WO2023243008A1 - 切削工具 - Google Patents
切削工具 Download PDFInfo
- Publication number
- WO2023243008A1 WO2023243008A1 PCT/JP2022/023997 JP2022023997W WO2023243008A1 WO 2023243008 A1 WO2023243008 A1 WO 2023243008A1 JP 2022023997 W JP2022023997 W JP 2022023997W WO 2023243008 A1 WO2023243008 A1 WO 2023243008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- less
- unit
- unit layer
- cutting tool
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 79
- 239000000463 material Substances 0.000 claims abstract description 67
- 239000010936 titanium Substances 0.000 claims abstract description 46
- 238000000576 coating method Methods 0.000 claims abstract description 45
- 239000011248 coating agent Substances 0.000 claims abstract description 44
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 20
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 239000010962 carbon steel Substances 0.000 claims description 9
- 102220005308 rs33960931 Human genes 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 279
- 239000000203 mixture Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 23
- 239000002245 particle Substances 0.000 description 23
- 238000005259 measurement Methods 0.000 description 21
- 239000007789 gas Substances 0.000 description 16
- 239000013077 target material Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 13
- 238000003466 welding Methods 0.000 description 11
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 4
- 238000010849 ion bombardment Methods 0.000 description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 4
- 229910052582 BN Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
- C23C14/0647—Boron nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
- C23C14/505—Substrate holders for rotation of the substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
- C23C28/42—Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2224/00—Materials of tools or workpieces composed of a compound including a metal
- B23B2224/24—Titanium aluminium nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/10—Coatings
- B23B2228/105—Coatings with specified thickness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5062—Borides, Nitrides or Silicides
- C04B41/5063—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5062—Borides, Nitrides or Silicides
- C04B41/5068—Titanium nitride
Definitions
- the present disclosure relates to cutting tools.
- Patent Document 1 Patent Document 1
- Patent Document 2 Patent Document 2
- the cutting tool of the present disclosure includes: A cutting tool comprising a base material and a coating provided on the base material, The coating includes a first layer;
- the first layer has a multilayer structure in which first unit layers and second unit layers are alternately laminated,
- the thickness of the first unit layer is 2 nm or more and 50 nm or less
- the thickness of the second unit layer is 2 nm or more and 50 nm or less
- the thickness of the first layer is 1.0 ⁇ m or more and 20 ⁇ m or less
- the first unit layer is made of Ti a Al b B c N
- FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a cutting tool according to an embodiment of the present disclosure.
- FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a film forming apparatus.
- FIG. 3 is a schematic cross-sectional view showing an example of the configuration of a film forming apparatus.
- the present disclosure aims to provide a cutting tool with a long tool life.
- the cutting tools of the present disclosure can have long tool life.
- the cutting tool of the present disclosure includes: A cutting tool comprising a base material and a coating provided on the base material, The coating includes a first layer;
- the first layer has a multilayer structure in which first unit layers and second unit layers are alternately laminated,
- the thickness of the first unit layer is 2 nm or more and 50 nm or less
- the thickness of the second unit layer is 2 nm or more and 50 nm or less
- the thickness of the first layer is 1.0 ⁇ m or more and 20 ⁇ m or less
- the first unit layer is made of Ti a Al b B c N
- the cutting tool of the present disclosure can have a long tool life.
- the coefficient of friction of the first layer against carbon steel S50C at 25° C. is preferably 0.50 or less.
- the first layer has excellent surface lubricity. Therefore, the welding of the work material to the cutting tool is suppressed, the occurrence of wear (crater wear) caused by the welding is suppressed, and the tool life is improved.
- the nanoindentation hardness H of the first layer at 25° C. is preferably 25 GPa or more. According to this, the wear resistance of the cutting tool is improved.
- the notation in the format "A to B” means the upper and lower limits of the range (i.e., from A to B), and if there is no unit described in A and a unit is described only in B, then The unit and the unit of B are the same.
- the atomic ratio when a compound or the like is expressed by a chemical formula, unless the atomic ratio is specifically limited, it includes all conventionally known atomic ratios, and should not necessarily be limited to only those in the stoichiometric range.
- the ratio of the number of atoms constituting TiN includes all conventionally known atomic ratios.
- any one numerical value stated in the lower limit and any one numerical value stated in the upper limit is also disclosed.
- the upper limit is a2 or less, b2 or less, c2 or less, a1 or more and a2 or less, a1 or more and b2 or less, a1 or more and c2 or less, b1 or more and a2 or less, b1 or more and b2 or less, b1 or more and c2 or less, c1 or more and a2 or less, c1 or more and a2 or less, c1 or more and b2 or less, and c1 or more and c2 or less, and c1 or more and c2 or less are disclosed.
- a cutting tool includes: A cutting tool comprising a base material and a coating provided on the base material, The coating includes a first layer;
- the first layer has a multilayer structure in which first unit layers and second unit layers are alternately laminated, The thickness of the first unit layer is 2 nm or more and 50 nm or less, The thickness of the second unit layer is 2 nm or more and 50 nm or less, The thickness of the first layer is 1.0 ⁇ m or more and 20 ⁇ m or less,
- the first unit layer is made of Ti a Al b B c N,
- the cutting tool of the present disclosure can have a long tool life. The reason is presumed to be as follows.
- the coating of the cutting tool of the present disclosure includes a first layer having a multilayer structure in which first unit layers and second unit layers are alternately laminated.
- the first unit layer and the second unit layer have different compositions. Therefore, it is possible to suppress the propagation of cracks from the surface of the coating that occur when a cutting tool is used near the interface between the first unit layer and the second unit layer.
- the thickness of each of the first unit layer and the second unit layer is very thin at 2 nm or more and 50 nm or less, the number of stacked layers of the first unit layer and the second unit layer in the first layer is large, which prevents crack growth. The suppressing effect is further improved. Therefore, large-scale damage to the coating can be suppressed, and the tool life of the cutting tool is extended.
- the first unit layer and the second unit layer have different compositions to the extent that crack propagation can be suppressed, and at the same time, to the extent that the crystal lattice can be continuous, as described in (i) above.
- the composition is similar to that of Therefore, delamination between the first unit layer and the second unit layer is suppressed, and the tool life of the cutting tool is extended.
- the percentage of the number of titanium atoms (Ti) to the total number of titanium, aluminum, and boron atoms (Ti+Al+B) ⁇ Ti/(Ti+Al+B) ⁇ 100 is 45% or more. According to this, the first layer can have excellent wear resistance.
