induced fluorescence induced by fluorescence.
  • the fluorescent substance in the nanoparticle body according to the third embodiment is the fluorescent substance 6 in the nanoparticle body according to the first embodiment and the fluorescent substance in the nanoparticle body according to the second embodiment. It is also referred to as "fluorescent substance 6B" to indicate and distinguish that it has different spectral characteristics from 6A.
  • FIG. 8 is a conceptual diagram showing a plasmon resonance spectrum 201 derived from the metal nanoparticle 2 in a single particle state, a plasmon resonance spectrum 206 of the metal nanoparticle 2 in a composite, and an absorption spectrum 202 and a fluorescence spectrum 210 of the fluorescent substance 6B. be.
  • the absorption spectrum 202 and fluorescence spectrum 210 of the fluorescent substance 6B overlap with the resonance spectrum 206 derived from the metal nanoparticles 2 in the composite (absorption wavelength range WR A).
  • the fluorescent substance 6B is selected such that there is an overlap 208 between the first emission wavelength range WR E1 and an overlap 212) between the fluorescence wavelength range WR E and the first emission wavelength range WR E1 .
  • the fluorescent substance 6B may be selected so that the overlaps 208 and 212 are large, from the viewpoint of further increasing the detection sensitivity of the test substance. Therefore, the fluorescent substance 6B is sufficiently excited, the fluorescence is enhanced, and the detection sensitivity is greatly improved. Therefore, it is thought that the nanoparticle body according to this embodiment can improve detection sensitivity.
  • Scheme 3 of the process of detecting a test substance using nanoparticles according to this embodiment: (In the elementary processes (1) to (4) of Scheme 3, S 0 represents the ground state, S 1 represents the excited singlet state, * represents the excited state, and Flu represents the fluorescent substance (in the complex). 6B and M indicates metal nanoparticle 2 (in the composite)) is shown below.
  • Scheme 3 includes elementary processes (1) to (4).
  • elementary process (1) when the complex formed by capturing the test substance is irradiated with external irradiation light, plasmon resonance (multipole resonance) is induced on the surface of the metal nanoparticle 2 (that is, Plasmon resonance in the complex is induced by external illumination).
  • elementary process (2) the fluorescent substance 6B is excited by the dipole-dipole mechanism and the near field.
  • the absorption wavelength range WR A of the fluorescent substance 6B overlaps with the first emission wavelength range WR E1 of plasmon resonance, the fluorescent substance 6B is efficiently excited.
  • elementary process (3) the fluorescent substance 6B in the excited state relaxes and emits fluorescence.
  • the emitted fluorescence induces plasmon resonance (multipole resonance) on the surface of the metal nanoparticle 2 (that is, the plasmon resonance in the complex is caused by the emission of the fluorescent substance 6B). (induced by fluorescence).
  • plasmon resonance multipole resonance
  • the emission wavelength range WRE of the fluorescent substance 6B overlaps with the first emission wavelength range WR E1 of plasmon resonance
  • fluorescence emission of the fluorescent substance 6B in an excited state is efficiently induced.
  • the amount of external illumination light is larger than the amount of fluorescent light. Therefore, from the viewpoint of further improving detection sensitivity, it is preferable that the first region R1 where the first emission wavelength range WR E1 and the absorption wavelength range WR A of the fluorescent material 6B overlap, overlaps with the second emission wavelength range WR E2 and fluorescence.
  • the fluorescent material 6B is selected so that the absorption wavelength range WR A of the material 6B is larger than that of the second region R2 where it overlaps (see FIG. 8).
  • the method for determining the magnitude relationship between the first region R1 and the second region R2 is carried out as follows.
  • the plasmon resonance spectrum of the complex is measured using a fluorescence microspectrometer (described in detail in Examples).
  • a multipole resonance spectrum 206 in the plasmon resonance spectrum is identified.
  • Absorption spectrum 202 and fluorescence spectrum 210 of fluorescent substance 6B are measured (a measurement sample of fluorescent substance 6B is prepared with deionized water as a solvent).
  • An overlap 208 is created between the normalized multipole resonance spectrum 206 and the normalized absorption spectrum 202 of the fluorescent material 6B.
  • An integral value of the overlap 208 is calculated.
  • An overlap 212 between the normalized multipole resonance spectrum 206 and the normalized fluorescence spectrum 210 of the fluorescent substance 6B is created.
  • the integral value of the overlap 212 is calculated. Based on the magnitude relationship of the obtained integral values, the magnitude relationship between the first region R 1 and the second region R 2 is determined.
  • FIG. 9 is a cross-sectional view schematically showing a composite body according to the fourth embodiment.
  • the composite according to the fourth embodiment includes two nanoparticle bodies 1 according to the first embodiment, and the two nanoparticle bodies 1 include a first nanoparticle body 10 and a second nanoparticle body 20.
  • the first nanoparticle body 10 and the second nanoparticle body 20 are bonded via the test substance 30.
  • the complex 40 includes a test substance 30 to be detected and two nanoparticle bodies 10 and 20. Two nanoparticle bodies 10 and 20 are bonded via a test substance 30 in a complex 40 .
  • the nanoparticle bodies 10 and 20 according to the first embodiment are combined via the test substance 30 to form a complex according to the fourth embodiment.
  • the two nanoparticle bodies 10 and 20 one is called the first nanoparticle body 10
  • the other nanoparticle body is called the second nanoparticle body 20.
  • the first nanoparticle body 10 specifically interacts with the first metal nanoparticle 12, the first polymer film 13 covering the surface of the first metal nanoparticle 12, and the test substance 30 in the specimen. It includes a first specific binding substance 14 to be bound and a first fluorescent substance 16 labeled on a first polymer membrane 13.
  • the first specific binding substance 14 is bound to the surface of the first polymer membrane 13.
  • the first nanoparticle body 10 includes first metal nanoparticles 12 as metal nanoparticles, a first polymer film 13 as a polymer membrane, a first specific binding substance 14 as a specific binding substance, and a fluorescent substance. and a first fluorescent material 16 as a substance.
  • the second nanoparticle body 20 includes a second metal nanoparticle 22, a second polymer film 23 that covers the surface of the second metal nanoparticle 22, and a test substance 30 in the specimen that is A second specific binding substance 24 that binds to the fluorescent substance 24 and a second fluorescent substance 26 labeled on the second polymer film 23 are included.
  • the second specific binding substance 24 is bound to the surface of the second polymer membrane 23.
  • the second nanoparticle body 20 includes a second metal nanoparticle 22 as a metal nanoparticle, a second polymer film 23 as a polymer membrane, a second specific binding substance 24 as a specific binding substance, and a fluorescent substance. and a second fluorescent substance 26 as a substance.
  • the separation distance L is small within a range in which the excited fluorescent substances 16 and 26 are not easily quenched. More specifically, in a preferred embodiment, the two nanoparticle bodies 10 and 20 in the composite 40 are close to each other. In a more preferred embodiment, the two nanoparticle bodies 10, 20 are close to each other. In a further preferred embodiment, at least one of the first polymer film 13 of the first nanoparticle body 10 and the second polymer film 23 of the second nanoparticle body 20 in the composite 40 contracts. The two nanoparticle bodies 10 and 20 are brought close to each other so as to be in contact with each other.
  • the test substance 30 and the test substance it is considered that at least one of the specific binding substances 14 and 24 that bind to 30 and the fluorescent substances 16 and 26 can be introduced into the polymer membranes 13 and 23.
  • the polymer membranes 13 and 23 are in contact with each other, for example, in the complex 40 shown in FIG. It is considered that at least one of the specific binding substances 14 and 24 and the fluorescent substances 16 and 26 can be incorporated into the polymer membranes 13 and 23 (the same applies to the complex shown in FIG. 10, which will be described later). ).
  • the films covering the surfaces of the metal nanoparticles 12 and 22 are polymer films 13 and 23, the fluorescence intensity can be increased.
  • the membranes that cover the surfaces of the metal nanoparticles 12 and 22 are polymer membranes 13 and 23, and the polymer membranes 13 and 23 have relatively high flexibility compared to inorganic membranes containing inorganic oxides. Therefore, in the composite 40, the polymer membranes 13 and 23 can contract, and as a result, the two metal nanoparticles 12 and 22 are separated by two thicknesses of the polymer membrane (thickness of the polymer membrane 13 + It becomes possible to get closer than the distance corresponding to the film thickness of the polymer film 23).
  • the separation distance L can be less than two thicknesses of the polymer membranes. This makes it easier to obtain a plasmon enhancement effect and further increases the fluorescence intensity.
  • the film thickness of the polymer film in "two film thicknesses of the polymer film” is not the film thickness of the polymer film 13, 23 in the contracted part that is the target of the separation distance, This is the thickness of the polymer films 13 and 23 in the uncontracted portions that are not to be separated.
  • the polymer membranes 13 and 23 include at least one selected from the group consisting of a bonding site 3a via a sulfur atom, a positively charged group 3b, and a hydrophobic group 3c (for example, the polymer membrane Since the polymer 3A constituting 13 and 23 contains at least one selected from the group consisting of a bonding site 3a via a sulfur atom, a positively charged group 3b, and a hydrophobic group 3c), the fluorescence intensity is further increased. can be done. Although not bound by any particular theory, the reason is assumed to be as follows.
  • the polymer 3A has a network structure and covers the surfaces of the metal nanoparticles 12 and 22 in a network shape. Since the polymer 3A has a network structure in this way, it also has relatively high flexibility. Therefore, in the composite 40, the polymer membranes 13 and 23 can further contract, thereby bringing the two metal nanoparticles 12 and 22 closer together than a distance corresponding to two thicknesses of the polymer membranes. It becomes possible to do so. Therefore, in this embodiment, the separation distance L can be less than two film thicknesses of the polymer membrane, and the plasmon enhancement effect is further obtained, and the fluorescence intensity is further increased.
  • the polymer 3A constituting the polymer membranes 13, 23 has a bonding site 3a via a sulfur atom in its side chain (more specifically, the end of the side chain), a positively charged group 3b, and It contains at least one selected from the group consisting of hydrophobic groups 3c.
  • the fluorescence intensity can be further increased.
  • the reason is assumed to be as follows. In such a case, at least one of the binding site 3a, the positively charged group 3b, and the hydrophobic group 3c forms a bond with the surface of the metal nanoparticles 12, 22.
  • the polymer 3A has a network structure and coats the surfaces of the metal nanoparticles 12 and 22 in a network shape using the side chains as bonding sites. Since the polymer 3A has a network structure in this way, it also has relatively high flexibility. Therefore, in the composite 40, the polymer membranes 13 and 23 can further contract, thereby bringing the two metal nanoparticles 12 and 22 closer together than a distance corresponding to two thicknesses of the polymer membranes. It becomes possible to do so. Therefore, in this embodiment, the separation distance L can be less than two film thicknesses of the polymer membrane, and the plasmon enhancement effect is further obtained, and the fluorescence intensity is further increased.
  • the separation distance L between the first nanoparticle body 10 and the second nanoparticle body 20 is, for example, 12 nm to 52 nm, preferably 12 nm to 27 nm.
  • the separation distance L is the distance between the first metal nanoparticle 12 and the second metal nanoparticle 22, and is the distance between the first point P1 on the surface of the first nanoparticle body 10 and the second metal nanoparticle body 20. This is the distance at which the line segment connected to the second point P2 on the surface is the minimum.
  • the separation distance L is 52 nm or less, when the composite 40 is irradiated with excitation light, a near field is generated more efficiently in the space near the surface between the first and second metal nanoparticles 12 and 22. , the fluorescence intensity can be further increased.
  • the membranes that cover the surfaces of the metal nanoparticles 12 and 22 are polymer membranes 13 and 23, and the polymers 3A constituting the polymer membranes 13 and 23 (for example, in side chains (more specifically, in side chains) It has at least one selected from the group consisting of a) bonding site 3a via a sulfur atom, a positively charged group 3b, and a hydrophobic group 3c at the terminal end. Therefore, as described above, the separation distance L can be closer than the distance equivalent to two film thicknesses of the polymer film covering the surfaces of the two metal nanoparticles 12 and 22 in the composite 40. . For example, when the film thickness of the polymer films 13 and 23 is 5 nm, the separation distance L can be less than 10 nm (more specifically, 2 to 9 nm, 3 to 8 nm, 4 to 7 nm, etc.).
  • the composite body 40 may include two nanoparticle bodies 10, 20 as shown in FIGS. 9 to 11, for example, three nanoparticle bodies 10, 20, 60 as shown in FIG. It may be configured to include. Further, the composite may be configured to include four or more nanoparticle bodies.
  • FIG. 11 is a diagram showing a composite body 40 composed of two nanoparticle bodies.
  • FIG. 12 is a diagram showing a composite 40 composed of three nanoparticle bodies.
  • the multipole resonance is a plasmon resonance originating from the metal nanoparticles 12 and 22 in the composite 40. This will be explained in more detail with reference to FIGS. 11 and 12.
  • FIG. 11 the binding site between the nanoparticles 10 and 20 in the complex 40 (more specifically, the test substance 30 and the specific binding substances 14 and 24) is indicated by a binding point 50 (the same applies in FIG. 12). ).
  • the vibration direction of the electric field component of the excitation light (the polarization direction of the electric field component of the excitation light) is parallel to the long axis direction DLA of the composite 40, which is composed of the two nanoparticle bodies 10 and 20,
  • DLA long axis direction of the composite 40
  • free electrons on the surfaces of the metal nanoparticles 12 and 22 can collectively oscillate in the long axis direction DLA . Therefore, multipole resonance is caused by dipole-dipole interactions.
  • the vibration direction of the electric field component of the excitation light is parallel to the minor axis direction DSA of the composite 40, the free electrons on the surfaces of the metal nanoparticles 12 and 22 cause collective vibration in the minor axis direction DSA. obtain. For this reason, dipole resonance is induced, similar to metal nanoparticles in a single particle state.
  • the number of vibration directions D 1 , D 2 , and D 3 of the electric field component of the excitation light that are permissible for multipole resonance is 3, and two The number is larger than that of the composite 40 composed of the nanoparticles 10 and 20.
  • the composite 40 composed of three nanoparticles 10, 20, 60 has three bonding points 50, which is larger than the composite 40 composed of two nanoparticles 10, 20. .
  • a plurality of bonding points 50 (where two nanoparticle bodies 10 and 20 are bonded via one test substance 30) may be included. Therefore, the greater the number of nanoparticles 10, 20 constituting the complex 40, the more likely the fluorescence will be enhanced and the detection sensitivity may be superior.
  • the fluorescent substances 16, 26 are preferably positioned between the first metal nanoparticles 12 and the second metal nanoparticles 22, as shown in FIGS. 9-10. Since the space between the metal nanoparticles 12 and 22 is a space where a near field is efficiently generated, the fluorescence intensity is likely to be increased due to the Purcell effect when the fluorescent substances 16 and 26 are positioned in the space between the metal nanoparticles 12 and 22. It is.
  • the test substance 30 is a substance to be detected that is contained in a specimen.
  • the test substance 30 include antigens, proteins, substrates, and nucleic acid chains.
  • the test substance 30 specifically binds to the specific binding substances 14 and 24.
  • the antigen has at least two epitopes, and the antigenic determinants form specific bonds with the first and second specific binding substances 14, 24.
  • Antigens are, for example, proteins such as c-reactive protein, myoglobin, troponin T, troponin I, and BNP, and antigenic proteins of viruses such as influenza virus, respiratory syncytial virus, and the like.
  • the test substance 30 is, for example, a test substance derived from a specimen such as blood, plasma, urine, or saliva.
  • specimens containing the test substance 30 include blood, plasma, serum, urine, and saliva.
  • the specimen further includes solvents and buffers (more specifically, such as phosphate-buffered saline (PBS), Tris buffer, HEPES buffer, MOPS buffer, and MES buffer). But that's fine.
  • PBS phosphate-buffered saline
  • Tris buffer Tris buffer
  • HEPES buffer Tris buffer
  • MOPS buffer MOPS buffer
  • MES buffer MES buffer
  • the polymer 3B has one each of the positively charged group 3b and the hydrophobic group 3c that are bonded via disulfide bonds, but the present invention is not limited thereto.
  • the polymer 3B may each independently have two or more positively chargeable groups 3b and two or more hydrophobic groups 3c. That is, in the polymer 3B, the number of side chains to which the positively chargeable group 3b and the hydrophobic group 3c are respectively bonded may be two or more.
  • FIG. 10 is a cross-sectional view schematically showing a composite body according to a modification of the fourth embodiment.
  • the first and second fluorescent substances 16 and 26 may be labeled with the first and second specific binding substances 14 and 24, respectively.
  • the first and second fluorescent substances 16 and 26 can be easily positioned between the first metal nanoparticles 12 and the second metal nanoparticles 22, and detection intensity is improved, which is more preferable.
  • one of the first and second fluorescent substances 16 and 26 may be labeled on the polymer membranes 13 and 23, and the other may be labeled on the specific binding substance 14 and 24.
  • the two fluorescent substances 16 and 26 were labeled on the complex 40, but the present invention is not limited thereto.
  • the number of fluorescent substances labeled on the complex 40 may be 1 or 3 or more.
  • the light receiving optical system 140 in the measuring device 100 is arranged in a direction perpendicular to the traveling direction of the excitation light 122 incident on the reagent container 130, but the present invention is not limited thereto.
  • the light receiving optical system 140 may be arranged, for example, in a direction parallel to the traveling direction of the incident excitation light 122, or at an acute angle or an obtuse angle with respect to the traveling direction of the incident excitation light 122. .
