WO2023241631A1 - 一种800MPa级高扩孔热镀锌钢板及其制造方法 - Google Patents

一种800MPa级高扩孔热镀锌钢板及其制造方法 Download PDF

Info

Publication number
WO2023241631A1
WO2023241631A1 PCT/CN2023/100255 CN2023100255W WO2023241631A1 WO 2023241631 A1 WO2023241631 A1 WO 2023241631A1 CN 2023100255 W CN2023100255 W CN 2023100255W WO 2023241631 A1 WO2023241631 A1 WO 2023241631A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
dip galvanized
galvanized steel
800mpa
steel sheet
Prior art date
Application number
PCT/CN2023/100255
Other languages
English (en)
French (fr)
Inventor
刘春粟
张玉龙
马雪丹
黄才根
陈�光
金鑫焱
朱晓东
罗帅
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2023241631A1 publication Critical patent/WO2023241631A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel plate and a manufacturing method thereof, in particular to a hot-dip galvanized steel plate and a manufacturing method thereof.
  • Hot-dip galvanized plates are one of the effective ways to improve the corrosion resistance of automobile parts.
  • the inventor hopes to obtain a new type of 800MPa high-expansion hot-dip galvanized steel plate and its manufacturing method.
  • the publication number is CN109055867A
  • the publication date is December 21, 2018
  • the Chinese patent document titled "A method for producing hot-dip galvanized sheets with high tensile strength of 540MPa” discloses a method for producing tensile strength
  • the 540MPa high-hole expansion hot-dip galvanized sheet method is characterized by directly galvanizing the pickled sheet without cold rolling. It is a short-process method, but the tensile strength of the steel sheet produced by this method is only 540MPa. .
  • a hot-rolled galvanized steel sheet with high hole expansion performance and its manufacturing method discloses a hot-rolled galvanized steel sheet with high hole expansion performance and its manufacturing method. Its yield strength is ⁇ 600MPa and its hole expansion rate is ⁇ 40%, its composition contains 0.5-2.5% Si. The Si content is relatively high, and red iron scale is easily formed on the surface, which is not conducive to the control of the galvanized surface. In this technical solution, the Si content of the steel is relatively high.
  • the mass percentage content of N, Ti, and Nb also satisfies: 0.01% ⁇ (Ti-3.43N+0.52Nb)/4 ⁇ 0.03%.
  • the mass percentage content of N, Ti, and Nb also satisfies: 0.01% ⁇ (Ti-3.43N+0.52Nb)/4 ⁇ 0.03%.
  • C In the base plate of the 800MPa grade highly expanded hot-dip galvanized steel plate according to the present invention, considering that the level of C content largely determines the tensile strength level of the steel plate, C is used for solid solution strengthening and the formation of sufficient The strengthening phase is precipitated to ensure the strength of the steel; however, when the mass percentage of C is high, the carbide particles will become coarse, which is not conducive to the hole expansion performance. Therefore, in order to ensure high hole expansion under the strength of the steel type and good forming and welding properties, in the base plate of the 800MPa grade high hole expansion hot-dip galvanized steel sheet according to the present invention, the mass percentage of the C element Control between 0.03-0.08%.
  • the Si element can play a solid solution strengthening role and improve the strength of the steel plate.
  • adding Si can increase the work hardening rate and given strength. The uniform elongation and total elongation are lower, which helps to improve the elongation of the steel plate.
  • Si can also prevent the precipitation of carbides and reduce the appearance of pearlite phase.
  • the silicon content in steel can easily cause surface defects such as fayalite (2FeO-SiO 2 ) oxide scale to form on the surface of the steel plate, which has a negative impact on the surface quality.
  • the mass percentage content of the Si element is controlled to 0 ⁇ Si ⁇ 0.45%.
  • the mass percentage of Cr can also be preferably controlled between 0.2-0.35%.
  • Ti In the substrate of the 800MPa-level high-hole expansion hot-dip galvanized steel sheet according to the present invention, Ti is one of the important precipitation strengthening and fine-grain strengthening elements. Especially during the hot-dip galvanizing annealing process, Ti further precipitation strengthens , and the fixation of C is conducive to improving the strength and elongation of the steel plate. Therefore, in order to exert the beneficial effects of Ti element, in the present invention, the mass percentage content of Ti element is controlled between 0.05-0.15%.
  • the mass percentage of Nb can also be preferably controlled to Nb ⁇ 0.02%.
  • the inventor while controlling the mass percentage of a single chemical element in the substrate, the inventor also further controlled the mass percentage of N, Ti, and Nb in the substrate.
  • the content also satisfies: 0.01% ⁇ (Ti-3.43N+0.52Nb)/4 ⁇ 0.03%.
  • N is an impurity element in the substrate.
  • the main purpose of adding high Ti and high Nb to the steel is to ensure that the strip can precipitate dispersed fine nanoscale carbides during the annealing hot-dip galvanizing process, thereby achieving a strong precipitation strengthening effect;
  • the C content design needs to be coordinated with the Ti and Nb contents to ensure sufficient precipitation of Ti and Nb. Therefore, only the mass percentage content of N, Ti, and Nb elements satisfies the above-mentioned "0.01% ⁇ (Ti-3.43N + 0.52Nb) / 4 ⁇ 0.03%" relationship.
  • the mass percentage content of each chemical element in the substrate further meets at least one of the following items:
  • the bainite volume fraction is ⁇ 95%.
  • the matrix of the microstructure of the substrate is bainite with a volume fraction of 95-99% and ferrite with a volume fraction of 1-5%.
  • the nanoscale precipitates include TiC, (Ti, Nb)C, and the diameter of the nanoscale precipitates is between 3-20nm. .
  • the precipitates also include TiN precipitates, the diameter of which is ⁇ 10um.
  • the tensile strength of the 800MPa grade highly expanded hot-dip galvanized steel sheet of the present invention is ⁇ 800MPa, preferably 800-870MPa.
  • the reaming hole expansion rate of the 800MPa grade high-hole expansion hot-dip galvanized steel sheet of the present invention is ⁇ 90%, preferably ⁇ 95%. In some embodiments, the reaming expansion rate of the 800MPa grade high-expansion hot-dip galvanized steel sheet of the present invention is 80 to 120%, preferably 90 to 120%.
  • Hot rolling heat the slab to 1200-1280°C and keep it warm; then roll, in which the rough rolling outlet temperature is controlled to be ⁇ 1000°C, the finishing rolling outlet temperature is 840-950°C, and the finishing rolling speed is ⁇ 7.5m/s; after finishing rolling, water-cool the steel plate to the coiling temperature of 430-540°C at a cooling speed of 40-150°C/s for coiling;
  • Annealing After pickling, the steel coil is annealed and soaked in a combustion-free oxidation continuous annealing furnace, where the heating speed is ⁇ 5°C/s, the annealing soaking temperature is 480-740°C, and the annealing soaking section holding time is 30-300s, the cooling speed after soaking is ⁇ 3°C/s;
  • the heating temperature of the slab is particularly important for the performance and surface.
  • Ti will have a large number of large-sized ones during the continuous casting process.
  • (Ti, Nb) (C, N) precipitates are precipitated, and the heating temperature is set to ⁇ 1200°C.
  • the main purpose is to ensure that during the heating process of the slab, Ti and other alloying elements can be dissolved as much as possible to ensure that subsequent Ti Micro-alloys such as these can precipitate at the nanoscale during hot rolling and coiling, especially during annealing and hot-dip galvanizing.
  • the heating temperature should not be too high.
  • the heating temperature exceeds 1280°C, there will be a tendency for grain coarsening, which is not conducive to the toughness of the steel plate; at the same time, the thicker iron oxide scale is not conducive to the phosphorus removal of the iron oxide scale. , which will ultimately affect the surface quality of hot-dip galvanizing. Therefore, in the hot rolling process of the present invention, the heating temperature is preferably controlled between 1200°C and 1280°C.
  • the rough rolling temperature control and rolling speed of the hot rolling process have a greater impact on micro-alloying elements such as Ti.
  • Ti will have Ti carbides and carbonitrides at lower rough rolling temperatures and during the finishing rolling process.
  • the size of the precipitates in this process of precipitation is large, which is not conducive to the improvement of the final strength. Therefore, in the heat of the present invention
  • the rough rolling outlet temperature is controlled to be ⁇ 1000°C
  • the finishing rolling speed is ⁇ 7.5m/s.
  • the rough rolling outlet temperature is controlled to be 1000-1080°C.
  • the rolling speed of finishing rolling is controlled to be 7.5-11 m/s.
  • the finish rolling exit temperature, coiling temperature, and water cooling speed of the hot rolling process have a greater impact on the microstructure.
  • the finish rolling outlet temperature is controlled to 840-950°C; after the finish rolling, the steel plate is water-cooled to 430-540°C at a cooling rate of 40-150°C/s for coiling to control Relatively sufficient bainite transformation phase transformation.
  • the finish rolling exit temperature is controlled to 870-930°C.
  • the cooling rate after finish rolling is 50-110°C/s.
  • the annealing soaking temperature is limited to 480-740°C, and the precipitation of (Ti, Nb) (C, N) is strongest in this temperature range.
  • the steel plate When annealed below the austenite transformation point Ac1 during heating, the steel plate maintains the single-phase structure of hot-rolled bainite.
