WO2023241450A1 - 一种涡轮导叶结构 - Google Patents

一种涡轮导叶结构 Download PDF

Info

Publication number
WO2023241450A1
WO2023241450A1 PCT/CN2023/099131 CN2023099131W WO2023241450A1 WO 2023241450 A1 WO2023241450 A1 WO 2023241450A1 CN 2023099131 W CN2023099131 W CN 2023099131W WO 2023241450 A1 WO2023241450 A1 WO 2023241450A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
plate
edge plate
edge
cover plate
Prior art date
Application number
PCT/CN2023/099131
Other languages
English (en)
French (fr)
Inventor
曹源
张诗尧
鲍骐力
洪辉
张屹尚
Original Assignee
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发商用航空发动机有限责任公司 filed Critical 中国航发商用航空发动机有限责任公司
Publication of WO2023241450A1 publication Critical patent/WO2023241450A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators

Definitions

  • An object of the present disclosure is to provide a turbine guide vane structure that can simply realize assembly between CMC components and metal components and can alleviate the thermal mismatch problem in the axial direction.
  • pin Penetrating at least part of the edge plate flange and the cover plate flange it is used to realize the constraint between the part of the edge plate flange and the cover plate flange; wherein, at least part of the pins also include a pin for anchoring The extended end of the casing; the elastic member is sleeved on at least part of the outside of the pin and is squeezed between the flange of the edge plate and the flange of the cover plate connected to the part of the pin to provide axial pre-tightening force.
  • the edge plate includes an upper edge plate and a lower edge plate
  • the metal cover plate includes an upper cover plate and a lower supporting plate
  • the upper cover plate cooperates with the upper edge plate
  • the lower supporting plate cooperates with the lower edge plate
  • the pin with the extended end penetrates the cover flange of the upper cover plate and the edge plate flange of the upper edge plate.
  • the turbine guide vane structure includes a leading edge and a trailing edge
  • the elastic member is sleeved on a pin located between the cover plate flange and the edge plate flange at the leading edge.
  • the cover flange is located inside the edge panel flange.
  • the cover flange and the edge plate flange include pin holes, and the pins interfere with the pin holes on the cover flange and fit with the edge plate.
  • the pin holes in the flange have a clearance fit.
  • the pin hole is a track-shaped hole or an elliptical hole, and the long axis of the pin hole is consistent with the circumferential direction of the turbine guide vane structure.
  • the turbine guide vane structure further includes a connecting screw and a fastening lock nut.
  • the connecting screw penetrates the metal cover plate and the CMC component.
  • the fastening lock nut is provided One end of the connecting screw is used to tighten the connecting screw, and then compress the metal cover plate and the CMC component.
  • the above-mentioned turbine guide vane structure relies on the face-to-face cooperation between the cover plate flange and the edge plate flange to achieve positioning constraints. With the help of air flow pressure or pin connection, the connection constraints between the metal parts and the CMC parts are further strengthened; in addition, elasticity is provided.
  • the components alleviate the thermal mismatch problem between metal components and CMC components in the axial direction.
  • the overall structure is simple, which reduces the complexity of the CMC component structure and avoids excessive requirements on CMC molding accuracy. Seek to reduce the amount of machine addition.
  • Figure 1 is a schematic diagram of a typical aeroengine structure.
  • Figure 2 is a schematic diagram of an embodiment of a turbine guide vane structure.
  • Figure 3 is a cross-sectional view of an embodiment of a turbine guide vane structure.
  • Figure 5A is a schematic diagram of the position of the leading edge positioning pin.
  • Figure 5B is a schematic diagram of the position of the trailing edge positioning pin.
  • Figure 6 is a schematic diagram of the appearance of an embodiment of the pin hole.
  • Figure 7 is a schematic diagram of another embodiment of the cooperation between the cover flange and the edge panel flange.
  • the turbine guide vane structure is located at the front end of the turbine and needs to withstand high temperatures.
  • ceramic matrix composites CMC are mostly used, which can potentially increase the working temperature of parts by about 400 to 500°C, reduce weight by 1/3 to 2/3, simplify part structure, and significantly reduce cooling. Gas consumption improves engine efficiency, while also significantly reducing fuel consumption and NOx and COx emissions.
  • CMC turbine guide vanes still need to be connected to metal parts such as casings. Due to the large difference in thermal expansion coefficients between CMC materials and metal materials, the thermal mismatch between CMC components and metal structures is serious at high temperatures.
  • the structure of CMC components should not be too complex, and various types of mechanical design, machining volume, and mechanical coordination should be minimized to avoid excessive precision requirements for CMC assembly.
  • the turbine guide vane structure described in the present disclosure can alleviate the thermal mismatch problem between CMC components and metal structures, and can effectively reduce the complexity and molding accuracy of CMC component structures and reduce the amount of machining while ensuring the connection effect.
  • the X direction in the figure represents the axial direction of the engine, and the air flow G flows from left to right, that is, from -X to +X;
  • the Y direction represents the direction of the turbine.
  • the radial direction, the Z direction that is perpendicular to the X direction and the Y direction respectively, represents the circumferential direction of the turbine, that is, the circumferential direction.
  • the -X direction represents the incoming direction of the airflow, which is the leading edge direction
  • the +X direction represents the outflowing direction of the airflow, which is the trailing edge direction.
  • the turbine guide vane structure includes a CMC component 700 and a metal cover plate 900.
  • the CMC component 700 includes a blade body 756 and an edge plate 750.
  • the edge plate 750 is used to cooperate with the metal cover plate 900.
  • the edge plate 750 includes an upper edge plate 751 and a lower edge plate 752.
  • the metal cover plate 900 includes an upper cover plate 901 and a lower supporting plate 902.
  • the upper cover plate 901 cooperates with the upper edge plate 751, and the lower supporting plate 902 cooperates with the lower edge.
  • the plates 752 cooperate, and the blade body 756 connects the upper edge plate 751 and the lower edge plate 752.
  • the upper edge plate 751, the lower edge plate 752 and the blade body 756 made of CMC can be made in one piece and the fibers are continuous; they can also be assembled together through a mortise and tenon structure and the fibers are discontinuous.
  • the turbine guide vane structure also includes a connecting screw 933 and a fastening lock nut 934.
  • the connecting screw 933 penetrates metal
  • the cover plate 900 and the CMC component 700 are fastened by a locknut 934 disposed at one end of the connecting screw rod 933 for tightening the connecting screw rod 933 and thereby compressing the metal cover plate 900 and the CMC component 700 .