  • the concentration of metal nanoparticles in a dispersion liquid may be expressed in terms of absorbance.
  • Example 1 [1. Formation of polymer film]
  • a method for forming a polymer film will be described with reference to FIGS. 14 and 15.
  • 14 and 15 show schematic diagrams showing the method for forming the polymer membrane of Example 1.
  • poly-L-lysine manufactured by Peptide Institute Co., Ltd., "3075”
  • 3-(2-pyridyldithio)propionamide-PEG 4 -NHS manufactured by Thermo Fisher Scientific, serial number "3075” 26128'' and ⁇ NHS-PEG 4 -SPDP''
  • RT-30mini manufactured by Taitec Co., Ltd.
  • the synthesis reaction is a nucleophilic substitution reaction in which the primary amino group of poly-L-lysine attacks the NHS ester group of 3-(2-pyridyldithio)propionamide-PEG 4 -NHS.
  • the synthesized polymer 3B had a disulfide bond in its side chain.More specifically, the synthesized polymer had a hydrophobic group (pyridyl group) 3c bonded via a disulfide bond and a positively charged and a functional group (primary ammonium group) 3b.
  • the polymer film 3 has a bonding site 3a on the surface of the silver nanoparticle 2 via a sulfur atom, and a hydrophobic group (pyridyl group) 3c that forms a hydrophobic bond with the surface of the silver nanoparticle 2. and a positively chargeable group (primary ammonium group) 3b that forms an electrostatic bond b with the surface of the silver nanoparticle 2.
  • the polymer 3A constituting the polymer membrane 3 has a bonding site 3a via a sulfur atom on the surface of the silver nanoparticle 2, and a hydrophobic group (pyridyl group) that forms a hydrophobic bond c with the surface of the silver nanoparticle 2.
  • a SEM image (magnification: 500,000 times) of the obtained silver nanoparticles 2 was created, and it was confirmed that the surface of the silver nanoparticles 2 was continuously covered with the polymer film 3 (hereinafter referred to as polymer film 3).
  • the silver nanoparticles coated with the film 3 are referred to as "polymer-coated silver nanoparticles").
  • the film thickness of the polymer film 3 covering the silver nanoparticles 2 was measured from the SEM image.
  • FIG. 16 is a schematic diagram showing the structure of the nanoparticle body 1 to which the fluorescently labeled antibody of Example 1 is bound.
  • the nanoparticle body shown in FIG. 16 is produced by first bonding a crosslinking agent to the surface of a polymer-coated metal nanoparticle, then separately bonding a fluorescent substance and a crosslinking agent to a nanoantibody, and then bonding it to the polymer-coated metal nanoparticle.
  • the nano-antibody was produced by combining the cross-linking agent and the cross-linking agent bound to the nano-antibody. Details of the production of nanoparticles bound to fluorescently labeled antibodies will be described below.
  • a dispersion of silver nanoparticles having a crosslinking agent SM(PEG)2 bound to the polymer film 3 (hereinafter also referred to as polymer-coated silver nanoparticles having an SM(PEG)2 linker bound) was obtained.
  • the SM(PEG)2 linker attached to the polymer-coated silver nanoparticles had a maleimide group.
  • VHH antibody bound to a fluorescent substance (hereinafter also referred to as a fluorescent labeled VHH antibody) was obtained.
  • the NHS-labeled Ru complex derivative is a fluorescent substance having a maximum fluorescence wavelength of 500 to 700 nm.
  • CRP antigen C Reactive Protein (ADVY CHEMICAL Sigma-Aldrich "00-AGN-AP-CRP-00") (hereinafter also referred to as CRP antigen) as the test substance 30 was added to the phosphate buffer solution of the obtained nanoparticles.
  • RT-30mini manufactured by Taitec Co., Ltd.
  • FIG. 17 is a schematic diagram showing an immunochromatography strip (hereinafter also simply referred to as a "strip").
  • This strip 300 has a rectangular shape and includes a sample pad 301 placed at one end onto which a measurement sample is dropped, and a determination line 303 placed in the center.
  • a CPR antigen as the test substance 30 is immobilized on the determination line 303.
  • the complex 40 in the measurement sample moves toward the determination line 303 (along the direction 305) due to capillary action.
  • an antigen-antibody reaction occurs with the CRP antigen, and the complex 40 is captured.
  • a measurement sample was dropped onto the sample pad 301 of the strip 300 and left to stand for a predetermined period of time.
  • the strip 300 that had been left stationary was set in a fluorometer ("Fluorometer for in-house experiments" manufactured by PHC Corporation).
  • the determination line 303 was irradiated with excitation light (wavelength: 415 to 455 nm), and the amount of fluorescence light (detection wavelength: 573 nm or 613 nm) was measured.
  • the blank measurement value was subtracted from the obtained measurement value to determine the presence or absence of the amount of fluorescent light derived from the fluorescent substance.
  • fluorescence was detected when the concentration of CPR antigen was 42 pM (unit: ⁇ 10 ⁇ 12 mol/L) or higher.
  • the strip 300 that had been left stationary was set in an absorption photometer (“In-house Experimental Absorption Photometer” manufactured by PHC Corporation).
  • the determination line 303 was irradiated with visible light (wavelength: 415 to 455 nm), and the reflected light was measured.
  • the blank measurement value was subtracted from the obtained measurement value to determine the presence or absence of reflected light derived from the metal nanoparticles. As a result, in preparing the measurement sample, reflected light was detected when the concentration of CRP antigen was 670 pM or higher.
  • Test substance 30 CRP antigen, was detected by immunography. This confirmed that the complex 40 was formed in the measurement sample and that the complex 40 was present at the determination line.
  • a sample for measurement was prepared.
  • a measurement sample was prepared in the same manner as in 4-1.
  • a measurement sample was dropped onto a slide glass, and a glass cover plate was placed on top of the droplet to sandwich the droplet, thereby producing a measurement preparation as a measurement sample.
  • the measurement preparation was used to measure the plasmon resonance spectrum in the presence of droplets.
  • a blank preparation was prepared in the same manner as the measurement preparation except that no CRP antigen was added.
  • FIG. 18(b) is a diagram showing a plasmon resonance spectrum of Example 1 regarding a measurement preparation as a measurement sample.
  • FIG. 18(a) is a diagram showing a plasmon resonance spectrum of Example 1 for a blank preparation serving as a measurement sample.
  • the plasmon resonance spectrum of the blank preparation had a spectral shape with a single peak around 460 to 470 nm. This peak was attributed to plasmon resonance (dipole resonance) caused by monodisperse Ag nanoparticles.
  • the plasmon resonance spectrum of the measurement preparation has a peak around 460 to 470 nm (peak on the short wavelength side) and a peak around 590 to 600 nm (peak on the long wavelength side). It showed a spectral shape with The peak on the short wavelength side is a plasmon resonance induced by excitation light with the polarization direction of the electric field component parallel to the short axis direction of the composite (sandwich-type composite composed of two nanoparticles). (dipole resonance). The peak on the long wavelength side was attributed to plasmon resonance (multipole resonance) induced by excitation light having the polarization direction of the electric field component parallel to the long axis direction of the complex.
  • a fluorescent substance (Ru complex "Ruthenium (II) tris (Bipyridyl)-C5-NHS ester” manufactured by Tokyo Kasei Kogyo Co., Ltd.) ) absorption and fluorescence spectra were measured.
  • the absorption spectrum was measured at a wavelength of 230 to 500 nm and at an arbitrary concentration in an aqueous solvent.
  • the measurement conditions for the fluorescence spectrum were an excitation wavelength of 450 nm, a measurement wavelength of 500 to 700 nm, and the same measurement sample as the absorption spectrum.
  • FIG. 19 was created by superimposing the absorption spectrum and fluorescence spectral of the obtained fluorescent substance on the plasmon resonance spectrum of the measurement preparation shown in FIG. 18(b).
  • FIG. 19 is a diagram showing the plasmon resonance spectrum of Example 1, and the absorption spectrum 202 and fluorescence spectrum 210 of the Ru complex.
  • the fluorescence wavelength range WR E of the fluorescence spectrum 210 of the Ru complex overlaps the first emission wavelength range WR E1 of the peak on the long wavelength side of the plasmon resonance spectrum (plasmon resonance spectrum 206).
  • Two regions R 2 ) were confirmed. Therefore, it was concluded that the fluorescence detected by the system in Example 1 was luminescence-induced fluorescence.
  • FIG. 20 is a diagram showing plasmon resonance spectra of Example 2 for (a) a blank preparation and (b) a measurement preparation.
  • the object to be measured in Example 2 was a composite composed of 15 nanoparticles.
  • the plasmon resonance spectrum of the blank preparation exhibited a spectral shape with a single peak around 460 to 470 nm. This peak was attributed to plasmon resonance (dipole resonance) caused by monodisperse Ag nanoparticles.
  • the plasmon resonance spectrum of the measurement preparation has a peak around 460 to 470 nm (peak on the short wavelength side) and a peak around 590 to 600 nm (peak on the long wavelength side). It showed a spectral shape with The peak on the shorter wavelength side was attributed to plasmon resonance (dipole resonance) induced by excitation light with the polarization direction of the electric field component parallel to the short axis direction of the complex. The peak on the long wavelength side was attributed to plasmon resonance (multipole resonance) induced by excitation light having the polarization direction of the electric field component parallel to the long axis direction of the complex.
  • FIG. 21 was created by superimposing the absorption spectrum and fluorescence spectrum of the Ru complex obtained in Example 1 with the plasmon resonance spectrum of the measurement preparation in FIG. 20(b). As shown in FIG. 21, the fluorescence wavelength range WRE of the fluorescence spectrum 210 of the Ru complex overlaps with the first emission wavelength range WRE1 of the peak on the long wavelength side of the plasmon resonance spectrum (plasmon resonance spectrum 206). Two regions R 2 ) were confirmed. Therefore, it was concluded that the fluorescence detected by the system in Example 2 was luminescence-induced fluorescence.
  • Example 3 [3. Preparation of nanoparticles]
  • the fluorescent substance was converted from an NHS-labeled Ru complex derivative ("Ruthenium(II) tris(Bipyridyl)-C5-NHS ester” manufactured by Tokyo Chemical Industry Co., Ltd.) to Alexa Fluor 594 carboxylic acid, succinimidyl.
  • Nanoparticles were prepared in the same manner as in Example 1 except that ester ("A10169" manufactured by Invitrogen) was used.
  • the Alexa Fluor 594 is a fluorescent substance that has a maximum absorption wavelength and a maximum fluorescence wavelength in the range of 500 to 700 nm.
  • Example 2 (4-1. Detection of test substance by immunochromatography method) As in Example 1, the test substance was detected by immunochromatography. The wavelength of the excitation light irradiated onto the determination line 303 was 600 nm. As a result of measuring the amount of fluorescence light, fluorescence was detected when the concentration of CPR antigen was 42 pM or more in the preparation of the measurement sample. As a result of measuring the reflected light, the reflected light was detected when the concentration of the CPR antigen was 670 pM or more in the preparation of the measurement sample. The test substance, CRP antigen, was detected by immunography. This confirmed that the complex 40 was formed in the measurement sample and that the complex 40 was present at the determination line.
  • FIG. 22 was created by superimposing the absorption spectrum and fluorescence spectrum of the obtained fluorescent substance on the plasmon resonance spectrum of the measurement preparation shown in FIG. 20(b).
  • FIG. 22 is a diagram showing the absorption spectrum and fluorescence spectrum of the fluorescent substance of Example 3, and the plasmon resonance spectrum of Example 1.
  • the fluorescence spectrum 210 of the fluorescent substance of Example 3 has a peak around 584 nm.
  • the fluorescence spectrum 210 of the fluorescent substance of Example 3 has a peak around 613 nm.
  • the plasmon resonance spectrum of the system of Example 1 was adopted as a substitute for the system of Example 3.
  • CRP antigen as test substance 30 was added to a phosphate buffer solution of the obtained nanoparticles, and a reaction (antibody-antigen reaction) was carried out at room temperature for 10 minutes at a final concentration of 90 ng/mL. In this way, a mixed solution of a complex composed of the nanoparticles and the test substance was prepared. The prepared mixed solution was used as a measurement sample. As a blank, a phosphate buffer solution of nanoparticles containing no CRP antigen 30 was separately prepared.
  • FIG. 23 is a diagram showing the fluorescence spectrum of the test substance-nanoparticle system.
  • the solid line shows the fluorescence spectrum of the test substance-nanoparticle system, and the broken line shows the fluorescence spectrum of the blank sample.
  • the fluorescence spectrum of the test substance-nanoparticle system has a peak located around 614 nm. The peak intensity near 614 nm is about four times greater than the peak intensity near 614 nm in the fluorescence spectrum of the blank sample.
  • the fluorescent material of Example 3 has a maximum absorption wavelength around 586 nm. Moreover, the absorption spectrum 202 of the fluorescent substance of Example 3 largely overlaps with the multipole resonance spectrum 206. It was confirmed that fluorescence was effectively enhanced as shown in FIG. 23 by using a fluorescent substance having absorption matching the plasmon resonance wavelength of the complex as shown in FIG. 22.
  • silica-coated silver nanoparticles manufactured by nanoComposix, silver nanoparticle particle diameter (core particle diameter) 50 nm, silica film thickness 20 nm
  • An aqueous dispersion was prepared.
  • the obtained aqueous dispersion was used as a measurement sample.
  • aggregates of two or more silver nanoparticles are also present in the measurement sample.
  • FIG. 24 shows the plasmon resonance spectrum of Comparative Example 1 ((a) silica-coated silver nanoparticles in a primary particle state and (b) an aggregate in which three silica-coated silver nanoparticles are arranged substantially linearly).
  • silica-coated silver nanoparticles in the state of primary particles are the measurement target
  • the measurement target is an aggregate in which three silica-coated silver nanoparticles are arranged approximately linearly.
  • ⁇ Comparative example 2 Silica-coated silver nanoparticles (manufactured by nanoComposix, silver nanoparticle particle diameter (core particle diameter) 50 nm, silica film thickness 7 nm) were diluted with water (deionized water) to form silica-coated silver nanoparticles. An aqueous dispersion was prepared. The obtained aqueous dispersion was used as a measurement sample. Specifically, in addition to the primary particle state of silica-coated silver nanoparticles, aggregates in which two or more silver nanoparticles aggregated were also present in the measurement sample.
  • FIG. 25 shows the plasmon resonance spectrum of Comparative Example 2 ((a) silica-coated silver nanoparticles in a primary particle state and (b) an aggregate in which three silica-coated silver nanoparticles are arranged approximately in the shape of ozone molecules).
  • silica-coated silver nanoparticles in a primary particle state are used as the measurement sample
  • silica-coated silver nanoparticles in FIG. 25(b) an aggregate of three silica-coated silver nanoparticles arranged approximately in the shape of ozone molecules is used as the measurement sample.
  • FIG. 25(a) silica-coated silver nanoparticles in a primary particle state
  • FIG. 25(b) an aggregate of three silica-coated silver nanoparticles arranged approximately in the shape of ozone molecules is used as the measurement sample.
  • Embodiments of the method for forming nanoparticles, composites containing nanoparticles, and polymer films contained in nanoparticles according to the present disclosure are as follows. ⁇ 1> metal nanoparticles, a polymer film covering the surface of the metal nanoparticles; a specific binding substance that specifically binds to the test substance in the sample; A nanoparticle body comprising a fluorescent substance labeled on the surface of the polymer membrane or the specific binding substance, The fluorescent substance is a nanoparticle body that is excited by light having an emission wavelength of plasmon resonance in a complex in which two or more of the nanoparticle bodies are bonded via the test substance.
  • ⁇ 2> The nanoparticle body according to ⁇ 1>, wherein plasmon resonance in the composite is induced by externally irradiated light.
  • ⁇ 3> The nanoparticle body according to ⁇ 1> or ⁇ 2>, wherein plasmon resonance in the complex is induced by fluorescence emitted from the fluorescent substance.
  • ⁇ 4> The nanoparticle body according to any one of ⁇ 1> to ⁇ 3>, wherein the absorption wavelength range of the fluorescent substance overlaps the first emission wavelength range of the plasmon resonance.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the first emission wavelength range of the plasmon resonance is located on the longer wavelength side compared to the second emission wavelength range of the plasmon resonance induced in the single metal nanoparticle.
  • the nanoparticle body described in Section. ⁇ 6> such that a first region where the first emission wavelength range and the absorption wavelength range of the fluorescent material overlap is larger than a second region where the second emission wavelength range and the absorption wavelength range of the fluorescent material overlap;
  • ⁇ 7> The nanoparticle body according to ⁇ 5> or ⁇ 6>, wherein the maximum absorption wavelength of the fluorescent substance in the first emission wavelength range is located in a range of 500 to 700 nm.
  • ⁇ 8> The nanoparticle body according to any one of ⁇ 5> to ⁇ 7>, wherein the maximum fluorescence wavelength of the fluorescent substance in the first emission wavelength range is located in a range of 500 to 700 nm.
  • ⁇ 9> The nanoparticle body according to any one of ⁇ 1> to ⁇ 8>, wherein the plasmon resonance induced in the composite is a multipole resonance.
  • ⁇ 10> The nanoparticle body according to any one of ⁇ 5> to ⁇ 8>, wherein the plasmon resonance induced in the metal nanoparticle of the single particle is dipole resonance.
  • ⁇ 11> ⁇ 1> ⁇ wherein the polymer membrane contains at least one selected from the group consisting of a bonding site via a sulfur atom, a positively charged group, and a hydrophobic group between the polymer membrane and the surface of the metal nanoparticle.