- the percentage of the number of boron atoms (B) to the total number of atoms of titanium, aluminum, and boron (Ti+Al+B) ⁇ B/(Ti+Al+B) ⁇ 100 is more than 10%.
- hexagonal boron nitride is formed on the surface of the first layer when the cutting tool is used.
- the hexagonal boron nitride functions as a solid lubricant and imparts surface lubricity to the first layer. Therefore, the welding of the work material to the cutting tool is suppressed, the occurrence of wear (crater wear) caused by the welding is suppressed, and the tool life is improved.
- TiAlBN layer the larger the percentage of the number of boron atoms (B) to the total number of atoms of titanium, aluminum, and boron (Ti+Al+B) ⁇ B/(Ti+Al+B) ⁇ 100, the harder the hardness tends to decrease. Therefore, conventionally, a TiAlBN layer in which the percentage ⁇ B/(Ti+Al+B) ⁇ 100 exceeds 10% has not been used as a coating for a cutting tool.
- the present inventors have found that by forming the first layer by alternately laminating the first unit layer and the second unit layer having the above-mentioned composition with the above-mentioned thickness, the hardness of the first layer can be increased. This improves surface lubricity while suppressing a decrease in hardness, which suppresses wear caused by a decrease in hardness and wear (crater wear) caused by welding, especially in turning stainless steel where welding is likely to occur, thereby extending tool life. We have newly discovered that this improves the
- the cutting tool of this embodiment is not particularly limited in its shape, use, etc., as long as it is a cutting tool.
- the cutting tool of this embodiment is, for example, a drill, an end mill, an indexable tip for milling, an indexable tip for turning, a metal saw, a gear cutting tool, a reamer, a tap, or a tip for pin milling of a crankshaft. could be.
- FIG. 1 is a schematic partial sectional view showing an example of the configuration of a cutting tool according to the present embodiment.
- the cutting tool 100 includes a base material 10 and a coating 20 provided on the base material 10.
- the base material 10 is not particularly limited.
- the base material 10 may be made of, for example, cemented carbide, cermet, high-speed steel, ceramics, cubic boron nitride sintered body, diamond sintered body, or the like.
- Base material 10 is preferably made of cemented carbide. This is because cemented carbide has excellent wear resistance.
- Cemented carbide is a sintered body whose main component is WC (tungsten carbide) particles.
- Cemented carbides include a hard phase and a binder phase.
- the hard phase contains WC particles.
- the bonding phase binds the WC particles together.
- the binding phase contains, for example, Co (cobalt).
- the binder phase may further contain, for example, TiC (titanium carbide), TaC (tantalum carbide), NbC (niobium carbide), or the like.
- Cemented carbide may contain impurities that are inevitably mixed in during its manufacturing process. Cemented carbide may also contain free carbon or an abnormal layer called the " ⁇ layer" in its structure. Furthermore, the cemented carbide may be subjected to surface modification treatment. For example, the cemented carbide may include a ⁇ -free layer or the like on its surface.
- the cemented carbide preferably contains WC particles in an amount of 87% by mass or more and 96% by mass or less, and Co in a range of 4% by mass or more and 13% by mass or less.
- the WC particles preferably have an average particle size of 0.2 ⁇ m or more and 4 ⁇ m or less.
- Co is softer than WC particles.
- soft Co can be removed. Since the cemented carbide has the above-mentioned composition and the WC particles have the above-mentioned average particle size, appropriate unevenness is formed on the surface after Co is removed. It is thought that by forming the coating 20 on such a surface, an anchor effect is developed and the adhesion between the coating 20 and the base material 10 is improved.
- the particle size of the WC particle indicates the diameter of a circle circumscribing a two-dimensional projected image of the WC particle.
- the particle size is measured using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). That is, the cemented carbide is cut and the cut surface is observed using SEM or TEM.
- the diameter of the circle circumscribing the WC particles is regarded as the particle size of the WC particles.
- the particle diameters of 10 or more (preferably 50 or more, more preferably 100 or more) randomly extracted WC particles are measured, and the arithmetic mean value thereof is taken as the average particle size of the WC particles.
- CP cross section polisher
- FIB focused ion beam
- the coating 20 is provided on the base material 10.
- the coating 20 may be provided on a part of the surface of the base material 10 or may be provided on the entire surface. However, it is assumed that the coating 20 is provided on at least a portion of the surface of the base material 10 that corresponds to the cutting edge.
- the coating 20 includes a first layer 21.
- the coating 20 may include other layers as long as it includes the first layer 21.
- the coating 20 can include a second layer 22 provided between the base material 10 and the first layer 21 and/or a third layer 23 provided on the outermost surface of the coating 20.
- a known base layer can be applied to the second layer.
- Examples of the underlayer include a TiCN layer, a TiN layer, and a TiCNO layer.
- a known surface layer can be applied to the third layer. Examples of the surface layer include a TiC layer, a TiN layer, and a TiCN layer.
- the laminated structure of the coating 20 does not need to be uniform over the entire coating 20, and the laminated structure may differ partially.
- the thickness of the coating 20 is preferably 1.0 ⁇ m or more and 25 ⁇ m or less. When the thickness of the coating 20 is 1.0 ⁇ m or more, wear resistance is improved. When the thickness of the coating 20 is 25 ⁇ m or less, fracture resistance is improved.
- the thickness of the coating 20 is preferably 1.0 ⁇ m or more and 25 ⁇ m or less, more preferably 2.0 ⁇ m or more and 16 ⁇ m or less, and even more preferably 3.0 ⁇ m or more and 12 ⁇ m or less.
- the thickness of the coating means the sum of the thicknesses of the layers constituting the coating. Examples of the "layers constituting the film" include a first layer, a second layer, a third layer, and the like.
- the thickness of each layer constituting the coating can be determined by obtaining a thin section sample (hereinafter also referred to as "cross section sample”) parallel to the normal direction of the surface of the base material of the cutting tool, and scanning the cross section sample using transmission electron scanning. It is measured by observing with a microscope (STEM). Examples of the scanning transmission electron microscope include JEM-2100F (trade name) manufactured by JEOL Ltd. The observation magnification of the cross-sectional sample is set to 5,000 to 10,000 times, and the thickness of each layer is measured at five locations, and the arithmetic mean value is defined as the "thickness of each layer.”
- the crystal grains forming the coating 20 are preferably cubic crystals.
- the cubic crystal structure increases hardness and extends tool life.
- the first layer 21 has a multilayer structure in which first unit layers 1 and second unit layers 2 are alternately stacked.
