WO2023241550A1 - 用于无线通信的方法和装置 - Google Patents

用于无线通信的方法和装置 Download PDF

Info

Publication number
WO2023241550A1
WO2023241550A1 PCT/CN2023/099849 CN2023099849W WO2023241550A1 WO 2023241550 A1 WO2023241550 A1 WO 2023241550A1 CN 2023099849 W CN2023099849 W CN 2023099849W WO 2023241550 A1 WO2023241550 A1 WO 2023241550A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource group
message
frequency band
subband
channel information
Prior art date
Application number
PCT/CN2023/099849
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023241550A1 publication Critical patent/WO2023241550A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to methods and devices in wireless communication systems, and in particular to CSI (Channel Status Information) solutions and devices in wireless communication systems.
  • CSI Channel Status Information
  • UE (User Equipment) reporting may include at least one of a variety of auxiliary information, such as CSI (Channel Status Information), beam management (Beam Management) related auxiliary information , positioning-related auxiliary information, etc.
  • CSI includes CRI (CSI-RS Resource Indicator, Channel State Information Reference Signal Resource Indicator), RI (Rank Indicator, Rank Indicator), PMI (Precoding Matrix Indicator, Precoding Indicator) or CQI (Channel quality indicator, Channel Quality Indicator) at least one of them.
  • CRI CSI-RS Resource Indicator, Channel State Information Reference Signal Resource Indicator
  • RI Rank Indicator, Rank Indicator
  • PMI Precoding Matrix Indicator, Precoding Indicator
  • CQI Channel quality indicator, Channel Quality Indicator
  • the network equipment selects appropriate transmission parameters for the UE based on the UE's report, such as the resident cell, MCS (Modulation and Coding Scheme, modulation and coding scheme), TPMI (Transmitted Precoding Matrix Indicator, sending precoding matrix indication), TCI (Transmission Configuration Indication) , send configuration instructions) and other parameters.
  • UE reporting can be used to optimize network parameters, such as better cell coverage, switching base stations based on UE location, etc.
  • the priority of the CSI report is defined, and the priority is used to determine whether to allocate CPU (CSI Processing Unit, CSI processing unit) resources to the corresponding CSI report for update, or Whether to drop the corresponding CSI report.
  • CPU CSI Processing Unit, CSI processing unit
  • this application discloses a solution. It should be noted that although a large number of embodiments of this application are developed for AI/ML, this application is also applicable to solutions based on traditional, for example, linear channel reconstruction; especially considering that the specific channel reconstruction algorithm is likely to be non-standardized. or implemented by the hardware equipment manufacturer themselves. Furthermore, adopting a unified UE reporting solution can reduce implementation complexity or improve performance. Without conflict, the embodiments and features in the embodiments in any node of this application can be applied to any other node. The embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method used in a first node for wireless communication, which includes:
  • the second message is used to indicate a first RS (Reference Signal, reference signal) resource group and a first frequency band resource group, the first RS resource group includes at least one RS resource, and the first The frequency band resource group includes at least one subband;
  • RS Reference Signal
  • the first message is used to assist in determining the subband pattern of the first frequency band resource group, and the measurement for the first RS resource group is used to generate the first channel information; the first channel
  • the frequency domain resources targeted by the information include the first frequency band resource group.
  • the above method can optimize the configuration of the first frequency band resource group and improve the reporting efficiency or accuracy of the first channel information.
  • the first frequency band resource group belongs to a first BWP (Bandwidth part, bandwidth part).
  • the above method is characterized in that the first message is used to indicate a first set of conditions; the first set of conditions includes the frequency domain interval between any two adjacent subbands. Not greater than or less than the first frequency domain width.
  • the first condition set implicitly indicates the candidate pattern set.
  • any candidate pattern in the set of candidate patterns satisfies the first set of conditions.
  • the candidate pattern set is composed of candidate patterns that satisfy the first set of conditions.
  • the above method is conducive to ensuring the performance or accuracy of the first channel information and avoiding the failure of the generator of the first channel information caused by adjacent subbands that are too widely spaced.
  • the above method is characterized in that the performance of the first channel information is guaranteed only when the subband pattern of the first frequency band resource group is one of the candidate pattern sets.
  • the above method provides flexibility for the configuration of the first frequency band resource group, that is, the subband pattern of the first frequency band resource group may be a candidate pattern outside the candidate pattern set.
  • the above method is characterized in that the candidate pattern set is suitable for a first encoder; wherein the first encoder is used to generate the first channel information, for the The measurements of the first set of RS resources are used to derive the input to the first encoder.
  • the above method is characterized in that the candidate pattern set is suitable for a first encoder; wherein the first encoder is used to generate the first channel information, for the The channel parameters of the set of candidate patterns are used to train the first encoder.
  • the above method is characterized in that the first condition set includes: the number of subbands is not less than or greater than a first positive integer.
  • the above method is characterized in that the first condition set includes: the bandwidth covered from the lowest subband in the frequency domain to the highest subband in the frequency domain is not greater than or less than the second Frequency domain bandwidth.
  • This application discloses a method used in a second node for wireless communication, which includes:
  • Send a second message the second message is used to indicate a first RS resource group and a first frequency band resource group, the first RS resource group includes at least one RS resource, and the first frequency band resource group includes at least one sub- bring;
  • the first message is used to assist in determining the subband pattern of the first frequency band resource group, and the measurement for the first RS resource group is used to generate the first channel information; the first channel
  • the frequency domain resources targeted by the information include the first frequency band resource group.
  • the above method is characterized in that the first message is used to indicate a first set of conditions; the first set of conditions includes the frequency domain interval between any two adjacent subbands. Not greater than or less than the first frequency domain width.
  • This application discloses a first node used for wireless communication, which includes:
  • the first transmitter sends a first message, the first message is used to determine the candidate pattern set; sends the first channel information;
  • the first receiver receives a second message.
  • the second message is used to indicate a first RS resource group and a first frequency band resource group.
  • the first RS resource group includes at least one RS resource.
  • the first frequency band resource A group includes at least one subband;
  • the first message is used to assist in determining the subband pattern of the first frequency band resource group, and the measurement for the first RS resource group is used to generate the first channel information; the first channel
  • the frequency domain resources targeted by the information include the first frequency band resource group.
  • This application discloses a second node used for wireless communication, which includes:
  • the second receiver receives the first message, the first message is used to determine the candidate pattern set; receives the first channel information;
  • the second transmitter sends a second message.
  • the second message is used to indicate a first RS resource group and a first frequency band resource group.
  • the first RS resource group includes at least one RS resource.
  • the first frequency band resource A group includes at least one subband;
  • the first message is used to assist in determining the subband pattern of the first frequency band resource group, and the measurement for the first RS resource group is used to generate the first channel information; the first channel
  • the frequency domain resources targeted by the information include the first frequency band resource group.
  • Figure 1 shows a flow chart of communication of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a radio protocol architecture for a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a hardware module of a communication node according to an embodiment of the present application
  • Figure 5 shows a transmission flow chart between a first node and a second node according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of a candidate pattern according to an embodiment of the present application.
  • Figure 7 shows a schematic diagram of an artificial intelligence processing system according to an embodiment of the present application.
  • Figure 8 shows a flow chart of transmission of first channel information according to an embodiment of the present application
  • Figure 9 shows a schematic diagram of a first encoder according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of a first function according to an embodiment of the present application.
  • Figure 11 shows a schematic diagram of a decoding layer group according to an embodiment of the present application.
  • Figure 12 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application
  • Figure 14 shows a flow chart of measurement in the first RS resource group according to one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of communication of the first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node 100 sends a first message in step 101, the first message is used to determine the candidate pattern set; and receives a second message in step 102, the second message is used to indicate the first RS resource group and A first frequency band resource group, the first RS resource group includes at least one RS resource, and the first frequency band resource group includes at least one subband; sending the first channel information in step 103;
  • the first message is used to assist in determining the subband pattern of the first frequency band resource group, and the measurement of the first RS resource group is used to generate the first channel information;
  • the frequency domain resources targeted by the first channel information include the first frequency band resource group.
  • the set of candidate patterns includes at least one candidate pattern.
  • the subband pattern or one candidate pattern in the candidate pattern set refers to the frequency domain position of the subband.
  • the subband pattern or a candidate pattern in the candidate pattern set refers to the frequency domain position of the subband in the BWP to which it belongs.
  • the subband pattern refers to a bit string, and each bit in the bit string indicates whether a corresponding subband is configured.
  • any candidate pattern in the candidate pattern set refers to a bit string, and each bit in the bit string indicates whether a corresponding subband is configured.
  • the subband pattern and a candidate pattern in the candidate pattern set respectively refer to a bit string, and each bit in the bit string indicates whether a corresponding subband is configured.
  • the bit string signaling used to configure is a field of an RRC IE.
  • the name of the domain of the one RRC IE includes csi-ReportingBand.
  • the domain of the one RRC IE is csi-ReportingBand.
  • the first message is generated at the physical layer.
  • the first message is UCI (Uplink Control Information).
  • the first message is sent on PUCCH (Physical Uplink Control CHannel, physical uplink control channel).
  • PUCCH Physical Uplink Control CHannel, physical uplink control channel
  • the first message is sent on PUSCH (Physical Uplink Shared CHannel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared CHannel, Physical Uplink Shared Channel
  • the first message includes a MAC (Medium Access Control, Media Access Control) CE (Control Element, Control Unit).
  • MAC Medium Access Control, Media Access Control
  • CE Control Element, Control Unit
  • the first message includes an RRC (Radio Resource Control) IE (Information Element).
  • RRC Radio Resource Control
  • Information Element Information Element
  • a piece of channel information for a frequency domain resource includes: the piece of channel information indicates parameters of a channel on the frequency domain resource.
  • a channel information for a frequency domain resource includes: the channel information is calculated based on the assumption that a wireless signal is transmitted on the frequency domain resource.
  • a channel information for a frequency domain resource includes: channel parameters on the frequency domain resource are used to generate the channel information.
  • one channel information for one frequency domain resource includes: the one channel information is used to recover a precoding matrix for each subband on the one frequency domain resource.
  • the channel parameters include a raw channel matrix.
  • the channel parameter includes a channel feature vector (Eigen vector).
  • the channel parameters include channel impulse response.
  • the second message is used to configure the at least first channel information.
  • the second message is higher layer signaling.
  • the second message includes RRC signaling.
  • the second message includes CSI-ReportConfig IE (Information Element, information element).
  • the first channel information is used to determine the phase, amplitude, or coefficient between at least two antenna ports.
  • the first channel information is used to determine at least one feature vector of each subband in the first frequency band resource group.
  • the first channel information is used to determine at least one characteristic value of each subband in the first frequency band resource group.
  • the first channel information is used to determine a precoding matrix for each subband in the first frequency band resource group.
  • the first RS resource group includes at least one downlink RS resource used for channel measurement.
  • the first RS resource group includes at least one downlink RS resource used for interference measurement.
  • the measurement for the first RS resource group includes channel measurement performed in the at least one downlink RS resource used for channel measurement.
  • the measurement for the first RS resource group includes interference measurement performed in the at least one downlink RS resource used for interference measurement.
  • any RS resource in the first RS resource group is a downlink RS resource.
  • any RS resource in the first RS resource group is a CSI-RS (Channel Status Information Reference Signal) resource.
  • CSI-RS Channel Status Information Reference Signal
  • the second message is used to determine that the frequency domain resource targeted by the first channel information is the first frequency band resource group.
  • the first RS resource group is indicated by resourcesForChannelMeasurement, or csi-IM-ResourcesForInterference, or nzp-CSI-RS-ResourcesForInterference in the second message.
  • the first frequency band resource group is indicated by csi-ReportingBand in the second message.
  • any subband in the first frequency band resource group includes at least one PRB (Physical Resource Block, physical resource block).
  • PRB Physical Resource Block, physical resource block
  • the first frequency band resource group belongs to the first BWP (Bandwidth Part, bandwidth part).
  • the number of PRBs included in all subbands in the first frequency band resource group is P1, and P1 is a positive integer multiple of 4.
  • the P1 is indicated by higher layer signaling.
  • the P1 is related to the number of PRBs included in the first BWP.
  • the number of PRBs included in the first subband is P1-(Ns mod P1), where Ns is the index of the starting PRB in the first BWP; if the first frequency band resource group includes the last (last) subband in the first BWP, the last (last) subband includes The number of PRBs is (Ns+Nw) mod P1 or P1, where Nw is the number of PRBs included in the first BWP.
  • P1 is one of 4, 8, 16 or 32.
  • the first channel information includes multiple channel information.
  • the plurality of channel information are sent on one physical layer channel.
  • the physical layer channel is PUSCH (Physical Uplink Shared Channel).
  • the physical layer channel is PUCCH (Physical Uplink Control Channel).
  • the plurality of channel information includes a matrix indication for precoding, and includes a CQI for each subband in the first frequency band resource group.
  • the matrix indication used for precoding is non-codebook.
  • how to determine the subband pattern of the first frequency band resource group is determined by the second node (for example, according to the scheduling policy or scheduling result), and the subband pattern of the first frequency band resource group belongs to the candidate Pattern collection.
  • the phrase the first message is used to assist in determining the subband pattern of the first frequency band resource group includes: only if the subband pattern of the first frequency band resource group is the candidate pattern set In one of these cases, the performance of the first channel information is guaranteed.
  • the performance of the first channel information refers to the accuracy of the first channel information.
  • the performance of the first channel information refers to the error between the channel parameters indicated by the first channel information or the channel parameters recovered based on the first channel information and the actual channel parameters.
  • NMSE Normalized Mean Square Error
  • Cosine Similarity Cosine Similarity
  • the phrase the first message is used to assist in determining the subband pattern of the first frequency band resource group includes: the candidate pattern set is suitable for the first encoder; wherein the first encoding The encoder is used to generate the first channel information, and the measurement for the first RS resource group is used to obtain the input of the first encoder.
  • the first encoder is obtained based on training.
  • the first encoder is a non-linear function.
  • how to determine the subband pattern of the first frequency band resource group is determined by the second node (for example, according to the scheduling policy or scheduling result), and the phrase said first message is used to assist in determining the said