  • the polymer membrane includes at least the positively chargeable group in a side chain of a polymer constituting the polymer membrane,
  • the nanoparticle body according to ⁇ 11> which is at least one selected type.
  • the polymer membrane includes at least the hydrophobic group in a side chain of a polymer constituting the polymer membrane,
  • ⁇ 16> The nanoparticle body according to any one of ⁇ 1> to ⁇ 15>, wherein the specific binding substance is a nanoantibody.
  • ⁇ 17> The nanoparticle body according to any one of ⁇ 1> to ⁇ 16>, wherein the specific binding substance is a VHH antibody.
  • ⁇ 18> The nanoparticle body according to any one of ⁇ 1> to ⁇ 17>, wherein the metal nanoparticles contain gold or silver.
  • ⁇ 19> The nanoparticle body according to any one of ⁇ 1> to ⁇ 18>, wherein the metal nanoparticles have a particle size of 5 to 100 nm.
  • the nanoparticle bodies include a first nanoparticle body and a second nanoparticle body, The nanoparticle body according to any one of ⁇ 1> to ⁇ 19>, wherein the first nanoparticle body and the second nanoparticle body are bonded via the test substance to form a complex.
  • the test substance is a test substance derived from the specimen that is blood, plasma, urine, or saliva.
  • a fluorescent substance is positioned between the first nanoparticle body and the second nanoparticle body.
  • ⁇ 23> It comprises two or more nanoparticles according to any one of ⁇ 1> to ⁇ 22>, the two or more nanoparticles include a first nanoparticle and a second nanoparticle, and the nanoparticle The first nanoparticle body and the second nanoparticle body are bonded via the test substance.
  • a polymer comprising the step of bringing a polymer having a disulfide bond in a side chain into contact with a metal nanoparticle to form a polymer film in which the polymer is bonded to the surface of the metal nanoparticle via a sulfur atom.
  • the polymer includes at least one group selected from the group consisting of a positively charged group and a hydrophobic group bonded via the disulfide bond
  • the step according to ⁇ 25> in which, together with the formation of the polymer film, at least one group selected from the group consisting of the positively charged group and the hydrophobic group is bonded to the surface of the metal nanoparticle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

金属ナノ粒子と、金属ナノ粒子の表面を被覆する高分子膜と、検体中の被験物質と特異的に結合する特異結合物質と、高分子膜の表面または特異結合物質に標識された蛍光物質とを含んで成るナノ粒子体であって、蛍光物質は、2以上のナノ粒子体が被験物質を介して結合する複合体におけるプラズモン共鳴の発光波長の光により励起される、ナノ粒子体。

Description

ナノ粒子体、ナノ粒子体を含む複合体、ならびにナノ粒子体に含まれる高分子膜の形成方法
 本発明は、ナノ粒子体(特にプラズモン励起蛍光分析に用いるナノ粒子体)、ナノ粒子体を含む複合体、ならびにナノ粒子体に含まれる高分子膜の形成方法に関する。
 バイオセンサーは、検出対象である特定の被験物質を特定の特異結合物質に特異的に反応させて複合体を形成し、複合体における特異的な結合に起因する信号によって、被験物質を検出する。
 プラズモン励起蛍光分析では、複合体は、例えば、被験物質、特異結合物質、蛍光物質、および金属粒子を含んで成る。励起光が複合体に照射されると、複合体内の金属粒子で表面プラズモン共鳴が誘起され、金属粒子の表面近傍で近接場が形成される。この近接場によって蛍光物質の蛍光強度が増大される。
 特許文献1に記載のイムノクロマトグラム用複合粒子は、金属からなる微粒子の外側が、少なくとも一種の蛍光物質を含有するシリカの少なくとも1層で覆われた構造を持ち、標的物質を特異的に認識する標識物質で表面修飾された微粒子からなる。特許文献1の複合粒子は、金属粒子の表面をシリカ層で覆い、かつ蛍光物質をシリカ層に固定することによって、表面プラズモン共鳴で形成された近接場によって励起した蛍光物質が金属粒子と接触することを防止している。これにより、励起した蛍光物質の消光を抑制している。
特開2011-220705号公報
 ところで、上記のようなセンサでは、本発明者らが鋭意検討した結果、検出感度をさらに改善する余地があることが分かった。具体的には、従来、蛍光物質の選択においては、蛍光物質の吸収スペクトルとプラズモン共鳴の発光波長との関係を考慮せず、または当該関係に触れていたとしても単粒子の金属ナノ粒子に由来するプラズモン共鳴の発光波長との関係を考慮していた。このため、複合体における蛍光物質の放射する蛍光がプラズモン共鳴によって十分に増強されなかった。
 本発明はかかる課題に鑑みて為されてものである。すなわち、本発明は、適切な蛍光物質を選択して、複合体における蛍光物質の放射する蛍光をプラズモン共鳴によって十分に増強させて、検出感度を高めるナノ粒子体を提供することを主たる目的とする。
 本発明の一実施形態に係るナノ粒子体は、
 金属ナノ粒子と、
 該金属ナノ粒子の表面を被覆する高分子膜と、
 検体中の被験物質と特異的に結合する特異結合物質と、
 前記高分子膜の表面または前記特異結合物質に標識された蛍光物質と
を含んで成るナノ粒子体であって、
 前記蛍光物質は、2以上の前記ナノ粒子体が前記被験物質を介して結合する複合体におけるプラズモン共鳴の発光波長の光により励起される。
 本発明の別の実施形態に係る複合体は、
 前記ナノ粒子体を2以上含んで成り、前記2以上のナノ粒子体が第1ナノ粒子体と第2ナノ粒子体とを含み、前記第1ナノ粒子体と前記第2ナノ粒子体とは前記被験物質を介して結合されている。
 本発明の別の実施形態に係る高分子膜の形成方法は、
 ジスルフィド結合を側鎖に有する高分子を金属ナノ粒子に接触させて、前記高分子が前記金属ナノ粒子の表面に硫黄原子を介して結合した高分子膜を形成する工程を含んで成る。
 本発明は、適切な蛍光物質を選択して、複合体における蛍光物質の放射する蛍光をプラズモン共鳴によって十分に増強させて、検出感度を高めるナノ粒子体を提供することができる。
図1は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトル、および蛍光物質の吸収スペクトルを示す概念図である。 図2は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトルおよび複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトル、ならびに蛍光物質の吸収スペクトルを示す概念図である。 図3は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトルおよび複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトル、ならびに蛍光物質の吸収スペクトルを示す概念図である。 図4は、第1実施形態に係るナノ粒子体を模式的に示す断面図である。 図5は、図4のA部拡大断面図である。 図6は、高分子膜3の形成方法を示す概略図である。 図7は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトルおよび複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトル、ならびに蛍光物質の蛍光スペクトルを示す概念図である。 図8は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトルおよび複合体における金属ナノ粒子のプラズモン共鳴スペクトル、ならびに蛍光物質の吸収スペクトルおよび蛍光スペクトルを示す概念図である。 図9は、複合体を模式的に示す断面図である。 図10は、複合体を模式的に示す断面図である。 図11は、2つのナノ粒子体から構成される複合体を模式的に示す断面図である。 図12は、3つのナノ粒子体から構成される複合体を模式的に示す断面図である。 図13は、測定装置を示す図である。 図14は、実施例1の高分子膜の形成方法を示す模式図を示す。 図15は、実施例1の高分子膜の形成方法を示す模式図を示す。 図16は、実施例1の蛍光標識した抗体を結合したナノ粒子体の構造を示す模式図である。 図17は、イムノクロマトグラフィーストリップを示す模式図である。 図18は、実施例1のプラズモン共鳴スペクトルを示す図((a)ブランク用プレパラートおよび(b)測定用プレパラート)である。 図19は、実施例1のプラズモン共鳴スペクトル、ならびにRu錯体の吸収スペクトルおよび蛍光スペクトルを示す図である。 図20は、実施例2のプラズモン共鳴スペクトルを示す図((a)ブランク用プレパラートおよび(b)測定用プレパラート)である。 図21は、実施例2のプラズモン共鳴スペクトル、ならびにRu錯体の吸収スペクトルおよび蛍光スペクトルを示す図である。 図22は、実施例3の蛍光物質の吸収スペクトルおよび蛍光スペクトル、ならびに実施例1のプラズモン共鳴スペクトルを示す図である。 図23は、実施例3の被験物質-ナノ粒子体系の蛍光スペクトルを示す。 図24は、比較例1のプラズモン共鳴スペクトルを示す((a)一次粒子状態のシリカ被覆銀ナノ粒子および(b)3つのシリカ被覆銀ナノ粒子が略直線状に配列した凝集物)。 図25は、比較例2のプラズモン共鳴スペクトルを示す((a)一次粒子状態のシリカ被覆銀ナノ粒子および(b)3つのシリカ被覆銀ナノ粒子がオゾン分子状に配列した凝集物)。
 以下、本発明の実施形態であるナノ粒子体、複合体および測定装置を図示の実施の形態により詳細に説明する。なお、図面は模式的なものを含み、実際の寸法や比率を反映していない場合がある。
 本明細書で言及する数値範囲は、「未満/より少ない/より小さい」および「超える/より多い/より大きい」などの特段の用語が付されない限り、下限値および上限値そのものも含むことを意図している。つまり、1nm~10nmといった数値範囲を例にとれば、その数値範囲は下限値「1nm」および上限値「10nm」を含むものとして解釈される。
本明細書において、対象部材が実質的に特定の材料から構成されるまたは対象部材が特定の材料からなるとは、対象部材が95質量%以上、97質量%以上、99質量%以上、100質量%の割合で特定の材料を含むことをいう。例えば、金からなるナノ粒子とは、ナノ粒子が95質量%以上、97質量%以上、99質量%以上、100質量%の割合で金を含むことをいう。
<第1実施形態:ナノ粒子体>
[ナノ粒子体の基本構成]
 第1実施形態に係るナノ粒子体は、金属ナノ粒子と、高分子膜と、特異結合物質と、蛍光物質とを含んで成る。金属ナノ粒子は励起光照射によりプラズモン共鳴を引き起こす。高分子膜は、金属ナノ粒子の表面を被覆する。特異結合物質は、検体中の被験物質と特異的に結合して、複合体が形成される。蛍光物質は、高分子膜の表面または特異結合物質に標識されており、プラズモン共鳴に由来する蛍光を放射する。
(ナノ粒子体を用いた被験物質の検出方法)
 はじめに、本実施形態に係るナノ粒子体の説明の便宜上、その理解を助ける目的で、本実施形態に係るナノ粒子体を用いた被験物質の検出方法を説明する。
 本実施形態に係るナノ粒子体は、金属ナノ粒子と、金属ナノ粒子の表面を被覆する高分子膜と、検体中の被験物質と特異的に結合する特異結合物質と、高分子膜の表面または特異結合物質に標識された蛍光物質とを含んで成る。本実施形態に係るナノ粒子体を検体に分散させて、検体中に含まれる被験物質を捕捉して複合体(第4実施形態)を形成する。より具体的には、複合体は、ナノ粒子体の特異結合物質と、被験物質とが特異的に結合することによって形成される。複合体は、被験物質を介して、例えば、2つのナノ粒子体が結合する構造を有する。この複合体では、例えば、2つの金属ナノ粒子が同一の被験物質に対してそれぞれの特異結合物質と結合することによって、一定の距離で離間して配置されている。
 表面プラズモン励起増強蛍光分光法(Surface Plasmon Fluorescence Spectroscopy:SPFS)において、複合体に励起光を照射すると、局在表面プラズモン共鳴(以下、単に「プラズモン共鳴」とも称する,Localized Surface Plasmon Resonance:LSPR)が起き、金属ナノ粒子の表面近傍(特に、2つの金属ナノ粒子間の表面近傍)で効率的に近接場が形成される。近接場および双極子-双極子機構によって、複合体の蛍光物質が効率的に励起され、蛍光が増強する。蛍光光量を測定することによって、検体中の被験物質を検出することができる。
[本発明に至る経緯]
 次いで、本実施形態に係るナノ粒子体の説明の便宜上、その理解を助ける目的で、図1~図3を参照して、本発明に至る経緯について詳細に説明する。図1は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトル、および蛍光物質の吸収スペクトルを示す概念図である。図1に示すように、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトル201は、第2発光波長域WRE2として、例えば、1つのピークを有する。蛍光物質の吸収スペクトル202は、吸収波長域WRとして、例えば、1つのピークを有する。複合体における蛍光物質がプラズモン共鳴で励起する場合、蛍光物質は、双極子―双極子機構(フェルスター機構(Foerster Resonance Energy Transfer, Fluorescence Resonance Energy Transfer:FRET))および近接場により励起すると考えられる。このため、図1に示すように、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトル201と蛍光物質の吸収スペクトル202との重なり(吸収波長域WRと第2発光波長域WRE2との重なり)204が大きくなるような蛍光物質を選択していた。従来、検出感度を高める観点から、このようにして、複合体における蛍光物質は選択されていた。
 本願発明者らは鋭意検討した結果、従来の蛍光物質の選択では以下のような問題点があることを見出した。
 単粒子状態の金属ナノ粒子に由来するプラズモン共鳴(すなわち、単粒子の金属ナノ粒子において誘起されるプラズモン共鳴)は、双極子共鳴であり、複合体において誘起されるプラズモン共鳴は、双極子-双極子相互作用由来のプラズモン共鳴(高次の共鳴、つまり多重極子共鳴)である。多重極子共鳴としては、例えば、四重極子共鳴が挙げられる。つまり、被験物質の検出に主として寄与するプラズモン共鳴は、複合体における金属ナノ粒子間の近接によって誘起される多重極子共鳴となる。よって、被験物質の検出において検出感度を効率的に高めるためには、双極子共鳴に起因する蛍光ではなく、主として多重極子共鳴に起因する蛍光を増強する必要がある。