- the number of layers is not particularly limited as long as the first layer 21 includes at least one first unit layer 1 and one or more second unit layers 2.
- the number of stacked layers refers to the total number of first unit layers 1 and second unit layers 2 included in the first layer 21.
- the number of laminated layers is preferably more than 10 and less than 5,000, preferably more than 200 and less than 5,000, more preferably more than 400 and less than 2,000, and even more preferably more than 500 and less than 1,000.
- the layer closest to the base material 10 may be the first unit layer 1 or the second unit layer 2.
- the layer farthest from the base material 10 may be the first unit layer 1 or the second unit layer 2.
- the thickness of the first layer is 1.0 ⁇ m or more and 20 ⁇ m or less. When the thickness of the first layer is 1.0 ⁇ m or more, wear resistance is improved. When the thickness of the first layer is 20 ⁇ m or less, fracture resistance is improved.
- the lower limit of the thickness of the first layer is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, and even more preferably 3.0 ⁇ m or more.
- the upper limit of the thickness of the first layer is preferably 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 16 ⁇ m or less, and even more preferably 12 ⁇ m or less.
- the thickness of the first layer is 1.0 ⁇ m or more and 20 ⁇ m or less, preferably 2.0 ⁇ m or more and 16 ⁇ m or less, and more preferably 3.0 ⁇ m or more and 12 ⁇ m or less.
- the first unit layer 1 and the second unit layer 2 each have a thickness of 2 nm or more and 50 nm or less. By repeating such thin layers alternately, the growth of cracks can be suppressed.
- the thickness of each of the first unit layer 1 and the second unit layer 2 is less than 2 nm, the compositions of the first unit layer 1 and the second unit layer 2 may be mixed, and the effect of suppressing crack growth may be reduced. be.
- the thickness of each of the first unit layer 1 and the second unit layer 2 exceeds 50 nm, the effect of suppressing interlayer peeling may be reduced.
- the lower limit of the thickness of the first unit layer is 2 nm or more, preferably 4 nm or more, more preferably 6 nm or more, and even more preferably 8 nm or more.
- the upper limit of the thickness of the first unit layer is 50 nm or less, preferably 42 nm or less, preferably 40 nm or less, and even more preferably 30 nm or less.
- the thickness of the first unit layer is 2 nm or more and 50 nm or less, preferably 4 nm or more and 40 nm or less, and more preferably 6 nm or more and 30 nm or less.
- the lower limit of the thickness of the second unit layer is 2 nm or more, preferably 4 nm or more, more preferably 6 nm or more, and even more preferably 8 nm or more.
- the upper limit of the thickness of the second unit layer is 50 nm or less, preferably 40 nm or less, and more preferably 30 nm or less.
- the thickness of the second unit layer is 2 nm or more and 50 nm or less, preferably 4 nm or more and 40 nm or less, and more preferably 6 nm or more and 30 nm or less.
- the method for measuring the thickness of each of the first unit layer and the second unit layer is as follows.
- a thin sample of a cross section of the cutting tool parallel to the normal direction of the surface of the base material (hereinafter also referred to as "cross section sample”) is obtained.
- the cross-sectional sample is observed using a scanning transmission electron microscope (STEM). Examples of the scanning transmission electron microscope include JEM-2100F (trade name) manufactured by JEOL Ltd.
- the observation magnification of the cross-sectional sample shall be adjusted as appropriate depending on the thickness of the first unit layer 1 and the second unit layer 2. For example, the observation magnification can be approximately 1 million times.
- the thickness is measured at five locations.
- the arithmetic mean value of the thicknesses at five locations of the first unit layer is calculated, and the arithmetic mean value is set as the thickness of the first unit layer.
- the thickness is measured at five locations.
- the thickness of the first unit layer is measured using the above procedure for each of the five different first unit layers.
- the arithmetic mean value of the thicknesses of the five first unit layers is determined.
- the arithmetic mean value is taken as the thickness of the first unit layer.
- the thickness of the second unit layer is measured using the above procedure for each of the five different second unit layers.
- the arithmetic mean value of the thicknesses of the five second unit layers is determined.
- the arithmetic mean value is taken as the thickness of the second unit layer.
- the first unit layer consists of Ti a Al b B c N
- compositions of the first unit layer and the second unit layer are 0.05 ⁇ a-d and 0.05 ⁇ e-b, there is a difference between the first unit layer 1 and the second unit layer 2.
- the compositions of the first unit layer and the second unit layer can be separated to such an extent that crack propagation can be suppressed.
- the first unit layer The compositions of the layer and the second unit layer can be approximated.
- the composition of the first unit layer 1 and the second unit layer 2 preferably satisfies 0.05 ⁇ a-d ⁇ 0.15 and 0.05 ⁇ e-b ⁇ 0.15, and 0.05 ⁇ a- More preferably, d ⁇ 0.10 and 0.05 ⁇ eb ⁇ 0.10 are satisfied. This further improves the effect of suppressing crack growth and delamination.
- the lower limit of "a” is 0.49 or more, preferably 0.52 or more, and more preferably 0.55 or more.
- the upper limit of “a” is 0.70 or less, preferably 0.67 or less, and more preferably 0.64 or less.
- “a” is preferably 0.52 ⁇ a ⁇ 0.67, more preferably 0.55 ⁇ a ⁇ 0.64.
- the lower limit of "b” is 0.19 or more, preferably 0.22 or more, and more preferably 0.25 or more.
- the upper limit of “b” is 0.40 or less, preferably 0.37 or less, and more preferably 0.34 or less.
- “b” is preferably 0.22 ⁇ b ⁇ 0.37, more preferably 0.25 ⁇ b ⁇ 0.34.
- the lower limit of "d” is 0.39 or more, preferably 0.42 or more, and more preferably 0.45 or more.
- the upper limit of “d” is 0.60 or less, preferably 0.57 or less, and more preferably 0.54 or less.
- “d” is preferably 0.42 ⁇ d ⁇ 0.57, more preferably 0.45 ⁇ d ⁇ 0.54.
- the lower limit of "e” is 0.29 or more, preferably 0.32 or more, and more preferably 0.35 or more.
- the upper limit of “e” is 0.50 or less, preferably 0.47 or less, and more preferably 0.54 or less.
- "e” is preferably 0.32 ⁇ e ⁇ 0.47, more preferably 0.35 ⁇ e ⁇ 0.54.