  • the cooling rate after soaking is ⁇ 3°C/s, the generation of excess ferrite structure is avoided, which is beneficial to the improvement of hole expansion rate.
  • the strip before annealing, can be sent to an open-fire furnace for pre-oxidation to obtain a pre-oxidized film on the surface.
  • Steel plate and control the thickness of the pre-oxidation film to 60-120 nanometers; after pre-oxidation, enter the annealing furnace for annealing treatment to obtain a steel plate whose surface has been reduced by hydrogen.
  • step (2) the heating temperature is controlled to be 1250-1280°C.
  • step (2) the heat preservation time is 1-3 hours.
  • step (2) the finish rolling outlet temperature is controlled to be 840-920°C; and alternatively, the coiling temperature is 430-500°C.
  • step (3) the pickling and straightening elongation is controlled to 0.2-2%, the pickling speed is controlled between 60-150m/min, and at the end of the pickling process
  • the temperature of a pickling acid tank is controlled at 80-90°C, and the iron ion concentration is controlled at 30-40g/L.
  • the annealing soaking temperature is 650-730°C, and/or the annealing soaking section holding time is 30-120s.
  • the heating rate is 5 to 20°C/s, preferably 5 to 15°C/s.
  • the cooling rate after soaking is 3-25°C/s; in some embodiments, the cooling rate is 12-25°C/s .
  • step (5) the temperature of the hot-dip galvanizing pot is 440-480°C.
  • the flatness rate is 0.05-1.3%, preferably the flatness rate is 0.2%-0.4%.
  • step (6) the thickness of the steel plate finally obtained is ⁇ 5mm.
  • the 800MPa grade highly expanded hot-dip galvanized steel sheet and its manufacturing method according to the present invention have the following advantages and beneficial effects:
  • the invention adopts an economical and reasonable chemical composition design, which can produce 800MPa grade steel with ultra-high strength and hole expansion rate by cooperating with the existing hot continuous rolling production line and hot-dip galvanizing production line. Highly expanded hot-dip galvanized steel sheet.
  • the manufacturing process optimized by the present invention eliminates the cold rolling process, shortens the process flow, improves production efficiency, saves energy, and can effectively reduce production costs.
  • Figure 2 is a photograph of TiN large particles contained in the comparative steel plate of Comparative Example 8.
  • Table 1 lists the mass percentage of each chemical element in the base plate of the 800MPa grade high-hole expansion hot-dip galvanized steel plate of Examples 1-11 and the comparative steel plate of Comparative Examples 1-10.
  • Hot rolling Heat the slab obtained through smelting and continuous casting to 1200-1280°C and keep it warm for 1-3 hours; then roll, in which the rough rolling outlet temperature is controlled to be ⁇ 1000°C and the finish rolling outlet temperature is 840°C -950°C, preferably can be controlled between 840-920°C, the rolling speed of finishing rolling is ⁇ 7.5m/s; after finishing rolling, the steel plate is water-cooled to the coiling temperature of 430-150°C/s. Coiling is performed at 540°C, and the coiling temperature can preferably be controlled between 430-500°C.
  • Hot-dip galvanizing Input the steel plate into the zinc pot for hot-dip galvanizing, and control the temperature of the hot-dip galvanizing pot to 440-480°C.
  • the chemical composition design and related processes of the 800MPa grade highly expanded hot-dip galvanized steel sheets in Examples 1-11 meet the specification requirements designed by the present invention.
  • the steps used in preparing the comparative steel plates of Comparative Examples 1-10 are also the above-mentioned steps (1)-(6), there are some unsatisfactory conditions in the chemical composition design and related processes of the comparative steel plates of Comparative Examples 1-10. Parameters required by the design of the present invention.
  • Table 2-1 and Table 2-2 list the specific process parameters in the above-mentioned manufacturing process of the 800MPa grade high-hole expansion hot-dip galvanized steel plate of Examples 1-11 and the comparative steel plate of Comparative Examples 1-10.
  • Table 3 lists the microstructure observation and analysis results of the substrates of Examples 1-11 and Comparative Examples 1-10.
  • the microstructure matrix of the substrate of the 800MPa grade highly expanded hot-dip galvanized steel sheet prepared in Examples 1-11 is all bainite + ferrite, and its bainite The volume fraction is between 95-99%.
  • the microstructure matrix of the substrates of Examples 1-11 also has nanoscale precipitates, including TiC, (Ti, Nb)C, and the diameter of these nanoscale precipitates is 3-20nm. between.
  • the precipitates generated also include larger particles.
  • the specific diameters of TiN precipitates are all ⁇ 10um.
  • Hole expansion test The hole expansion rate is measured by the hole expansion test. Use a punch mold to press the specimen with a hole in the center into the concave mold to expand the center hole of the specimen until necking or penetration cracks appear at the edge of the plate hole. Since the preparation method of the original hole in the center of the specimen has a great influence on the hole expansion rate test results, punching and reaming were used to prepare the original hole in the center of the specimen. Subsequent tests and testing methods were in accordance with the ISO/DIS 16630 standard. The hole expansion rate test method was implemented, and the test results are shown in Table 4.
  • Table 4 lists the mechanical property testing results of the 800MPa grade highly expanded hot-dip galvanized steel sheets of Examples 1-11 and the comparative steel sheets of Comparative Examples 1-10, as well as the average weight of one side of the hot-dip galvanized layer.
  • the 800MPa level high-hole expansion hot-dip galvanized steel sheets of Examples 1-11 adopt the design idea of low carbon bainite of the present invention, and use Cr to improve bainite transformation and anti-tempering during the annealing process. Softening ability, while adding Ti, Nb to increase the precipitation strengthening effect during the annealing process.
  • the yield strength of the 800MPa grade highly expanded hot-dip galvanized steel sheet of Examples 1-11 finally prepared by the present invention is between 678-801MPa, its tensile strength is between 803-862MPa, and its elongation A50 is between 18-20 %, the punching hole expansion rate is between 52-82%, and the reaming hole expansion rate is between 85-117%.
  • Comparative Examples 1-2 used the same steel grade A and adopted the same hot rolling process, but either the annealing temperature was too high or the cooling rate after soaking was too slow. , which makes the proportion of ferrite in the microstructure of the prepared substrate exceed 5%, and leads to a decrease in the yield strength of the steel and a decrease in the hole expansion rate.
  • Comparative Example 3 adopts a lower heating temperature, resulting in insufficient solid solution of Nb and Ti content; while Comparative Example 4 has a lower rough rolling outlet temperature, and Comparative Example 5 adopts a lower heating temperature.
  • the low rolling exit temperature leads to the coarse precipitation of Nb and Ti (Ti, Nb) (C, N) during the hot rolling process, which makes the contribution to the strength smaller and reduces the strength of the steel plate.
  • Comparative Examples 7-10 the chemical composition design does not meet the requirements of the present invention.
  • Comparative Example 7 it is because the C content is high, which contributes greatly to the strength, but reduces the hole expansion rate; in Comparative Example 8, it is due to the high N content, which consumes a large amount of Ti element, resulting in a large amount of The precipitation of massive TiN, while 5-20umTiN has a small contribution to the strength, reducing the strength of the steel plate.
  • Due to the micro-cracks caused by large-sized TiN on the punching edge it has a greater impact on the punching hole expansion rate.
  • Comparative Example 9 it is because the Mn element content in the steel is low during design, resulting in a lower final strength of the steel plate; in Comparative Example 10, it is due to the low Cr element content in the steel that the quenching The hot rolling cooling rate is low, and the ferrite content in the hot coil microstructure is high, resulting in a high ferrite content in the final microstructure and a low hole expansion rate of the steel plate.
  • Figure 1 is a typical metallographic structure photo of the base plate of the 800MPa grade high-hole expansion hot-dip galvanized steel sheet in Example 1.
  • the microstructure of the 800MPa level high-hole expansion hot-dip galvanized multi-phase steel plate of Example 1 is 96% bainite + 4% ferrite with a volume fraction.
  • the grain size of bainite and ferrite is 5.5um
  • the nanoscale precipitation diameter is between 3-15nm
  • the diameter of TiN is ⁇ 10um.
  • Figure 2 is a photograph of TiN large particles contained in the comparative steel plate of Comparative Example 8.
  • the microstructure of Comparative Example 8 is bainite with a volume fraction of 99% + ferrite with a volume fraction of 1%, the nanoscale precipitation diameter is between 3-20nm, and the TiN diameter Larger, 10-20um.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种800MPa级高扩孔热镀锌钢板及其制造方法,所述钢板包括基板以及镀覆于基板的至少一个表面的热镀锌层,其中基板含有Fe和不可避免的杂质元素,其还含有质量百分含量如下的下述各化学元素:C:0.03-0.08%,0<Si≤0.45%,Mn:1.3-1.8%,Al:0.02-0.1%,Cr:0.2-0.6%,Ti:0.05-0.15%,Nb≤0.05%,B≤0.003%;其中N、Ti、Nb的质量百分含量还满足:0.01%≤(Ti-3.43N+0.52Nb)/4≤0.03%。该800MPa级高扩孔热镀锌钢板具有十分优异的力学性能,其纵向屈服强度≥660MPa,抗拉强度≥780MPa,延伸率A50≥15%,冲孔扩孔率≥50%,铰孔扩孔率≥80%。