 図2は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトル201および複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトル206、ならびに蛍光物質の吸収スペクトル202を示す概念図である。複合体における金属ナノ粒子のプラズモン共鳴スペクトル(以下、多重極子共鳴スペクトルとも称する)206は、図2に示すように、第1発光波長域WRE1として、例えば、1つのピークを有し、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトル(以下、双極子共鳴スペクトルとも称する)201のピークに比べ、長波長側に位置する。つまり、プラズモン共鳴の第1発光波長域WRE1は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴(すなわち、単粒子の金属ナノ粒子において誘起されるプラズモン共鳴)の第2発光波長域WRE2に比べ長波長側に位置する。つまり、蛍光物質の吸収スペクトル202と複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトル206との重なり(吸収波長域WRと、第1発光波長域WRE1との重なり)は存在しない。
 本発明者らは、被験物質の検出感度を高める視点に立てば、(図1でも述べた)スペクトルの重なり204は見かけ上の重なりといえる。被験物質の検出感度を高める観点から、第1領域Rを存在させるような蛍光物質を選択することが重要であり、好ましくは多重極子共鳴スペクトル206と、蛍光物質の吸収スペクトル202との重なり208が大きくなるような蛍光物質を選択することが重要であることを見出した(参照:後述の図3)。ここで、第1領域Rとは、後述する図3に示すように、多重極子共鳴スペクトル206と、蛍光物質の吸収スペクトル202との重なった領域(重なり208に相当する領域)をいう。
 図3は、単粒子状態の金属ナノ粒子に由来するプラズモン共鳴スペクトル201および複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトル206、ならびに蛍光物質の吸収スペクトル202を示す概念図である。本実施形態では、蛍光物質の吸収スペクトル202と複合体における金属ナノ粒子に由来する共鳴スペクトル206との重なり208が存在するように(好ましくは、大きくなるように)、蛍光物質が選択される。このように蛍光物質の吸収波長域WRがプラズモン共鳴の第1発光波長域WRE1と重なる場合、蛍光物質が十分に励起され、蛍光が増強されて検出感度が大きく向上する。よって、本実施形態に係るナノ粒子体は、検出感度を高めることができると考えられる。
 本発明者らは、このような技術的知見に基づいて、蛍光物質の分光特性を調整することに着眼して、検出感度を高める具体的手段を検討した。その結果、本発明者らは、「蛍光物質は、2以上のナノ粒子体が被験物質を介して結合する複合体における局在表面プラズモン共鳴の発光波長の光により励起される」との特徴に想到するに至った。
 第1実施形態に係るナノ粒子体は、
 金属ナノ粒子と、
 該金属ナノ粒子の表面を被覆する高分子膜と、
 検体中の被験物質と特異的に結合する特異結合物質と、
 前記高分子膜の表面または前記特異結合物質に標識された蛍光物質と
を含んで成るナノ粒子体であって、
 前記蛍光物質は、2以上の前記ナノ粒子体が前記被験物質を介して結合する複合体における局在表面プラズモン共鳴の発光波長の光により励起される。
[作用機序]
 本実施形態に係るナノ粒子体は、検出感度を高めることができる。特定の理論に拘束されるわけではないが、その理由は以下のように推測される。本実施形態に係るナノ粒子体では、蛍光物質が、2以上のナノ粒子体が被験物質を介して結合する複合体におけるプラズモン共鳴の発光波長の光により励起される。これにより、蛍光物質の吸収スペクトルと、複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトルとの重なりが生じ、フェルスター機構および近接場によって被験物質を検出するための蛍光が誘起される(以下、このような蛍光を「励起誘起型蛍光」とも称する)。よって、蛍光物質は複合体に由来するプラズモン共鳴の発光波長の光によって十分に励起されるため、検出感度を高めることができる。
 また、被験物質を検出するための蛍光は、蛍光物質の蛍光スペクトルと、複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトルとの重なりでも誘起される(以下、このような蛍光を「発光誘起型蛍光」とも称する)。発光誘起型蛍光については、第2実施形態で詳述する。
[スキーム1]
 本実施形態に係るナノ粒子体を用いて被験物質を検出する過程のスキーム1:
Figure JPOXMLDOC01-appb-C000001
(スキーム1の素過程(1)~(3)中、Sは基底状態を示し、Sは励起一重項状態を示し、*は励起状態を示し、Fluは(複合体中の)蛍光物質を示し、Mは(複合体中の)金属ナノ粒子を示す)
を参照して、さらに本実施形態での蛍光増強をさらに説明する。
 スキーム1は、素過程(1)~(3)を含んで構成されている。
 素過程(1)に示すように、蛍光物質は、2以上のナノ粒子体が被験物質を介して結合する複合体におけるプラズモン共鳴の発光波長の光により励起される。被験物質を捕捉して形成された複合体に励起光としての外部から照射された光(以下、「外部照射光」とも称する)を照射すると、プラズモン共鳴(多重極子共鳴)が誘起される(つまり、複合体におけるプラズモン共鳴は、外部から照射された光によって誘起される)。なお、被験物質としては、例えば、血液、血漿、尿、または唾液である検体に由来する被験物質が挙げられる。
 素過程(2)に示すように、双極子-双極子機構および近接場によって蛍光物質が励起される。蛍光物質の吸収波長域WRがプラズモン共鳴の第1発光波長域WRE1と重なる場合に、蛍光物質は効率よく励起される。
 素過程(3)に示すように、励起状態の蛍光物質が緩和して蛍光を放射する。
 好適な一態様では、第1発光波長域WRE1における蛍光物質の最大吸収波長が、500~700nm(より好ましくは550~700nm)に位置する。つまり、複合体におけるプラズモン共鳴スペクトルの第1発光波長領域WRE1内の500~700nmに、蛍光物質の最大吸収波長が位置する。蛍光物質としては、例えば、フルオレセイン誘導体、ローダミン誘導体、シアニン色素、およびMolecular Probes社製のAlexa Flouor(登録商標)が挙げられる。これらのうち、最大吸収波長500~700nmである蛍光物質としては、例えば、Alexa Flour(登録商標)シリーズの532、546、555、568、594、および640が挙げられる。なお、最大吸収波長は、以下のようにして決定できる。蛍光物質の水溶液(溶媒:脱イオン水)の吸収スペクトルを測定し、得られた吸収スペクトルのピーク位置を最大吸収波長とする。
 好適な別の態様では、複合体が2つのナノ粒子体1を含んで成る場合、複合体において、第1ナノ粒子体と第2ナノ粒子体との間に蛍光物質が位置づけられている。
 以下、ナノ粒子体の構成を説明する。図4を参照して、ナノ粒子体を説明する。図4は、本実施形態に係るナノ粒子体を模式的に示す断面図である。本実施形態に係るナノ粒子体1は、金属ナノ粒子2と、金属ナノ粒子2の表面を被覆する高分子膜3と、検体中の被験物質と特異的に結合する特異結合物質4と、高分子膜3の表面に標識された蛍光物質6とを含んで成る。
 ナノ粒子体1は、プラズモン励起蛍光分析に用いることができる。別の表現をすれば、ナノ粒子体1は、表面プラズモン励起増強蛍光分光免疫測定法に用いることができる。ナノ粒子体1は、被検体中の被験物質を捕捉し、2以上のナノ粒子体1と被験物質とを含む複合体を形成することができる。複合体に励起光を照射すると、プラズモン共鳴を起こし近接場を形成する。近接場および双極子-双極子機構によって、蛍光が増強される。ナノ粒子体1は、例えば、被検体中の1つの被験物質を捕捉し、2つのナノ粒子体1と被験物質とを含む複合体を形成する。かかる場合、ナノ粒子体1は、ナノ粒子体として第1ナノ粒子体と、第2ナノ粒子体とが含まれ、第1ナノ粒子体と第2ナノ粒子体とが被験物質を介して結合された複合体を形成する。
 ナノ粒子体1はまた、非特異的な結合部位をブロッキング剤によってブロッキングされてもよい。ブロッキングされたナノ粒子体1は、特異結合物質4の検出対象以外の物質(すなわち、被験物質以外の物質)への非特異的な結合の形成が抑制され、バックグラウンドおよび偽陽性信号を低減し、信号-ノイズ比(SN比)を向上させることができる。ブロッキング剤としては、例えば、ウシ血清アルブミン(BSA)、スキムミルク、およびカゼインのようなタンパク質、ならびに化学合成ポリマーである。
 ナノ粒子体1が溶媒中に存在する場合、ナノ粒子体1の分散液は、ナノ粒子体1の分散性を向上させる目的で、分散剤をさらに含んでもよい。このような分散剤としては、例えば、ヘパリンナトリウムが挙げられる。
(金属ナノ粒子)
 金属ナノ粒子2は、その表面を高分子膜3で被覆されている。金属ナノ粒子2は、金属の種類によって異なるが、特定の波長を有する光と相互作用し、プラズモン共鳴を起こす。銀ナノ粒子では400nm~530nm、金ナノ粒子では510nm~580nmにプラズモンの共鳴ピークがある。これは粒子径により異なる。例えば、粒子径が20nmの銀からなるナノ粒子は、波長405nmの光と共鳴し、粒子径が20nmの金からなるナノ粒子は、波長524nmの光と共鳴する。金属ナノ粒子2の粒子径(平均一次粒子径)は、例えば、5nm~100nm、40nm~90nm、50nm~80nmである。金属ナノ粒子2の粒子径は、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて、金属ナノ粒子2の画像を撮像し、画像での金属ナノ粒子2の粒子径を測長し、複数の粒子径の平均値(測定数:例えば、少なくとも10以上)を算出することにより得ることができる。
 金属ナノ粒子2は、好ましくは金または銀を含んで成り、より好ましくは銀を含んで成る。
(高分子膜)
 高分子膜3は金属ナノ粒子2の表面を被覆する。高分子膜3は、金属消光分子膜として機能する。複合体においては、高分子膜3は、少なくとも高分子膜3の厚み分、金属ナノ粒子2の表面から蛍光物質6を離間して配置させることができる。このため、励起した蛍光物質6が金属ナノ粒子2の表面に接触して消光すること(デクスター機構(Dexter Electron Transfer)により消光すること)を抑制し、検出感度の低下を抑制できる。高分子膜3の存在は、SEMまたはTEMを用いて、ナノ粒子体1の画像を撮像し、画像でのナノ粒子体1を観察し、確認することができる。
 図5を参照して、高分子膜3を説明する。図5は、図4のA部拡大図であり、ナノ粒子体1の高分子膜3と金属ナノ粒子2の表面との界面付近の拡大断面図である。高分子膜3は、金属ナノ粒子2の表面との間に硫黄原子を介した結合部位3a、正帯電性基3b、および疎水性基3cからなる群より選択される少なくとも1つを含む。より具体的には、高分子膜3は、金属ナノ粒子2の表面との間に硫黄原子を介した結合部位3aと、正帯電性基3bとしての第1級アンモニウム基(-NH )と、疎水性基3cとを含む。結合部位3aは、硫黄原子を介して金属ナノ粒子2の表面と高分子膜3との間を結合する。正帯電性基3bは、負帯電性の金属ナノ粒子2の表面との間に静電結合(イオン結合)bを形成する。疎水性基3cは、金属ナノ粒子2の表面と疎水結合cを形成する。
 上記3つの結合はいずれも金属ナノ粒子2の表面と、高分子膜3との間に比較的強く結びつけるため、高分子膜3は、上記3つの結合のうち少なくとも1つの結合によって、金属ナノ粒子2の表面に安定的に固定される。これにより、高分子膜3の金属ナノ粒子2の表面からの剥離等が防止される。その結果、高分子膜3の剥離等に伴う特異結合物質4の脱離が抑制され、検出感度の低下が抑制される。加えて、高分子膜3の剥離等に伴う金属ナノ粒子2の表面の露出が抑制され、励起した蛍光物質6との接触による消光が抑制され、検出感度の低下が抑制される。さらに、高分子膜3は、高分子3Aを含んで構成されているため、シリカ層に比べ、化学修飾しやすく、表面改質等の必要性が低い。これにより、シリカ層に比べ膜厚を小さくして、複合体における金属ナノ粒子2間距離を減少させることができる。よって、より効率的に近接場が形成され、検出感度を向上させることができる。以上から、本実施形態に係るナノ粒子体1は、検出安定性により優れる。
 高分子膜3を構成する高分子3Aは、図5に示すように、金属ナノ粒子2の表面との間に硫黄原子を介した結合部位3a、正帯電性基3b、および疎水性基3cからなる群より選択される少なくとも1つを含むことができる。硫黄原子を介した結合部位3a、正帯電性基3b、および疎水性基3cの存在は、赤外分光法、核磁気共鳴分光法、エネルギー分散型X線分光法(TEM-EDS)、X線光電子分光法(XPS)、および飛行時間型二次イオン質量分析法(TOF―SIMS)を用いて、それらに由来する信号を測定することで、確認することができる。また、高分子膜3を構成する高分子3Aは、側鎖としてジスルフィド結合(-S-S-)を含む部位を有することができる。ジスルフィド結合を含む部位は正帯電性基3bおよび/または疎水性基3cを有することができる。
-硫黄原子を介した結合部位-
 硫黄原子を介した結合部位3aは、例えば、側鎖としてジスルフィド結合を含む部位を有する高分子と、金属ナノ粒子2とを混合することで形成される。原料としての高分子が、例えば、図5に示すように、側鎖にジスルフィド結合を介して疎水性基3cを有する場合、金属ナノ粒子2の表面との間に硫黄原子を介した結合部位を形成する(図5および後述する図15参照)。
-正帯電性基-
 高分子膜3は、高分子膜3を構成する高分子3Aの側鎖に正帯電性基3bを少なくとも含むことができる。正帯電性基3bは、金属ナノ粒子2の表面と比較的強い静電結合を形成する。正帯電性基は、本明細書において、1価以上の価数を有し、完全に正に電離した基である。高分子膜3を構成する高分子3Aに含まれる複数の正帯電性基3bを考慮した場合、正帯電性基3bは、下記の数式(1):
Figure JPOXMLDOC01-appb-M000002
[数式(1)中、pKaは高分子膜3を構成する高分子3Aに含まれる電気的に中性な基であって、正に帯電すれば、正帯電性基(より具体的には、第1級アンモニウム基(-NH )等)3bとなり得る基(以下、電気的中性基とも称する)(より具体的には、第1アミノ基(-NH)等)のpKaを示し、pHは被験物質を検出する環境(より具体的には、検体等)のpHを示し、Bは高分子3Aに含まれる電気的中性基を示し、BHは高分子3Aに含まれる正帯電性基3bを示す]
で表されるpKaが7以上である基をいう。つまり、正帯電性基3bは、高分子膜3を構成する高分子3Aの電気的中性基および正帯電性基3bとが被験物質を検出する環境(例えば、pHおおよそ6~8の検体)中で、下記の化学平衡式(2):
Figure JPOXMLDOC01-appb-C000003
[化学平衡式(2)中、Hはプロトンを示し、BおよびBHは、数式(1)中のBおよびBHはとそれぞれ同義である]
で表される平衡状態を形成している場合であって、正帯電性基の濃度([BH])が電気的中性基の濃度([B])に比べ10倍以上大きい基をいう。
 正帯電性基は、例えば、第1級アンモニウム基、第2級アンモニウム基、第3級アンモニウム基、第4級アンモニウム基およびグアニジル基(-NHC(=NH )NH)からなる群より選択される少なくとも1種である。
-疎水性基-
 高分子膜3は、高分子膜3を構成する高分子3Aの側鎖に疎水性基3cを少なくとも含むことができる。疎水性基3cは、例えば、芳香族環状基、脂肪族環状基、および脂肪族鎖状基からなる群より選択される少なくとも1種である。
 芳香族環状基としては、例えば、芳香族炭素環基、および芳香族複素環基が挙げられる。芳香族炭素環基は、芳香族複素環を含まず、環員原子がすべて炭素原子である芳香族環を含む基である。芳香族炭素環基としては、例えば、アリール基(より具体的には、フェニル基等)およびアリールアルキル基(より具体的には、ベンジル基等)が挙げられる。芳香族複素環基は、環員原子の少なくとも1つがヘテロ原子(より具体的には、酸素原子、硫黄原子および窒素原子等)である芳香環を含む基である。芳香族複素環基としては、例えば、含窒素芳香族複素環基(より具体的には、イミダゾイル基およびピリジル基(ピリジニル基)等)、含硫黄芳香族複素環基、および含酸素芳香族複素環基が挙げられる。
 脂肪族環状基は、芳香族環を含まず、非芳香族環からなる環状基を含む基である。脂肪族環状基としては、例えば、脂肪族炭素環基および脂肪族複素環基が挙げられる。脂肪族炭素環基は、環員原子がすべて炭素原子である非芳香族環を含む基であり、例えば、シクロアルキル基が挙げられる。脂肪族複素環基は、環員原子の少なくとも1つがヘテロ原子である非芳香環を含む基である。
 脂肪族鎖状基は、芳香環および非芳香環を含まない鎖状(より具体的には、直鎖状および分岐鎖状)の基である。脂肪族鎖状基としては、例えば、脂肪族炭素鎖基(より具体的には、アルキル基およびアルキレン基等)および脂肪族ヘテロ鎖基が挙げられる。
 高分子膜3を構成する高分子3Aは、高分子3Aが有し得る疎水性基3cと、金属ナノ粒子2の表面との間で疎水結合cを形成することができる。高分子膜3を構成する高分子3Aは、これ以外の疎水結合cも形成できる。例えば、金属ナノ粒子2の表面に硫黄原子を介して結合する疎水性基(より具体的には、後述する図15中の金属ナノ粒子2の表面に硫黄原子を介して結合するピリジル基等)3cと、高分子膜3を構成する高分子3Aが有し得る疎水性基(より具体的には、図15中の高分子3Aが有するアルキレン基)3cとの間で疎水結合cを形成できる。このような疎水結合cが形成される場合、高分子膜3は、金属ナノ粒子2の表面にさらに安定的に固定される。なお、金属ナノ粒子2の表面に硫黄原子を介して結合する疎水性基3cは以下のようにして形成される。硫黄原子を介した結合部位3aは、既述したように、例えば、側鎖にジスルフィド結合を介して疎水性基3cを有する高分子と、金属ナノ粒子2と混合させて形成することができる。ここで、硫黄原子と結合した疎水性基3cも金属ナノ粒子2の表面と結合する。このようにして金属ナノ粒子2の表面に硫黄原子を介して結合する疎水性基3cが形成される。
 高分子膜3を構成する高分子3Aは、架橋剤に由来する部位(リンカー部)を介して硫黄原子を介する結合を形成してもよい。このような架橋剤としては、例えば、アミノ基-スルフヒドリル基間架橋剤(より具体的には、NHS-マレイミド基架橋剤等)が挙げられる。