  • the subband pattern of the first frequency band resource group includes: the second node assists in determining the subband pattern of the first frequency band resource group according to the first message.
  • the above embodiment does not limit the second node to select the sub-band pattern of the first frequency band resource group from the candidate pattern set.
  • the second node can still select the sub-band pattern of the first frequency band resource group according to scheduling needs (for example, occasionally ) configure "the subband pattern of the first frequency band resource group does not belong to the candidate pattern set" and bear the corresponding performance loss.
  • how to determine the subband pattern of the first frequency band resource group is determined by the second node (for example, according to the scheduling policy or scheduling result), and the phrase said first message is used to assist in determining the said
  • the subband pattern of the first frequency band resource group includes: the second node refers to the first message when determining the subband pattern of the first frequency band resource group.
  • the phrase that the first message is used to determine a set of candidate patterns includes: the first message indicates at least one candidate pattern from a pool of candidate patterns to form the set of candidate patterns.
  • the first message is used to indicate a first set of conditions; the first set of conditions includes that the frequency domain interval between any two adjacent subbands is not greater than or less than the first frequency domain width.
  • the first message indicates the first frequency domain width.
  • the first frequency domain width is associated with wireless channel characteristics, so the range of the wireless channel applicable to the generator of the first channel information may be indicated by the first frequency domain width.
  • the unit of the first frequency domain width is PRB (Physical Resource Block, physical resource block).
  • the unit of the first frequency domain width is 4 PRBs.
  • the unit of the first frequency domain width is 8 PRBs (Physical Resource Blocks).
  • the unit of the first frequency domain width is a subband.
  • the subcarrier spacing corresponding to the PRB or the subband is fixed.
  • the subcarrier spacing corresponding to the PRB or the subband changes with the frequency range (frequencyRange) to which the first frequency band resource group belongs.
  • the subcarrier interval corresponding to the PRB or the subband is the first subcarrier interval; when the first frequency band resource group When the frequency range to which it belongs is frequency Range 2, the subcarrier spacing corresponding to the PRB or the subband is the second subcarrier spacing; the first subcarrier spacing is smaller than the second subcarrier spacing.
  • the first subcarrier spacing is 15 kHz
  • the second subcarrier spacing is 60 kHz.
  • the subcarrier spacing corresponding to the PRB or the subband is the subcarrier spacing of the first BWP, and the first frequency band resource group belongs to the first BWP.
  • the unit of the first frequency domain width is MHz (megahertz).
  • the first channel information is used to monitor the performance of the first encoder.
  • the behavior monitoring the performance of the first encoder is performed at the first node.
  • the behavior monitoring the performance of the first encoder is performed at the second node.
  • the behavior monitoring the performance of the first encoder includes: using the output of the first encoder to restore channel parameters, and determining the First encoder performance.
  • the channel parameters include a channel matrix, a feature vector, a channel impulse response, etc.
  • the reference channel parameters are based on the original channel matrix obtained by measuring the RS resources, or the eigenvector calculated based on the original channel matrix, or the original channel impulse response, or the like.
  • any candidate pattern in the set of candidate patterns satisfies the first set of conditions.
  • the first message does not explicitly indicate the set of candidate patterns, but indicates the first set of conditions for the supported or recommended subband configuration, so as to implicitly indicate the set of candidate patterns.
  • Subband configurations that satisfy the first condition set belong to the candidate pattern set.
  • the first set of conditions includes: the number of subbands is not less than or greater than a first positive integer.
  • the first message indicates the first positive integer.
  • the above method avoids the performance loss of the first channel information caused by too few subbands.
  • the first set of conditions includes: the bandwidth covered from the lowest subband in the frequency domain to the highest subband in the frequency domain is not greater than or less than the second frequency domain bandwidth.
  • the above method avoids performance loss of the first channel information due to excessive bandwidth.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates 5G NR (NewRadio, new air interface), LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution) Advanced, enhanced long-term evolution) system architecture.
  • the 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) or some other suitable term.
  • EPS 200 may include a UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network, 5G Core) Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet service 230.
  • EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks or other cellular networks that provide circuit-switched services.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB NR Node B
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP, or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmission Protocol
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN 210 through S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is the control node that handles signaling between UE 201 and EPC/5G-CN 210. Basically, MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the UE 201 supports using AI (Artificial Intelligence, artificial intelligence) or machine learning (Machine Learning) to generate reports.
  • AI Artificial Intelligence, artificial intelligence
  • machine learning Machine Learning
  • the UE 201 supports using training data to generate a trained model or using the trained data to generate some parameters in the trained model.
  • the UE 201 supports determining at least some parameters of a CNN (Conventional Neural Networks, convolutional neural network) used for CSI reconstruction through training.
  • a CNN Conventional Neural Networks, convolutional neural network
  • the UE201 is a terminal supporting Massive-MIMO.
  • the gNB 203 supports transmission based on Massive-MIMO.
  • the gNB 203 supports using AI or deep learning to decompress CSI.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the first node and the second node in this application are the UE201 and the gNB203 respectively.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows with three layers a first node device (UE or RSU in V2X, a vehicle-mounted device or a vehicle-mounted communication module). ) and the second node device (gNB, UE or RSU in V2X, vehicle-mounted device or vehicle-mounted communication module), or the radio protocol architecture of the control plane 300 between the two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides hand-off support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first node devices.
  • MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using the link between the second node device and the first node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). Radio protocol architecture for the first node device and the second node device in the user plane 350.
  • L1 layer layer 1
  • L2 layer layer 2
  • Radio protocol architecture for the first node device and the second node device in the user plane 350 For the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g., remote UE, server, etc.) application layer.
  • a network layer eg, IP layer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first reference signal in this application is generated by the PHY301.
  • the first channel information in this application is generated from the PHY301.
  • the first channel information in this application is generated in the MAC sublayer 302.
  • the first CQI in this application is generated from the PHY301.
  • the first message in this application is generated in the RRC sublayer 306.
  • the first message in this application is generated in the MAC sublayer 302.
  • Embodiment 4 shows a schematic diagram of a hardware module of a communication node according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements the channel Encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK) , M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) mapping of signal clusters.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • a reference signal eg, a pilot
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then deinterleaves and channel decodes the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second node 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, Control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs channel coding, interleaving, and modulation mapping, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then The transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 means at least: sending a first message, the first message being used to determine the candidate pattern set; sending first channel information; receiving a second message, the first message being used to determine the candidate pattern set; The second message is used to indicate a first RS resource group and a first frequency band resource group, the first RS resource group includes at least one RS resource, and the first frequency band resource group includes at least one subband; wherein, the first The message is used to assist in determining the subband pattern of the first frequency band resource group, and measurements for the first RS resource group are used to generate The first channel information; the frequency domain resources targeted by the first channel information include the first frequency band resource group.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending the The first message is sent; the first channel information is sent; and the second message is received.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 at least: receives a first message, the first message is used to determine the candidate pattern set; receives the first channel information; sends a second message, the second message is used to indicate the first RS resource group and a first frequency band resource group, the first RS resource group includes at least one RS resource, and the first frequency band resource group includes at least one subband; wherein the first message is used to assist in determining the The subband pattern of the first frequency band resource group, the measurement for the first RS resource group is used to generate the first channel information; the frequency domain resources targeted by the first channel information include the first frequency band resource group . .
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving The first message; receiving the first channel information; sending the second message.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE
  • the second communication device 410 is a base station.
  • the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 are used for the measurement of the first RS resource group.
  • the controller/processor 459 is used for the measurement of the first RS resource group.
  • controller/processor 459 is used to generate the at least first channel information.
  • the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the at least first channel information.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the transmission processor 416 are configured to transmit on at least one RS resource in the first RS resource group. reference signal.
  • the controller/processor 475 is configured to send a reference signal on at least one RS resource in the first RS resource group.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 are used to receive the at least first channel information.
  • Embodiment 5 illustrates a transmission flow chart between a first node and a second node according to an embodiment of the present application, as shown in FIG. 5 .
  • the sending and receiving of the at least one CQI is optional.
  • a first message is sent in step S100, and the first message is used to determine the candidate pattern set; and a second message is received in step S101, and the second message is used to indicate the first RS resource.
  • group and a first frequency band resource group the first RS resource group includes at least one RS resource, and the first frequency band resource group includes at least one subband; sending the first channel information in step S102;
  • the first message is used to assist in determining the subband pattern of the first frequency band resource group, and the measurement of the first RS resource group is used to generate the first channel information;
  • the frequency domain resources targeted by the first channel information include the first frequency band resource group.
  • the first message includes at least some parameters of each encoder in at least a first encoder; the candidate pattern set is suitable for the first encoder; wherein the first encoder is used In generating the first channel information, the measurements for the first set of RS resources are used to obtain input to the first encoder.
  • the subband pattern corresponding to the channel parameter used to train the first encoder belongs to the candidate pattern set.
  • the subband pattern corresponding to the channel parameter used to train the first encoder satisfies the first set of conditions.
  • the above-mentioned channel parameters used for training the first encoder are obtained from measurements of downlink RS resources.
  • the above-mentioned channel parameters used for training the first encoder include original channel matrix, channel impulse response, or feature vector, etc.
  • the first message is a MAC CE.
  • the first message is an RRC IE.
  • the first message is sent on a physical layer channel.
  • the above embodiments or sub-embodiments enable the set of candidate patterns to be associated to the at least first encoder to ensure performance of the at least first encoder.
  • the first message is sent in response to training of the at least one encoder being completed.
  • the at least first encoder includes a plurality of encoders, and the first encoder is one of the plurality of encoders.
  • the at least first encoder includes only the first encoder.
  • the first channel information is used to monitor the performance of the first encoder only when the subband pattern of the first frequency band resource group belongs to the candidate pattern set.
  • the first channel information is based on non-codebook.
  • a channel information based on a non-codebook includes: the channel information is generated based on artificial intelligence or machine learning.
  • a channel information based on a non-codebook includes: a channel matrix recovered by a receiver of the channel information based on the channel information is not available to the sender of the channel information.
  • one channel information is based on non-codebook inclusion: the one channel information is used for precoding, and the one channel information does not include a codebook index.
  • the measurement for the first RS resource group is used to generate a first matrix group
  • the first matrix group is used to generate the first channel information
  • the first matrix group includes at least one channel matrix
  • the first matrix group is only available to the first node.
  • the matrices in the first matrix group correspond to the subbands in the first frequency band resource group on a one-to-one basis.
  • each matrix in the first matrix group is an original channel matrix, or includes at least one feature vector.
  • the first node N1 sends at least one CQI in step S102; the second node N1 receives at least one CQI in step S202; wherein the at least one CQI is associated with the first CQI.
  • One channel information is provided.
  • the at least one CQI and the first channel information are sent on the same physical layer channel.
  • the at least one CQI includes a wideband CQI.
  • multiple CQIs included in the at least one CQI correspond to multiple subbands in the first frequency band resource group on a one-to-one basis.
  • the at least one CQI and the first channel information are configured by the same RRC IE.
  • the same RRC IE is CSI-ReportConfig.
  • the at least one CQI and the first channel information are configured by the same reportQuantity.
  • the at least one CQI and the first channel information are conditioned on the same reported RI.
  • the at least one CQI and the first channel information are calculated based on the condition that the same reported RI is adopted.
  • the calculation of any one of the at least one CQI is conditioned on a precoding matrix, and the one precoding matrix is unknown to the second node N2.
  • the above embodiment avoids the use of the same decoder by the first node N1 and the second node N2, and avoids restrictions on implementation algorithms of different equipment vendors.
  • the precoding matrices on which the multiple CQIs depend are not necessarily the same and depend on the channel parameters of the subbands corresponding to the multiple CQIs.
  • the first channel information is based on non-codebook, and the one precoding matrix is based on codebook.
  • the one precoding matrix corresponds to a type I (type I) codebook index.
  • one precoding matrix corresponds to one Type II codebook index.
  • the one precoding matrix corresponds to an enhanced Type II codebook index.
  • the above sub-embodiment provides a lower bound (low bound) CQI calculation method to ensure the robustness of MCS (modulation coding state); in addition, the codebook search function in the existing UE can be used to simplify the hardware complexity .
  • the specific algorithm used to calculate a CQI is determined by the manufacturer of the first node N1, or is implementation-related.
  • a typical but non-limiting implementation is described below:
  • the first node N1 first measures the reference signal resources used for channel measurement in the first RS resource group to obtain the channel parameter matrix H r ⁇ t , where r and t are respectively the number of receiving antennas and the antennas used for transmission.
  • SINR Signal Interference Noise Ratio, signal-to-interference noise ratio
  • EESM Expoential Effective SINR Mapping, exponentially effective SINR mapping
  • RBIR Receiveived Block mean mutual Information Ratio, block average mutual information
  • the calculation of equivalent channel capacity requires the first node N1 to estimate noise and interference. If the first RS resource group includes RS resources for interference measurement, the first node N1 can use These RS resources measure interference or noise more accurately. Generally speaking, the direct mapping of the equivalent channel capacity to the CQI value depends on hardware-related factors such as receiver performance or modulation method.