Description

一种800MPa级高扩孔热镀锌钢板及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种热镀锌钢板及其制造方法。
背景技术
近年来,随着汽车行业的迅速发展,市场和用户对汽车的轻量化要求也随之变得越来越高,轻量化已成为汽车行业发展的趋势,高强度钢板在汽车结构件中所占的比例也越来越大。
在实际制备高强度钢材时,越来越多的汽车车型开始采用80kg级别的钢板生产汽车底盘零部件,其不但对钢材的强度和延伸率有一定的要求,更对钢材的扩孔性能有一定的要求。此外,除了对上述强度、延伸率以及扩孔性能有要求外,为了满足不同使用环境对汽车零部件耐蚀性的要求,延长汽车的使用寿命,需要进一步地提高钢材的抗腐蚀性能。而当前普通的热冷轧板、酸洗板已经无法满足汽车工业的要求,热镀锌板是提高汽车零部件抗腐蚀性能的有效途径之一。
基于此,为进一步兼顾材料的加工性能、耐蚀性及可制造性,满足当前市场和用户的需求,发明人期望获得一种新型的800MPa级高扩孔热镀锌钢板及其制造方法。
在现有技术中,研发人员虽然已经设计了部分具有优异性能的钢板,但是其依然不能满足特定强度和制造工艺参数的性能要求,在性能上仍有欠缺。
例如:公开号为CN109055867A,公开日为2018年12月21日,名称为“一种生产抗拉强度540MPa高扩孔热镀锌板的方法”的中国专利文献,公开了一种生产抗拉强度540MPa高扩孔热镀锌板的方法,其特点是酸洗板不经过冷轧,直接镀锌,是一种短流程的方法,但是这种方案所制得的钢板的抗拉强度仅为540MPa。
又例如:公开号为CN108396259A,公开日为2018年8月14日,名称为 “一种高扩孔性能热轧镀锌钢板及其制造方法”的中国专利文献,公开了一种高扩孔性能热轧镀锌钢板及其制造方法,其屈服强度≥600MPa,扩孔率≥40%,其成分含有0.5-2.5%Si,Si含量相对较高,表面容易形成红铁皮,不利于镀锌表面的控制。在该技术方案中,其钢材的Si含量较高。
再例如:公开号为CN104513930A,公开日为2015年4月15日,名称为“弯曲和扩孔性能良好的超高强热轧复相钢板和钢带及其制造方法”的中国专利文献,公开了一种弯曲和扩孔性能良好的超高强热轧复相钢板和钢带及其制造方法,该技术方案点公开了热轧酸洗板的性能设计和制造方法,化学成分没有考虑B元素的作用,同时没公开热镀锌工艺过程对热镀锌钢板性能的影响。
发明内容
本发明的目的之一在于提供一种800MPa级高扩孔热镀锌钢板,该800MPa级高扩孔热镀锌钢板采用了合理的化学成分设计,可以获得良好的综合力学性能,其在具有高强度、高耐蚀性能力的同时,还具有高扩孔率的特点,其既可以用做汽车车身结构件及其汽车底盘件,也可以用于其他需要高强、减重等应用领域,具有良好的应用前景。
为了实现上述目的,本发明提供了一种800MPa级高扩孔热镀锌钢板,其包括基板以及镀覆于基板的至少一个表面的热镀锌层,其中所述基板含有Fe和不可避免的杂质元素,其还含有质量百分含量如下的下述各化学元素:
C:0.03-0.08%,0<Si≤0.45%,Mn:1.3-1.8%,Al:0.02-0.1%,Cr:0.2-0.6%,Ti:0.05-0.15%,Nb≤0.05%,B≤0.003%;
其中N、Ti、Nb的质量百分含量还满足:0.01%≤(Ti-3.43N+0.52Nb)/4≤0.03%。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,其各化学元素质量百分含量为:
C:0.03-0.08%,0<Si≤0.45%,Mn:1.3-1.8%,Al:0.02-0.1%,Cr:0.2-0.6%,Ti:0.05-0.15%,Nb≤0.05%,B≤0.003%;余量为Fe和不可避免的杂质元素;
其中N、Ti、Nb的质量百分含量还满足:0.01%≤(Ti-3.43N+0.52Nb)/4≤0.03%。
在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,各化学元素的设 计原理如下所述:
C:在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,考虑到C含量的高低很大程度上决定了钢板的抗拉强度级别,C用于固溶强化和形成足够的析出强化相,以保证钢的强度;但C的质量百分含量较高时会使碳化物颗粒粗大,不利于扩孔性能。因此,为了保证钢种强度下既能高扩孔,又具备良好的成形和焊接性能,在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,将C元素的质量百分含量控制在0.03-0.08%之间。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以优选地将C元素的质量百分含量控制在0.04-0.07%之间。
Si:在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,Si元素能够起到固溶强化作用,并提高钢板的强度,同时添加Si可加大加工硬化速率和给定强度下的均匀延伸率和总延伸率,有助于改善钢板的延伸率。此外,Si还可以阻止碳化物的析出,减少珠光体相的出现。但需要注意的是,钢中含硅容易使钢板表面形成铁橄榄石(2FeO-SiO2)氧化铁皮的表面缺陷,对表面质量有不良影响。基于此,在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,将Si元素的质量百分含量控制为0<Si≤0.45%。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以优选地将Si元素的质量百分含量控制为0.05<Si≤0.45%。在一些优选的实施方式中,为了获得更优的实施效果,可以优选地将Si元素的质量百分含量控制为0<Si≤0.2%。在一些优选的实施方式中,为了获得更优的实施效果,可以优选地将Si元素的质量百分含量控制为0.05<Si≤0.2%。
Mn:在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,Mn元素是固溶强化元素,当钢中Mn元素的质量百分含量较低时,会导致钢材的强度不足,但是当Mn元素的质量百分含量过高时,则又会导致钢板的塑性降低。此外,Mn同时会推迟珠光体转变,提高钢的淬透性且降低贝氏体转变温度,使钢的组织亚结构细化,并保证获得板条亚结构组织,在保证产品抗拉强度的前提下,同时具有良好的成形性。因此,考虑到Mn元素含量对钢材性能的影响,在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,将Mn元素的质量百分含量控制在1.3-1.8%之间。
Al:在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,Al是钢中的 脱氧元素,其能够减少钢中的氧化物夹杂、纯净钢质,有利于提高钢板的成形性能。但需要注意的是,钢中Al元素的含量也不宜过高,当钢中Al元素的质量百分含量过高时,会产生氧化,从而进一步影响连铸生产。因此,考虑到本技术方案中Al元素对钢板性能的影响,在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,将Al的质量百分含量控制在0.02-0.1%之间。