 高分子膜3の膜厚は、好ましくは1nm~50nmであり、より好ましくは1nm~10nmである。高分子膜3の膜厚が50nm以下であると、例えば、2つの金属ナノ粒子2を含んで構成される複合体において、2つの金属ナノ粒子2間の空間に近接場が効率的に形成される離間距離(離隔距離)となるため、検出感度がさらに向上する。また、高分子膜3の膜厚が1nm以上であると、複合体における金属ナノ粒子2と蛍光物質6とが所定の距離を設けて配置されるため、測定において励起した蛍光物質6から放射される蛍光の消光が抑制され、検出感度がさらに向上する。
 なお、本明細書において、離間距離(離隔距離)とは、複合体において被験物質を介して結合する2つのナノ粒子体にそれぞれ含まれる金属ナノ粒子2表面間の距離の最小値(最短距離)をいう。
(高分子膜の形成方法)
 高分子膜3の形成方法は、ジスルフィド結合を側鎖に有する高分子を金属ナノ粒子2に接触させて、高分子が金属ナノ粒子2の表面に硫黄原子を介して結合した高分子膜3を形成する工程を含んで成る。原料としての高分子は、例えば、ジスルフィド結合を介して結合する正帯電性基3bおよび疎水性基3cからなる群より選択される少なくとも一方の基を含む。この場合、前記工程は、高分子膜3の形成とともに、正帯電性基3bおよび疎水性基3cからなる群より選択される少なくとも一方の基を金属ナノ粒子2の表面に結合させる。
 なお、高分子膜3の形成方法において、側鎖にジスルフィド基を介して正帯電性基3bおよび/または疎水性基3cを有する高分子を原料として使用した場合、形成される高分子膜3において、高分子膜3を構成する高分子3Aは、側鎖にジスルフィド基を介して正帯電性基3bおよび/または疎水性基3cを有してもよい。高分子3A中の正帯電性基3bおよび/または疎水性基3cは、高分子膜3の形成方法において、反応しきれずに残った基である。
 図6を参照して、具体的に説明する。図6は、高分子膜3の形成方法を示す概略図である。高分子3Bは、ジスルフィド結合を介して結合する正帯電性基3bおよび疎水性基3cを側鎖に有する。高分子3Bを金属ナノ粒子2と接触させると、ジスルフィド結合の硫黄原子間の結合が開裂し、高分子3Bが金属ナノ粒子2の表面に硫黄原子を介して結合し、並行して正帯電性基3bおよび疎水性基3cが金属ナノ粒子2の表面に硫黄原子を介してそれぞれ結合する。高分子膜3の形成方法は、1つの工程で、金属ナノ粒子2の表面への高分子膜3の形成と、並行して金属ナノ粒子2の表面の改質(例えば、機能性基である正帯電基3bおよび/または疎水性基3cの表面修飾)を行うことができる。よって、本方法は、コストに優れる。
(特異結合物質)
 特異結合物質4は、検体中の被験物質(第4実施形態にて説明する)と特異的に結合するナノサイズ(最長が3~15nmであるサイズ)の物質である。特異結合物質4としては、例えば、抗体(以下、ナノ抗体と称する)、リガンド、酵素、ならびに核酸鎖(より具体的には、DNA鎖およびRNA鎖)が挙げられる。例えば、特異結合物質4としてのナノ抗体は、抗原抗体反応により、その先端部(抗原結合部位:Antigen Binding Site)で、被験物質としての抗原と特異的に結合して複合体を形成する。特異結合物質4としてのリガンドは、被験物質としてのタンパク質と、リガンド・レセプター反応によって特異的なタンパク質-リガンド結合して複合体を形成する。特異結合物質4としての核酸鎖は、塩基対の相補性に基づいて、相補的な関係にある核酸鎖と核酸鎖の対(二本鎖)を形成する。特異結合物質4としての酵素は、その活性部位(活性中心)で基質特異性(立体特異性)に基づいて被験物質としての基質と酵素-基質複合体を形成する。これらの特異的結合は、非共有結合であり、例えば、水素結合、ならびに分子間力、疎水的相互作用および電荷的相互作用に起因する結合である。
 ナノ抗体は、例えば、VHH(variable domain of heavy chain antibody)抗体、Fab(Fragment Antigen Binding)抗体およびそれらの変異体である。VHH抗体は、単一ドメイン抗体である。変異体は、抗原に対する特異的結合性を有する範囲内で、アミノ酸配列の一部を組み換えた抗体または置換基を導入した抗体である。ナノ抗体は、好ましくはVHH抗体である。ナノ抗体がVHH抗体であると、VHH抗体は比較的体積が小さいため、複合体における2つの金属ナノ粒子2間の距離(離隔距離)を狭め、近接場をより効率的に形成し、蛍光強度をさらに増大させることができる。
 ナノ抗体の分子質量は、好ましくは60,000Da以下であり、より好ましくは30,000Da以下であり、さらに好ましくは20,000Da以下である。分子質量が60,000Da以下(特に、30,000Da以下、または20,000Da以下)であると、ナノ抗体の体積が比較的小さいため、複合体における離隔距離を狭め、近接場をより効率的に形成し、蛍光強度をさらに増大させることができる。分子質量の測定方法は、電気泳動(SDS-PAGE)、ゲルろ過クロマトグラフィー、および静的光散乱法などである。
 特異結合物質4は、高分子膜3に直接結合してもよく、架橋剤(より具体的には、NHS-マレイミド基架橋剤等)に由来するリンカー部(より具体的には、SM(PEG)等)を介して間接的に高分子膜3に結合してもよい。
(蛍光物質)
 蛍光物質6は高分子膜3の表面および/または特異結合物質4に標識される。蛍光物質6は、プラズモン共鳴で形成される近接場により励起され、蛍光を発する。蛍光物質6は、例えば、ユーロピウムおよびルテニウムのような金属の錯体(金属錯体)、ならびにAlexsa Fluorシリーズ(登録商標)(Molecular Probes製)の色素が挙げられる。
 蛍光物質6は、ストークスシフトが大きいことが好ましい。ここで、ストークスシフトは、蛍光物質6の吸収スペクトルにおける吸収ピーク波長(最大励起波長)と、蛍光スペクトルにおける蛍光ピーク波長(最大蛍光波長)との差である。蛍光物質6のストークスシフトが大きい場合、吸収スペクトルと蛍光スペクトルとが重なりにくく、検出する蛍光に励起光(の散乱光)が入りにくく、より正確な蛍光強度を測定することができる。
 蛍光物質の蛍光スペクトルは、シャープであることが好ましい。蛍光スペクトルがシャープであると、吸収スペクトルとの重なりにくいため、検出する蛍光に励起光(の散乱光)が入りにくく、より正確な蛍光強度を測定することができる。
(被験物質を検出するための測定装置)
 上述した被験物質の検出方法を用いる測定装置を、図13を参照して、説明する。図13は、測定装置を示す図である。図13に示すように、測定装置100は、励起用光源110と、励起光照射光学系120と、試薬容器130と、受光光学系140と、受光素子150とを備える。
 励起用光源110は、励起光112を照射する。励起用光源110は、例えば、レーザー光源である。励起光照射光学系120は、励起光112の集光のように断面径の調整等を行い、入射励起光122を出力する。励起光照射光学系120は、レンズ124および偏光素子(λ/2板)126である。励起光照射光学系120から出力した入射励起光122は、試薬容器130に入射し、試薬容器130内の測定試料に照射される。試薬容器130は、例えば、着脱可能な容器(より具体的には、セル、およびプレパラート等)、およびマイクロ流路チップである。マイクロ流路チップは、微小な流路を有するチップである。試薬容器130がマイクロ流路チップである場合、例えば、第1実施形態に係るナノ粒子体(試薬)と検体とを混合して連続的に供給することができる。このため、あらかじめ測定試料を混合して調製する必要がなく、連続的に測定することが可能となる。
 入射励起光122が照射された測定試料は、蛍光(検出光132)を発する。受光光学系140は、試薬容器130への入射励起光122の進行方向に対して直角方向に配置される。受光光学系140は、測定試料から発せられた検出光132の断面径等を調整し、入射励起光122の散乱光を取り除く、もしくは光量を調整することが出来る。受光光学系140は、レンズ144および光学フィルタ146である。光学フィルタ146は、例えば、バンドパスフィルタ、およびダイクロイックミラーである。
 受光光学系140を通過した蛍光142は、受光素子150で検出される。受光素子150は、例えば、PD、APD、PMT、CCDカメラ、および分光器である。受光素子150は、単一波長の蛍光量の測定、蛍光スペクトルの測定、および2次元平面の蛍光イメージング作成が可能である。
<第2実施形態:ナノ粒子体>
 第2実施形態は、第1実施形態とは、蛍光物質の分光特性が異なる。この相違する構成を主として以下に説明する。なお、第2実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
 第1実施形態において被験物質を検出するための蛍光は、蛍光物質6の吸収スペクトル202とプラズモン共鳴スペクトル206との重なり208で誘起される「励起誘起型蛍光」であった。第2実施形態において被験物質を検出するための蛍光は、蛍光物質6Aの蛍光スペクトルとプラズモン共鳴スペクトル206との重なりで誘起される「発光誘起型蛍光」である。
 なお、本明細書において、第2実施形態に係るナノ粒子体での蛍光物質は、第1実施形態に係るナノ粒子体での蛍光物質6と分光特性が異なることを示しかつ区別すべく、「蛍光物質6A」とも称する。
 本実施形態に係るナノ粒子体は、検出感度を高めることができる。特定の理論に拘束されるわけではないが、その理由は以下のように推測される。本実施形態に係るナノ粒子体では、蛍光物質6Aが、2以上のナノ粒子体が被験物質を介して結合する複合体におけるプラズモン共鳴の発光波長の光により励起される。これにより、蛍光物質6Aの蛍光スペクトルと、複合体における金属ナノ粒子に由来するプラズモン共鳴スペクトル206との重なりが生じ、多重極子共鳴による双極子―双極子機構およびパーセル効果によって被験物質を検出するための蛍光が誘起される。よって、蛍光物質6Aは複合体に由来するプラズモン共鳴の発光波長の光によって十分に励起されるため、検出感度を高めることができる。
 図7を参照して説明する。図7は、単粒子状態の金属ナノ粒子2に由来するプラズモン共鳴スペクトル201および複合体における金属ナノ粒子2に由来するプラズモン共鳴スペクトル206、ならびに蛍光物質6Aの蛍光スペクトル210を示す概念図である。本実施形態では、蛍光物質6Aの蛍光スペクトル210と複合体における金属ナノ粒子に由来する共鳴スペクトル206との重なり212が存在するように(好ましくは、大きくなるように)、蛍光物質6Aが選択される。このように、蛍光物質6Aの蛍光波長域WRがプラズモン共鳴の第1発光波長域WRE1と重なる場合、蛍光物質6Aが十分に励起され、蛍光が増強されて検出感度が大きく向上する。よって、本実施形態に係るナノ粒子体は、検出感度を高めることができると考えられる。
 換言すれば、被験物質の検出感度を高める観点から、第2領域Rを存在させるような蛍光物質6Aを選択することが重要である。ここで、第2領域Rとは、図7に示すように、多重極子共鳴スペクトル206と、蛍光物質の蛍光スペクトル210とが重なった領域(重なり212に相当する領域)をいう。被験物質の検出感度をより高める観点から、好ましくは第2領域Rが大きくなるような蛍光物質6Aを選択することが重要である。
[スキーム2]
 本実施形態に係るナノ粒子体を用いて被験物質を検出する過程のスキーム2:
Figure JPOXMLDOC01-appb-C000004
(スキーム2の素過程(1)~(3)中、Sは基底状態を示し、Sは励起一重項状態を示し、*は励起状態を示し、Fluは(複合体中の)蛍光物質6Aを示し、Mは(複合体中の)金属ナノ粒子2を示す)
を以下に示す。
 スキーム2は、素過程(1)~(3)を含んで構成されている。
 素過程(1)に示すように、例えば、外部照射光によって蛍光物質6Aが励起される。
 素過程(2)に示すように、励起状態の蛍光物質6Aが緩和して蛍光を放射する。
 素過程(3)に示すように、放射された蛍光によって、金属ナノ粒子2の表面にプラズモン共鳴(多重極子共鳴)が誘起される(つまり、複合体におけるプラズモン共鳴は、蛍光物質6Aが放射する蛍光によって誘起される)。このプラズモン共鳴(多重極子共鳴)は、蛍光物質6Aの発光波長域WRがプラズモン共鳴の第1発光波長域WRE1と重なる場合に、効率よく、励起状態の蛍光物質6Aの蛍光放射が誘起される。
 好適な一態様では、第1発光波長域WRE1における蛍光物質6Aの最大蛍光波長が、500~700nm(より好ましくは、550~700nm、さらに好ましくは600~700nm)に位置する。つまり、複合体における金属ナノ粒子2由来のプラズモン共鳴スペクトルの第1発光波長領域WRE1内の500~700nmに、蛍光物質6Aの最大蛍光波長が位置する。蛍光物質としては、例えば、フルオレセイン誘導体、ローダミン誘導体、シアニン色素、およびMolecular Probes社製のAlexa Flouor(登録商標)が挙げられる。これらのうち、最大蛍光波長500~700nmである蛍光物質6Aとしては、例えば、東京化成工業株式会社製「Ruthenium(II)tris(Bipyridyl)-C5-NHS ester」、ならびにAlexa Flour(登録商標)シリーズの430、488、532、546、555、568、594、および640が挙げられる。なお、最大蛍光波長は、以下のようにして決定できる。蛍光物質の水溶液(溶媒:脱イオン水)の吸収スペクトルを測定し、得られた吸収スペクトルのピーク位置を決定する。当該ピーク位置の波長の励起光を蛍光物質6Aに照射し、蛍光物質の水溶液の蛍光スペクトルを測定し、得られた蛍光スペクトルのピーク位置を最大蛍光波長とする。
<第3実施形態:ナノ粒子体>
 第3実施形態は、第1実施形態および第2実施形態とは、蛍光物質の分光特性が異なる。この相違する構成を主として以下に説明する。なお、第3実施形態において、第1実施形態および第2実施形態と同一の符号は、第1実施形態および第2実施形態と同じ構成であるため、その説明を省略する。
 第3実施形態において被験物質を検出するための蛍光は、第1実施形態で示した蛍光物質6の吸収スペクトル202とプラズモン共鳴スペクトル206との重なり208で誘起され、かつ第2実施形態で示した蛍光物質6Aの蛍光スペクトル210とプラズモン共鳴スペクトル206の重なり212で誘起される。つまり、複合体におけるプラズモン共鳴は、外部照射光によって誘起される励起誘起型蛍光であり、かつ蛍光によって誘起される発光誘起型蛍光である。
 なお、本明細書において、第3実施形態に係るナノ粒子体での蛍光物質は、第1実施形態に係るナノ粒子体での蛍光物質6および第2実施形態に係るナノ粒子体での蛍光物質6Aと分光特性が異なることを示しかつ区別すべく、「蛍光物質6B」とも称する。
 図8を参照して説明する。図8は、単粒子状態の金属ナノ粒子2に由来するプラズモン共鳴スペクトル201および複合体における金属ナノ粒子2のプラズモン共鳴スペクトル206、ならびに蛍光物質6Bの吸収スペクトル202および蛍光スペクトル210を示す概念図である。本実施形態では、被験物質の検出感度を高める観点から、蛍光物質6Bの吸収スペクトル202および蛍光スペクトル210と複合体における金属ナノ粒子2に由来する共鳴スペクトル206との重なり(それぞれ吸収波長域WRと第1発光波長域WRE1との重なり208ならびに蛍光波長域WRと第1発光波長域WRE1との重なり212)が存在するように蛍光物質6Bが選択される。さらに、好適な態様では、被験物質の検出感度をさらに高める観点から、重なり208および重なり212が大きくなるように、蛍光物質6Bが選択され得る。このため、蛍光物質6Bが十分に励起され、蛍光が増強されて検出感度が大きく向上する。よって、本実施形態に係るナノ粒子体は、検出感度を高めることができると考えられる。
[スキーム3]
 本実施形態に係るナノ粒子を用いて被験物質を検出する過程のスキーム3:
Figure JPOXMLDOC01-appb-C000005
(スキーム3の素過程(1)~(4)中、Sは基底状態を示し、Sは励起一重項状態を示し、*は励起状態を示し、Fluは(複合体中の)蛍光物質6Bを示し、Mは(複合体中の)金属ナノ粒子2を示す)
を以下に示す。
 スキーム3は、素過程(1)~(4)を含んで構成されている。
 素過程(1)に示すように、被験物質を捕捉して形成された複合体に外部照射光を照射すると、金属ナノ粒子2の表面にプラズモン共鳴(多重極子共鳴)が誘起される(つまり、複合体におけるプラズモン共鳴は、外部照射光によって誘起される)。
 素過程(2)に示すように、双極子―双極子機構および近接場によって蛍光物質6Bが励起される。蛍光物質6Bの吸収波長域WRがプラズモン共鳴の第1発光波長域WRE1と重なる場合に、蛍光物質6Bは効率よく励起される。
 素過程(3)に示すように、励起状態の蛍光物質6Bが緩和して蛍光を放射する。
 素過程(4)に示すように、放射された蛍光によって、金属ナノ粒子2の表面にプラズモン共鳴(多重極子共鳴)が誘起される(つまり、複合体におけるプラズモン共鳴は、蛍光物質6Bが放射する蛍光によって誘起される)。このプラズモン共鳴(多重極子共鳴)は、蛍光物質6Bの発光波長域WRがプラズモン共鳴の第1発光波長域WRE1と重なる場合に、効率よく励起状態の蛍光物質6Bの蛍光放射が誘起される。
 外部照射光の光量は蛍光の光量に比べ大きい。よって、検出感度をより向上させる観点から、好ましくは、第1発光波長域WRE1と蛍光物質6Bの吸収波長域WRとが重なる第1領域Rが、第2発光波長域WRE2と蛍光物質6Bの吸収波長域WRとが重なる第2領域Rに比べ大きくなるように、蛍光物質6Bが選択される(参照:図8)。
(第1領域Rと第2領域Rとの大小関係の判定方法)
 第1領域Rと第2領域Rとの大小関係の判定方法は、以下のようにして実施する。蛍光顕微分光測定装置(実施例にて詳述する)を用いて、複合体のプラズモン共鳴スペクトルを測定する。プラズモン共鳴スペクトルにおける多重極子共鳴スペクトル206を特定する。蛍光物質6Bの吸収スペクトル202および蛍光スペクトル210を測定する(蛍光物質6Bの測定試料は、溶媒としての脱イオン水で調製する)。
 規格化した多重極子共鳴スペクトル206と蛍光物質6Bの規格化した吸収スペクトル202との重なり208を作成する。重なり208の積分値を算出する。規格化した多重極子共鳴スペクトル206と蛍光物質6Bの規格化した蛍光スペクトル210との重なり212を作成する。重なり212の積分値を算出する。得られた積分値の大小関係に基づいて、第1領域Rと第2領域Rとの大小関係を判定する。
<第4実施形態:複合体>