  • the first channel information is used to indicate the precoding matrix W t ⁇ l .
  • the first node N1 and the second node N2 have the same understanding of the precoding matrix W t ⁇ l .
  • the precoding matrix restored by the second node N2 based on the first channel information may not be exactly the same as the precoding matrix W t ⁇ l .
  • Embodiment 6 illustrates a schematic diagram of a candidate pattern according to an embodiment of the present application, as shown in FIG. 6 .
  • the blank square represents a sub-band
  • the gray-filled square represents a sub-band in the candidate pattern.
  • the candidate pattern is implicitly indicated through the first message.
  • the first message is used to indicate a first set of conditions; the first set of conditions includes that the frequency domain interval between any two adjacent subbands is not greater than or less than the first frequency domain width.
  • the maximum value of the frequency domain interval between any two adjacent sub-bands in Figure 6 is shown by the bidirectional arrow A1. As long as the maximum value is not greater than (or less than) the first frequency domain width, the candidate pattern The first condition set is satisfied, that is, the candidate pattern set belongs to the first message indication.
  • the first set of conditions includes: the bandwidth covered from the lowest subband in the frequency domain to the highest subband in the frequency domain is not greater than or smaller than the second frequency domain bandwidth; in Figure 6, from the frequency domain The bandwidth covered by the lowest subband in the frequency domain and the highest subband in the frequency domain is shown by the bidirectional arrow A2. As long as the bandwidth identified by the bidirectional arrow A2 is not larger (or smaller) than the second frequency domain bandwidth, the candidate The pattern satisfies the first condition set, that is, belongs to the candidate pattern set indicated by the first message.
  • Embodiment 7 illustrates a schematic diagram of an artificial intelligence processing system according to an embodiment of the present application, as shown in FIG. 7 .
  • Figure 7 includes a first processor, a second processor, a third processor and a fourth processor.
  • the first processor sends a first data set to the second processor, and the second processor generates a target first-type parameter group based on the first data set, and the second processor
  • the machine sends the generated target first type parameter group to the third Processor, the third processor uses the target first type parameter set to process the second data set to obtain a first type output, and then sends the first type output to the fourth processor .
  • the third processor sends a first type of feedback to the second processor, and the first type of feedback is used to trigger recalculation or update of the target first type parameter set.
  • the fourth processor sends a second type of feedback to the first processor, and the second type of feedback is used to generate the first data set or the second data set, or the second data set.
  • the second type of feedback is used to trigger the sending of the first data set or the second data set.
  • the first processor generates the first data set and the second data set based on measurement of a first wireless signal, where the first wireless signal includes downlink RS.
  • the second data set is obtained based on the measurement of the first RS resource group.
  • the first processor and the third processor belong to the first node, and the fourth processor belongs to the second node.
  • the first type of output includes the first channel information.
  • the second processor belongs to the first node.
  • the above embodiment avoids passing the first data set to the second node.
  • the second processor belongs to the second node.
  • the above embodiment reduces the complexity of the first node.
  • the first data set is training data (Training Data)
  • the second data set is interference data (Interference Data)
  • the second processor is used to train a model
  • the trained model is The first type of parameter group description of the target.
  • the third processor constructs a model according to the target first type parameter group, then inputs the second data set into the constructed model to obtain the first type output, and then converts the third data set into the constructed model.
  • One type of output is sent to the fourth processor.
  • the third processor includes the first encoder of the present application, the first encoder is described by the target first type parameter group, and the generation of the first type output executed by the first encoder.
  • the third processor calculates an error between the first type of output and actual data to monitor the performance of the trained model (for example, the first encoder); the actual data is obtained after the second The data passed by the first processor is received after the data set.
  • the trained model for example, the first encoder
  • the above-mentioned first type of output for monitoring performance includes the first channel information.
  • the above embodiments are particularly suitable for prediction-related reporting.
  • the third processor restores a reference data set based on the first type of output, and an error between the reference data set and the second data set is used to generate the first type of feedback.
  • the reference data set is usually restored using an inverse operation similar to the target first type parameter group.
  • the above embodiment is particularly suitable for CSI compression-related reporting.
  • the first type of feedback is used to reflect the performance of the trained model; when the performance of the trained model cannot meet the requirements, the second processing opportunity recalculates the target third A type of parameter group.
  • the third processor includes the first reference decoder of the present application, and the first reference decoder is described by the target first type parameter group.
  • the input of the first reference decoder includes the first type of output and the output of the first reference decoder includes the reference data set.
  • the third processor belongs to a second node, and the first node reports the target first type parameter group to the second node.
  • Embodiment 8 illustrates a flow chart of the transmission of first channel information according to an embodiment of the present application, as shown in FIG. 8 .
  • the first reference decoder is optional.
  • the first encoder and the first decoder belong to the first node and the second node respectively; wherein, the first encoder belongs to the first receiver, and the first decoder belongs to the second receiver.
  • the first receiver uses a first encoder to generate the at least first channel information; wherein the input of the first encoder includes a first channel input, and the first encoder is obtained through training; The first channel input is obtained based on the measurement of the first RS resource group;
  • the first node feeds back the first channel information to the second node through the air interface
  • the second receiver uses a first decoder to generate a first restored channel matrix group; wherein the input of the first decoder includes the first channel information, and the first decoder is obtained through training.
  • the first encoder and the first decoder should theoretically operate inversely to ensure that the first channel input is the same as the first restored channel matrix group.
  • the first encoder and the first decoder in Embodiment 8 cannot ensure complete cancellation, so the first channel input and the The first restored channel matrix group cannot be guaranteed to be exactly the same, resulting in the traditional CQI calculation method being no longer applicable (that is, it is impossible to find a precoding matrix that both parties understand the same to calculate CQI).
  • the first channel input is an original channel matrix, or at least one feature vector.
  • the first channel input includes the first matrix group in this application.
  • the first receiver further includes a first reference decoder, the input of the first reference decoder includes the first channel information, and the output of the first reference decoder includes a first monitoring output. ; The first monitoring output is used to monitor the performance of the first encoder.
  • the first monitoring output is used to calculate the at least one CQI in this application, and the first reference decoder and the first decoder cannot be considered to be the same.
  • the first reference decoder and the first decoder may be independently generated or maintained independently. Therefore, although their purpose is to perform the inverse operation of the first encoder, both May only be approximate.
  • the first reference decoder is relatively similar to the first decoder, so the CQI error caused by the gap between the two is adjusted by the second node.
  • the first receiver includes the third processor in Embodiment 7.
  • the first channel input belongs to the second data set in Embodiment 7.
  • the training of the first encoder is performed at the first node.
  • the training of the first encoder is performed by the second node.
  • the first recovery channel matrix group is only known to the second node.
  • the first recovery channel matrix group and the first matrix group cannot be considered to be the same.
  • Embodiment 9 illustrates a schematic diagram of a first encoder according to an embodiment of the present application, as shown in FIG. 9 .
  • the first encoder includes P1 coding layers, namely coding layers #1, #2,..., #P1.
  • P1 is 2, that is, the P1 coding layers include coding layer #1 and coding layer #2, and coding layer #1 and coding layer #2 are convolutional layers and fully connected layers respectively.
  • CNN-related technical documents such as Chao-Kai Wen, Deep Learning for Massive MIMO CSI Feedback, IEEE WIRELESS COMMUNICATIONS LETTERS, VOL.7, NO.5, OCTOBER 2018, etc.
  • the P1 is 3, that is, the P1 coding layer includes a fully connected layer, a convolution layer, and a pooling layer.
  • Embodiment 10 illustrates a schematic diagram of the first function according to an embodiment of the present application, as shown in FIG. 10 .
  • the first function includes a preprocessing layer and P2 decoding layer groups, namely decoding layer groups #1, #2,..., #P2, each decoding layer group including at least one decoding layer.
  • the structure of the first function is applicable to the first decoder and the first reference decoder in Embodiment 8.
  • the preprocessing layer is a fully connected layer that expands the size of the first channel information to the size of the first channel input.
  • the structure of any two decoding layer groups among the P2 decoding layer groups is the same, and the structure includes the number of included decoding layers, the size of the input parameters and the output parameters of each included decoding layer. size etc.
  • the second node indicates the structure of the P2 and the decoding layer group to the first node, and the first node indicates other parameters of the first function through the second signaling.
  • the other parameters include at least one of a threshold of the activation function, a size of the convolution kernel, a step size of the convolution kernel, and a weight between feature maps.
  • Embodiment 11 illustrates a schematic diagram of a decoding layer group according to an embodiment of the present application, as shown in Figure 11.
  • the decoding layer group #j includes L layers, that is, layers #1, #2,..., #L; the decoding layer group is any decoding layer group among the P2 decoding layer groups.
  • the L is 4, the first layer in the L layer is the input layer, and the last three layers of the L layer are all convolutional layers.
  • CNN-related technical documents For example, Chao-Kai Wen, Deep Learning for Massive MIMO CSI Feedback, IEEE WIRELESS COMMUNICATIONS LETTERS, VOL.7, NO.5, OCTOBER 2018, etc.
  • the L layer includes at least one convolution layer and one pooling layer.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing device 1600 in the first node includes a first receiver 1601 and a first transmitter 1602.
  • the first transmitter 1602 sends a first message, the first message is used to determine the candidate pattern set; the first receiver 1601 receives a second message, the second message is used to indicate the first RS Resource group and a first frequency band resource group, the first RS resource group includes at least one RS resource, and the first frequency band resource group includes at least one subband; the first transmitter 1602 sends first channel information;
  • the first message is used to assist in determining the subband pattern of the first frequency band resource group, and the measurement of the first RS resource group is used to generate the first channel information;
  • the frequency domain resources targeted by the first channel information include the first frequency band resource group.
  • the first message is used to indicate a first set of conditions; the first set of conditions includes that the frequency domain interval between any two adjacent subbands is not greater than or less than the first frequency domain width.
  • the first set of conditions includes: the number of subbands is not less than or greater than a first positive integer.
  • the first set of conditions includes: the bandwidth covered from the lowest subband in the frequency domain to the highest subband in the frequency domain is not greater than or less than the second frequency domain bandwidth.
  • the first channel information is used to monitor the performance of the first encoder.
  • the phrase the first message is used to assist in determining the subband pattern of the first frequency band resource group includes: only if the subband pattern of the first frequency band resource group is the candidate pattern set In one of these cases, the performance of the first channel information is guaranteed.
  • the phrase the first message is used to assist in determining the subband pattern of the first frequency band resource group includes: the candidate pattern set is suitable for the first encoder; wherein the first encoding The encoder is used to generate the first channel information, and the measurement for the first RS resource group is used to obtain the input of the first encoder.
  • the first transmitter 1602 sends at least one CQI
  • the first node 1600 is a user equipment.
  • the first transmitter 1602 includes the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459 in Figure 4 of this application, At least one of memory 460 and data source 467.
  • the first transmitter 1602 includes the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459 in Figure 4 of this application, Memory 460 and data source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first five of source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first four of source 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first three of source 467.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1700 in the second node includes a second transmitter 1701 and a second receiver 1702.
  • the second receiver 1702 receives a first message, which is used to determine a candidate pattern set; the second sender 1701 sends a second message, which is used to indicate a first RS Resource group and a first frequency band resource group, the first RS resource group includes at least one RS resource, the first frequency band resource group includes at least one subband; the second receiver 1702 receives the first channel information;
  • the first message is used to assist in determining the subband pattern of the first frequency band resource group, and the measurement for the first RS resource group is used to generate the first channel information;
  • the frequency domain resources targeted by the first channel information include the first frequency band resource group.
  • the first message is used to indicate a first set of conditions; the first set of conditions includes that the frequency domain interval between any two adjacent subbands is not greater than or less than the first frequency domain width.
  • the first set of conditions includes: the number of subbands is not less than or greater than a first positive integer.
  • the first set of conditions includes: the bandwidth covered from the lowest subband in the frequency domain to the highest subband in the frequency domain is not greater than or less than the second frequency domain bandwidth.
  • the first channel information is used to monitor the performance of the first encoder.
  • the phrase the first message is used to assist in determining the subband pattern of the first frequency band resource group includes: only if the subband pattern of the first frequency band resource group is the candidate pattern set In one of these cases, the performance of the first channel information is guaranteed.
  • the phrase the first message is used to assist in determining the subband pattern of the first frequency band resource group includes: the candidate pattern set is suitable for the first encoder; wherein the first encoding The encoder is used to generate the first channel information, and the measurement for the first RS resource group is used to obtain the input of the first encoder.
  • the second receiver 1702 receives at least one CQI
  • the second node 1700 is a base station device.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475.
  • the second receiver 1702 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475.
  • the second receiver 1702 includes the controller/processor 475.
  • Embodiment 14 illustrates a flow chart of measurement in the first RS resource group according to an embodiment of the present application, as shown in FIG. 14 .
  • the first node N1 performs measurement in the first RS resource group in step S500; the second node N2 sends a reference signal in at least part of the RS resources of the first RS resource group.
  • the at least part of the RS resources include RS resources used for channel measurement.
  • the specific implementation of the measurement performed by the first node N1 in the first RS resource group is determined by the hardware equipment manufacturer.
  • a non-limiting example is given below:
  • the first node measures a channel parameter matrix for each PRB.
  • the channel parameter matrix has Nt rows and Nr columns, where each element is a channel impulse response; the Nt and Nr are respectively in one RS resource.
  • the number of antenna ports and the number of receiving antennas; the first node combines the channel parameter matrices measured on all PRBs in each subband to obtain the channel matrix of each subband.
  • the input of the first encoder includes the channel matrix of some or all subbands in the first frequency band resource group, or the input of the first encoder (or the first matrix group in this application) includes the first Eigenvectors of the channel matrix of some or all subbands in the frequency band resource group.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了用于无线通信的方法和装置。第一节点发送第一消息,所述第一消息被用于确定候选图案集合;接收第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组;发送第一信道信息;其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。本申请能提高第一信道信息的性能,同时具备较好兼容性。