  • the turbine guide vane structure also includes a spring member 922 that is radially pressed between the CMC component 700 and the metal cover plate 900 for solving the thermal mismatch problem between the metal and the CMC component in the radial direction.
  • connecting screw 933 is connected to the metal upper cover 901 by welding or other methods, tighten the locknut 934 to connect the connecting screw 933 and the lower supporting plate 902 together.
  • the bolt pre-tightening force is initially applied, and the metal upper cover plate 901 and the lower supporting plate 902 are pressed between the upper edge plate 751 and the lower edge plate 752 through the pre-compression of the spring member 922.
  • the elastic deformation of the spring member 922 can provide movement margin, effectively alleviating the thermal mismatch problem in the radial direction.
  • At least part of the axial side of the edge plate 750 includes the edge plate flange 710, and at least part of the axial side of the metal cover that cooperates with the edge plate includes the cover flange.
  • the edge 910 and the edge plate flange 710 are used to make surface contact with the cover flange 910.
  • the upper edge plate 751 and the lower edge plate 752, which are originally approximately parallel to the ZOX plane, are folded on the axial side toward the Y direction to form an edge plate flange 710.
  • the flange flange 710 includes a first flange flange 754 , a second flange flange 755 and a third flange flange 753 .
  • the upper cover plate 901 and the lower supporting plate 902 which are originally approximately parallel to the ZOX plane, are folded on the axial side in the Y direction to form the cover flange 910.
  • the embodiment shown in FIG. 2 and FIG. 3 are identical to the cover plate 901 and the lower supporting plate 902 which are originally approximately parallel to the ZOX plane, are folded on the axial side in the Y direction to form the cover flange 910.
  • the cover flange 910 includes a first cover flange 904 corresponding to the first edge flange 754 , and a third cover flange 904 corresponding to the second edge flange 755 .
  • the second cover flange 903 and the third cover flange 905 corresponding to the third edge plate flange 753.
  • Each edge plate flange 710 is in surface contact with each cover plate flange 910 .
  • the number of flanges is not limited to the above embodiment.
  • the metal cover plate 900 or the CMC edge plate 750 may have a number of flanges ranging from 1 to 4.
  • the specific number is: Determined by the specific working environment of the turbine guide vanes.
  • the tension of the elastic member 921 is directly applied to the third edge plate flange 753 of the leading edge, thereby tightening the third edge plate flange 753 of the upper edge plate 751 located at the trailing edge.
  • An edge flange 754 is pressed against the first cover flange 904 of the upper cover 901 so that the two are in surface contact.
  • the secondary outer ring casing 811 constrains and positions the first edge plate flange 754 and the first cover plate flange 904 in the axial direction through the extended end 9331 of the pin 930.
  • the contact surface between the three is used as the assembly reference surface.
  • the contact surface between the first-stage outer ring casing 801 and the third cover flange 905 located at the front edge can serve as an auxiliary axial constraint.
  • the thermal expansion of the metal cover 900 and the upstream and downstream metal components, such as the first-stage outer ring casing 801 and the second-stage outer ring casing 811, in the axial direction of the engine is much greater than that of the CMC component 700, through the axial elasticity
  • the length changes of the member 921 are coordinated to alleviate the thermal mismatch problem in the axial direction.
  • the heat loss of the turbine guide vane structure in the radial and axial directions is simultaneously alleviated. It solves the matching problem and has a simple structure, which reduces the complexity of the overall structure and effectively reduces the amount of machining.
  • the edge plate flange 710 of the upper edge plate 751 extends radially outward, and the cover flange 910 of the upper cover plate 901 extends radially inward, where inward refers to along - Y direction, outward refers to the +Y direction.
  • the edge plate flange 710 of the lower edge plate 752 extends radially inward, and the cover flange 910 of the lower supporting plate 902 extends radially outward.
  • the edge plate 750 is embedded in the U-shaped groove formed by the flange of the metal cover plate 900 to achieve matching.
  • the cover flange 910 and the edge flange 710 include pin holes 940.
  • the pins 930 interfere with the pin holes 940 on the cover flange 910 and fit with the edge flange.
  • the pin hole on the 710 is a 940 clearance fit.
  • the lower edge of the third cover flange 905 passes through the first pin 931 is mounted on the first-stage outer ring casing 801; the first pin 931 connects the third cover flange 905 located at the front edge of the upper cover plate and the third edge plate flange 753 located at the front edge of the CMC guide vane upper edge plate. stand up.
  • the first pin 931 has an interference fit with the pin hole 940 of the third cover flange 905 and has a clearance fit with the pin hole 940 of the third edge flange 753 . An interference fit prevents the pin from falling out.
  • the second pin 932 connects the first edge plate flange 754, the first cover flange 904 and the secondary outer ring casing 811 together.
  • the second pin 932 has an interference fit with the pin hole on the first cover plate flange 904 and a clearance fit with the pin hole on the first edge plate flange 754 .
  • the pin hole 940 is a racetrack-shaped hole or an elliptical hole, and the long axis of the pin hole 940 is consistent with the circumferential direction of the turbine guide vane structure to provide a suitable margin of movement for the pin and alleviate the thermal mismatch problem.
  • pins 930 include flared pins or stepped pins.
  • the part of the first pin 931 located in the third edge plate flange 753 has a horn-shaped structure to enhance the axial restraint of the guide vane.
  • the diameter of the part of the second pin 932 located in the secondary outer ring casing 811 and the first cover flange 904 is relatively thick, and the part of the second pin 932 located in the first edge plate flange 754 is thinner in diameter, thereby forming a step. type pin structure, when the first edge plate flange 754 moves axially to the right, it can be blocked by the step of the pin, thereby strengthening the axial restraint.
  • the above-mentioned turbine guide vane structure relies on the face-to-face cooperation between the cover plate flange and the edge plate flange to achieve positioning constraints. With the help of air flow pressure or pin connection, the connection constraints between the metal parts and the CMC parts are further strengthened; in addition, elasticity is provided.
  • the components alleviate the thermal mismatch problem between metal components and CMC components in the radial and axial directions.
  • the overall structure is simple, which reduces the complexity of the CMC component structure, avoids excessive requirements on CMC molding accuracy, and reduces the machining amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