- the surface lubricity of the first layer is improved. Therefore, the welding of the work material to the cutting tool is suppressed, the occurrence of wear (crater wear) caused by the welding is suppressed, and the tool life is improved.
- the lower limit of "c” is more than 0.10, preferably 0.11 or more, and more preferably 0.12 or more.
- the upper limit of “c” is 0.20 or less, preferably 0.19 or less, and more preferably 0.18 or less.
- “c” is preferably 0.11 ⁇ c ⁇ 0.19, more preferably 0.12 ⁇ c ⁇ 0.18.
- the lower limit of "f” is more than 0.10, preferably 0.11 or more, and more preferably 0.12 or more.
- the upper limit of “f” is 0.20 or less, preferably 0.19 or less, and more preferably 0.18 or less.
- "f” is preferably 0.11 ⁇ f ⁇ 0.19, more preferably 0.12 ⁇ f ⁇ 0.18.
- a, b, c in the first unit layer Ti a Al b B c N and d, e, f in the second unit layer Ti d Al e B f N were determined by energy dispersive X-ray analysis. It is specified by measuring the composition of each layer using ray spectrometry (EDX).
- EDX energy dispersive X-ray analysis. It is specified by measuring the composition of each layer using ray spectrometry (EDX).
- TEM-EDX is used for compositional analysis.
- An example of the EDX device is JED-2300 (trade name) manufactured by JEOL Ltd., for example.
- compositional analysis is performed using the following procedure.
- a thin sample with a cross section parallel to the normal direction of the surface of the base material of the cutting tool (hereinafter also referred to as "cross section sample”) is obtained.
- EDX analysis is performed at five arbitrarily selected points within one first unit layer 1 or one second unit layer 2.
- the first unit layer and the second unit layer can be distinguished by a difference in contrast.
- the "5 arbitrarily selected points” are selected from mutually different crystal grains.
- the respective compositions of the first unit layer and the second unit layer are specified by taking an arithmetic average of the composition ratios of each element obtained through the measurements at five points.
- composition of each of the first unit layer and the second unit layer is analyzed for five layers, and the average composition of the five layers is determined for each of the first unit layer and the second unit layer.
- the average composition of the five first unit layers is defined as the composition of the first unit layer.
- the average composition of the five second unit layers is defined as the composition of the second unit layer. Based on the composition, a, b, c, d, e, and f are specified.
- the percentage of the number of titanium atoms relative to the total number of atoms of titanium, aluminum, and boron (hereinafter also referred to as "titanium content of the first layer") is 45% or more.
- the first layer can have excellent wear resistance.
- the lower limit of the titanium content in the first layer is 45% or more, preferably 48% or more, and more preferably 51% or more.
- the upper limit of the titanium content in the first layer is preferably 65% or less, more preferably 60% or less.
- the titanium content of the first layer is preferably 45% or more and 65% or less, more preferably 48% or more and 65% or less, and even more preferably 51% or more and 60% or less.
- the titanium content of the first layer is measured by TEM-EDX.
- An example of the EDX device is JED-2300 (trade name) manufactured by JEOL Ltd., for example.
- the titanium content of the first layer is measured by the following procedure.
- cross section sample Obtain a thin sample with a cross section parallel to the normal direction of the surface of the base material of the cutting tool (hereinafter also referred to as "cross section sample”). While observing the cross-sectional sample with a TEM, EDX analysis is performed in five arbitrarily selected fields within the first layer. Here, the “5 arbitrarily selected visual fields” are set so that they do not overlap with each other. The range of one field of view is 200 ⁇ 200 nm. The arithmetic mean of the titanium contents obtained by measuring five visual fields is taken as the titanium content of the first layer.
- the coefficient of friction of the first layer with respect to carbon steel S50C at 25° C. is preferably 0.50 or less. According to this, the first layer has excellent surface lubricity. Therefore, the welding of the work material to the cutting tool is suppressed, the occurrence of wear (crater wear) caused by the welding is suppressed, and the tool life is improved.
- the upper limit of the friction coefficient is preferably 0.50 or less, more preferably 0.45 or less, and even more preferably 0.40 or less.
- the lower limit of the friction coefficient is not particularly limited, but may be, for example, 0.10 or more.
- the friction coefficient is preferably 0.10 or more and 0.50 or less, more preferably 0.10 or more and 0.45 or less, and even more preferably 0.10 or more and 0.40 or less.
- the above friction coefficient means a dynamic friction coefficient.
- the above friction coefficient is measured by the following procedure. First, the surface of the first layer is cleaned with acetone. If another layer is formed on the first layer, the other layer is removed by parallel polishing and lapping to expose the first layer, and the surface of the first layer is cleaned with acetone.
- a friction coefficient test is performed using a ball-on-disc method using a High Temperature Tribometer manufactured by Anton Paar to measure the friction coefficient.
- the friction coefficient test is conducted under the following conditions.
- Friction coefficient test conditions Plate test piece: Test piece containing the first layer prepared above Spherical test piece (opposite material): ⁇ 6 mm Carbon steel S50C ball Load: 1N Sliding speed: 5.2m/min Temperature: 25°C Sliding time: 5 minutes The measured value of the friction coefficient is displayed on the high temperature tribometer.
- the above friction coefficient test uses carbon steel S50C as the mating material, but even when the above friction coefficient test is performed using a spherical test piece made of a material other than carbon steel S50C, such as stainless steel or SS400, It has been confirmed that the first layer of this embodiment has a small coefficient of friction.
- the nanoindentation hardness H of the first layer at 25° C. is preferably 25 GPa or more. According to this, the wear resistance of the cutting tool is improved.
- the lower limit of the nanoindentation hardness H is preferably 25 GPa or more, more preferably 28 GPa or more, and even more preferably 30 GPa or more.
- the upper limit of the nanoindentation hardness H is not particularly limited, but from a manufacturing standpoint, it can be 55 GPa or less.
- the nanoindentation hardness H of the first layer at 25° C. is preferably 25 GPa or more and 55 GPa or less, more preferably 28 GPa or more and 55 GPa or less, and even more preferably 30 GPa or more and 55 GPa or less.
- the nanoindentation hardness H at 25°C of the first layer is determined by "ISO 14577-1: 2015 Metallic materials-Instrumented indentation test for hardness and m nanoindentation method in accordance with the standard procedure defined in Measured by The measuring device used is "ENT-1100a” manufactured by Elionix.
- the indentation load of the indenter is 1 g.
- the indenter is pressed into the first layer exposed in the cross section parallel to the normal direction of the surface of the base material in a direction perpendicular to the cross section (that is, in a direction parallel to the surface of the base material).