Description

用于无线通信的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其涉及无线通信系统中的CSI(Channel Status Information,信道状态信息)的方案和装置。
背景技术
传统的无线通信中,UE(User Equipment,用户设备)上报可能包括多种辅助信息中的至少之一,例如的CSI(Channel Status Information,信道状态信息),波束管理(Beam Management)相关的辅助信息,定位相关的辅助信息等等。其中CSI包括CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)、RI(Rank Indicator,秩指示)、PMI(Precoding Matrix Indicator,预编码指示)或CQI(Channel quality indicator,信道质量指示)中的至少之一。
网络设备根据UE的上报为UE选择合适的传输参数,例如驻留小区、MCS(Modulation and Coding Scheme,调制编码方案)、TPMI(Transmitted Precoding Matrix Indicator,发送预编码矩阵指示),TCI(Transmission Configuration Indication,发送配置指示)等参数。此外,UE上报可以被用于优化网络参数,例如更好的小区覆盖,根据UE位置开关基站等等。
在NR(New Radio,新无线)系统中,CSI报告的优先级被定义,所述优先级被用于确定是否为相应CSI报告分配CPU(CSI Processing Unit,CSI处理单元)资源以进行更新,或者是否丢弃(drop)相应的CSI报告。
发明内容
随着天线数量的增加,传统的PMI反馈方式会带来大量的冗余开销,因此,在NR R(release)18中,基于AI(Artificial Intelligence,人工智能)或者ML(Machine Learning,机器学习)的CSI压缩被立项。在传统的多天线系统中,CQI的计算通常以PMI为条件;例如基于UE(User Equipment,用户)上报的PMI被基站采纳的假设下,CQI被计算出。申请人通过研究发现,传统的CSI上报支持基于子带(subband)的PMI上报,基于AI或者ML的CSI压缩如何支持类似的功能将会面临挑战。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然本申请的大量实施例针对AI/ML展开,本申请也适用于基于传统的例如基于线性信道重构的方案;尤其是考虑到,具体的信道重构算法很可能是非标准化的或者是硬件设备商自行实现的。进一步的,采用统一的UE上报的方案能够降低实现复杂度,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
在需要的情况下,对本申请中的术语的解释可以参考3GPP(3rd Generation Partner Project,第三代合作伙伴项目)的规范协议TS37系列以及TS38系列的描述。
本申请公开了被用于无线通信的第一节点中的方法,其中,包括:
发送第一消息,所述第一消息被用于确定候选图案集合;
接收第二消息,所述第二消息被用于指示第一RS(Reference Signal,参考信号)资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;
发送第一信道信息;
其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
作为一个实施例,上述方法能优化所述第一频带资源组的配置,提高第一信道信息的上报效率或者准确性。
作为一个实施例,所述第一频带资源组属于第一BWP(Bandwidth part,带宽部分)。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
上述方法中,所述第一条件集合隐式的指示了所述候选图案集合。
作为一个实施例,所述候选图案集合中的任一候选图案满足所述第一条件集合。
作为一个实施例,所述候选图案集合是由满足所述第一条件集合的候选图案组成的。
上述方法有利于确保所述第一信道信息的性能或者准确性,避免了间隔过大的相邻子带导致所述第一信道信息的生成器失效。
具体的,根据本申请的一个方面,上述方法的特征在于,仅当第一频带资源组的所述子带图案是所述候选图案集合中之一时,所述第一信道信息的性能被保证。
上述方法为所述第一频带资源组的配置提供了灵活性,即第一频带资源组的所述子带图案可能是所述候选图案集合之外的候选图案。
具体的,根据本申请的一个方面,上述方法的特征在于,所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
具体的,根据本申请的一个方面,上述方法的特征在于,所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述候选图案集合的信道参数被用于训练所述第一编码器。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一条件集合包括:子带的数量不小于或者大于第一正整数。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽。
本申请公开了被用于无线通信的第二节点中的方法,其中,包括:
接收第一消息,所述第一消息被用于确定候选图案集合;
发送第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;
接收第一信道信息;
其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
具体的,根据本申请的一个方面,上述方法的特征在于,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
本申请公开了被用于无线通信的第一节点,其中,包括:
第一发送机,发送第一消息,所述第一消息被用于确定候选图案集合;发送第一信道信息;
第一接收机,接收第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;
其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
本申请公开了被用于无线通信的第二节点,其中,包括:
第二接收机,接收第一消息,所述第一消息被用于确定候选图案集合;接收第一信道信息;
第二发送机,发送第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;
其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的通信的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线电协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的通信节点的硬件模块示意图;
图5示出了根据本申请的一个实施例的第一节点和第二节点之间的传输流程图;
图6示出了根据本申请的一个实施例的候选图案的示意图;
图7示出了根据本申请的一个实施例的人工智能处理系统的示意图;
图8示出了根据本申请的一个实施例的第一信道信息的传输的流程图;
图9示出了根据本申请的一个实施例的第一编码器的示意图;
图10示出了根据本申请的一个实施例的第一函数的示意图;
图11示出了根据本申请的一个实施例的一个解码层组的示意图;
图12示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的在第一RS资源组中测量的流程图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的通信的流程图,如附图1所示。
第一节点100在步骤101中发送第一消息,所述第一消息被用于确定候选图案集合;在步骤102中接收第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;在步骤103中发送第一信道信息;
实施例1中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
典型的,所述候选图案集合中包括至少一个候选图案。
作为一个实施例,所述子带图案或者所述候选图案集合中的一个候选图案是指子带的频域位置。
作为一个实施例,所述子带图案或者所述候选图案集合中的一个候选图案是指子带在所属的BWP中的频域位置。
作为一个实施例,所述子带图案是指一个比特串(bitstring),所述一个比特串中每个比特指示一个相应的子带是否被配置。
作为一个实施例,所述候选图案集合中的任一候选图案是指一个比特串,所述一个比特串中每个比特指示一个相应的子带是否被配置。
作为一个实施例,所述子带图案和所述候选图案集合中的一个候选图案分别是指一个比特串,所述一个比特串中每个比特指示一个相应的子带是否被配置。
作为一个实施例,用于配置所述一个比特串信令是一个RRC IE的域(field)。
作为一个实施例,所述一个RRC IE的所述域的名字包括csi-ReportingBand。
作为一个实施例,所述一个RRC IE的所述域是csi-ReportingBand。
作为一个实施例,所述第一消息在物理层被生成。
作为一个实施例,所述第一消息是UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第一消息在PUCCH(Physical Uplink Control CHannel,物理上行控制信道)上被发送。
作为一个实施例,所述第一消息在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上被发送。
作为一个实施例,所述第一消息包括一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)。
作为一个实施例,所述第一消息包括一个RRC(Radio Resource Control,无线电资源控制)IE(Information Element,信息单元)。
作为一个实施例,一个信道信息针对一个频域资源包括:所述一个信道信息指示所述一个频域资源上的信道的参数。
作为一个实施例,一个信道信息针对一个频域资源包括:所述一个信道信息是基于无线信号在所述一个频域资源上传输的假设被计算出的。
作为一个实施例,一个信道信息针对一个频域资源包括:所述一个频域资源上的信道参数被用于生成所述一个信道信息。
作为一个实施例,一个信道信息针对一个频域资源包括:所述一个信道信息被用于恢复出针对所述一个频域资源上的每个子带的预编码矩阵。
作为一个实施例,所述信道参数包括原始(raw)信道矩阵。
作为一个实施例,所述信道参数包括信道特征向量(Eigen vector)。
作为一个实施例,所述信道参数包括信道冲激响应。
作为一个实施例,所述第二消息被用于配置所述至少第一信道信息。
作为一个实施例,所述第二消息是更高层信令。
作为一个实施例,所述第二消息包括RRC信令。
作为一个实施例,所述第二消息包括CSI-ReportConfig IE(Information Element,信息单元)。
作为一个实施例,所述第一信道信息被用于确定至少两个天线端口之间的相位,或者幅度,或者系数(coefficient)。
作为一个实施例,所述第一信道信息被用于确定所述第一频带资源组中的每个子带的至少一个特征向量。
作为一个实施例,所述第一信道信息被用于确定所述第一频带资源组中的每个子带的至少一个特征值。
作为一个实施例,所述第一信道信息被用于确定所述第一频带资源组中的每个子带的一个预编码矩阵。
作为一个实施例,所述第一RS资源组包括至少一个用于信道测量(channel measurement)的下行RS资源。
作为上述实施例的一个子实施例,所述第一RS资源组包括至少一个用于干扰测量(interference measurement)的下行RS资源。
作为一个实施例,针对所述第一RS资源组的测量包括在所述至少一个用于信道测量的下行RS资源中进行的信道测量。
作为一个实施例,针对所述第一RS资源组的测量包括在所述至少一个用于干扰测量的下行RS资源中进行的干扰测量。
作为一个实施例,所述第一RS资源组中的任一RS资源是一个下行RS资源。
作为一个实施例,所述第一RS资源组中的任一RS资源是一个CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)资源。
作为一个实施例,所述第二消息被用于确定所述第一信道信息针对的频域资源是所述第一频带资源组。
作为一个实施例,所述第一RS资源组被所述第二消息中的resourcesForChannelMeasurement,或者csi-IM-ResourcesForInterference,或者nzp-CSI-RS-ResourcesForInterference所述指示。
作为一个实施例,所述第一频带资源组被所述第二消息中的csi-ReportingBand所指示。
作为一个实施例,所述第一频带资源组中的任一子带包括至少一个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一频带资源组属于第一BWP(Bandwidth Part,带宽部分)。
作为一个实施例,除了所述第一BWP中最边缘的子带,所述第一频带资源组中的所有子带所包括的PRB的数量为P1,所述P1是4的正整数倍。
作为一个实施例,所述P1是更高层信令指示的。
作为一个实施例,所述P1与所述第一BWP中所包括的PRB的数量有关。
作为一个实施例,如果所述第一频带资源组包括所述第一BWP中的第一个子带,所述第一个子带所包括的PRB的数量为P1-(Ns mod P1),其中Ns是所述第一BWP中的起始PRB的索引;如果所述第一频带资源组包括所述第一BWP中的最后一个(last)子带,所述最后一个(last)子带所包括的PRB的数量为(Ns+Nw)mod P1或者为P1,其中Nw是所述第一BWP中所包括的PRB的数量。
作为一个实施例,所述P1为4、8、16或32中之一。
作为一个实施例,所述第一信道信息包括多个信道信息。
作为一个实施例,所述多个信道信息在一个物理层信道上被发送。
作为一个实施例,所述一个物理层信道是PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述一个物理层信道是PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述多个信道信息包括一个用于预编码的矩阵指示,以及针对所述第一频带资源组中的每个子带包括一个CQI。
作为一个实施例,所述用于预编码的矩阵指示是非码本的。
作为一个实施例,如何确定所述第一频带资源组的子带图案是第二节点(例如根据调度策略或者调度结果)自行确定的,所述第一频带资源组的子带图案属于所述候选图案集合。
作为一个实施例,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:仅当第一频带资源组的所述子带图案是所述候选图案集合中之一时,所述第一信道信息的性能被保证。
作为一个实施例,所述第一信道信息的性能是指所述第一信道信息的准确性(accuracy)。
作为一个实施例,所述第一信道信息的性能是指所述第一信道信息所指示的信道参数或者基于所述第一信道信息恢复的信道参数与实际的信道参数之间的误差。