 図9を参照して、複合体を説明する。図9は、第4実施形態に係る複合体を模式的に示す断面図である。第4実施形態に係る複合体は、第1実施形態に係るナノ粒子体1を2つ含んで成り、2つのナノ粒子体1が第1ナノ粒子体10と、第2ナノ粒子体20とを含み、第1ナノ粒子体10と、第2ナノ粒子体20とは被験物質30を介して結合する。複合体40は、検出対象である被験物質30と、2つのナノ粒子体10,20とを含んで成る。2つのナノ粒子体10,20は、複合体40において、被験物質30を介して結合されている。つまり、第1実施形態に係るナノ粒子体10,20は、被験物質30を介して結合された、第4実施形態に係る複合体を形成する。2つのナノ粒子体10,20のうち、一方を第1ナノ粒子体10と称し、もう一方のナノ粒子体を第2ナノ粒子体20と称する。
 複合体40において、第1ナノ粒子体10は、第1金属ナノ粒子12と、第1金属ナノ粒子12の表面を被覆する第1高分子膜13と、検体中の被験物質30と特異的に結合する第1特異結合物質14と、第1高分子膜13に標識された第1蛍光物質16とを含んで成る。第1特異結合物質14は、第1高分子膜13の表面に結合している。つまり、第1ナノ粒子体10は、金属ナノ粒子としての第1金属ナノ粒子12と、高分子膜としての第1高分子膜13と、特異結合物質としての第1特異結合物質14と、蛍光物質としての第1蛍光物質16とを含む。
 また、複合体40において、第2ナノ粒子体20は、第2金属ナノ粒子22と、第2金属ナノ粒子22の表面を被覆する第2高分子膜23と、検体中の被験物質30と特異的に結合する第2特異結合物質24と、第2高分子膜23に標識された第2蛍光物質26とを含んで成る。第2特異結合物質24は、第2高分子膜23の表面に結合している。つまり、第2ナノ粒子体20は、金属ナノ粒子としての第2金属ナノ粒子22と、高分子膜としての第2高分子膜23と、特異結合物質としての第2特異結合物質24と、蛍光物質としての第2蛍光物質26とを含む。
 蛍光強度をより増大させる観点から、励起した蛍光物質16,26が消光されにくい範囲で、離隔距離Lが小さい方が好ましい。より具体的には、好適な態様では、複合体40における2つのナノ粒子体10,20が互いに近接する。より好適な態様では、複合体40における第1ナノ粒子体10の第1高分子膜13と第2ナノ粒子体20の第2高分子膜23とが接触するように2つのナノ粒子体10,20が互いに近接する。さらに好適な態様では、複合体40における第1ナノ粒子体10の第1高分子膜13および第2ナノ粒子体20の第2高分子膜23のうちの少なくともいずれかの高分子膜が収縮して接触するように2つのナノ粒子体10,20が互いに近接する。
 さらに好適な態様において、高分子膜13,23のうちの少なくともいずれかの高分子膜が収縮して互いに接触する場合、例えば、図9に記載の複合体40では、被験物質30と、被験物質30に結合する特異結合物質14,24と、蛍光物質16,26とのうちの少なくとも1つを、高分子膜13,23中に入り込ませることができると考えられる。また、より好適な態様において、高分子膜13,23が互いに接触する場合、例えば、図9に記載の複合体40では、さらに好適な態様と同様に被験物質30と、被験物質30に結合する特異結合物質14,24と、蛍光物質16,26とのうちの少なくとも1つを、高分子膜13,23中に入り込ませることができると考えられる(後述する図10で示される複合体も同様である)。
 本実施形態では、金属ナノ粒子12,22の表面を被覆する膜が高分子膜13,23であるため、蛍光強度を増大させることができる。特定の理論に拘束されるわけではないが、その理由は以下のように推測される。金属ナノ粒子12,22の表面を被覆する膜が高分子膜13,23であり、高分子膜13,23は、無機酸化物を含む無機膜に比べ、比較的高い柔軟性を有する。このため、複合体40において、高分子膜13,23が収縮することができ、これにより2つの金属ナノ粒子12,22が高分子膜の膜厚2つ分(高分子膜13の膜厚+高分子膜23の膜厚)に相当する距離よりも近接することが可能となる。つまり、金属ナノ粒子12,22の表面を被覆する膜が高分子膜13,23であるため、離隔距離Lは、高分子膜の膜厚2つ分未満となり得る。これにより、プラズモン増強効果が得やすく、蛍光強度がより増大する。なお、本明細書において、「高分子膜の膜厚2つ分」における高分子膜の膜厚とは、離隔距離の対象となる収縮した部分の高分子膜13,23の膜厚ではなく、離隔対象とならない収縮していない部分の高分子膜13,23の膜厚である。
 本実施形態では、高分子膜13,23が硫黄原子を介した結合部位3a、正帯電性基3b、および疎水性基3cからなる群より選択される少なくとも1つを含む(例えば、高分子膜13,23を構成する高分子3Aが硫黄原子を介した結合部位3a、正帯電性基3b、および疎水性基3cからなる群より選択される少なくとも1つを含む)ため、蛍光強度をさらに増大させることができる。特定の理論に拘束されるわけではないが、その理由は以下のように推測される。かかる場合、結合部位3a、正帯電性基3b、および疎水性基3cの少なくとも1つは金属ナノ粒子12,22の表面と結合を形成する。このため、高分子3Aは網目状構造を有し、金属ナノ粒子12,22の表面を網目状に被覆すると考えられる。このように高分子3Aは網目状構造を有するため、さらに比較的高い柔軟性を有する。このため、複合体40において、高分子膜13,23がさらに収縮することができ、これにより2つの金属ナノ粒子12,22が高分子膜の膜厚2つ分に相当する距離よりもさらに近接することが可能となる。よって、本実施形態では、離隔距離Lは、高分子膜の膜厚2つ分未満となり得、プラズモン増強効果がさらに得られ、蛍光強度がさらに増大する。
 好適な態様では、高分子膜13,23を構成する高分子3Aが、その側鎖(より具体的には、側鎖末端)に硫黄原子を介した結合部位3a、正帯電性基3b、および疎水性基3cからなる群より選択される少なくとも1つを含む。好適な態様では、蛍光強度をさらに増大させることができる。特定の理論に拘束されるわけではないが、その理由は以下のように推測される。かかる場合、結合部位3a、正帯電性基3b、および疎水性基3cの少なくとも1つは金属ナノ粒子12,22の表面と結合を形成する。このため、高分子3Aは網目状構造を有し、側鎖を結合部位として金属ナノ粒子12,22の表面を網目状に被覆すると考えられる。このように高分子3Aは網目状構造を有するため、さらに比較的高い柔軟性を有する。このため、複合体40において、高分子膜13,23がさらに収縮することができ、これにより2つの金属ナノ粒子12,22が高分子膜の膜厚2つ分に相当する距離よりもさらに近接することが可能となる。よって、本実施形態では、離隔距離Lは、高分子膜の膜厚2つ分未満となり得、プラズモン増強効果がさらに得られ、蛍光強度がさらに増大する。
 第1ナノ粒子体10と第2ナノ粒子体20との間の離隔距離Lは、例えば、12nm~52nmであり、好ましくは12nm~27nmである。離隔距離Lは、第1金属ナノ粒子12と第2金属ナノ粒子22との間の距離であって、第1ナノ粒子体10の表面上の第1点P1と、第2ナノ粒子体20の表面上の第2点P2とで結ばれる線分が最小となる距離である。離隔距離Lが52nm以下である場合、複合体40に励起光が照射されると、第1,第2金属ナノ粒子12,22間の表面近傍の空間でより効率的に近接場が発生するため、蛍光強度をより増大させることができる。
 金属ナノ粒子12,22の表面を被覆する膜が高分子膜13,23であり、高分子膜13,23を構成する高分子3Aが(例えば、側鎖に(より具体的には、側鎖末端に))硫黄原子を介した結合部位3a、正帯電性基3b、および疎水性基3cからなる群より選択される少なくとも1つを有する。このため、離隔距離Lは、上述のように、複合体40における2つの金属ナノ粒子12,22の表面を被覆する高分子膜の膜厚2つ分に相当する距離よりも近接することができる。例えば、高分子膜13,23の膜厚が5nmである場合、離隔距離Lは、10nm未満(より具体的には、2~9nm、3~8nmおよび4~7nm等)となり得る。
 複合体40は、図9~11に示すように、2つのナノ粒子体10,20を含んで構成されてもよく、例えば、図12に示すように、3つのナノ粒子体10,20,60を含んで構成されてもよい。また、複合体は、4つ以上のナノ粒子体を含んで構成されてもよい。図11は、2つのナノ粒子体から構成される複合体40を示す図である。図12は、3つのナノ粒子体から構成される複合体40を示す図である。
 第1~3実施形態では、多重極子共鳴は、複合体40における金属ナノ粒子12,22に由来するプラズモン共鳴であると説明した。図11および図12を参照してより詳細に説明する。図11では、複合体40におけるナノ粒子体10,20間の結合部位(より具体的には、被験物質30および特異結合物質14,24)を結合ポイント50で表記している(図12も同様である)。2つのナノ粒子体10,20で構成される複合体40では、励起光の電場成分の振動方向(励起光の電場成分の偏光方向)が複合体40の長軸方向DLAと平行となる場合は、金属ナノ粒子12,22表面の自由電子が長軸方向DLAに集団的な振動を起こし得る。このため、多重極子共鳴が双極子-双極子相互作用により引き起こされる。一方、励起光の電場成分の振動方向が複合体40の短軸方向DSAと平行となる場合は、金属ナノ粒子12,22表面の自由電子が短軸方向DSAに集団的な振動を起こし得る。このため、単粒子状態の金属ナノ粒子と同様に、双極子共鳴が引き起こされる。
 3つのナノ粒子体10,20,60で構成される複合体40では、多重極子共鳴に許容な励起光の電場成分の振動方向D,D,Dの数が3であり、2つのナノ粒子体10,20で構成される複合体40に比べ、多い。さらに、3つのナノ粒子体10,20,60で構成される複合体40は、結合ポイント50の数が3であり、2つのナノ粒子体10,20で構成される複合体40に比べ、多い。このように、(2つのナノ粒子体10,20が1つの被験物質30を介して結合している)結合ポイント50を複数含んでもよい。よって、複合体40を構成するナノ粒子体10,20の数が多いほど、蛍光が増強されやすく、検出感度に優れる可能性がある。
(蛍光物質)
 蛍光物質16,26は、図9~10に示すように、第1金属ナノ粒子12と第2金属ナノ粒子22との間に位置づけられていることが好ましい。金属ナノ粒子12,22間では近接場が効率的に生じる空間であるため、金属ナノ粒子12,22間の空間に蛍光物質16,26が位置づけられることでパーセル効果によって蛍光強度が増大されやすいからである。
(被験物質)
 被験物質30は、検体に含まれる検出対象となる物質である。被験物質30としては、例えば、抗原、タンパク質、基質、および核酸鎖が挙げられる。被験物質30は、特異結合物質14,24と特異的に結合する。例えば、抗原は、少なくとも2つの抗原決定基(epitope)を有し、抗原決定基で第1,第2特異結合物質14,24と特異的結合を形成する。抗原は、例えば、c反応性タンパク質、ミオグロビン、トロポニンT、トロポニンI、およびBNP等のようなタンパク質、ならびにインフルエンザウイルス、およびRSウイルス等のようなウイルスの抗原タンパク質である。被験物質30は、例えば、血液、血漿、尿、または唾液のような検体に由来する被験物質である。つまり、被験物質30を含む検体としては、例えば、血液、血漿、血清、尿、および唾液である。検体は、溶媒および緩衝液(より具体的には、リン酸緩衝生理食塩水(phosphate-buffered saline:PBS)、Tris緩衝液、HEPES緩衝液、MOPS緩衝液、およびMES緩衝液など)をさらに含んでもよい。
<その他の実施形態>
 本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で設計変更可能である。
 第1実施形態では、高分子3Bがジスルフィド結合を介して結合する正帯電性基3bおよび疎水性基3cをそれぞれ1つずつ有していたが、これに限定されない。高分子3Bは、正帯電性基3bおよび疎水性基3cを各々独立に2以上有していてもよい。すなわち、高分子3Bにおいて正帯電性基3bおよび疎水性基3cがそれぞれ結合する側鎖の数が2以上であってもよい。
 第4実施形態では、第1,第2蛍光物質16,26は、それぞれ第1,第2高分子膜13,23に標識されていたが、これに限定されない。例えば、図10は第4実施形態の変形例に係る複合体を模式的に示す断面図である。図10に示すように、第1,第2蛍光物質16,26が、それぞれ第1,第2特異結合物質14,24に標識されてもよい。この場合、第1,第2蛍光物質16,26を第1金属ナノ粒子12と第2金属ナノ粒子22との間に位置づけやすく、検出強度が向上するため、より好ましい。また、第1,第2蛍光物質16,26のうち一方が高分子膜13,23に標識され、他方が特異結合物質14,24に標識されてもよい。
 第4実施形態では、複合体40に2つの蛍光物質16,26が標識されていたが、これに限定されない。例えば、複合体40に標識される蛍光物質の数は、1または3以上であってもよい。
 第5実施形態では、測定装置100における受光光学系140は、試薬容器130への入射励起光122の進行方向に対して直角方向に配置されているが、これに限定されない。受光光学系140は、例えば、入射励起光122の進行方向に対して平行方向に配置されてもよく、または入射励起光122の進行方向に対して鋭角もしくは鈍角となる方向に配置されてもよい。
 以下、本発明について実施例を用いてさらに詳細に説明する。なお、本発明は、以下の実施例によって何ら限定されるものではない。また、特に明記しない限り、実施例における部および%は質量基準である。実施例および比較例は、特に明記がない限り、大気下常温下(1気圧、25℃)で実施された。
 また、実施例および比較例では、金属ナノ粒子の分散液中での濃度を吸光度で表記することもある。吸光度は、紫外可視分光光度計(TECANジャパン株式会社製「infinite M200 PRO」)を用いて、測定された。吸収波長は、それぞれの試料により異なるため、各試料ごとに記載した。なお、吸光度の表記ОDに下付きに付された数字は、吸収波長を示す。例えば、OD455=0.1は、波長455nmでの吸光度が0.1であることを示す。
<実施例1>
[1.高分子膜の形成]
 図14~15を参照して、高分子膜の形成方法を説明する。図14~15は、実施例1の高分子膜の形成方法を示す模式図を示す。図14に示すように、ポリ-L-リシン(株式会社ペプチド研究所製「3075」)と、3-(2-ピリジルジチオ)プロピオンアミド-PEG-NHS(Thermo Fisher Scientific社製、製造番号「26128」、「NHS-PEG-SPDP」)とを、室温および4時間の条件で、小型回転培養器(タイテック株式会社製「RT-30mini)を用いて攪拌し、混合した。その結果、高分子を得た。この合成反応は、ポリ-L-リシンの第1級アミノ基が3-(2-ピリジルジチオ)プロピオンアミド-PEG-NHSのNHSエステル基に攻撃する求核置換反応である。合成した高分子3Bは、ジスルフィド結合を側鎖に有していた。より具体的には、合成した高分子は、ジスルフィド結合を介して結合する疎水性基(ピリジル基)3cと、正帯電性基(第1アンモニウム基)3bとを有していた。
 得られた高分子3Bを金属ナノ粒子2に接触させて、高分子膜3を形成した。より具体的には、得られた高分子3Bを金属ナノ粒子2としての銀ナノ粒子(nanocomposix製「AGCB80-1M」,直径80nm,OD455=0.1)の分散液1mLに、添加し、室温およびオーバーナイトの条件で、小型回転培養器(タイテック株式会社製「RT-30mini」)を用いて攪拌し、混合した。その結果、高分子膜で被覆された銀ナノ粒子の分散液を得た。
 図15に示すように、高分子膜3は、銀ナノ粒子2の表面に硫黄原子を介した結合部位3aと、銀ナノ粒子2の表面と疎水結合を形成する疎水性基(ピリジル基)3cと、銀ナノ粒子2の表面と静電結合bを形成する正帯電性基(第1級アンモニウム基)3bとを含んでいる。つまり、高分子膜3を構成する高分子3Aは、銀ナノ粒子2の表面に硫黄原子を介した結合部位3aと、銀ナノ粒子2の表面と疎水結合cをする疎水性基(ピリジル基)3cと、銀ナノ粒子2の表面と静電結合を形成する正帯電性基(第1級アンモニウム基)3bとを有する。得られた銀ナノ粒子2のSEM画像(倍率500,000倍)を作成し、銀ナノ粒子2の表面が高分子膜3によって連続的に被覆されていることが確認された(以下、高分子膜3で被覆された銀ナノ粒子を「高分子被覆銀ナノ粒子」との称する)。また、SEM画像から銀ナノ粒子2を被覆する高分子膜3の膜厚を測定した。
[2.ナノ粒子体の作製]
 図16は、実施例1の蛍光標識した抗体を結合したナノ粒子体1の構造を示す模式図である。図16に示すナノ粒子体は、はじめに、高分子被膜金属ナノ粒子の表面に架橋剤を結合させ、別途、ナノ抗体に蛍光物質および架橋剤を結合させ、次いで、高分子被膜金属ナノ粒子に結合した架橋剤と、ナノ抗体に結合した架橋剤とを結合させて作製した。以下、蛍光標識抗体を結合したナノ粒子体の作製の詳細について説明する。
(2-1.高分子被膜銀ナノ粒子への架橋剤の結合)
 作製した高分子被膜銀ナノ粒子の分散液1mLに、さらに架橋剤SM(PEG)2(PEGylated, long-chain SMCC crosslinker)(ThermoFisherSCIENTIFIC社製「22105」)およびヘパリンナトリウム(富士フイルム和光純薬株式会社製「081-00136」)を添加し、室温および1時間の条件で、小型回転培養機(タイテック株式会社製「RT-30mini」)を用いて攪拌し、混合した。その結果、高分子膜3に架橋剤SM(PEG)2が結合した銀ナノ粒子(以下、SM(PEG)2リンカーが結合した高分子被膜銀ナノ粒子とも称する)の分散液を得た。高分子被膜銀ナノ粒子に結合するSM(PEG)2リンカーは、マレイミド基を有していた。
(2-2.VHH抗体への蛍光標識)
 VHH抗体(RePHAGEN社製,分子質量18,000Da)100μgに対して[化5]の化学式:
Figure JPOXMLDOC01-appb-C000006
で表されるNHS標識Ru錯体誘導体(東京化成工業株式会社製「Ruthenium(II)tris(Bipyridyl)-C5-NHS ester」)を添加し、室温および1時間の条件で、小型回転培養機(タイテック株式会社製「RT-30mini」)を用いて攪拌し、混合した。その結果、蛍光物質が結合したVHH抗体(以下、蛍光標識VHH抗体とも称する)を得た。なお、当該NHS標識Ru錯体誘導体は、500~700nmに最大蛍光波長を有する蛍光物質である。