Cr:在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,Cr元素是抑制珠光体的产生,有利于贝氏体组织的形成元素,其最终有利于强度和扩孔率的提升。发明人研究发现,当钢中Cr元素的质量百分含量小于0.15%时,其对于CCT曲线的影响并不显著,但当钢中Cr的质量百分含量较高时,其不仅会导致合金成本的提高,还容易产生较多的马氏体组织。基于此,在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,将Cr元素的质量百分含量控制在0.2-0.6%之间。
当然,在一些优选的实施方式中,为了获得更优的实施效果,还可以将Cr的质量百分含量优选地控制在0.2-0.35%之间。
Ti:在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,Ti是重要的析出强化和细晶强化元素之一,特别是在热镀锌退火过程中,Ti的进一步析出强化,以及对C的固定,有利于提升钢板的强度以及延伸率。因此,为了发挥Ti元素的有益效果,在本发明中,将Ti元素的质量百分含量控制在0.05-0.15%之间。
Nb:在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,Nb是重要的析出强化和细晶强化元素之一,但当Nb的质量百分比高于0.05%时,Nb的强化效果接近饱和,并且成本较高。因此,为了发挥Nb元素的有益效果,同时控制生产成本,在本发明中,将Nb元素的质量百分含量控制为Nb≤0.05%。
当然,在一些优选的实施方式中,为了获得更优的实施效果,还可以将Nb的质量百分含量优选地控制为Nb≤0.02%。
B:在本发明所述的800MPa级高扩孔热镀锌钢板的基板中,B有利于扩大贝氏体相区,保证钢板在轧后冷却中可以得到贝氏体组织,对钢材的强度和硬度提升明显。但需要注意的是,钢中B元素的含量也不宜过高,过多的B元素会导致钢板中出现过多的马氏体组织,导致钢材扩孔率延伸率下降。因此,在本发明中,将B元素的质量百分含量控制为B≤0.003%。
此外,需要注意的是,在本发明所设计的这种技术方案中,发明人在控制基板单一化学元素质量百分含量的同时,还进一步地控制了基板中的N、Ti、Nb的质量百分含量还满足:0.01%≤(Ti-3.43N+0.52Nb)/4≤0.03%。其中,N为基板中的杂质元素。
在这种设计思路中,钢中添加高Ti以及高Nb的主要目的是为了确保带钢在退火热镀锌过程中能够析出弥散细小的纳米级碳化物,进而能够起到强烈的析出强化效果;在本发明中,C含量设计需要与Ti,Nb含量配合,以保证Ti,Nb的充分析出。因此只有N、Ti、Nb元素的质量百分含量满足上述“0.01%≤(Ti-3.43N+0.52Nb)/4≤0.03%”关系,同时加入适量的Cr元素以在热轧卷取以及退火热镀锌过程中得到贝氏体组织而不含影响扩孔性能的珠光体(且Cr具有较好的回火抗力,有利于保持贝氏体在退火过程中的强度),再配合所要求的制造工艺,才能获得具有高强度高扩孔率的热镀锌钢板。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,在不可避免的杂质元素中,P≤0.02%,S≤0.005%,N≤0.005%。
在上述技术方案中,P、S和N均是本发明所述的800MPa级高扩孔热镀锌钢板中的杂质元素,在技术条件允许情况下,为了获得性能更好且质量更优的钢材,应尽可能降低钢板中杂质元素的含量。
由此,在本发明所述的800MPa级高扩孔热镀锌钢板中,控制P元素含量为P≤0.02%,控制S元素含量为S≤0.005%,控制N元素含量为N≤0.005%。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,所述基板中的各化学元素质量百分含量进一步满足下述各项的至少其中之一:
C:0.04-0.07%;
0<Si≤0.2%,优选0.05≤Si≤0.2%;
Cr:0.2-0.35%;
Nb≤0.02%。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,其基板微观组织的基体为贝氏体+铁素体,所述基体上具有析出物,所述析出物包括纳米级析出物。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,其中贝氏体体积分数≥95%。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,其中铁素体体积分数≤5%。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,其基板微观组织的基体为体积分数为95-99%的贝氏体和体积分数为1-5%的铁素体。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,所述纳米级析出物包括TiC、(Ti,Nb)C,所述纳米级析出物的直径在3-20nm之间。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,所述析出物还包括TiN析出物,其直径<10um。
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,所述热镀锌层单面的重量平均值为20~600g/m2
进一步地,在本发明所述的800MPa级高扩孔热镀锌钢板中,其性能满足:纵向屈服强度≥660MPa,抗拉强度≥780MPa,延伸率A50≥15%,冲孔扩孔率≥50%,铰孔扩孔率≥80%。
在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的纵向屈服强度≥675MPa,优选为675~810MPa。
在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的抗拉强度≥800MPa,优选为800~870MPa。
在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的延伸率A50≥18%,优选为18~20%。
在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的冲孔扩孔率≥55%,优选≥60%。在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的冲孔扩孔率为50~80%。
在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的铰孔扩孔率≥90%,优选≥95%。在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的铰孔扩孔率为80~120%,优选90~120%。
在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的纵向屈服强度为675~810MPa,抗拉强度为800~870MPa,延伸率为18~20%,冲孔扩孔率为50~80%,铰孔扩孔率为80~120%。
在一些实施方案中,本发明所述的800MPa级高扩孔热镀锌钢板的屈服强度在678-801MPa之间,其抗拉强度在803-862MPa之间,其延伸率A50在 18-20%之间,冲孔扩孔率在52-82%,铰孔扩孔率在85-117%之间。
相应地,本发明的另一目的在于提供本发明上述800MPa级高扩孔热镀锌钢板的制造方法,采用该制造方法所获得的800MPa级高扩孔热镀锌钢板,在具备高强度和优异的抗腐蚀性能的同时,还具有高扩孔率的特点,其具有良好的应用前景。
为了实现上述目的,本发明提出了上述800MPa级高扩孔热镀锌钢板的制造方法,其包括步骤:
(1)冶炼和铸造;