提供一种涡轮导叶结构,该结构包括CMC部件和金属盖板,CMC部件包括叶身和缘板,缘板用于与金属盖板配合,至少部分缘板的轴向侧面包括缘板翻边,至少部分与该缘板配合的金属盖板的轴向侧面包括盖板翻边,缘板翻边用于与盖板翻边面面接触,该结构还包括销钉和弹性件。销钉贯穿至少部分缘板翻边和盖板翻边,用于实现该部分缘板翻边和盖板翻边之间的约束;其中,至少部分销钉还包括用于挂靠机匣的延伸端;弹性件套设在至少部分销钉外部并被挤压在该部分销钉所连接的缘板翻边和盖板翻边之间,用于提供轴向预紧力。上述涡轮导叶结构能够缓解热失配问题,且结构整体简单,减少了部件结构的复杂程度。

Description

一种涡轮导叶结构 技术领域
本公开涉及航空发动机领域,具体涉及CMC涡轮导叶领域。
背景技术
现代商用涡扇航空发动机正朝着大涵道比、大推力、低油耗、高安全可靠性的方向不断发展,其热端零部件,如导叶(Vane),目前一般采用高温合金精密铸造成型。随着先进商用航空发动机性能设计指标不断提高,压比增大,涡轮前温度也越来越高,传统高温合金材料往往暴露出其耐温能力不足等问题,需采用复杂的气膜冷却系统以降低其服役温度。大量冷却气体的引入又会使得燃烧不充分,造成有害气体的排放,污染环境,降低发动机的热效率,难以满足先进航空发动机的设计要求。
目前在涡轮静子件如涡轮导向叶片上多采用陶瓷基复合材料(Ceramics matrix composites,CMC),但受限于陶瓷基复合材料制备工艺,以及陶瓷基复合材料自身特点,在CMC部件结构及其与上下游部件装配方面存在以下问题:(1)CMC部件结构不能过于复杂;(2)CMC部件成型精度相对较低,成型后机械加工困难,应尽量减少各类型的机械加工及机加量,避免对CMC装配免提出过高的精度要求;(3)由于热膨胀系数与金属差距较大,在高温情况下CMC部件与金属结构之间的热失配严重。
因此,有必要提出一种涡轮导叶装配结构,以解决上述问题。
发明内容
本公开的一个目的是提供一种涡轮导叶结构,能够简单地实现CMC部件与金属部件之间的装配,并能够缓解在轴向上的热失配问题。
为实现上述目的的涡轮导叶结构包括CMC部件和金属盖板,所述CMC部件包括叶身和缘板,所述缘板用于与所述金属盖板配合。至少部分所述缘板的轴向侧面包括缘板翻边,至少部分与该缘板配合的金属盖板的轴向侧面包括盖板翻边,所述缘板翻边用于与所述盖板翻边面面接触,该结构还包括销钉和弹性件。销钉 贯穿至少部分所述缘板翻边和所述盖板翻边,用于实现该部分缘板翻边和所述盖板翻边之间的约束;其中,至少部分所述销钉还包括用于挂靠机匣的延伸端;弹性件套设在至少部分所述销钉外部并被挤压在该部分销钉所连接的缘板翻边和盖板翻边之间,用于提供轴向预紧力。
在一个或多个实施例中,所述缘板包括上缘板和下缘板,所述金属盖板包括上盖板和下托板,所述上盖板与所述上缘板配合,所述下托板与所述下缘板配合,具有所述延伸端的销钉贯穿所述上盖板的盖板翻边与所述上缘板的缘板翻边。
在一个或多个实施例中,该涡轮导叶结构包括前缘和尾缘,所述弹性件套设在位于前缘的所述盖板翻边与所述缘板翻边之间的销钉上。
在一个或多个实施例中,所述上缘板的缘板翻边径向向外延伸,所述上盖板的盖板翻边径向向内延伸;所述下缘板的缘板翻边径向向内延伸,所述下托板的盖板翻边径向向外延伸。
在一个或多个实施例中,所述盖板翻边位于所述缘板翻边的内侧。
在一个或多个实施例中,所述盖板翻边和所述缘板翻边上包括销钉孔,所述销钉与所述盖板翻边上的销钉孔过盈配合,与所述缘板翻边上的销钉孔间隙配合。
在一个或多个实施例中,所述销钉孔为跑道型孔或椭圆型孔,所述销钉孔的长轴与所述涡轮导叶结构的周向方向一致。
在一个或多个实施例中,所述销钉包括喇叭型销钉或台阶型销钉。
在一个或多个实施例中,所述涡轮导叶结构还包括连接螺杆和紧固防松螺母,所述连接螺杆贯穿所述金属盖板与所述CMC部件,所述紧固防松螺母设置在所述连接螺杆的一端,用于紧固所述连接螺杆,进而压紧所述金属盖板与所述CMC部件。
在一个或多个实施例中,所述涡轮导叶结构还包括弹簧件,被径向地压在所述CMC部件和所述金属盖板之间。
上述涡轮导叶结构凭借盖板翻边与缘板翻边的面面配合实现定位约束,借助于气流压力或者销钉的连接,进一步强化金属部件与CMC部件之间的连接约束;此外还通过设置弹性件缓解了金属部件与CMC部件在轴向方向上的热失配问题。结构整体简单,减少了CMC部件结构的复杂程度,避免对CMC成型精度的过高要 求,降低了机加量。