(2-3.蛍光標識VHH抗体への架橋剤の結合)
 次いで、蛍光物質標識VHH抗体にNHS-ビピリジルジスルフィド架橋剤としての3-(2-ピリジルジチオ)プロピオンアミド-PEG4-NHS(Thermo Fisher SCIENTIFIC社製 製品番号「26128」、「NHS-PEG4-SPDP」)をモル比で8倍当量加え、室温および1時間の条件で小型回転培養機(タイテック株式会社製「RT-30mini」)を用いて攪拌し、混合した。その結果、蛍光物質およびSPDPリンカーが結合したVHH抗体(以下、SPDPリンカーが結合した蛍光標識VHH抗体とも称する)を得た。
(2-4.架橋剤が結合した蛍光標識VHH抗体のチオール化)
 次いで、SPDPリンカーが結合した蛍光標識VHH抗体に対して、還元剤TCEP(ThermoFisherSCIENTIFIC社製「77720」)をモル比で2倍当量加え、37℃および1時間の条件で攪拌機(BioSan社製「TS-100」)を用いて攪拌し、混合した。その結果、蛍光物質と、還元されたSPDPリンカー(以下、還元SPDPリンカーとも称する)とが結合したVHH抗体(以下、還元SPDPリンカーが結合した蛍光標識VHH抗体とも称する)を得た。還元SPDPリンカーは、ジスルフィド結合の還元により生成されたチオール基(-SH基)を有していた。
(2-5.蛍光標識VHH抗体の銀ナノ粒子への結合)
 次いで、マレイミド基を有するSM(PEG)6リンカーが結合した高分子被膜銀ナノ粒子の分散液(OD430=0.1)に対して還元SPDPリンカーが結合した蛍光標識VHH抗体を加え、室温およびオーバーナイトの条件で、小型回転培養機(タイテック株式会社製「RT-30mini」)を用いて攪拌し、混合した。その結果、SM(PEG)6リンカーのマレイミド基と還元SPDPリンカーのチオール基とが反応して、蛍光標識VHH抗体がリンカー部を介して結合したナノ粒子体を得た(図16参照)。
[3.複合体の作製]
 得られたナノ粒子体のリン酸塩緩衝溶液に被験物質30としてのC Reactive Protein(ADVY CHEMICALシグマアルドリッチ社製「00-AGN-AP-CRP-00」)(以下、CRP抗原とも称する)を添加し、室温および5分の条件で、小型回転培養機(タイテック株式会社製「RT-30mini」)を用いて攪拌して、測定試料(OD455=0.4)を調製した。ブランクとして、CRP抗原30を含まないナノ粒子体のリン酸緩衝溶液を別途準備した。
[4.評価方法]
(4-1.イムノクロマトグラフィー法による被験物質の検出)
 図17は、イムノクロマトグラフィーストリップ(以下、単に「ストリップ」とも称する)を示す模式図である。このストリップ300は、短冊状であって、その一方の端部に配置され、測定試料を滴下するサンプルパッド301と、中央に配置された判定ライン303とを備える。判定ライン303には、被験物質30としてのCPR抗原が固定されている。測定試料をサンプルパッド301に滴下すると、毛細管現象により測定試料中の複合体40が判定ライン303側へ(方向305に沿って)移動する。複合体40が判定ライン303に到達すると、CRP抗原と抗原抗体反応に起こし、複合体40が捕捉される。
 ストリップ300のサンプルパッド301に測定試料を滴下して所定の時間静置した。静置したストリップ300を蛍光光度計(PHC株式会社製「社内実験用蛍光光度計」)にセットした。励起光(波長:415~455nm)を判定ライン303に照射して、蛍光光量(検出波長573nmまたは613nm)を測定した。得られた測定値からブランクの測定値を差し引き、蛍光物質由来の蛍光光量の有無を判定した。その結果、測定試料の調製において、CPR抗原の濃度が42pM(単位:×10-12mol/L)以上で蛍光が検出された。
 静置したストリップ300を吸光光度計(PHC株式会社製「社内実験用吸光光度計」)にセットした。可視光(波長415~455nm)を判定ライン303に照射して、反射光を測定した。得られた測定値からブランクの測定値を差し引き、金属ナノ粒子由来の反射光の有無を判定した。その結果、測定試料の調製において、CRP抗原の濃度が670pM以上で反射光が検出された。
 イムノグラフィー法によって被験物質30であるCRP抗原が検出された。これにより、測定試料において、複合体40が形成されていること、判定ラインに複合体40が存在することが裏付けられた。
(4-2.被験物質存在下のプラズモン共鳴波長の分析)
 はじめに、測定用試料を準備した。4-1と同様にして測定試料を調整した。スライドガラスに測定試料を滴下して、液滴の上にガラス製カバープレートを置いて液滴を挟み込んで、測定用試料としての測定用プレパラートを作製した。なお、測定用プレパラートは液滴が存在する状態でプラズモン共鳴スペクトルの測定に使用された。
 CRP抗原を添加しないこと以外は測定用プレパラートと同様にして、ブランク用プレパラートを作製した。
 次いで、蛍光顕微分光測定装置を用いて測定対象のプラズモン共鳴スペクトルを測定した。測定用プレパラート上の測定対象(複合体)に、励起光(波長:400~650nm)を細かく絞って連続的に照射し、プラズモン共鳴スペクトルを測定した。実施例1の測定対象(複合体)は、2個のナノ粒子体が被験物質(CRP抗原)を介して2原子分子状に結合して構成される複合体であった。測定結果を図18(b)に示す。図18(b)は、測定用試料としての測定用プレパラートについての、実施例1のプラズモン共鳴スペクトルを示す図である。
 同様にして、ブランク用プレパラートについて測定した。この測定では単分散状態(一次粒子状態)のナノ粒子体を測定対象とした。測定結果を図18(a)に示す。図18(a)は、測定用試料としてのブランク用プレパラートについての、実施例1のプラズモン共鳴スペクトルを示す図である。
(測定結果)
 図18(a)に示すように、ブランク用プレパラートについてのプラズモン共鳴スペクトルは、460~470nm付近に単一のピークを有するスペクトル形状を示していた。このピークは、単分散のAgナノ粒子に起因するプラズモン共鳴(双極子共鳴)に帰属された。
 図18(b)に示すように、測定用プレパラートについてのプラズモン共鳴スペクトルは、460~470nm付近のピーク(短波長側のピーク)と、590~600nm付近に存在するピーク(長波長側のピーク)とを有するスペクトル形状を示していた。短波長側のピークは、複合体(2つのナノ粒子体を含んで構成される、サンドイッチ型の複合体)の短軸方向と平行な電場成分の偏光方向を有する励起光により誘起されたプラズモン共鳴(双極子共鳴)に帰属された。長波長側のピークは、複合体の長軸方向と平行な電場成分の偏光方向を有する励起光により誘起されたプラズモン共鳴(多重極子共鳴)に帰属された。
 別途、分光光度計装置((TECANジャパン株式会社製「infinite M200 PRO」))を用いて蛍光物質(Ru錯体東京化成工業株式会社製「Ruthenium(II)tris(Bipyridyl)-C5-NHS ester」))の吸収スペクトルおよび蛍光スペクトルを測定した。吸収スペクトルの測定条件は、測定波長230~500nm、水溶媒中で任意の濃度で測定した。蛍光スペクトルの測定条件は、励起波長450nm、測定波長500~700nm、および吸収スペクトルと同一の測定試料であった。得られた蛍光物質の吸収スペクトルおよび蛍光オペクトルを図18(b)の測定用プレパラートについてのプラズモン共鳴スペクトルと重ね合わせて図19を作成した。
 図19は、実施例1のプラズモン共鳴スペクトル、ならびにRu錯体の吸収スペクトル202および蛍光スペクトル210を示す図である。図19に示すように、Ru錯体の蛍光スペクトル210の蛍光波長域WRと、プラズモン共鳴スペクトルの長波長側のピーク(プラズモン共鳴スペクトル206)の第1発光波長域WRE1との重なり212(第2領域R)が確認された。よって、実施例1での系で検出される蛍光は、発光誘起型蛍光であると結論付けた。
<実施例2>
[3.ナノ粒子体の作製]
 実施例2のナノ粒子体の調製では、金属ナノ粒子を銀ナノ粒子(nanocomposix製「AGCB80-1M」,直径80nm,OD455=0.1)の分散液1mLから銀ナノ粒子(nanocomposix製「AGCB50-1M」,直径50nm,OD455=0.1)に変更した以外は実施例1と同様にしてナノ粒子体を調製した。
(4-2.被験物質存在下でのプラズモン共鳴波長の分析)
 実施例1と同様にして、被験物質存在下のプラズモン共鳴波長の分析を行った。図20に測定結果を示す。図20は、(a)ブランク用プレパラートおよび(b)測定用プレパラートについての、実施例2のプラズモン共鳴スペクトルを示す図である。なお、実施例2の測定対象は、15個のナノ粒子体から構成される複合体であった。
 図20(a)に示すように、ブランク用プレパラートについてのプラズモン共鳴スペクトルは、460~470nm付近に単一のピークを有するスペクトル形状を示していた。このピークは、単分散のAgナノ粒子に起因するプラズモン共鳴(双極子共鳴)に帰属された。
 図20(b)に示すように、測定用プレパラートについてのプラズモン共鳴スペクトルは、460~470nm付近のピーク(短波長側のピーク)と、590~600nm付近に存在するピーク(長波長側のピーク)とを有するスペクトル形状を示していた。短波長側のピークは、複合体の短軸方向と平行な電場成分の偏光方向を有する励起光により誘起されたプラズモン共鳴(双極子共鳴)に帰属された。長波長側のピークは、複合体の長軸方向と平行な電場成分の偏光方向を有する励起光により誘起されたプラズモン共鳴(多重極子共鳴)に帰属された。
 実施例1で得たRu錯体の吸収スペクトルおよび蛍光スペクトルを図20(b)の測定用プレパラートについてのプラズモン共鳴スペクトルと重ね合わせて図21を作成した。図21に示すように、Ru錯体の蛍光スペクトル210の蛍光波長域WRと、プラズモン共鳴スペクトルの長波長側のピーク(プラズモン共鳴スペクトル206)の第1発光波長域WRE1との重なり212(第2領域R)が確認された。よって、実施例2での系で検出される蛍光は、発光誘起型蛍光であると結論付けた。
<実施例3>
[3.ナノ粒子体の作製]
 実施例3のナノ粒子体の調製では、蛍光物質をNHS標識Ru錯体誘導体(東京化成工業株式会社製「Ruthenium(II)tris(Bipyridyl)-C5-NHS ester」)からAlexa Fluor 594 carboxylic acid, succinimidyl ester(invitrogen社製「A10169」)に変更した以外は実施例1と同様にしてナノ粒子体を調製した。当該Alexa Fluor 594は、500~700nmに最大吸収波長および最大蛍光波長を有する蛍光物質である。
(4-1.イムノクロマトグラフィー法による被験物質の検出)
 実施例1と同様に、イムノクロマトグラフィー法による被験物質の検出を行った。判定ライン303に照射した励起光の波長は、600nmであった。蛍光光量を測定した結果、測定試料の調製においてCPR抗原の濃度が42pM以上で蛍光が検出された。反射光を測定した結果、測定試料の調製においてCPR抗原の濃度が670pM以上で反射光が検出された。イムノグラフィー法によって被験物質であるCRP抗原が検出された。これにより、測定試料において、複合体40が形成されていること、判定ラインに複合体40が存在することが裏付けられた。
(4-2.被験物質存在下でのプラズモン共鳴波長の分析)
 別途、分光光度計装置((TECANジャパン株式会社製「infinite M200 PRO」)を用いて蛍光物質(Alexa Fluor 594 carboxylic acid, succinimidyl ester(invitrogen社製「A10169」20004))の吸収スペクトルおよび蛍光スペクトルを測定した。吸収スペクトルの測定条件は、測定波長450~650nm、測定試料の溶媒は、脱イオン水であった。
 得られた蛍光物質の吸収スペクトルおよび蛍光スペクトルを図20(b)の測定用プレパラートについてのプラズモン共鳴スペクトルと重ね合わせて図22を作成した。図22は、実施例3の蛍光物質の吸収スペクトルおよび蛍光スペクトル、ならびに実施例1のプラズモン共鳴スペクトルを示す図である。実施例3の蛍光物質の蛍光スペクトル210は、584nm付近にピークを有する。実施例3の蛍光物質の蛍光スペクトル210は、613nm付近にピークを有する。
 なお、実施例3の系の代替として実施例1の系のプラズモン共鳴スペクトルを採用した。この理由は、実施例3の複合体では、実施例1の複合体に比べ、蛍光物質の種類が異なるだけで、プラズモン共鳴スペクトルを主として特徴づける金属ナノ粒子の材質および粒径が同じであるためである(わずかに、プラズモン共鳴スペクトルに蛍光物質の吸収が加味されるため、この点が異なると考えられる)。
 図22に示すように、蛍光物質の吸収スペクトル202の吸収波長域WRと、プラズモン共鳴スペクトルの長波長側のピーク(多重極子共鳴スペクトル)206の第1発光波長域WRE1との重なり208(第1領域R)が確認された。よって、実施例3での系で検出される蛍光は、主として励起誘起型蛍光であると結論付けた。
(4-3.複合体の作製)
 得られたナノ粒子体のリン酸塩緩衝溶液に被験物質30としてのCRP抗原を添加し、最終濃度90ng/mLとして、室温および10分の条件で反応(抗体抗原反応)させた。これにより、ナノ粒子体と被験物質とで構成される複合体の混合液を調製した。調製した混合液を測定試料とした。ブランクとして、CRP抗原30を含まないナノ粒子体のリン酸緩衝溶液を別途準備した。
(4-4.被験物質-ナノ粒子体系の蛍光分析)
 被験物質-ナノ粒子体系の蛍光分析を行った。分光蛍光光度計(日本分光株式会社製「FP-8550」)を用いて、励起波長580nm、測定波長範囲600~720nmの条件で、複合体形成後の蛍光スペクトルを測定した。測定した結果を図23に示す。図23は、被験物質-ナノ粒子体系の蛍光スペクトルを示す図である。実線は被験物質-ナノ粒子体系の蛍光スペクトル、および破線はブランク試料の蛍光スペクトルをそれぞれ示す。被験物質-ナノ粒子体系の蛍光スペクトルは、614nm付近に位置するピークを有する。614nm付近のピーク強度は、ブランク試料の蛍光スペクトルにおける614nm付近のピーク強度に比べ、約4倍超である。
 図22に示すように、実施例3の蛍光物質は、586nm付近に最大吸収波長を有する。かつ実施例3の蛍光物質の吸収スペクトル202は、多重極子共鳴スペクトル206と大きく重なる。図22を示すような複合体のプラズモン共鳴波長の光に合わせた吸収を有する蛍光物質を用いることにより、図23に示すように効果的に蛍光増強していることを確認した。
<比較例1>
 シリカ被覆された銀ナノ粒子(nanoComposix製、銀ナノ粒子の粒子径(コア粒子径)50nm、シリカ膜の膜厚20nm)を水(脱イオン水)で希釈して、シリカ被覆した銀ナノ粒子の水分散液を調製した。得られた水分散液を測定サンプルとした。詳しくは、測定サンプル中には、シリカ被覆された銀ナノ粒子(以下、シリカ被覆銀ナノ粒子とも称する)の一次粒子状態の他に、2以上の銀ナノ粒子が凝集した凝集体も存在していた。
 実施例1と同様にして、被験物質存在下のプラズモン共鳴波長の分析を行った。図24に測定結果を示す。図24は、比較例1のプラズモン共鳴スペクトルを示す((a)一次粒子状態のシリカ被覆銀ナノ粒子および(b)3つのシリカ被覆銀ナノ粒子が略直線状に配列した凝集物)。図24(a)では、一次粒子状態のシリカ被覆銀ナノ粒子を測定試対象とし、図24(b)では、3つのシリカ被覆銀ナノ粒子が略直線状に配列した凝集物を測定対象としている。図24(a)に示すプラズモン共鳴スペクトルは、450nm付近に双極子共鳴に帰属されるピークを1つ有するスペクトル形状を示していた。図24(b)に示すプラズモン共鳴スペクトルは、図24(a)と同様に470nm付近に双極子共鳴に帰属されるピークを1つ有するスペクトル形状を示していた。比較例1では、多重極子に起因するプラズモン共鳴スペクトルのピークが観測されなかった。
<比較例2>
 シリカ被覆された銀ナノ粒子(nanoComposix製、銀ナノ粒子の粒子径(コア粒子径)50nm、シリカ膜の膜厚7nm)を水(脱イオン水)で希釈して、シリカ被覆した銀ナノ粒子の水分散液を調製した。得られた水分散液を測定サンプルとした。詳しくは、測定サンプル中には、シリカ被覆された銀ナノ粒子の一次粒子状態の他に、2以上の銀ナノ粒子が凝集した凝集体も存在していた。
 実施例1と同様にして、被験物質存在下のプラズモン共鳴波長の分析を行った。図25に測定結果を示す。図25は、比較例2のプラズモン共鳴スペクトルを示す((a)一次粒子状態のシリカ被覆銀ナノ粒子および(b)3つのシリカ被覆銀ナノ粒子が略オゾン分子状に配列した凝集物)。図25(a)では、一次粒子状態のシリカ被覆銀ナノ粒子を測定試対象とし、図25(b)では、3つのシリカ被覆銀ナノ粒子が略オゾン分子状に配列した凝集物を測定対象としている。図25(a)に示すプラズモン共鳴スペクトルは、450nm付近に双極子共鳴に帰属されるピークを1つ有するスペクトル形状を示していた。図25(b)に示すプラズモン共鳴スペクトルは、図25(a)と同様に450nm付近に双極子共鳴に帰属されるピークを1つ有するスペクトル形状を示していた。比較例2では、多重極子に起因するプラズモン共鳴スペクトルのピークが観測されなかった。
 本開示に係るナノ粒子体、ナノ粒子体を含む複合体、ならびにナノ粒子体に含まれる高分子膜の形成方法の態様は、以下の通りである。
<1>
 金属ナノ粒子と、
 該金属ナノ粒子の表面を被覆する高分子膜と、
 検体中の被験物質と特異的に結合する特異結合物質と、
 前記高分子膜の表面または前記特異結合物質に標識された蛍光物質と
を含んで成るナノ粒子体であって、
 前記蛍光物質は、2以上の前記ナノ粒子体が前記被験物質を介して結合する複合体におけるプラズモン共鳴の発光波長の光により励起される、ナノ粒子体。
<2>
 前記複合体におけるプラズモン共鳴は、外部から照射された光によって誘起される、<1>に記載のナノ粒子体。
<3>
 前記複合体におけるプラズモン共鳴は、前記蛍光物質が放射する蛍光によって誘起される、<1>または<2>に記載のナノ粒子体。
<4>
 前記蛍光物質の吸収波長域が、前記プラズモン共鳴の第1発光波長域と重なる、<1>~<3>のいずれか1項に記載のナノ粒子体。