- the above measurement is performed on five measurement samples, and the average value of the nanoindentation hardness determined for each sample is taken as the nanoindentation hardness of the first layer. Note that data that appears to be an abnormal value at first glance shall be excluded.
- Embodiment 2 Cutting tool manufacturing method
- the manufacturing method can include the steps of preparing a base material and forming a coating on the base material. Details of each step will be explained below.
- the base material 10 is prepared.
- the base material 10 the base material described in Embodiment 1 can be used.
- a film 20 is formed on the base material 10.
- the coating 20 can be formed by a physical vapor deposition (PVD) method.
- PVD physical vapor deposition
- Specific examples of the PVD method include arc ion plating (AIP), balanced magnetron sputtering (BMS), and unbalanced magnetron sputtering. ;UBMS) law etc. Can be mentioned.
- AIP arc ion plating
- BMS balanced magnetron sputtering
- UMS unbalanced magnetron sputtering.
- arc discharge is generated using the target material as a cathode. This evaporates and ionizes the target material. Ions are then deposited on the surface of the base material 10 to which a negative bias voltage is applied.
- the AIP method is excellent in the ionization rate of the target material.
- the film forming apparatus 200 includes a chamber 201 .
- the chamber 201 is provided with a gas inlet 202 for introducing source gas into the chamber 201 and a gas exhaust port 203 for discharging the source gas from inside the chamber 201 to the outside.
- the gas exhaust port 203 is connected to a vacuum pump (not shown). The pressure within the chamber 201 is adjusted by the amount of gas introduced and the amount of gas discharged.
- a rotary table 204 is arranged within the chamber 201.
- a base material holder 205 for holding the base material 10 is attached to the rotary table 204.
- the substrate holder 205 is connected to the negative electrode of a bias power supply 206.
- the positive electrode of bias power supply 206 is grounded.
- each target material 211, 212 is connected to the negative electrode of a DC power source 221, 222, respectively.
- the DC power supplies 221 and 222 are variable power supplies, and their positive poles are grounded.
- the base material 10 is held in the base material holder 205.
- the pressure inside the chamber 201 is adjusted to 1.0 ⁇ 10 ⁇ 4 Pa using a vacuum pump.
- the temperature of the base material 10 is adjusted to 500° C. using a heater (not shown) attached to the film forming apparatus 200.
- Ar gas is introduced from the gas inlet 202 and the pressure inside the chamber 201 is adjusted to 3.0 Pa. While maintaining the same pressure, the voltage of the bias power supply 206 is gradually changed and finally adjusted to -1000V. Then, the surface of the base material 10 is cleaned by ion bombardment treatment using Ar ions.
- the second layer 22 is formed on the surface of the base material 10.
- a TiCN layer, a TiN layer, or a TiCNO layer is formed on the surface of the base material 10.
- the first layer 21 is formed on the surface of the base material 10 or the surface of the second layer 22.
- a sintered alloy containing Ti, Al, and B is used as the target material.
- Each target material is set at a predetermined position, nitrogen gas is introduced from the gas inlet 202, and the first layer 21 is formed while rotating the rotary table 204.
- the conditions for forming the first layer 21 are as follows.
- the substrate temperature, bias voltage, arc current, and reaction gas pressure are kept at constant values within the above ranges, or are continuously changed within the above ranges.
- the first unit layer and the second unit layer can be formed using any of the methods (A) to (E) below.
- the first unit layer and the second unit layer can be formed by appropriately combining the methods (A) to (D) below.
- A) In the AIP method a plurality of target materials (sintered alloys) having different compositions are used.
- the bias voltage applied to the base material 10 is varied within the bias voltage (-400 to -30V) described in the above-mentioned first layer formation conditions.
- C In the AIP method, changing the gas flow rate.
- the gas flow rate when forming the first unit layer can be 500 sccm to 2000 sccm
- the gas flow rate when forming the second unit layer can be 500 sccm to 2000 sccm.
- the base material 10 is rotated and the rotation period is controlled.
- the rotation period can be 1 rpm to 5 rpm.
- the third layer 23 is formed on the surface of the first layer 21, for example.
- a TiC layer, a TiN layer, or a TiCN layer is formed on the surface of the first layer 21.
- the cutting tool 100 including the base material 10 and the coating 20 provided on the base material 10 can be manufactured.
- a cutting tool comprising a base material and a coating provided on the base material,
- the coating includes a first layer;
- the first layer has a multilayer structure in which first unit layers and second unit layers are alternately laminated,
- the thickness of the first unit layer is 2 nm or more and 50 nm or less
- the thickness of the second unit layer is 2 nm or more and 50 nm or less
- the thickness of the first layer is 1.0 ⁇ m or more and 20 ⁇ m or less
- the first unit layer is made of Ti a Al b B c N
- a cutting tip made of cemented carbide (model number: CNMG120408N (manufactured by Sumitomo Electric Hard Metal)) was prepared.
- the cemented carbide contains WC particles (90% by mass) and Co (10% by mass).
- the average particle size of the WC particles is 2 ⁇ m.
- a film was formed on the above substrate using a film forming apparatus 200 having the configuration shown in FIGS. 2 and 3.
- the specific conditions for the ion bombardment treatment are as described in Embodiment 2.
- a sintered alloy having the composition described in the "first unit layer” and “second unit layer” columns of the “target material composition” column of Tables 1 and 2 was prepared.
- the target material was set at a predetermined position in the film forming apparatus. Nitrogen gas was introduced from the gas inlet, and the first layer was formed while rotating the rotary table.
- the conditions for forming the first layer of each sample are as shown in Tables 1 and 2. The rotation speed of the rotary table was adjusted according to the film thicknesses of the first unit layer and the second unit layer.
- the cutting tools of Samples 1 to 16 correspond to Examples.