附图说明
本公开的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1是典型航空发动机结构的示意图。
图2是涡轮导叶结构的一个实施例的示意图。
图3是涡轮导叶结构的一个实施例的剖面图。
图4是上盖板与上缘板配合的一个实施例的剖面图。
图5A是前缘定位销钉的位置示意图。
图5B是尾缘定位销钉的位置示意图。
图6是销钉孔的一个实施例的外形示意图。
图7是盖板翻边和缘板翻边配合的另一个实施例的示意图。
符号标记说明
1、短舱
2、风扇
3、增压级
5、压气机
6、燃烧室
7、涡轮
8、尾椎
700、CMC部件
710、缘板翻边
750、缘板
751、上缘板
752、下缘板
753、第三缘板翻边
754、第一缘板翻边
755、第二缘板翻边
756、叶身
801、一级外环机匣
811、二级外环机匣
900、金属盖板
901、上盖板
902、下托板
903、第二盖板翻边
904、第一盖板翻边
905、第三盖板翻边
910、盖板翻边
930、销钉
931、第一销钉
932、第二销钉
933、连接螺杆
934、紧固防松螺母
940、销钉孔
921、弹性件
922、弹簧件
9331、延伸端
具体实施方式
下面结合具体实施例和附图对本公开作进一步说明,在以下的描述中阐述了更多的细节以便于充分理解本公开,但是本公开显然能够以多种不同于此描述的其它方式来实施,本领域技术人员可以在不违背本公开内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施例的内容限制本公开的保护范围。
需要注意的是,这些以及后续其他的附图均仅作为示例,其并非是按照等比 例的条件绘制的,并且不应该以此作为对本公开实际要求的保护范围构成限制。
燃气涡轮发动机的典型结构如图1所示,包括短舱1、风扇2、增压级3、压气机5、燃烧室6、涡轮7和尾椎8。气体由风扇2进入后,经增压级3增压后进入燃烧室6,并经燃烧室6燃烧后对涡轮7做功,带动风扇2产生推力。图1中X方向表示发动机轴向方向,Y方向表示径向方向。
涡轮导叶结构位于涡轮前端,需要承受较高温度。现多采用陶瓷基复合材料(Ceramics matrix composites,CMC)制作,能够将零部件工作温度提高约400~500℃的潜力,可减重1/3~2/3,简化零件结构,大幅度降低冷却气体用量,提高发动机效率,同时还能够大幅降低油耗,降低NOx、COx排放量。但目前CMC涡轮导叶还需要与机匣等金属部件连接。由于CMC材料与金属材料的热膨胀系数差距较大,在高温情况下CMC部件与金属结构之间的热失配严重。此外,CMC部件结构不能太复杂,应尽量减少各类型的机械设计、机加量和机械配合,避免对CMC装配免提出过高的精度要求。
本公开所述的涡轮导叶结构能够缓解CMC部件与金属结构之间的热失配问题,并且能够在保证连接效果的前提下有效减少CMC部件结构的复杂程度和成型精度,降低机加量。
该结构结合图2至图4理解,需要说明的是,图示中X方向表示发动机轴向方向,气流来流G从左向右,即从-X至+X方向流动;Y方向表示涡轮的径向方向,与X方向和Y方向分别垂直的Z方向表示涡轮的周向方向,也即环向方向。在图2中,沿-X方向表示气流来流方向,也即前缘方向,沿+X方向表示气流流出方向,也即尾缘方向。
涡轮导叶结构包括CMC部件700和金属盖板900,CMC部件700包括叶身756和缘板750,缘板750用于与金属盖板900配合。具体的,缘板750包括上缘板751和下缘板752,金属盖板900包括上盖板901和下托板902,上盖板901与上缘板751配合,下托板902与下缘板752配合,叶身756连接上缘板751和下缘板752。CMC材质的上缘板751、下缘板752和叶身756可以是一体制造的、纤维是连续的;也可以通过榫卯结构装配在一起,纤维是不连续的。
涡轮导叶结构还包括连接螺杆933和紧固防松螺母934,连接螺杆933贯穿金属 盖板900与CMC部件700,紧固防松螺母934设置在连接螺杆933的一端,用于紧固连接螺杆933,进而压紧金属盖板900与CMC部件700。涡轮导叶结构还包括弹簧件922,被径向地压在CMC部件700和金属盖板900之间,用于在径向方向上解决金属与CMC部件之间的热失配问题。如连接螺杆933通过焊接等方式与金属上盖板901连接成一体,紧固防松螺母934把连接螺杆933和下托板902连接在一起。初始施加螺栓预紧力,通过弹簧件922的预压缩,把金属上盖板901和下托板902压紧在上缘板751和下缘板752之间,弹簧件922的弹性变形能够提供活动余量,有效缓解径向上的热失配问题。