(2)热轧:将板坯加热至1200-1280℃并保温;然后进行轧制,其中控制粗轧出口温度≥1000℃,精轧出口温度为840-950℃,精轧的轧制速度≥7.5m/s;精轧后以40-150℃/s的冷速将钢板水冷到卷取温度430-540℃进行卷取;
(3)酸洗;
(4)退火:酸洗后钢卷在燃烧无氧化连续退火炉内进行退火均热,其中加热速度为≥5℃/s,退火均热温度为480-740℃,退火均热段保温时间为30-300s,均热后的冷却速度≥3℃/s;
(5)热镀锌;
(6)平整。
在本发明上述技术方案中,在步骤(2)中,对于含Ti的热镀锌钢来说,板坯的加热温度对于性能和表面尤其重要,Ti在连铸过程会有大量的大尺寸的(Ti,Nb)(C,N)析出物析出,将加热温度设定为≥1200℃,主要目的是为了确保板坯在加热过程中,Ti等合金元素能够尽可能固溶,以确保后续Ti等微合金能够在热轧卷取,特别是退火热镀锌过程中的纳米级析出。然而,需要注意的是,加热温度也不宜过高,当加热温度超过1280℃时,会有晶粒粗化的趋势,不利于钢板的韧性;同时氧化铁皮较厚,不利于氧化铁皮的除磷,最终会影响热镀锌的表面质量。因此,在本发明的热轧过程中,优选地将加热温度控制在1200-1280℃之间。
此外,热轧过程的粗轧温度控制以及轧制速度对于Ti等微合金元素的影响较大,Ti在较低的粗轧温度和精轧过程中,会有Ti的碳化物以及碳氮化物的析出此过程的析出尺寸较大,不利于最终强度的提升。因此,在本发明的热 轧过程中,控制粗轧出口温度≥1000℃,精轧的轧制速度≥7.5m/s。在一些实施方式中,控制粗轧出口温度为1000~1080℃。在一些实施方案中,控制精轧的轧制速度为7.5~11m/s。
另外,热轧过程的精轧出口温度,卷取温度,以及水冷速度对显微组织的影响较大。当精轧出口温度较低,以及水冷冷速较低时,较容易出现块状铁素体。当卷取温度较高,也会导致铁素体和珠光体含量较多,而卷取温度较低时,则可能出现马氏体组织。因而,在本发明的热轧过程中,将精轧出口温度控制为840-950℃;精轧后以40-150℃/s的冷速将钢板水冷到430-540℃进行卷取,以控制较充分的贝氏体转变相变。在一些实施方式中,将精轧出口温度控制为870-930℃。在一些实施方式中,精轧后的冷速为50-110℃/s。
相应地,在本发明上述步骤(4)的退火过程中,限定了退火均热温度为480-740℃,在此温度区间(Ti,Nb)(C,N)析出最强烈。当在加热时奥氏体转变点Ac1以下退火,钢板保持着热轧的贝氏体的单相组织。当在加热时奥氏体转变点Ac1以上退火,且均热后的冷却速度≥3℃/s时,避免了过量铁素体组织的产生,有利于扩孔率的提升。
需要说明的是,在本发明所设计的这种技术方案中,在某些实施方式中,在进行退火前,可以先将带钢送入明火炉进行预氧化,以得到表面形成预氧化膜的钢板,且控制预氧化膜的厚度在60-120纳米;预氧化后,再进入退火炉进行退火处理,以得到表面经过氢气还原的钢板。
进一步地,在本发明所述的制造方法中,在步骤(2)中,控制加热温度为1250-1280℃。
进一步地,在本发明所述的制造方法中,在步骤(2)中,保温时间为1-3小时。
进一步地,在本发明所述的制造方法中,在步骤(2)中,控制精轧出口温度为840-920℃;并且或者,卷取温度为430-500℃。
进一步地,在本发明所述的制造方法中,在步骤(3)中,控制酸洗拉矫延伸率为0.2-2%,控制酸洗速度在60-150m/min之间,酸洗过程最后的一个酸洗酸槽温度控制为80-90℃、铁离子浓度控制为30-40g/L。
进一步地,在本发明所述的制造方法中,在步骤(4)中,退火均热温度为650-730℃,并且/或者退火均热段保温时间为30-120s。
进一步地,在本发明所述的制造方法中,在步骤(4)中,加热速度为5~20℃/s,优选5~15℃/s。
进一步地,在本发明所述的制造方法中,在步骤(4)中,均热后的冷却速度为3~25℃/s;在一些实施方案中,该冷却速度为12-25℃/s。
进一步地,在本发明所述的制造方法中,在步骤(5)中,热镀锌锌锅温度为440-480℃。
进一步地,在本发明所述的制造方法中,在步骤(6)中,平整率为0.05-1.3%,优选地平整率为0.2%-0.4%。
进一步地,在本发明所述的制造方法中,在步骤(6)中,最终得到的钢板厚度≤5mm。
相较于现有技术,本发明所述的800MPa级高扩孔热镀锌钢板及其制造方法具有如下所述的优点以及有益效果:
在本发明中,本发明采用了经济合理的化学成分设计,其同时配合现有的热连轧产线,以及热镀锌产线就即可生产出具有超高强度和扩孔率的800MPa级高扩孔热镀锌钢板。与传统的热镀锌板生产方法相比,本发明所优化设计的这种制造工艺省去了冷轧工序,其缩短了工艺流程,提高了生产效率,节约了能源,可以有效降低生产成本。
本发明所制备的800MPa级高扩孔热镀锌钢板具有较高扩孔率,高强度,高耐蚀性等特点,其纵向屈服强度≥660MPa,抗拉强度≥780MPa,延伸率A50≥15%,冲孔扩孔率≥50%,铰孔扩孔率≥80%,其既可以用做汽车车身结构件及其汽车底盘件,也可以用于其他需要高强、减重等应用领域,具有良好的应用前景。
附图说明
图1为实施例1的800MPa级高扩孔热镀锌钢板的基板的典型金相组织照片。
图2为对比例8的对比钢板中所含有的TiN大颗粒照片。
具体实施方式
下面将结合具体的实施例和说明书附图对本发明所述的800MPa级高扩孔 热镀锌钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-11和对比例1-10
表1列出了实施例1-11的800MPa级高扩孔热镀锌钢板的基板和对比例1-10的对比钢板的各化学元素的质量百分配比。
表1.(wt%,余量为Fe和除P、S和N以外其他不可避免的杂质)
注:在上表1中,式子“(Ti-3.43N+0.52Nb)/4”表示TiC析出当量,式中的中N、Ti、Nb均代人各化学元素对应的质量百分含量。
本发明所述实施例1-11的800MPa级高扩孔热镀锌钢板和对比例1-10的对比钢板均采用以下步骤制得:
(1)按照表1所示的化学成分进行冶炼和铸造。
(2)热轧:将经过冶炼和连铸获得的板坯加热至1200-1280℃并保温1-3小时;然后进行轧制,其中控制粗轧出口温度≥1000℃,精轧出口温度为840-950℃,优选地可以控制在840-920℃之间,精轧的轧制速度≥7.5m/s;精轧后以40-150℃/s的冷速将钢板水冷到卷取温度430-540℃进行卷取,卷取温度可以优选地控制在430-500℃之间。
(3)酸洗:控制酸洗拉矫延伸率为0.2-2%,控制酸洗速度在60-150m/min之间,酸洗过程最后的一个酸洗酸槽温度控制为80-90℃、铁离子浓度控制为30-40g/L。
(4)退火:酸洗后钢卷在燃烧无氧化连续退火炉内进行退火均热,其中加热速度为≥5℃/s,并控制退火均热温度为480-740℃,退火均热段保温时间为30-300s,均热后的冷却速度≥3℃/s。当然,也可以优选地控制退火均热温度为650-730℃,退火均热段保温时间为30-120s。
(5)热镀锌:将钢板输入到锌锅进行热镀锌,并控制热镀锌锌锅温度为440-480℃。
(6)平整:镀后进行平整,并控制平整率为0.05-1.3%,最终得到厚度≤5mm的钢板。
在本发明中,实施例1-11的800MPa级高扩孔热镀锌钢板的化学成分设计以及相关工艺均满足本发明所设计的规范要求。而对比例1-10的对比钢板所采用的步骤虽然也是上述步骤(1)-(6)进行制备,但在对比例1-10的对比钢板的化学成分设计以及相关工艺中,均存在不满足本发明设计要求的参数。
表2-1和表2-2列出了实施例1-11的800MPa级高扩孔热镀锌钢板和对比例1-10的对比钢板在上述制造工艺中的具体工艺参数。
表2-1.