对于信道矩阵或者特征向量,常见的误差可以通过NMSE(Normalized Mean Square Error,归一化均方误差)或者余弦相似性(Cosine Similarity)描述;对于CQI,误差可以通过统计NACK率来计算。
作为一个实施例,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
作为一个实施例,所述第一编码器是基于训练得到的。
作为一个实施例,所述第一编码器是一个非线性函数。
作为一个实施例,如何确定所述第一频带资源组的子带图案是第二节点(例如根据调度策略或者调度结果)自行确定的,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:第二节点根据所述第一消息辅助确定所述第一频带资源组的所述子带图案。
需要说明的是,上述实施例并不限制第二节点必须从所述候选图案集合中选择所述第一频带资源组的所述子带图案,所述第二节点依然可以根据调度需要(例如偶尔的)配置“所述第一频带资源组的子带图案不属于所述候选图案集合”,并承担相应的性能损失。
作为一个实施例,如何确定所述第一频带资源组的子带图案是第二节点(例如根据调度策略或者调度结果)自行确定的,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:第二节点确定所述第一频带资源组的所述子带图案时参考了所述第一消息。
作为一个实施例,所述短语所述第一消息被用于确定候选图案集合包括:所述第一消息从候选图案池中指示至少一个候选图案以组成所述候选图案集合。
作为一个实施例,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
作为一个实施例,所述第一消息指示所述第一频域宽度。
一般来说,第一频域宽度与无线信道特性关联,因此第一信道信息的生成器所适用的无线信道的范围可以由所述第一频域宽度指示。
作为一个实施例,所述第一频域宽度的单位是PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一频域宽度的单位是4个PRB。
作为一个实施例,所述第一频域宽度的单位是8个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一频域宽度的单位是子带。
作为一个实施例,所述PRB或所述子带对应的子载波间隔是固定的。
作为一个实施例,所述PRB或所述子带对应的子载波间隔随着所述第一频带资源组所属的频率范围(frequencyRange)而变化。
作为一个实施例,当所述第一频带资源组所属的频率范围是frequencyRange 1时,所述PRB或所述子带对应的子载波间隔是第一子载波间隔;当所述第一频带资源组所属的频率范围是frequency Range 2时,所述PRB或所述子带对应的子载波间隔是第二子载波间隔;所述第一子载波间隔小于所述第二子载波间隔。
作为一个实施例,所述第一子载波间隔是15kHz,所述第二子载波间隔是60kHz。
作为一个实施例,所述PRB或所述子带对应的子载波间隔是第一BWP的子载波间隔,所述第一频带资源组属于所述第一BWP。
作为一个实施例,所述第一频域宽度的单位是MHz(兆赫兹)。
作为一个实施例,仅当所述第一频带资源组的所述子带图案符合所述第一条件集合时,所述第一信道信息被用于监测所述第一编码器的性能。
作为一个实施例,所述行为监测所述第一编码器的性能是在所述第一节点被执行的。
作为一个实施例,所述行为监测所述第一编码器的性能是在所述第二节点被执行的。
作为一个实施例,所述行为监测所述第一编码器的性能包括:利用所述第一编码器的输出恢复信道参数,根据恢复的所述信道参数与参考信道参数之间的误差确定所述第一编码器的性能。
作为一个实施例,所述信道参数包括信道矩阵,或者特征向量,或者信道冲激响应等。
作为一个实施例,所述参考信道参数是基于对RS资源进行测量得到的原始信道矩阵,或者根据原始信道矩阵计算出的特征向量,或者原始信道冲击响应等等。
作为一个实施例,所述候选图案集合中的任一候选图案满足所述第一条件集合。
上述实施例中,所述第一消息并未显式的指示候选图案集合,而是针对所支持的或者推荐的子带配置指示第一条件集合,以实现隐式的指示候选图案集合。满足所述第一条件集合的子带配置即属于所述候选图案集合。
作为一个实施例,所述第一条件集合包括:子带的数量不小于或者大于第一正整数。
作为一个实施例,所述第一消息指示所述第一正整数。
上述方法避免了由于子带数量过少导致的所述第一信道信息的性能损失。
作为一个实施例,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽。
上述方法避免了由于频带过宽导致的所述第一信道信息的性能损失。
上述针对所述第一频域宽度的所述单位的实施例均可应用于所述第二频域带宽的单位,不再一一赘述。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution  Advanced,增强长期演进)的系统架构。5G NR或LTE网络架构200可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201支持利用AI(Artificial Intelligence,人工智能)或者机器学习(Machine Learning)生成上报。
作为一个实施例,所述UE201支持利用训练数据生成训练后的模型或者利用训练后的数据生成训练后的模型中的部分参数。
作为一个实施例,所述UE201支持通过训练确定用于CSI重构的CNN(Conventional Neural Networks,卷积神经网络)的至少部分参数。
作为一个实施例,所述UE201是支持Massive-MIMO的终端。
作为一个实施例,所述gNB203支持基于Massive-MIMO的传输。
作为一个实施例,所述gNB203支持利用AI或者深度学习对CSI进行解压缩。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点分别是所述UE201和所述gNB203。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信道信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信道信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一CQI生成于所述PHY301。
作为一个实施例,本申请中的所述第一消息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一消息生成于所述MAC子层302。
实施例4
实施例4示出了根据本申请的一个实施例的通信节点的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施信道 编码和交织以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解交织和信道译码所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二节点450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行信道编码、交织、调制映射,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:发送第一消息,所述第一消息被用于确定候选图案集合;发送第一信道信息;接收第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成 所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一消息;发送所述第一信道信息;接收所述第二消息。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:接收第一消息,所述第一消息被用于确定候选图案集合;接收第一信道信息;发送第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一消息;接收所述第一信道信息;发送所述第二消息。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE,所述第二通信设备410是一个基站。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,被用于针对所述第一RS资源组的所述测量。
作为一个实施例,所述控制器/处理器459被用于针对所述第一RS资源组的所述测量。
作为一个实施例,所述控制器/处理器459被用于生成所述至少第一信道信息。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459被用于发送所述至少第一信道信息。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416被用于在所述第一RS资源组中的至少一个RS资源上发送参考信号。
作为一个实施例,所述控制器/处理器475被用于在所述第一RS资源组中的至少一个RS资源上发送参考信号。
作为一个实施例,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475被用于接收所述至少第一信道信息。
实施例5
实施例5示例了根据本申请的一个实施例的第一节点和第二节点之间的传输流程图,如附图5所示。附图5中,所述至少一个CQI的发送和接收是可选的。
对于第一节点N1,在步骤S100中发送第一消息,所述第一消息被用于确定候选图案集合;在步骤S101中接收第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;在步骤S102中发送第一信道信息;
对于第二节点N2,在步骤S200中接收所述第一消息;在步骤S201中发送所述第二消息;在步骤S202中接收所述第一信道信息;
实施例5中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
作为一个实施例,所述第一消息包括至少第一编码器中每个编码器的至少部分参数;所述候选图案集合适用于所述第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
作为一个实施例,用于训练所述第一编码器的信道参数对应的子带图案属于所述候选图案集合。
作为一个实施例,用于训练所述第一编码器的信道参数对应的子带图案满足所述第一条件集合。
上述用于训练所述第一编码器的信道参数是针对下行RS资源的测量得到的。作为一个实施例,上述用于训练所述第一编码器的信道参数包括原始信道矩阵,信道冲激响应,或者特征向量等。
作为上述实施例的一个子实施例,所述第一消息是一个MAC CE。
作为上述实施例的一个子实施例,所述第一消息是一个RRC IE。
作为上述实施例的一个子实施例,所述第一消息在一个物理层信道上被发送。
上述实施例或子实施例使得所述候选图案集合被关联到所述至少第一编码器,以确保所述至少第一编码器的性能。
作为一个实施例,作为所述至少一个编码器的训练被完成的响应,所述第一消息被发送。
作为一个实施例,所述至少第一编码器包括多个编码器,所述第一编码器是所述多个编码器中之一。
作为一个实施例,所述至少第一编码器仅包括所述第一编码器。
作为一个实施例,仅当所述第一频带资源组的所述子带图案属于所述候选图案集合时,所述第一信道信息被用于监测所述第一编码器的性能。
作为一个实施例,所述第一信道信息是基于非码本的。
作为一个实施例,一个信道信息是基于非码本的包括:所述一个信道信息是基于人工智能或者机器学习生成的。
作为一个实施例,一个信道信息是基于非码本的包括:所述一个信道信息的接收者根据所述一个信道信息恢复出的信道矩阵是所述一个信道信息的发送者所不可获得的。
作为一个实施例,一个信道信息是基于非码本的包括:所述一个信道信息被用于预编码,所述一个信道信息不包括码本索引。
作为一个实施例,针对所述第一RS资源组的所述测量被用于生成第一矩阵组,第一矩阵组被用于生成所述第一信道信息,所述第一矩阵组包括至少一个信道矩阵。
作为一个实施例,所述第一矩阵组仅对所述第一节点可获得。
作为一个实施例,所述第一矩阵组中的矩阵与所述第一频带资源组中的子带一一对应。
作为一个实施例,所述第一矩阵组中的每个矩阵是一个原始信道矩阵,或者包括至少一个特征向量。
作为一个实施例,所述第一节点N1在步骤S102中发送至少一个CQI;所述第二节点N1在所述步骤S202中接收至少一个CQI;其中,所述至少一个CQI被关联到所述第一信道信息。
作为一个实施例,所述至少一个CQI与所述第一信道信息在同一个物理层信道上被发送。
作为一个实施例,所述至少一个CQI包括一个宽带CQI。
作为一个实施例,所述至少一个CQI所包括的多个CQI与所述第一频带资源组中的多个子带一一对应。
作为一个实施例,所述至少一个CQI与所述第一信道信息是被同一个RRC IE配置的。
作为一个实施例,所述同一个RRC IE是CSI-ReportConfig。
作为一个实施例,所述至少一个CQI与所述第一信道信息是被同一个reportQuantity所配置。
作为一个实施例,所述至少一个CQI与所述第一信道信息以同一个上报的RI为条件(conditioned on)。
作为一个实施例,所述至少一个CQI与所述第一信道信息基于同一个上报的RI被采纳为条件被计算出的。
作为一个实施例,所述至少一个CQI中任一CQI的计算以一个预编码矩阵为条件,所述一个预编码矩阵对于所述第二节点N2是未知的。
上述实施例避免了所述第一节点N1和所述第二节点N2采用相同的解码器,避免限制不同设备供应商的实现算法。
上述实施例中,如果所述至少一个CQI包括多个CQI,所述多个CQI所依赖的预编码矩阵不必然是相同的,依赖于多个CQI所对应的子带的信道参数。
作为一个实施例,所述第一信道信息是基于非码本的,所述一个预编码矩阵是基于码本的。
作为上述实施例的一个子实施例,所述一个预编码矩阵对应一个类型I(type I)码本索引。
作为上述实施例的一个子实施例,所述一个预编码矩阵对应一个类型II码本索引。
作为上述实施例的一个子实施例,所述一个预编码矩阵对应一个增强的类型II码本索引。
上述子实施例提供了一种下限(low bound)CQI计算方法,确保了MCS(调制编码状态)的鲁棒性;此外,可以利用现有UE中的码本搜索的功能,简化了硬件复杂度。
在上述方法或者实施例的限制下,用于计算一个CQI的具体算法是所述第一节点N1的制造商自行确定的,或者说是实现相关的。下面描述一种典型的但是非限制性的实施方式:
所述第一节点N1首先测量所述第一RS资源组中用于信道测量的参考信号资源以得到信道参数矩阵Hr×t,其中r,t分别是接收天线的数量和用于发送的天线端口的数量;在采用预编码矩阵Wt×l的条件下,编码后的信道参数矩阵为Hr×t·Wt×l,其中l是秩(rank)或者层的数量;采用例如SINR(Signal Interference Noise Ratio,信干噪比),EESM(Exponential Effective SINR Mapping,指数有效SINR映射),或者RBIR(Received Block mean mutual Information Ratio,块平均互信息率)准则计算Hr×t·Wt×l的等效信道容量,然后由等效信道容量通过查表等方式确定所述一个CQI。一般而言等效信道容量的计算需要所述第一节点N1估计噪声(noise)和干扰,如果所述第一RS资源组中包括用于干扰测量的RS资源,所述第一节点N1可以利用这些RS资源更加准确的测量干扰或噪声。通常而言,等效信道容量到CQI的值直接的映射依赖于接收机性能,或者调制方式等硬件相关的因素。所述第一信道信息被用于指示预编码矩阵Wt×l