针对CMC缘板750与金属盖板900之间的配合,至少部分缘板750的轴向侧面包括缘板翻边710,至少部分与该缘板配合的金属盖板的轴向侧面包括盖板翻边910,缘板翻边710用于与盖板翻边910面面接触。如图3所示,原与ZOX平面近似平行的上缘板751和下缘板752在轴向侧面向Y方向翻折,形成缘板翻边710。
具体的,在2和图3所示的实施例中,缘板翻边710包括第一缘板翻边754、第二缘板翻边755和第三缘板翻边753。与上述缘板翻边710相对应的,原与ZOX平面近似平行的上盖板901和下托板902在轴向侧面向Y方向翻折,形成盖板翻边910。具体的,在2和图3所示的实施例中,盖板翻边910包括与第一缘板翻边754对应的第一盖板翻边904、与第二缘板翻边755对应的第二盖板翻边903以及与第三缘板翻边753对应的第三盖板翻边905。各缘板翻边710与各盖板翻边910面面接触。
本领域技术人员可以理解的是,翻边的数量不限于上述实施例,在其它实施例中,金属盖板900或CMC缘板750可以具有1~4个数量的翻边不等,具体数目由涡轮导叶的具体工作环境决定。
继续结合图2所示,该涡轮导叶结构还包括销钉930和弹性件921。销钉930贯穿至少部分缘板翻边710和盖板翻边910,用于实现该部分缘板翻边和盖板翻边之间的约束。其中,至少部分销钉930还包括用于挂靠机匣的延伸端9331,进而同时实现轴向和径向上的约束。如位于图4中涡轮导叶结构两侧的一级外环机匣801和二级外环机匣811,销钉930的延伸端9331穿过一级外环机匣801和二级外环机匣811,实现该涡轮导叶结构整体在外环机匣上的径向位置上的固定。销钉930本身轴向的穿过缘板翻边710和盖板翻边910,实现金属部件和CMC部件的轴向连接。
如在图2所示的一个实施例中,销钉930存在于上盖板901和上缘板751处,下缘板752和下托板902的翻边的接触不使用销钉930。这是因为在发动机工作时,在气流G流动方向上从左向右,气动力作用直接在CMC导叶叶身756上,进而推动位于下缘板752上的第二缘板翻边755靠紧在下托板902上的第二盖板翻边903上,该面接触即可保证下缘板752和下托板902间的约束,并能够将CMC部件的受力转移至金属部件上。
继续参照图2所示的实施例。具有延伸端9331的销钉930贯穿上盖板901的盖板翻边910与上缘板751的缘板翻边710。由于涡轮导叶结构的径向外侧,也即上缘板751和上盖板901部分需要固定,而相反的径向内侧,如下缘板752和下托板902之间可以容许有一定活动余量,因此,位于具有延伸端9331的销钉930在上盖板901和上缘板751处提供固定点即可。可以理解的是,在其他实施例中,如涡轮导叶结构只需要一侧与机匣固定,如仅需要前缘侧与机匣固定,则第二缘板翻边755和第二盖板翻边903可以使用不带延伸端9331的销钉930,此时销钉930仅起到连接约束作用,而不起到外部连接的作用。
继续结合图2理解,涡轮导叶结构还包括弹性件921,弹性件921套设在至少部分销钉930外部并被挤压在该部分销钉所连接的缘板翻边和盖板翻边之间,用于提供轴向预紧力,如位于第三盖板翻边905与第三缘板翻边753之间的弹性件921。弹性件921有初始预压缩,并在高温阶段仍然保持一定预压缩状态。弹性件921在安装时设置适当的预压缩以产生压紧力,弹性件921的张力直接施加在前缘的第三缘板翻边753上,进而将上缘板751上的位于尾缘的第一缘板翻边754压紧在上盖板901的第一盖板翻边904上,使两者面接触。二级外环机匣811在轴向上再通过销钉930的延伸端9331对第一缘板翻边754和第一盖板翻边904实现约束和定位。三者之间的接触面作为装配基准面。一级外环机匣801对位于前缘的第三盖板翻边905的接触面可以作为辅助轴向约束。
在高温阶段,因为金属盖板900以及上下游金属部件,如一级外环机匣801和二级外环机匣811,在发动机轴向方向上的热膨胀远大于CMC部件700,因此通过轴向弹性件921的长度变化进行协调,从而缓解在轴向方向上的热失配问题。连同前述径向方向上的弹簧件922,同时缓解涡轮导叶结构在径向和轴向方向上的热失 配问题,且结构简单,降低了整体结构的复杂程度,也有效降低了机加量。