表2-2.
需要注意的是,在热镀锌前,发明人将经过上述工艺步骤得到的成品实施例1-11的800MPa级高扩孔热镀锌钢板的基板和对比例1-10的基板分别取样,进行对各实施例和对比例钢板的基板微观组织进行观察和分析,相关观察分析所得的结果列于下述表3之中。
表3列出了实施例1-11和对比例1-10的基板的微观组织观察分析结果。
表3.
通过观察可以看出,在本发明中,所制备的实施例1-11的800MPa级高扩孔热镀锌钢板的基板的微观组织基体均为贝氏体+铁素体,且其贝氏体的体积分数在95-99%之间。
需要注意的是,在实际制备时,实施例1-11基板的微观组织基体上还具有纳米级析出物,其包括TiC、(Ti,Nb)C,这些纳米级析出物的直径在3-20nm之间。同时,在实施例1-11的基板上,所生成这种析出物还包括颗粒较大的 TiN析出物,其具体直径均<10um。
为了获得最终制备的成品镀锌钢板的性能,在完成上述针对基板的微观组织的观察后,发明人将经过上述工艺步骤(1)-(6)得到的成品实施例1-11的800MPa级高扩孔热镀锌钢板和对比例1-10的对比钢板分别取样,并进行力学性能检测,同时对各实施例和对比例钢板的热镀锌层单面的重量平均值进行测量,所得的检测结果列于表4之中。
相关性能检测手段如下所述:
(1)拉伸性能测试:取沿纵向JIS 5#拉伸试样,采用GB/T 228.1-2010《金属材料拉伸试验第1部分:室温实验方法》标准进行拉伸试验,以测试获得各实施例和对比例钢板的屈服强度、抗拉强度和延伸率。
(2)扩孔试验:扩孔率采用扩孔试验测定,用凸模把中心带孔的试件压入凹模,使试件中心孔扩大,直到板孔边缘出现颈缩或贯穿裂纹为止。由于试件中心原始孔的制备方式对扩孔率测试结果存在较大影响,因此,分别采用冲孔和铰孔制备试件中心原始孔,后续试验及测试方法按ISO/DIS 16630标准中规定的扩孔率测试方法执行,测试结果见表4。
表4列出了实施例1-11的800MPa级高扩孔热镀锌钢板和对比例1-10的对比钢板的力学性能检测结果以及热镀锌层单面的重量平均值。
表4.