对于传统的基于PMI的反馈,所述第一节点N1和所述第二节点N2对所述预编码矩阵Wt×l具备相同的理解。而当所述第一信道信息的类型是基于非码本时,所述第二节点N2根据所述第一信道信息恢复的预编码矩阵可能与所述预编码矩阵Wt×l并不完全相同。
实施例6
实施例6示例了根据本申请的一个实施例的候选图案的示意图,如附图6所示。附图6中,空白方格表示一个子带,灰色填充的方格表示候选图案中的一个子带。
作为一个实施例,所述候选图案是通过第一消息隐式指示的。所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。附图6中任意相邻的两个子带之间的频域间隔的最大值如双向箭头A1所示,只要所述最大值不大于(或者小于)所述第一频域宽度,所述候选图案满足所述第一条件集合,即属于所述第一消息指示的所述候选图案集合。
作为一个实施例,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽;附图6中从频域上最低的子带到频域上最高的子带所覆盖的带宽如双向箭头A2所示,只要所述双向箭头A2标识的带宽不大于(或者小于)所述第二频域带宽,所述候选图案满足所述第一条件集合,即属于所述第一消息指示的所述候选图案集合。
实施例7
实施例7示例了根据本申请的一个实施例的人工智能处理系统的示意图,如附图7所示。附图7包括第一处理机,第二处理机,第三处理机和第四处理机。
实施例7中,所述第一处理机向所述第二处理机发送第一数据集,所述第二处理机根据所述第一数据集生成目标第一类参数组,所述第二处理机将生成的所述目标第一类参数组发送给所述第三 处理机,所述第三处理机利用所述目标第一类参数组对所述第二数据集进行处理以得到第一类输出,然后将所述第一类输出发送给所述第四处理机。
作为一个实施例,所述第三处理机发送第一类反馈给所述第二处理机,所述第一类反馈被用于触发重新计算或者更新所述目标第一类参数组。
作为一个实施例,所述第四处理机发送第二类反馈给所述第一处理机,所述第二类反馈被用于生成所述第一数据集或所述第二数据集,或者所述第二类反馈被用于触发所述第一数据集或所述第二数据集的发送。
作为一个实施例,所述第一处理机根据对第一无线信号的测量生成所述第一数据集和所述第二数据集,所述第一无线信号包括下行RS。
作为一个实施例,所述第二数据集是基于对所述第一RS资源组的测量得到的。
作为一个实施例,所述第一处理机和所述第三处理机属于第一节点,所述第四处理机属于第二节点。
作为一个实施例,所述第一类输出包括所述第一信道信息。
作为一个实施例,所述第二处理机属于第一节点。
上述实施例避免了将所述第一数据集传递给第二节点。
作为一个实施例,所述第二处理机属于第二节点。
上述实施例降低了第一节点的复杂度。
作为一个实施例,所述第一数据集是训练数据(Training Data),所述第二数据集是干扰数据(Interference Data),所述第二处理机用于训练模型,训练后的模型被所述目标第一类参数组描述。
上述训练的描述适用于本申请中的所述第一编码器,第一解码器,第一参考解码器等等。
作为一个实施例,所述第三处理机根据所述目标第一类参数组构造模型,然后将所述第二数据集输入构造的所述模型得到所述第一类输出,再将所述第一类输出发送给所述第四处理机。
作为上述实施例的一个子实施例,所述第三处理机包括本申请的第一编码器,所述第一编码器被所述目标第一类参数组描述,所述第一类输出的生成被所述第一编码器执行。
作为一个实施例,所述第三处理机计算所述第一类输出与实际数据的误差以监测所述训练后模型(例如第一编码器)的性能;所述实际数据是在所述第二数据集之后接收到的由所述第一处理机传递过来的数据。
作为上述实施例的一个子实施例,仅当所述第一频带资源组的所述子带图案符合所述第一条件集合时,上述用于监测性能的第一类输出才包括所述第一信道信息。
上述实施例尤其适合预测相关的上报。
作为一个实施例,所述第三处理机利用根据所述第一类输出恢复参考数据集,所述参考数据集与所述第二数据集的误差被用于生成所述第一类反馈。
所述参考数据集的恢复通常采用类似所述目标第一类参数组的逆运算,上述实施例尤其适合CSI压缩相关的上报。
作为一个实施例,所述第一类反馈被用于反映所述训练后的模型的性能;当所述训练后的模型的性能不能满足要求时,所述第二处理机会重新计算所述目标第一类参数组。
作为上述实施例的一个子实施例,所述第三处理机包括本申请的第一参考解码器,所述第一参考解码器被所述目标第一类参数组描述。所述第一参考解码器的输入包括所述第一类输出,所述第一参考解码器的输出包括所述参考数据集。
典型的,当误差过大或者过长时间未更新时,所述训练后的模型的所述性能被认为不能满足要求。
作为一个实施例,所述第三处理机属于第二节点,所述第一节点将所述目标第一类参数组报告给所述第二节点。
实施例8
实施例8示例了根据本申请的一个实施例的第一信道信息的传输的流程图,如附图8所示。附图8中,第一参考解码器是可选的。
实施例8中,第一编码器和第一解码器分别属于第一节点和第二节点;其中,所述第一编码器属于第一接收机,所述第一解码器属于第二接收机。
所述第一接收机,利用第一编码器生成所述至少第一信道信息;其中,所述第一编码器的输入包括第一信道输入,所述第一编码器是通过训练得到的;所述第一信道输入是根据针对第一RS资源组的测量得到的;
所述第一节点将第一信道信息通过空中接口反馈给所述第二节点;
所述第二接收机,利用第一解码器生成第一恢复信道矩阵组;其中,所述第一解码器的输入包括所述第一信道信息,所述第一解码器是通过训练得到的。
所述第一编码器和所述第一解码器理论上应当是互逆操作以确保所述第一信道输入与所述第一恢复信道矩阵组相同。
作为一个实施例,由于实现复杂度或者空口开销或者延迟等因素,实施例8中的所述第一编码器和所述第一解码器不能确保完全抵消,因此所述第一信道输入与所述第一恢复信道矩阵组不能确保完全相同,导致了传统的CQI计算方法不再适用(即无法找到一个双方理解相同的预编码矩阵计算CQI)。
作为一个实施例,所述第一信道输入是原始信道矩阵,或者,至少一个特征向量。
作为一个实施例,所述第一信道输入包括本申请中的所述第一矩阵组。
作为一个实施例,所述第一接收机还包括第一参考解码器,所述第一参考解码器的输入包括所述第一信道信息,所述第一参考解码器的输出包括第一监测输出;所述第一监测输出被用于监测所述第一编码器的性能。
作为一个实施例,所述第一监测输出被用于计算本申请中的所述至少一个CQI,所述第一参考解码器与所述第一解码器不能被认为是相同的。
上述实施例中,所述第一参考解码器与所述第一解码器可能是被独立生成或者独立维护的,因此虽然它们的目的都是执行所述第一编码器的逆操作,但是二者可能仅是近似的。
作为上述实施例的一个子实施例,所述第一参考解码器与所述第一解码器比较相似,因此二者之间的差距导致的CQI误差由所述第二节点自行调整。
作为一个实施例,所述第一接收机包括实施例7中的第三处理机。
作为一个实施例,所述第一信道输入属于实施例7中的第二数据集。
作为一个实施例,所述第一编码器的所述训练是在所述第一节点被执行的。
作为一个实施例,所述第一编码器的所述训练是被所述第二节点执行的。
作为一个实施例,所述第一恢复信道矩阵组仅对所述第二节点已知。
作为一个实施例,所述第一恢复信道矩阵组与所述第一矩阵组不能被认为是相同的。
实施例9
实施例9示例了根据本申请的一个实施例的第一编码器的示意图,如附图9所示。附图9中,所述第一编码器包括P1个编码层,即编码层#1,#2,...,#P1。
作为一个实施例,所述P1为2,即所述P1个编码层包括编码层#1和编码层#2,所述编码层#1和所述编码层#2分别是卷积层和全连结层;在卷积层,至少一个卷积核被用于对所述第一信道输入进行卷积以生成相应的特征图,卷积层输出的至少一个特征图被重整(reshape)成一个向量输入给全连结层;全连结层将所述一个向量转换成第一信道信息。更细节的描述可以参考CNN相关的技术文献,例如Chao-Kai Wen,Deep Learning for Massive MIMO CSI Feedback,IEEE WIRELESS COMMUNICATIONS LETTERS,VOL.7,NO.5,OCTOBER 2018等等。
作为一个实施例,所述P1为3,即所述P1个编码层包括全连接层,卷积层,池化层。
实施例10
实施例10示例了根据本申请的一个实施例的第一函数的示意图,如附图10所示。附图10中,所述第一函数包括预处理层,和P2个解码层组即解码层组#1,#2,...,#P2,每个解码层组包括至少一个解码层。
所述第一函数的结构适用于实施例8中的第一解码器和第一参考解码器。
作为一个实施例,所述预处理层是一个全连结层,将所述第一信道信息的尺寸扩大为所述第一信道输入的尺寸。
作为一个实施例,所述P2个解码层组中任意两个解码层组的结构相同,所述结构包括所包括的解码层的数量,所包括的每个解码层的输入参数的尺寸和输出参数的尺寸等等。
作为一个实施例,第二节点将所述P2和所述解码层组的所述结构指示给第一节点,所述第一节点通过所述第二信令指示所述第一函数的其他参数。
作为一个实施例,所述其他参数包括激活函数的阈值,卷积核的尺寸,卷积核的步长,特征图之间的权重中的至少之一。
实施例11
实施例11示例了根据本申请的一个实施例的一个解码层组的示意图,如附图11所示。附图11中,解码层组#j包括L层,即层#1,#2,...,#L;所述解码层组是所述P2个解码层组中的任一解码层组。
作为一个实施例,所述L为4,所述L层中的第一层是输入层,所述L层的后三层都是卷积层,更细节的描述可以参考CNN相关的技术文献,例如Chao-Kai Wen,Deep Learning for Massive MIMO CSI Feedback,IEEE WIRELESS COMMUNICATIONS LETTERS,VOL.7,NO.5,OCTOBER 2018等等。
作为一个实施例,所述L层包括至少一个卷积层和一个池化层。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图12所示。在附图12中,第一节点中的处理装置1600包括第一接收机1601和第一发送机1602。
所述第一发送机1602发送第一消息,所述第一消息被用于确定候选图案集合;所述第一接收机1601,接收第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;所述第一发送机1602发送第一信道信息;
实施例12中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
作为一个实施例,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
作为一个实施例,所述第一条件集合包括:子带的数量不小于或者大于第一正整数。
作为一个实施例,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽。
作为一个实施例,仅当所述第一频带资源组的所述子带图案符合所述第一条件集合时,所述第一信道信息被用于监测所述第一编码器的性能。
作为一个实施例,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:仅当第一频带资源组的所述子带图案是所述候选图案集合中之一时,所述第一信道信息的性能被保证。
作为一个实施例,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
作为一个实施例,所述第一发送机1602,发送至少一个CQI;
作为一个实施例,所述第一节点1600是一个用户设备。
作为一个实施例,所述第一发送机1602包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发送机1602包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图13所示。在附图13中,第二节点中的处理装置1700包括第二发送机1701和第二接收机1702。
所述第二接收机1702接收第一消息,所述第一消息被用于确定候选图案集合;所述第二发送机1701,发送第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;所述第二接收机1702接收第一信道信息;
实施例13中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
作为一个实施例,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
作为一个实施例,所述第一条件集合包括:子带的数量不小于或者大于第一正整数。
作为一个实施例,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽。
作为一个实施例,仅当所述第一频带资源组的所述子带图案符合所述第一条件集合时,所述第一信道信息被用于监测所述第一编码器的性能。
作为一个实施例,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:仅当第一频带资源组的所述子带图案是所述候选图案集合中之一时,所述第一信道信息的性能被保证。
作为一个实施例,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
作为一个实施例,所述第二接收机1702,接收至少一个CQI;
作为一个实施例,所述第二节点1700是一个基站设备。
作为一个实施例,所述第二发送机1701包括所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701包括所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1701包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二接收机1702包括所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475。
作为一个实施例,所述第二接收机1702包括所述控制器/处理器475。
实施例14
实施例14示例了根据本申请的一个实施例的在第一RS资源组中测量的流程图,如附图14所示。
第一节点N1在步骤S500中在第一RS资源组中执行测量;第二节点N2在第一RS资源组的至少部分RS资源中发送参考信号。
作为一个实施例,所述至少部分RS资源包括用于信道测量的RS资源。
所述第一节点N1在所述第一RS资源组中执行的所述测量的具体实施方式是硬件设备商自行确定的,下面给出一个非限制性的例子:
所述第一节点针对每个PRB测量信道参数矩阵,所述信道参数矩阵是Nt行Nr列的,其中每个元素是信道冲激响应;所述Nt和和所述Nr分别是一个RS资源中的天线端口的数量和接收天线的数量;所述第一节点将每一个子带内所有的PRB上测量的信道参数矩阵合并得到每一个子带的信道矩阵。第一编码器的输入包括所述第一频带资源组中的部分或者全部子带的信道矩阵,或者,第一编码器的输入(或者本申请的所述第一矩阵组)包括所述第一频带资源组中的部分或者全部子带的信道矩阵的特征向量。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
本领域的技术人员应当理解,本申请可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (28)