弹性件921和/或弹簧件922包括但不限于采用高温镍基合金螺线弹簧、如X750弹簧、陶瓷弹簧、高温镍基组合Bellville垫圈或者高温镍基机械加工弹簧等。金属结构材料可以采用各类型高温合金,包括但不限于GH4169/GH3536/K417/DD6等金属材料。
由于该涡轮导叶结构包括前缘和尾缘,在一个实施例中,弹性件921套设在位于前缘的盖板翻边910与缘板翻边710之间的销钉930上,如图2和图5A所示。由于弹性件921的弹性预紧力能通过上缘板751直接传递至尾缘的第一缘板翻边754,因此能够增强第一缘板翻边754与第一盖板翻边904的贴紧程度,保证尾缘处上盖板901与上缘板751在尾缘处的固定。
可以理解的是,第一缘板翻边754与第一盖板翻边904、第二缘板翻边755与第二盖板翻边903之间也可以增加弹性件921,从而在多个位置上进一步缓解轴向方向上的热失配问题。
在一个或多个实施例中,上缘板751的缘板翻边710径向向外延伸,上盖板901的盖板翻边910径向向内延伸,此处向内指的是沿-Y方向,向外指的是沿+Y方向。下缘板752的缘板翻边710径向向内延伸,下托板902的盖板翻边910径向向外延伸。缘板750嵌入金属盖板900的翻边形成的U型凹槽中实现配合。
在一个或多个实施例中,如图7所示,盖板翻边910位于缘板翻边710的内侧,也即位于轴向内侧。CMC材质的缘板翻边710设置在金属材质外部,能够保护金属盖板翻边910不受外部高温影响。在高温阶段,金属盖板翻边910的膨胀率大于CMC部件,因此能够挤压外部的CMC材质的缘板翻边710,使得两者装配更可靠,也可以降低弹性件921的预压缩量,进而降低CMC缘板翻边710的受力。
在上述多个实施例的基础之上,盖板翻边910和缘板翻边710上包括销钉孔940,销钉930与盖板翻边910上的销钉孔940过盈配合,与缘板翻边710上的销钉孔940间隙配合。
具体的,结合图5A至图6理解,第三盖板翻边905下沿通过第一销钉 931挂接在一级外环机匣801上;第一销钉931把位于上盖板前缘的第三盖板翻边905和位于CMC导叶上缘板前缘的第三缘板翻边753连接起来。其中,第一销钉931与第三盖板翻边905上的销钉孔940是过盈配合,与第三缘板翻边753的销钉孔940是间隙配合。过盈配合能够避免销钉脱落。第二销钉932把第一缘板翻边754、第一盖板翻边904和二级外环机匣811连接在一起。其中,第二销钉932与第一盖板翻边904上的销钉孔是过盈配合,与第一缘板翻边754的销钉孔是间隙配合。
在一个实施例中,销钉孔940为跑道型孔或椭圆型孔,销钉孔940的长轴与涡轮导叶结构的周向方向一致,以为销钉提供合适的活动余量,减缓热失配问题。
此外,在一个或多个实施例中,销钉930包括喇叭型销钉或台阶型销钉。参照图5A所示,第一销钉931位于第三缘板翻边753内的部分为喇叭型结构,以增强导叶的轴向约束。参照图5B所示,第二销钉932位于二级外环机匣811和第一盖板翻边904内的部分直径较粗,位于第一缘板翻边754的部分直径较细,从而形成台阶型销钉结构,当第一缘板翻边754向右轴向窜动时,能够被销钉的台阶挡住,从而强化轴向约束。
上述涡轮导叶结构凭借盖板翻边与缘板翻边的面面配合实现定位约束,借助于气流压力或者销钉的连接,进一步强化金属部件与CMC部件之间的连接约束;此外还通过设置弹性件缓解了金属部件与CMC部件在径向和轴向方向上的热失配问题。结构整体简单,减少了CMC部件结构的复杂程度,避免对CMC成型精度的过高要求,降低了机加量。
需要说明的是,上述介绍中使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一 实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
本公开虽然以较佳实施例公开如上,但其并不是用来限定本公开,任何本领域技术人员在不脱离本公开的精神和范围内,都可以做出可能的变动和修改。因此,凡是未脱离本公开技术方案的内容,依据本公开的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本公开权利要求所界定的保护范围之内。