如表4所示,相较于对比例1-10的对比钢板,本案实施例1-11的800MPa级高扩孔热镀锌钢板的综合力学性能更加优异。
在本发明中,实施例1-11的800MPa级高扩孔热镀锌钢板采用了本发明的低碳贝氏体的设计思路,并利用Cr提高贝氏体转变,以及退火过程的抗回火软化能力,同时添加Ti,Nb以增加在退火过程的析出强化效果。本发明所最终制备的实施例1-11的800MPa级高扩孔热镀锌钢板的屈服强度在678-801MPa之间,其抗拉强度在803-862MPa之间,其延伸率A50在18-20%之间,冲孔扩孔率在52-82%,铰孔扩孔率在85-117%之间。
与实施例1-4相比,对比例1-2选用了相同的钢号A,并采用了相同的热轧工艺,但其要么是退火温度过高,要么是均热后的冷却速度过慢,其使得制备的基板的微观组织中的铁素体比例超过了5%,并导致钢材的屈服强度下降,以及扩孔率的降低。
与实施例5-7相比,对比例3由于采用了较低的加热温度,导致Nb,Ti含量不充分固溶;而对比例4所设计的粗轧出口温度较低,对比例5由于精轧出口温度低,导致Nb,Ti在热轧过程的(Ti,Nb)(C,N)的粗大析出,从而使得对强度的贡献较小,均降低了钢板的强度。
与实施例5-7相比,对比例6所采用的卷取温度较高,其热卷显微组织中铁素体含量较高,导致最终显微组织中的铁素体含量较高,扩孔率较低。
相应地,在对比例7-10中,均是在化学成分设计上不满足本发明的要求。其中,在对比例7中,是由于C含量较高,对强度贡献较大,反而降低了扩孔率;在对比例8中,是由于N含量较高,消耗了大量的Ti元素,导致大量块状TiN的析出,而5-20umTiN对强度的贡献较小,降低了钢板的强度,同时由于冲孔时,冲切边有大尺寸TiN引起的微裂纹,从而导致对冲孔扩孔率影响较大;在对比例9中,是由于在设计时,钢中的Mn元素含量较低,导致钢板最终的强度较低;在对比例10中,是由于钢中的Cr元素含量较低,淬透性较弱,加上其热轧冷速较低,热卷显微组织中铁素体含量较高,导致最终显微组织中的铁素体含量较高,钢板的扩孔率较低。
图1为实施例1的800MPa级高扩孔热镀锌钢板的基板的典型金相组织照片。
如图1所示,在本实施方式中,实施例1的800MPa级高扩孔热镀锌复相钢钢板的微观组织为体积分数为96%贝氏体+体积分数为4%铁素体,贝氏体和铁素体的晶粒尺寸为5.5um,纳米级析出直径在3-15nm之间,TiN直径<10um。
图2为对比例8的对比钢板中所含有的TiN大颗粒照片。
如图2所示,在本实施方式中,对比例8微观组织为体积分数为99%的贝氏体+体积分数为1%铁素体,纳米级析出直径在3-20nm之间,TiN直径较大,为10-20um。
需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (15)

  1. 一种800MPa级高扩孔热镀锌钢板,其包括基板以及镀覆于基板的至少一个表面的热镀锌层,其中所述基板含有Fe和不可避免的杂质元素,其特征在于,所述基板还含有质量百分含量如下的下述各化学元素:
    C:0.03-0.08%,0<Si≤0.45%,Mn:1.3-1.8%,Al:0.02-0.1%,Cr:0.2-0.6%,Ti:0.05-0.15%,Nb≤0.05%,B≤0.003%;
    其中N、Ti、Nb的质量百分含量还满足:0.01%≤(Ti-3.43N+0.52Nb)/4≤0.03%。
  2. 如权利要求1所述的800MPa级高扩孔热镀锌钢板,其特征在于,其各化学元素质量百分含量为:
    C:0.03-0.08%,0<Si≤0.45%,Mn:1.3-1.8%,Al:0.02-0.1%,Cr:0.2-0.6%,Ti:0.05-0.15%,Nb≤0.05%,B≤0.003%;余量为Fe和不可避免的杂质元素;
    其中N、Ti、Nb的质量百分含量还满足:0.01%≤(Ti-3.43N+0.52Nb)/4≤0.03%。
  3. 如权利要求1或2所述的800MPa级高扩孔热镀锌钢板,其特征在于,在不可避免的杂质元素中,P≤0.02%,S≤0.005%,N≤0.005%。
  4. 如权利要求1或2所述的800MPa级高扩孔热镀锌钢板,其特征在于,所述基板中的各化学元素质量百分含量进一步满足下述各项的至少其中之一:
    C:0.04-0.07%;
    0<Si≤0.2%;
    Cr:0.2-0.35%;
    Nb≤0.02%。
  5. 如权利要求1或2所述的800MPa级高扩孔热镀锌钢板,其特征在于,其基板微观组织的基体为贝氏体+铁素体,所述基体上具有析出物,所述析出物包括纳米级析出物;优选地,贝氏体的体积分数≥95%;优选地,所述纳米级析出物包括TiC、(Ti,Nb)C,所述纳米级析出物的直径在3-20nm之间;优选地,所述析出物还包括TiN析出物,其直径<10um。
  6. 如权利要求1或2所述的800MPa级高扩孔热镀锌钢板,其特征在于,所述热镀锌层单面的重量平均值为20~600g/m2
  7. 如权利要求1或2所述的800MPa级高扩孔热镀锌钢板,其特征在于,其性能满足:纵向屈服强度≥660MPa,抗拉强度≥780MPa,延伸率A50≥15%,冲孔扩孔率≥50%,铰孔扩孔率≥80%。
  8. 如权利要求1或2所述的800MPa级高扩孔热镀锌钢板,其特征在于,其性能满足:纵向屈服强度≥675MPa,优选为675~810MPa;抗拉强度≥800MPa,优选为800~870MPa;延伸率A50≥18%,优选为18~20%;冲孔扩孔率≥55%,优选为50~80%;铰孔扩孔率≥90%,优选为80~120%。
  9. 如权利要求1或2所述的800MPa级高扩孔热镀锌钢板,其特征在于,所述的800MPa级高扩孔热镀锌钢板的屈服强度在678-801MPa之间,其抗拉强度在803-862MPa之间,其延伸率A50在18-20%之间,冲孔扩孔率在52-82%,铰孔扩孔率在85-117%之间。
  10. 如权利要求1-9中任意一项所述的800MPa级高扩孔热镀锌钢板的制造方法,其特征在于,其包括步骤:
    (1)冶炼和铸造;
    (2)热轧:将板坯加热至1200-1280℃并保温;然后进行轧制,其中控制粗轧出口温度≥1000℃,精轧出口温度为840-950℃,精轧的轧制速度≥7.5m/s;精轧后以40-150℃/s的冷速将钢板水冷到卷取温度430-540℃进行卷取;
    (3)酸洗;
    (4)退火:酸洗后钢卷在燃烧无氧化连续退火炉内进行退火均热,其中加热速度为≥5℃/s,退火均热温度为480-740℃,退火均热段保温时间为30-300s,均热后的冷却速度≥3℃/s;
    (5)热镀锌;
    (6)平整。
  11. 如权利要求10所述的制造方法,其特征在于,在步骤(2)中:保温时间为1~3小时;和/或,控制粗轧出口温度为1000~1080℃;和/或,控制精轧出口温度为840-920℃;和/或,控制精轧的轧制速度为7.5~11m/s;和/ 或,控制精轧后的冷速为50~110℃/s;和/或,控制卷取温度为430-500℃。
  12. 如权利要求10所述的制造方法,其特征在于,在步骤(3)中,控制酸洗拉矫延伸率为0.2-2%,控制酸洗速度在60-150m/min之间,酸洗过程最后的一个酸洗酸槽温度控制为80-90℃、铁离子浓度控制为30-40g/L。
  13. 如权利要求10所述的制造方法,其特征在于,在步骤(4)中:加热速度为3~25℃/s;和/或,退火均热温度为650-730℃;和/或,退火均热段保温时间为30-120s;和/或,冷却速度为12-25℃/s;任选地,在进行退火前对钢板进行预氧化,形成60-120nm厚的预氧化膜。
  14. 如权利要求10所述的制造方法,其特征在于,在步骤(5)中,热镀锌锌锅温度为440-480℃。
  15. 如权利要求10所述的制造方法,其特征在于,在步骤(6)中,平整率为0.05-1.3%,优选地平整率为0.2%-0.4%;最终得到的钢板厚度≤5mm。
PCT/CN2023/100255 2022-06-15 2023-06-14 一种800MPa级高扩孔热镀锌钢板及其制造方法 WO2023241631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210675493.3 2022-06-15
CN202210675493.3A CN117265380A (zh) 2022-06-15 2022-06-15 一种800MPa级高扩孔热镀锌钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2023241631A1 true WO2023241631A1 (zh) 2023-12-21