<5>
 前記プラズモン共鳴の第1発光波長域は、単粒子の前記金属ナノ粒子において誘起されるプラズモン共鳴の第2発光波長域に比べ長波長側に位置する、<1>~<4>のいずれか1項に記載のナノ粒子体。
<6>
 前記第1発光波長域と前記蛍光物質の吸収波長域とが重なる第1領域が、前記第2発光波長域と前記蛍光物質の前記吸収波長域とが重なる第2領域に比べ大きくなるように、前記蛍光物質が選択される、<5>に記載のナノ粒子体。
<7>
 前記第1発光波長域における前記蛍光物質の最大吸収波長が、500~700nmに位置する、<5>または<6>に記載のナノ粒子体。
<8>
 前記第1発光波長域における前記蛍光物質の最大蛍光波長が、500~700nmに位置する、<5>~<7>のいずれか1項に記載のナノ粒子体。
<9>
 前記複合体において誘起されるプラズモン共鳴が多重極子共鳴である、<1>~<8>のいずれか1項に記載のナノ粒子体。
<10>
 前記単粒子の前記金属ナノ粒子において誘起されるプラズモン共鳴は、双極子共鳴である、<5>~<8>のいずれか1項に記載のナノ粒子体。
<11>
 前記高分子膜が、前記金属ナノ粒子の表面との間に硫黄原子を介した結合部位、正帯電性基、および疎水性基からなる群より選択される少なくとも1つを含む、<1>~<10>のいずれか1項に記載のナノ粒子体。
<12>
 前記高分子膜が、前記高分子膜を構成する高分子の側鎖に前記正帯電性基を少なくとも含み、
 前記正帯電性基は、第1級アンモニウム基、第2級アンモニウム基、第3級アンモニウム基、第4級アンモニウム基、およびグアニジル基(-NHC(=NH )NH)からなる群より選択される少なくとも1種である、<11>に記載のナノ粒子体。
<13>
 前記高分子膜が、前記高分子膜を構成する高分子の側鎖に前記疎水性基を少なくとも含み、
 前記疎水性基は、芳香族環状基、脂肪族環状基、および脂肪族鎖状基からなる群より選択される少なくとも1種である、<11>に記載のナノ粒子体。
<14>
 前記高分子膜の膜厚は、1nm~10nmである、<1>~<13>のいずれか1項に記載のナノ粒子体。
<15>
 プラズモン励起蛍光分析に用いるナノ粒子体である、<1>~<14>のいずれか1項に記載のナノ粒子体。
<16>
 前記特異結合物質がナノ抗体である、<1>~<15>のいずれか1項に記載のナノ粒子体。
<17>
 前記特異結合物質がVHH抗体である、<1>~<16>のいずれか1項に記載のナノ粒子体。
<18>
 前記金属ナノ粒子が金または銀を含んで成る、<1>~<17>のいずれか1項に記載のナノ粒子体。
<19>
 前記金属ナノ粒子の粒子径は、5~100nmである、<1>~<18>のいずれか1項に記載のナノ粒子体。
<20>
 前記ナノ粒子体として第1ナノ粒子体と第2ナノ粒子体とが含まれ、
 前記第1ナノ粒子体と前記第2ナノ粒子体とが前記被験物質を介して結合された複合体を形成する、<1>~<19>のいずれか1項に記載のナノ粒子体。
<21>
 前記被験物質が、血液、血漿、尿、または唾液である前記検体に由来する被験物質である、<1>~<20>のいずれか1項に記載のナノ粒子体。
<22>
 前記複合体において、前記第1ナノ粒子体と前記第2ナノ粒子体との間に蛍光物質が位置づけられている、<20>に記載のナノ粒子体。
<23>
 <1>~<22>のいずれか1項に記載のナノ粒子体を2以上含んで成り、前記2以上のナノ粒子体が第1ナノ粒子体と第2ナノ粒子体とを含み、前記第1ナノ粒子体と前記第2ナノ粒子体とは前記被験物質を介して結合されている、複合体。
<24>
 2つの前記ナノ粒子体が1つの前記被験物質を介して結合している結合ポイントを複数含む、<23>に記載の複合体。
<25>
 ジスルフィド結合を側鎖に有する高分子を金属ナノ粒子に接触させて、前記高分子が前記金属ナノ粒子の表面に硫黄原子を介して結合した高分子膜を形成する工程を含んで成る、高分子膜の形成方法。
<26>
 前記高分子は、前記ジスルフィド結合を介して結合する正帯電性基および疎水性基からなる群より選択される少なくとも一方の基を含み、
 前記工程は、前記高分子膜の形成とともに、前記正帯電性基および前記疎水性基からなる群より選択される少なくとも一方の基を前記金属ナノ粒子の表面に結合させる、<25>に記載の高分子膜の形成方法。
 1 ・・・ナノ粒子体
 2 ・・・金属ナノ粒子
 3 ・・・高分子膜
 3A ・・・高分子膜を構成する高分子
 3B ・・・高分子膜を形成する高分子
 3a ・・・硫黄原子を介した結合部位
 3b ・・・正帯電性基
 3c ・・・疎水性基
 4 ・・・特異結合物質
 6 ・・・蛍光物質
 10 ・・・第1ナノ粒子体
 12 ・・・第1金属ナノ粒子
 13 ・・・第1高分子膜
 14 ・・・第1特異結合物質
 16 ・・・第1蛍光物質
 20 ・・・第2ナノ粒子体
 22 ・・・第2金属ナノ粒子
 23 ・・・第2高分子膜
 24 ・・・第2特異結合物質
 26 ・・・第2蛍光物質
 30 ・・・被験物質
 40 ・・・複合体
 L ・・・離隔距離(離間距離)
 R ・・・第1領域
 R ・・・第2領域
 WR ・・・蛍光物質の吸収波長域
 WR ・・・蛍光物質の発光波長域
 WRE1 ・・・第1発光波長域
 WRE2 ・・・第2発光波長域

Claims (26)

  1.  金属ナノ粒子と、
     該金属ナノ粒子の表面を被覆する高分子膜と、
     検体中の被験物質と特異的に結合する特異結合物質と、
     前記高分子膜の表面または前記特異結合物質に標識された蛍光物質と
    を含んで成るナノ粒子体であって、
     前記蛍光物質は、2以上の前記ナノ粒子体が前記被験物質を介して結合する複合体におけるプラズモン共鳴の発光波長の光により励起される、ナノ粒子体。
  2.  前記複合体におけるプラズモン共鳴は、外部から照射された光によって誘起される、請求項1に記載のナノ粒子体。
  3.  前記複合体におけるプラズモン共鳴は、前記蛍光物質が放射する蛍光によって誘起される、請求項1または2に記載のナノ粒子体。
  4.  前記蛍光物質の吸収波長域が、前記プラズモン共鳴の第1発光波長域と重なる、請求項1~3のいずれか1項に記載のナノ粒子体。
  5.  前記プラズモン共鳴の第1発光波長域は、単粒子の前記金属ナノ粒子において誘起されるプラズモン共鳴の第2発光波長域に比べ長波長側に位置する、請求項1~4のいずれか1項に記載のナノ粒子体。
  6.  前記第1発光波長域と前記蛍光物質の吸収波長域とが重なる第1領域が、前記第2発光波長域と前記蛍光物質の前記吸収波長域とが重なる第2領域に比べ大きくなるように、前記蛍光物質が選択される、請求項5に記載のナノ粒子体。
  7.  前記第1発光波長域における前記蛍光物質の最大吸収波長が、500~700nmに位置する、請求項5または6に記載のナノ粒子体。
  8.  前記第1発光波長域における前記蛍光物質の最大蛍光波長が、500~700nmに位置する、請求項5~7のいずれか1項に記載のナノ粒子体。
  9.  前記複合体において誘起されるプラズモン共鳴が多重極子共鳴である、請求項1~8のいずれか1項に記載のナノ粒子体。
  10.  前記単粒子の前記金属ナノ粒子において誘起されるプラズモン共鳴は、双極子共鳴である、請求項5~8のいずれか1項に記載のナノ粒子体。
  11.  前記高分子膜が、前記金属ナノ粒子の表面との間に硫黄原子を介した結合部位、正帯電性基、および疎水性基からなる群より選択される少なくとも1つを含む、請求項1~10のいずれか1項に記載のナノ粒子体。
  12.  前記高分子膜が、前記高分子膜を構成する高分子の側鎖に前記正帯電性基を少なくとも含み、
     前記正帯電性基は、第1級アンモニウム基、第2級アンモニウム基、第3級アンモニウム基、第4級アンモニウム基、およびグアニジル基(-NHC(=NH )NH)からなる群より選択される少なくとも1種である、請求項11に記載のナノ粒子体。
  13.  前記高分子膜が、前記高分子膜を構成する高分子の側鎖に前記疎水性基を少なくとも含み、
     前記疎水性基は、芳香族環状基、脂肪族環状基、および脂肪族鎖状基からなる群より選択される少なくとも1種である、請求項11に記載のナノ粒子体。
  14.  前記高分子膜の膜厚は、1nm~10nmである、請求項1~13のいずれか1項に記載のナノ粒子体。
  15.  プラズモン励起蛍光分析に用いるナノ粒子体である、請求項1~14のいずれか1項に記載のナノ粒子体。
  16.  前記特異結合物質がナノ抗体である、請求項1~15のいずれか1項に記載のナノ粒子体。
  17.  前記特異結合物質がVHH抗体である、請求項1~16のいずれか1項に記載のナノ粒子体。
  18.  前記金属ナノ粒子が金または銀を含んで成る、請求項1~17のいずれか1項に記載のナノ粒子体。
  19.  前記金属ナノ粒子の粒子径は、5~100nmである、請求項1~18のいずれか1項に記載のナノ粒子体。
  20.  前記ナノ粒子体として第1ナノ粒子体と第2ナノ粒子体とが含まれ、
     前記第1ナノ粒子体と前記第2ナノ粒子体とが前記被験物質を介して結合された複合体を形成する、請求項1~19のいずれか1項に記載のナノ粒子体。
  21.  前記被験物質が、血液、血漿、尿、または唾液である前記検体に由来する被験物質である、請求項1~20のいずれか1項に記載のナノ粒子体。
  22.  前記複合体において、前記第1ナノ粒子体と前記第2ナノ粒子体との間に蛍光物質が位置づけられている、請求項20に記載のナノ粒子体。
  23.  請求項1~22のいずれか1項に記載のナノ粒子体を2以上含んで成り、前記2以上のナノ粒子体が第1ナノ粒子体と第2ナノ粒子体とを含み、前記第1ナノ粒子体と前記第2ナノ粒子体とは前記被験物質を介して結合されている、複合体。
  24.  2つの前記ナノ粒子体が1つの前記被験物質を介して結合している結合ポイントを複数含む、請求項23に記載の複合体。
  25.  ジスルフィド結合を側鎖に有する高分子を金属ナノ粒子に接触させて、前記高分子が前記金属ナノ粒子の表面に硫黄原子を介して結合した高分子膜を形成する工程を含んで成る、高分子膜の形成方法。
  26.  前記高分子は、前記ジスルフィド結合を介して結合する正帯電性基および疎水性基からなる群より選択される少なくとも一方の基を含み、
     前記工程は、前記高分子膜の形成とともに、前記正帯電性基および前記疎水性基からなる群より選択される少なくとも一方の基を前記金属ナノ粒子の表面に結合させる、請求項25に記載の高分子膜の形成方法。
PCT/JP2023/021018 2022-06-14 2023-06-06 ナノ粒子体、ナノ粒子体を含む複合体、ならびにナノ粒子体に含まれる高分子膜の形成方法 WO2023243490A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-095905 2022-06-14
JP2022095905 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243490A1 true WO2023243490A1 (ja) 2023-12-21

Family

ID=89191056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021018 WO2023243490A1 (ja) 2022-06-14 2023-06-06 ナノ粒子体、ナノ粒子体を含む複合体、ならびにナノ粒子体に含まれる高分子膜の形成方法

Country Status (1)

Country Link
WO (1) WO2023243490A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513198A (ja) * 1997-02-20 2001-08-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア プラズモン共鳴粒子、方法、および装置
JP2015129773A (ja) * 2010-02-02 2015-07-16 コニカミノルタ株式会社 アナライト検出プローブ
WO2019059171A1 (ja) * 2017-09-21 2019-03-28 パナソニックIpマネジメント株式会社 検出装置及び検出方法
JP2022512606A (ja) * 2018-10-04 2022-02-07 ワシントン・ユニバーシティ 万能増強剤としての超高輝度蛍光ナノコンストラクト

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513198A (ja) * 1997-02-20 2001-08-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア プラズモン共鳴粒子、方法、および装置
JP2015129773A (ja) * 2010-02-02 2015-07-16 コニカミノルタ株式会社 アナライト検出プローブ
WO2019059171A1 (ja) * 2017-09-21 2019-03-28 パナソニックIpマネジメント株式会社 検出装置及び検出方法
JP2022512606A (ja) * 2018-10-04 2022-02-07 ワシントン・ユニバーシティ 万能増強剤としての超高輝度蛍光ナノコンストラクト

Similar Documents

Publication Publication Date Title
Oliveira et al. Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol
Kim et al. A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers
Bui et al. Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay
Krishnan et al. Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels
Kengne-Momo et al. Protein interactions investigated by the Raman spectroscopy for biosensor applications
Zhang et al. Simple and sensitive detection of HBsAg by using a quantum dots nanobeads based dot-blot immunoassay
US20230213507A1 (en) Optical probe for bio-sensor, optical bio-sensor including optical probe, and method for manufacturing optical probe for bio-sensor
Bravin et al. Wide range detection of C-Reactive protein with a homogeneous immunofluorimetric assay based on cooperative fluorescence quenching assisted by gold nanoparticles
US20220026423A1 (en) Method for manufacturing surface-enhanced raman scattering-based substrate for detecting target substance, substrate manufactured thereby for detecting target substance, and method for detecting target substance by using same substrate
WO2022250055A1 (ja) ナノ粒子体、その製造方法およびナノ粒子体を含むナノ粒子体組成物
US20150126388A1 (en) Surface enhanced raman spectroscopy (sers) marker conjugates and methods of their preparation
JP2008216046A (ja) ローカルプラズモン増強蛍光センサ
US10466234B2 (en) Method of producing labeled antibody
JP2015129773A (ja) アナライト検出プローブ
Israelsen et al. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate
WO2017221981A1 (ja) ラマン散乱による簡易センシング法
KR20090083685A (ko) 표면증강 라만분광을 이용한 시료 내 특정물질의 분석방법및 분석장치
Volle et al. Enhanced sensitivity detection of protein immobilization by fluorescent interference on oxidized silicon
US20110070661A1 (en) Raman-active reagents and the use thereof
JP2009250960A (ja) 生体分子の検出方法、生体分子捕捉物質及び生体分子検出装置
WO2023243490A1 (ja) ナノ粒子体、ナノ粒子体を含む複合体、ならびにナノ粒子体に含まれる高分子膜の形成方法
JP2022061692A (ja) ナノ粒子体
WO2023234034A1 (ja) 被覆金属基材およびその製造方法、被覆金属基材を含む複合体、ならびに被覆金属基材を製造するための高分子
WO2024209981A1 (ja) ナノ粒子体およびナノ粒子体を用いた電気化学発光免疫測定方法、ならびにナノ粒子体を用いる電気化学発光センサ、電気化学発光センサを装着するためのセル、およびこれらを備える測定キット
JP6999158B2 (ja) 分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823782

Country of ref document: EP

Kind code of ref document: A1