Claims (10)

  1. 一种涡轮导叶结构,包括CMC部件(700)和金属盖板(900),所述CMC部件(700)包括叶身(756)和缘板(750),所述缘板(750)用于与所述金属盖板(900)配合,其特征在于,
    至少部分所述缘板(750)的轴向侧面包括缘板翻边(710),至少部分与该缘板配合的金属盖板的轴向侧面包括盖板翻边(910),所述缘板翻边(710)用于与所述盖板翻边(910)面面接触,
    该结构还包括:
    销钉(930),贯穿至少部分所述缘板翻边(710)和所述盖板翻边(910),用于实现该部分缘板翻边和所述盖板翻边之间的约束;其中,至少部分所述销钉(930)还包括用于挂靠机匣的延伸端(9331);
    弹性件(921),套设在至少部分所述销钉(930)外部并被挤压在该部分销钉所连接的缘板翻边和盖板翻边之间,用于提供轴向预紧力。
  2. 如权利要求1所述的涡轮导叶结构,其特征在于,所述缘板(750)包括上缘板(751)和下缘板(752),所述金属盖板(900)包括上盖板(901)和下托板(902),所述上盖板(901)与所述上缘板(751)配合,所述下托板(902)与所述下缘板(752)配合,
    具有所述延伸端(9331)的销钉(930)贯穿位于所述上盖板(901)上的盖板翻边(910)与位于所述上缘板(751)上的缘板翻边(710)。
  3. 如权利要求1或2所述的涡轮导叶结构,其特征在于,该涡轮导叶结构包括前缘和尾缘,所述弹性件(921)套设在位于前缘侧的所述盖板翻边(910)与所述缘板翻边(710)之间的销钉(930)上。
  4. 如权利要求2所述的涡轮导叶结构,其特征在于,所述上缘板(751)的缘板翻边(710)径向向外延伸,所述上盖板(901)的盖板翻边(910)径向向内延伸;所述下缘板(752)的缘板翻边(710)径向向内延伸,所述下 托板(902)的盖板翻边(910)径向向外延伸。
  5. 如权利要求1或4所述的涡轮导叶结构,其特征在于,所述盖板翻边(910)位于所述缘板翻边(710)的内侧。
  6. 如权利要求5所述的涡轮导叶结构,其特征在于,所述盖板翻边(910)和所述缘板翻边(710)上包括销钉孔(940),所述销钉(930)与所述盖板翻边(910)上的销钉孔(940)过盈配合,与所述缘板翻边(710)上的销钉孔(940)间隙配合。
  7. 如权利要求6所述的涡轮导叶结构,其特征在于,所述销钉孔(940)为跑道型孔或椭圆型孔,所述销钉孔(940)的长轴与所述涡轮导叶结构的周向方向一致。
  8. 如权利要求1所述的涡轮导叶结构,其特征在于,所述销钉(930)为喇叭型销钉或台阶型销钉。
  9. 如权利要求1所述的涡轮导叶结构,其特征在于,所述涡轮导叶结构还包括连接螺杆(933)和紧固防松螺母(934),所述连接螺杆(933)贯穿所述金属盖板(900)与所述CMC部件(700),所述紧固防松螺母(934)设置在所述连接螺杆(933)的一端,用于紧固所述连接螺杆(933),进而压紧所述金属盖板(900)与所述CMC部件(700)。
  10. 如权利要求9所述的涡轮导叶结构,其特征在于,所述涡轮导叶结构还包括弹簧件(922),被径向地压在所述CMC部件(700)和所述金属盖板(900)之间。
PCT/CN2023/099131 2022-06-14 2023-06-08 一种涡轮导叶结构 WO2023241450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210672937.8 2022-06-14
CN202210672937.8A CN117266938A (zh) 2022-06-14 2022-06-14 一种涡轮导叶结构