Family

ID=89192311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100255 WO2023241631A1 (zh) 2022-06-15 2023-06-14 一种800MPa级高扩孔热镀锌钢板及其制造方法

Country Status (2)

Country Link
CN (1) CN117265380A (zh)
WO (1) WO2023241631A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241141A (ja) * 1998-02-26 1999-09-07 Nippon Steel Corp 極めて疲労特性の優れた高強度熱延鋼板及びその製造方法
CN108441763A (zh) * 2018-03-23 2018-08-24 马钢(集团)控股有限公司 一种抗拉强度1000MPa级冷轧热浸镀锌高强钢及其制备方法
CN108707815A (zh) * 2018-04-23 2018-10-26 马钢(集团)控股有限公司 一种800MPa级纯锌镀层高扩孔钢板及其制造方法
CN110983196A (zh) * 2019-12-17 2020-04-10 首钢集团有限公司 一种600MPa级热轧镀锌高扩孔钢及其生产方法
CN113481430A (zh) * 2021-06-10 2021-10-08 马鞍山钢铁股份有限公司 一种扩孔性能增强的800MPa级含硼热镀锌双相钢及其生产方法
CN113584375A (zh) * 2021-06-10 2021-11-02 马鞍山钢铁股份有限公司 一种扩孔性能增强的600MPa级低锰含镍合金化热镀锌双相钢及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241141A (ja) * 1998-02-26 1999-09-07 Nippon Steel Corp 極めて疲労特性の優れた高強度熱延鋼板及びその製造方法
CN108441763A (zh) * 2018-03-23 2018-08-24 马钢(集团)控股有限公司 一种抗拉强度1000MPa级冷轧热浸镀锌高强钢及其制备方法
CN108707815A (zh) * 2018-04-23 2018-10-26 马钢(集团)控股有限公司 一种800MPa级纯锌镀层高扩孔钢板及其制造方法
CN110983196A (zh) * 2019-12-17 2020-04-10 首钢集团有限公司 一种600MPa级热轧镀锌高扩孔钢及其生产方法
CN113481430A (zh) * 2021-06-10 2021-10-08 马鞍山钢铁股份有限公司 一种扩孔性能增强的800MPa级含硼热镀锌双相钢及其生产方法
CN113584375A (zh) * 2021-06-10 2021-11-02 马鞍山钢铁股份有限公司 一种扩孔性能增强的600MPa级低锰含镍合金化热镀锌双相钢及其生产方法

Also Published As

Publication number Publication date
CN117265380A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN111748745B (zh) 780MPa级具有较高成形性的冷轧热镀锌双相钢及其制造方法
CN104109814B (zh) 一种具有翻边特性冷轧热镀锌双相钢板及制造方法
KR101585311B1 (ko) 재질 안정성, 가공성 및 도금 외관이 우수한 고강도 용융 아연 도금 강판의 제조 방법
EP2835440B1 (en) Hot-dip galvannealed hot-rolled steel sheet and process for producing same
WO2010150919A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2016504490A (ja) 高成形性超高強度溶融亜鉛めっき鋼板及びその製造方法
WO2018151023A1 (ja) 高強度鋼板およびその製造方法
WO2021238916A1 (zh) 一种超高强双相钢及其制造方法
JP6057028B1 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
TWI518187B (zh) 高強度熱軋鋼板及其製造方法
CN114107806A (zh) 一种高加工硬化率及表面质量的450MPa级热镀锌双相钢及其生产方法
JP4696870B2 (ja) 高強度鋼板及びその製造方法
WO2013031151A1 (ja) 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
TWI515309B (zh) 高強度熱軋鋼板及其製造方法
WO2021238915A1 (zh) 一种耐延迟开裂的电镀锌超强双相钢及其制造方法
CN113215485A (zh) 一种780MPa级热基镀层双相钢及其制备方法
JP4736853B2 (ja) 析出強化型高強度薄鋼板およびその製造方法
CN113718166A (zh) 一种屈服强度320MPa级热镀铝锌钢板及其制造方法
CN115216688B (zh) 800MPa级热轧低合金高强钢及其钢基体和制备方法
JP5504677B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板
CN113025882B (zh) 一种热基镀锌铁素体贝氏体高强钢板及其制备方法
WO2023241631A1 (zh) 一种800MPa级高扩孔热镀锌钢板及其制造方法
JP2000109965A (ja) 加工性に優れた溶融亜鉛めっき高張力鋼板の製造方法
JP3812248B2 (ja) 表面性状とプレス成形性に優れた高強度冷延鋼板およびその製造方法
CN110117756A (zh) 一种Cu合金化深冲双相钢板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823197

Country of ref document: EP

Kind code of ref document: A1