  1. 被用于无线通信的第一节点,其中,包括:
    第一发送机,发送第一消息,所述第一消息被用于确定候选图案集合;发送第一信道信息;
    第一接收机,接收第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;
    其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
  3. 根据权利要求2所述的第一节点,其特征在于,所述第一条件集合包括:子带的数量不小于或者大于第一正整数。
  4. 根据权利要求2或3中任一权利要求所述的第一节点,其特征在于,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽。
  5. 根据权利要求2至4中任一权利要求所述的第一节点,其特征在于,仅当所述第一频带资源组的所述子带图案符合所述第一条件集合时,所述第一信道信息被用于监测所述第一编码器的性能。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:仅当第一频带资源组的所述子带图案是所述候选图案集合中之一时,所述第一信道信息的性能被保证。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
  8. 被用于无线通信的第二节点,其中,包括:
    第二接收机,接收第一消息,所述第一消息被用于确定候选图案集合;接收第一信道信息;
    第二发送机,发送第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;
    其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
  9. 根据权利要求8所述的第二节点,其特征在于,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
  10. 根据权利要求9所述的第二节点,其特征在于,所述第一条件集合包括:子带的数量不小于或者大于第一正整数。
  11. 根据权利要求9或10中任一权利要求所述的第二节点,其特征在于,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽。
  12. 根据权利要求9至11中任一权利要求所述的第二节点,其特征在于,仅当所述第一频带资源组的所述子带图案符合所述第一条件集合时,所述第一信道信息被用于监测所述第一编码器的性能。
  13. 根据权利要求8至12中任一权利要求所述的第二节点,其特征在于,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:仅当第一频带资源组的所述子带图案是所述候选图案集合中之一时,所述第一信道信息的性能被保证。
  14. 根据权利要求8至13中任一权利要求所述的第二节点,其特征在于,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
  15. 被用于无线通信的第一节点中的方法,其中,包括:
    发送第一消息,所述第一消息被用于确定候选图案集合;
    接收第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源 组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;
    发送第一信道信息;
    其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
  16. 根据权利要求15所述的第一节点中的方法,其特征在于,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
  17. 根据权利要求16所述的第一节点,其特征在于,所述第一条件集合包括:子带的数量不小于或者大于第一正整数。
  18. 根据权利要求16或17中任一权利要求所述的第一节点中的方法,其特征在于,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽。
  19. 根据权利要求16至18中任一权利要求所述的第一节点中的方法,其特征在于,仅当所述第一频带资源组的所述子带图案符合所述第一条件集合时,所述第一信道信息被用于监测所述第一编码器的性能。
  20. 根据权利要求15至19中任一权利要求所述的第一节点中的方法,其特征在于,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:仅当第一频带资源组的所述子带图案是所述候选图案集合中之一时,所述第一信道信息的性能被保证。
  21. 根据权利要求15至20中任一权利要求所述的第一节点中的方法,其特征在于,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
  22. 被用于无线通信的第二节点中的方法,其中,包括:
    接收第一消息,所述第一消息被用于确定候选图案集合;
    发送第二消息,所述第二消息被用于指示第一RS资源组和第一频带资源组,所述第一RS资源组包括至少一个RS资源,所述第一频带资源组包括至少一个子带;
    接收第一信道信息;
    其中,所述第一消息被用于辅助确定所述第一频带资源组的子带图案,针对所述第一RS资源组的测量被用于生成所述第一信道信息;所述第一信道信息针对的频域资源包括所述第一频带资源组。
  23. 根据权利要求22所述的第二节点中的方法,其特征在于,所述第一消息被用于指示第一条件集合;所述第一条件集合包括任意相邻的两个子带之间的频域间隔不大于或者小于第一频域宽度。
  24. 根据权利要求23所述的第二节点中的方法,其特征在于,所述第一条件集合包括:子带的数量不小于或者大于第一正整数。
  25. 根据权利要求23或24中任一权利要求所述的第二节点中的方法,其特征在于,所述第一条件集合包括:从频域上最低的子带到频域上最高的子带所覆盖的带宽不大于或者小于第二频域带宽。
  26. 根据权利要求23至25中任一权利要求所述的第二节点中的方法,其特征在于,仅当所述第一频带资源组的所述子带图案符合所述第一条件集合时,所述第一信道信息被用于监测所述第一编码器的性能。
  27. 根据权利要求22至26中任一权利要求所述的第二节点中的方法,其特征在于,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:仅当第一频带资源组的所述子带图案是所述候选图案集合中之一时,所述第一信道信息的性能被保证。
  28. 根据权利要求22至27中任一权利要求所述的第二节点中的方法,其特征在于,所述短语所述第一消息被用于辅助确定所述第一频带资源组的子带图案包括:所述候选图案集合适用于第一编码器;其中,所述第一编码器被用于生成所述第一信道信息,针对所述第一RS资源组的所述测量被用于得到所述第一编码器的输入。
PCT/CN2023/099849 2022-06-16 2023-06-13 用于无线通信的方法和装置 WO2023241550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210682699.9A CN117295166A (zh) 2022-06-16 2022-06-16 用于无线通信的方法和装置
CN202210682699.9 2022-06-16