Publications (1)

Publication Number Publication Date
WO2023241450A1 true WO2023241450A1 (zh) 2023-12-21

Family

ID=89192182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099131 WO2023241450A1 (zh) 2022-06-14 2023-06-08 一种涡轮导叶结构

Country Status (2)

Country Link
CN (1) CN117266938A (zh)
WO (1) WO2023241450A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477871A (zh) * 2010-11-29 2012-05-30 阿尔斯通技术有限公司 轴向流类型的燃气轮机
CN104220702A (zh) * 2012-04-11 2014-12-17 斯奈克玛 涡轮发动机,例如涡轮喷气发动机或涡轮螺旋桨发动机
US20150354396A1 (en) * 2014-06-05 2015-12-10 Techspace Aero S.A. Mould for an abradable track beneath the inner shroud of an axial-flow turbomachine compressor
CN105378226A (zh) * 2013-07-19 2016-03-02 通用电气公司 带有冲击挡板的涡轮喷嘴
US20180149032A1 (en) * 2016-11-30 2018-05-31 MTU Aero Engines AG Turbomachine seal system
CN110030037A (zh) * 2018-01-11 2019-07-19 中国航发商用航空发动机有限责任公司 涡轮导向叶片、涡轮导向叶片组件以及核心机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477871A (zh) * 2010-11-29 2012-05-30 阿尔斯通技术有限公司 轴向流类型的燃气轮机
CN104220702A (zh) * 2012-04-11 2014-12-17 斯奈克玛 涡轮发动机,例如涡轮喷气发动机或涡轮螺旋桨发动机
CN105378226A (zh) * 2013-07-19 2016-03-02 通用电气公司 带有冲击挡板的涡轮喷嘴
US20150354396A1 (en) * 2014-06-05 2015-12-10 Techspace Aero S.A. Mould for an abradable track beneath the inner shroud of an axial-flow turbomachine compressor
US20180149032A1 (en) * 2016-11-30 2018-05-31 MTU Aero Engines AG Turbomachine seal system
CN110030037A (zh) * 2018-01-11 2019-07-19 中国航发商用航空发动机有限责任公司 涡轮导向叶片、涡轮导向叶片组件以及核心机

Also Published As

Publication number Publication date
CN117266938A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US10301960B2 (en) Shroud assembly for gas turbine engine
US6821085B2 (en) Turbine engine axially sealing assembly including an axially floating shroud, and assembly method
JP2017025915A (ja) セラミックマトリクス複合材部品を金属部品に連結する方法およびシステム
JP5887130B2 (ja) 構造的に低延性のタービンシュラウド装置
US10801729B2 (en) Thermally coupled CMC combustor liner
JP4835330B2 (ja) タービンハウジング
US9188024B2 (en) Exhaust section for bypass gas turbine engines
JP2017524089A (ja) シュラウドハンガ組立体
CN110857780B (zh) 用于热发动机的流动控制壁组件
JPH02256801A (ja) 弾性装着出口案内ベーン
JP2016527445A (ja) 低延性タービンノズルのための取付装置
US20220268443A1 (en) Flow control wall for heat engine
US6742987B2 (en) Cradle mounted turbine nozzle
US10738639B2 (en) Curvic seal fitting and balance weight locations
JP2017061932A (ja) ガスタービンエンジン用のノズル及びノズルアセンブリ
WO2023241450A1 (zh) 一种涡轮导叶结构
US10550725B2 (en) Engine cases and associated flange
US10036269B2 (en) Leaf seal reach over spring with retention mechanism
JPS59180006A (ja) ガスタ−ビン静翼セグメント
WO2023246804A1 (zh) 一种涡轮导叶结构
CN220101352U (zh) 一种燃气轮机及交通工具
US10989203B2 (en) Centrifugal compressor and shroud therefore
US10408074B2 (en) Creep resistant axial ring seal
CN117189268A (zh) 涡轮导叶安装结构、涡轮
CN114776913B (zh) 一种大通径高温空气管路连接结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823018

Country of ref document: EP

Kind code of ref document: A1