- the cutting tools of Samples 1-1 to 1-12 correspond to comparative examples. It was confirmed that the cutting tools of Samples 1 to 16 (Examples) had longer tool lives than the cutting tools of Samples 1-1 to 1-12 (Comparative Examples).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Drilling Tools (AREA)
Abstract
Description
基材と、前記基材上に設けられた被膜と、を含む切削工具であって、
前記被膜は、第1層を含み、
前記第1層は、第1単位層と第2単位層とが交互に積層された多層構造からなり、
前記第1単位層の厚さは、2nm以上50nm以下であり、
前記第2単位層の厚さは、2nm以上50nm以下であり、
前記第1層の厚さは、1.0μm以上20μm以下であり、
前記第1単位層は、TiaAlbBcNからなり、
前記第2単位層は、TidAleBfNからなり、
ここで、
0.49≦a≦0.70、
0.19≦b≦0.40、
0.10<c≦0.20、
a+b+c=1.00、
0.39≦d≦0.60、
0.29≦e≦0.50、
0.10<f≦0.20、
d+e+f=1.00、
0.05≦a-d≦0.20、及び、
0.05≦e-b≦0.20を満たし、
前記第1層において、チタン、アルミニウム及び硼素の原子数の合計に対するチタンの原子数の百分率は、45%以上である、切削工具である。
近年、コスト低減の要求が益々高まっており、工具の長寿命化が求められている。例えば、ステンレス鋼の旋削加工においては、溶着に起因するクレータ摩耗が生じにくく、長い工具寿命を有する切削工具が求められている。
本開示の切削工具は、長い工具寿命を有することができる。
最初に本開示の実施態様を列記して説明する。
(1)本開示の切削工具は、
基材と、前記基材上に設けられた被膜と、を含む切削工具であって、
前記被膜は、第1層を含み、
前記第1層は、第1単位層と第2単位層とが交互に積層された多層構造からなり、
前記第1単位層の厚さは、2nm以上50nm以下であり、
前記第2単位層の厚さは、2nm以上50nm以下であり、
前記第1層の厚さは、1.0μm以上20μm以下であり、
前記第1単位層は、TiaAlbBcNからなり、
前記第2単位層は、TidAleBfNからなり、
ここで、
0.49≦a≦0.70、
0.19≦b≦0.40、
0.10<c≦0.20、
a+b+c=1.00、
0.39≦d≦0.60、
0.29≦e≦0.50、
0.10<f≦0.20、
d+e+f=1.00、
0.05≦a-d≦0.20、及び、
0.05≦e-b≦0.20を満たし、
前記第1層において、チタン、アルミニウム及び硼素の原子数の合計に対するチタンの原子数の百分率は、45%以上である、切削工具である。
本開示の切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
本開示の一実施形態(以下、「本実施形態」とも記す。)の切削工具は、
基材と、該基材上に設けられた被膜と、を含む切削工具であって、
該被膜は、第1層を含み、
該第1層は、第1単位層と第2単位層とが交互に積層された多層構造からなり、
該第1単位層の厚さは、2nm以上50nm以下であり、
該第2単位層の厚さは、2nm以上50nm以下であり、
該第1層の厚さは、1.0μm以上20μm以下であり、
該第1単位層は、TiaAlbBcNからなり、
該第2単位層は、TidAleBfNからなり、
ここで、
0.49≦a≦0.70、
0.19≦b≦0.40、
0.10<c≦0.20、
a+b+c=1.00、
0.39≦d≦0.60、
0.29≦e≦0.50、
0.10<f≦0.20、
d+e+f=1.00、
0.05≦a-d≦0.20、及び、
0.05≦e-b≦0.20を満たし、
該第1層において、チタン、アルミニウム及び硼素の原子数の合計に対するチタンの原子数の百分率は、45%以上である、切削工具である。
本実施形態の切削工具は、切削工具である限り、その形状および用途等は、特に限定されない。本実施形態の切削工具は、たとえば、ドリル、エンドミル、フライス加工用刃先交換型チップ、旋削加工用刃先交換型チップ、メタルソー、歯切工具、リーマ、タップまたはクランクシャフトのピンミーリング加工用チップ等であり得る。
基材10は、特に限定されない。基材10は、例えば、超硬合金、サーメット、高速度鋼、セラミックス、立方晶窒化硼素焼結体、およびダイヤモンド焼結体等により構成され得る。基材10は、好ましくは超硬合金製である。超硬合金は、耐摩耗性に優れるためである。
被膜20は、基材10上に設けられている。被膜20は、基材10の表面の一部に設けられていてもよいし、全面に設けられていてもよい。ただし、被膜20は、基材10の表面のうち、少なくとも切れ刃に相当する部分に設けられているものとする。
第1層21は、第1単位層1と第2単位層2とが交互に積層された多層構造からなる。第1層21が第1単位層1および第2単位層2をそれぞれ一層以上含む限り、積層数は、特に限定されない。積層数とは、第1層21に含まれる第1単位層1および第2単位層2の合計数を示す。積層数は、10超5000以下が好ましく、200以上5000以下が好ましく、400以上2000以下がより好ましく、500以上1000以下が更に好ましい。第1層21において、最も基材10に近い層は、第1単位層1であってもよいし、第2単位層2であってもよい。また第1層21において、最も基材10から離れている層は、第1単位層1であってもよいし、第2単位層2であってもよい。
第1単位層1及び第2単位層2は、それぞれ厚さが2nm以上50nm以下である。このような薄層が交互に繰り返されることにより、亀裂の進展を抑制できる。第1単位層1および第2単位層2のそれぞれ厚さが2nm未満になると、第1単位層1および第2単位層2の組成が混ざり合って、亀裂進展の抑制効果が低減する可能性がある。また第1単位層1および第2単位層2のそれぞれ厚さが50nmを超えると、層間剥離の抑制効果が低減する可能性がある。
第1単位層は、TiaAlbBcNからなり、第2単位層は、TidAleBfNからなり、ここで、0.49≦a≦0.70、0.19≦b≦0.40、0.10<c≦0.20、a+b+c=1.00、0.39≦d≦0.60、0.29≦e≦0.50、0.10<f≦0.20、d+e+f=1.00、0.05≦a-d≦0.20、及び、0.05≦e-b≦0.20を満たす。
第1層において、チタン、アルミニウム及び硼素の原子数の合計に対するチタンの原子数の百分率(以下、「第1層のチタン含有率」とも記す。)は、45%以上である。これによると、第1層は優れた耐摩耗性を有することができる。第1層のチタン含有率の下限は、耐摩耗性向上の観点から、45%以上であり、48%以上が好ましく、51%以上がより好ましい。第1層のチタン含有率の上限は、耐熱性向上の観点から、65%以下が好ましく、60%以下がより好ましい。第1層のチタン含有率は、45%以上65%以下が好ましく、48%以上65%以下がより好ましく、51%以上60%以下が更に好ましい。
第1層の25℃における炭素鋼S50Cに対する摩擦係数は、0.50以下であることが好ましい。これによると、第1層は表面潤滑性が優れる。よって、切削工具への被削材の溶着が抑制され、該溶着に起因する摩耗(クレータ摩耗)の発生が抑制され、工具寿命が向上する。
板状試験片:上記で準備した第1層を含む試験片
球形試験片(相手材):φ6mm 炭素鋼S50Cボール
荷重:1N
摺動速度:5.2m/min
温度:25℃
摺動時間:5分間
摩擦係数の測定値は、上記高温トライボメータ上に表示される。
第1層の25℃におけるナノインデンテーション硬さHは25GPa以上が好ましい。これによると、切削工具の耐摩耗性が向上する。該ナノインデンテーション硬さHの下限は、25GPa以上が好ましく、28GPa以上がより好ましく、30GPa以上が更に好ましい。該ナノインデンテーション硬さHの上限は、特に制限されないが、製造上の観点から、55GPa以下とすることができる。第1層の25℃におけるナノインデンテーション硬さHは25GPa以上55GPa以下が好ましく、28GPa以上55GPa以下がより好ましく、30GPa以上55GPa以下が更に好ましい。
実施形態2では、実施形態1の切削工具の製造方法について説明する。該製造方法は、基材を準備する工程と、該基材上に被膜を形成する工程とを含むことができる。各工程の詳細について、以下に説明する。