Publications (1)

Publication Number Publication Date
WO2023241550A1 true WO2023241550A1 (zh) 2023-12-21

Family

ID=89192276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099849 WO2023241550A1 (zh) 2022-06-16 2023-06-13 用于无线通信的方法和装置

Country Status (2)

Country Link
CN (1) CN117295166A (zh)
WO (1) WO2023241550A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110072290A (zh) * 2014-11-12 2019-07-30 上海朗帛通信技术有限公司 一种laa系统的通信方法和装置
CN110268738A (zh) * 2017-02-08 2019-09-20 三星电子株式会社 用于波束管理的方法和设备
CN112135350A (zh) * 2019-06-24 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110072290A (zh) * 2014-11-12 2019-07-30 上海朗帛通信技术有限公司 一种laa系统的通信方法和装置
CN110268738A (zh) * 2017-02-08 2019-09-20 三星电子株式会社 用于波束管理的方法和设备
CN112135350A (zh) * 2019-06-24 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM WIRELESS GMBH: "Restructuring 38.508-1 message contents for Demod and CSI reporting test cases", 3GPP DRAFT; R5-202881, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG5, no. Online; 20200518 - 20200529, 2 June 2020 (2020-06-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051892818 *

Also Published As

Publication number Publication date
CN117295166A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2019174489A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022193643A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019041240A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019014882A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2021031950A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023241550A1 (zh) 用于无线通信的方法和装置
WO2023231975A1 (zh) 用于无线通信的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023236923A1 (zh) 用于无线通信的方法和装置
WO2023227046A1 (zh) 用于无线通信的方法和装置
WO2023236852A1 (zh) 一种用于无线通信的方法和装置
WO2023236851A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024001865A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024008065A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193672A1 (zh) 用于无线通信的方法和装置
WO2023056853A1 (zh) 用于无线通信的方法和装置
WO2024008064A1 (zh) 用于无线通信的方法和装置
WO2024012341A1 (zh) 用于无线通信的方法和装置
WO2024032801A1 (zh) 用于无线通信的方法和装置
WO2024012340A1 (zh) 用于无线通信的方法和装置
WO2024037412A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023061353A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023274046A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024140297A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823118

Country of ref document: EP

Kind code of ref document: A1