基材を準備する工程では、基材10が準備される。基材10は、実施形態1に記載の基材を用いることができる。
被膜を形成する工程では、基材10上に被膜20を形成する。本実施形態では、物理蒸着(Physical Vapor Deposition;PVD)法により、被膜20を形成することができる。PVD法の具体例としては、アークイオンプレーティング(Arc Ion Plating;AIP)法、バランスドマグネトロンスパッタリング(Balanced Magnetron Sputtering;BMS)法、およびアンバランスドマグネトロンスパッタリング(Unbalanced Magnetron Sputtering;UBMS)法等が挙げられる。本実施形態では、アークイオンプレーティングを用いることが好ましい。
基材温度 :400~650℃
バイアス電圧:-30~-400V
アーク電流 :80~200A
反応ガス圧 :5~10Pa
第1単位層及び第2単位層は、以下(A)~(D)の方法を適宜組み合わせることにより、形成することができる。
(A)AIP法において、組成が互いに異なる複数のターゲット材(焼結合金)を用いる。
(B)AIP法において、成膜中、基材10に印加されるバイアス電圧を上記の第1層の形成条件に記載のバイアス電圧内(-400~-30V)で変化させる。
(C)AIP法において、ガス流量を変化させる。例えば、第1単位層の形成時のガス流量は500sccm~2000sccmとし、第2単位層の形成時のガス流量は500sccm~2000sccmとすることができる。
(D)AIP法において、基材10を回転させ、その回転周期を制御する。例えば、回転周期は1rpm~5rpmとすることができる。
基材と、前記基材上に設けられた被膜と、を含む切削工具であって、
前記被膜は、第1層を含み、
前記第1層は、第1単位層と第2単位層とが交互に積層された多層構造からなり、
前記第1単位層の厚さは、2nm以上50nm以下であり、
前記第2単位層の厚さは、2nm以上50nm以下であり、
前記第1層の厚さは、1.0μm以上20μm以下であり、
前記第1単位層は、TiaAlbBcNからなり、
前記第2単位層は、TidAleBfNからなり、
ここで、
0.49≦a≦0.70、
0.19≦b≦0.40、
0.10<c≦0.20、
a+b+c=1.00、
0.39≦d≦0.60、
0.29≦e≦0.50、
0.10<f≦0.20、
d+e+f=1.00、
0.05≦a-d≦0.20、及び、
0.05≦e-b≦0.20を満たし、
前記第1層において、チタン、アルミニウム及び硼素の原子数の合計に対するチタンの原子数の百分率は、45%以上である、切削工具。
前記第1層の25℃における炭素鋼S50Cに対する摩擦係数は、0.50以下である、付記1に記載の切削工具。
前記第1層の25℃におけるナノインデンテーション硬さHは25GPa以上である、付記1または付記2に記載の切削工具。
以下のようにして、切削工具を作製し、工具寿命を評価した。
基材として、超硬合金からなる切削チップ(型番:CNMG120408N(住友電工ハードメタル社製))を準備した。該超硬合金は、WC粒子(90質量%)、およびCo(10質量%)を含む。WC粒子の平均粒径は2μmである。
≪被膜の構成≫
各試料の被膜について、第1単位層及び第2単位層の組成、第1単位層の厚さ及び積層数、第2単位層の厚さ及び積層数、第1層の厚さ及び積層数、第1層におけるチタン、アルミニウム及び硼素の原子数の合計に対するチタンの原子数の百分率(表1において「Ti含有率」と示す。)、第1層の炭素鋼S50に対する摩擦係数、第1層のナノインデンテーション硬さH(表1において「硬さH」と示す。)を測定した。各項目の測定方法は実施形態1に記載の通りである。結果を表3及び表4に示す。
各試料の切削工具を用いて以下の条件で切削試験を行い、クレータ摩耗の幅が0.3mm以上となるまでの切削時間(分)を測定した。該切削時間が長いほど、切削工具はクレータ摩耗が生じ難く、工具寿命が長いと判断される。結果を表3及び表4の「切削試験」欄に示す。
被削材:ステンレス鋼
切削速度:150m/min
送り量:0.2mm/rev
切り込み量:1.0mm
湿式
上記の切削条件は、ステンレス鋼の旋削加工に該当する。
試料1~試料16の切削工具は実施例に該当する。試料1-1~試料1-12の切削工具は比較例に該当する。試料1~試料16の切削工具(実施例)は、試料1-1~試料1-12(比較例)の切削工具より、長い工具寿命を有することが確認された。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
Claims (3)
- 基材と、前記基材上に設けられた被膜と、を含む切削工具であって、
前記被膜は、第1層を含み、
前記第1層は、第1単位層と第2単位層とが交互に積層された多層構造からなり、
前記第1単位層の厚さは、2nm以上50nm以下であり、
前記第2単位層の厚さは、2nm以上50nm以下であり、
前記第1層の厚さは、1.0μm以上20μm以下であり、
前記第1単位層は、TiaAlbBcNからなり、
前記第2単位層は、TidAleBfNからなり、
ここで、
0.49≦a≦0.70、
0.19≦b≦0.40、
0.10<c≦0.20、
a+b+c=1.00、
0.39≦d≦0.60、
0.29≦e≦0.50、
0.10<f≦0.20、
d+e+f=1.00、
0.05≦a-d≦0.20、及び、
0.05≦e-b≦0.20を満たし、
前記第1層において、チタン、アルミニウム及び硼素の原子数の合計に対するチタンの原子数の百分率は、45%以上である、切削工具。 - 前記第1層の25℃における炭素鋼S50Cに対する摩擦係数は、0.50以下である、請求項1に記載の切削工具。
- 前記第1層の25℃におけるナノインデンテーション硬さHは25GPa以上である、請求項1または請求項2に記載の切削工具。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280076897.9A CN118265586A (zh) | 2022-06-15 | 2022-06-15 | 切削工具 |
EP22946827.7A EP4406678A4 (en) | 2022-06-15 | 2022-06-15 | CUTTING TOOL |
JP2022564581A JP7380978B1 (ja) | 2022-06-15 | 2022-06-15 | 切削工具 |
PCT/JP2022/023997 WO2023243008A1 (ja) | 2022-06-15 | 2022-06-15 | 切削工具 |
US18/018,886 US11938548B2 (en) | 2022-06-15 | 2022-06-15 | Cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/023997 WO2023243008A1 (ja) | 2022-06-15 | 2022-06-15 | 切削工具 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023243008A1 true WO2023243008A1 (ja) | 2023-12-21 |
Family
ID=88729134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023997 WO2023243008A1 (ja) | 2022-06-15 | 2022-06-15 | 切削工具 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11938548B2 (ja) |
EP (1) | EP4406678A4 (ja) |
JP (1) | JP7380978B1 (ja) |
CN (1) | CN118265586A (ja) |
WO (1) | WO2023243008A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7552986B1 (ja) * | 2023-04-28 | 2024-09-18 | 住友電工ハードメタル株式会社 | 切削工具 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007038378A (ja) * | 2005-08-05 | 2007-02-15 | Mitsubishi Materials Corp | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 |
JP2011224671A (ja) * | 2010-04-15 | 2011-11-10 | Mitsubishi Materials Corp | 表面被覆切削工具 |
JP2011224717A (ja) | 2010-04-20 | 2011-11-10 | Mitsubishi Materials Corp | 表面被覆切削工具 |
JP2017193004A (ja) | 2016-04-19 | 2017-10-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具 |
WO2019181136A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具及びその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006116831A (ja) * | 2004-10-22 | 2006-05-11 | Sony Corp | プリンタ及びプリンタの制御方法 |
JP2006334739A (ja) * | 2005-06-03 | 2006-12-14 | Mitsubishi Materials Corp | 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 |
JP2007021651A (ja) * | 2005-07-15 | 2007-02-01 | Mitsubishi Materials Kobe Tools Corp | 難削材の高速切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 |
JP2007030099A (ja) * | 2005-07-27 | 2007-02-08 | Mitsubishi Materials Corp | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 |
EP2669401A1 (en) * | 2012-05-29 | 2013-12-04 | Seco Tools AB | Method for depositing a coating and a coated cutting tool |
US9103036B2 (en) * | 2013-03-15 | 2015-08-11 | Kennametal Inc. | Hard coatings comprising cubic phase forming compositions |
JP6222675B2 (ja) * | 2016-03-28 | 2017-11-01 | 住友電工ハードメタル株式会社 | 表面被覆切削工具、およびその製造方法 |
CN111270202B (zh) * | 2020-03-17 | 2022-03-25 | 株洲华锐精密工具股份有限公司 | 一种切削刀具用成分结构双梯度功能涂层及其制备方法 |
-
2022
- 2022-06-15 US US18/018,886 patent/US11938548B2/en active Active
- 2022-06-15 JP JP2022564581A patent/JP7380978B1/ja active Active
- 2022-06-15 WO PCT/JP2022/023997 patent/WO2023243008A1/ja active Application Filing
- 2022-06-15 EP EP22946827.7A patent/EP4406678A4/en active Pending
- 2022-06-15 CN CN202280076897.9A patent/CN118265586A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007038378A (ja) * | 2005-08-05 | 2007-02-15 | Mitsubishi Materials Corp | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 |
JP2011224671A (ja) * | 2010-04-15 | 2011-11-10 | Mitsubishi Materials Corp | 表面被覆切削工具 |
JP2011224717A (ja) | 2010-04-20 | 2011-11-10 | Mitsubishi Materials Corp | 表面被覆切削工具 |
JP2017193004A (ja) | 2016-04-19 | 2017-10-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具 |
WO2019181136A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4406678A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230405686A1 (en) | 2023-12-21 |
EP4406678A1 (en) | 2024-07-31 |
EP4406678A4 (en) | 2024-07-31 |
CN118265586A (zh) | 2024-06-28 |
JP7380978B1 (ja) | 2023-11-15 |
JPWO2023243008A1 (ja) | 2023-12-21 |
US11938548B2 (en) | 2024-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6268530B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
WO2014034730A1 (ja) | 表面被覆切削工具 | |
WO2015064241A1 (ja) | 表面被覆窒化硼素焼結体工具 | |
WO2018070195A1 (ja) | 表面被覆切削工具 | |
WO2018216256A1 (ja) | 被膜および切削工具 | |
JP6331003B2 (ja) | 表面被覆切削工具 | |
JP7067689B2 (ja) | 表面被覆切削工具及びその製造方法 | |
JP7380978B1 (ja) | 切削工具 | |
JP6984108B2 (ja) | 表面被覆切削工具及びその製造方法 | |
JP7552986B1 (ja) | 切削工具 | |
WO2023243007A1 (ja) | 切削工具 | |
WO2014129530A1 (ja) | 切削工具 | |
JP2016185589A (ja) | 表面被覆切削工具 | |
JP2021030356A (ja) | 表面被覆切削工具 | |
WO2017179233A1 (ja) | 硬質被膜および切削工具 | |
JP7055961B2 (ja) | 表面被覆切削工具及びその製造方法 | |
WO2024224594A1 (ja) | 切削工具 | |
WO2024062613A9 (ja) | 切削工具 | |
JP7409555B1 (ja) | 切削工具 | |
WO2023162683A1 (ja) | 被覆工具および切削工具 | |
JP7409553B1 (ja) | 切削工具 | |
WO2023162682A1 (ja) | 被覆工具および切削工具 | |
WO2024062612A1 (ja) | 切削工具 | |
US11524339B2 (en) | Cutting tool | |
JP5440351B2 (ja) | 表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022564581 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22946827 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022946827 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022946827 Country of ref document: EP Effective date: 20240422 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202447033951 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280076897.9 Country of ref document: CN |