WO2023241413A1 - 增压容器、增压器、光整装置以及液压油的增压方法 - Google Patents

增压容器、增压器、光整装置以及液压油的增压方法 Download PDF

Info

Publication number
WO2023241413A1
WO2023241413A1 PCT/CN2023/098699 CN2023098699W WO2023241413A1 WO 2023241413 A1 WO2023241413 A1 WO 2023241413A1 CN 2023098699 W CN2023098699 W CN 2023098699W WO 2023241413 A1 WO2023241413 A1 WO 2023241413A1
Authority
WO
WIPO (PCT)
Prior art keywords
straight line
line segment
finishing
hydraulic oil
arc
Prior art date
Application number
PCT/CN2023/098699
Other languages
English (en)
French (fr)
Inventor
雷力明
米天健
王威
王小康
樊林娜
周新民
高军帅
Original Assignee
中国航发上海商用航空发动机制造有限责任公司
陕西金信天钛材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发上海商用航空发动机制造有限责任公司, 陕西金信天钛材料科技有限公司 filed Critical 中国航发上海商用航空发动机制造有限责任公司
Publication of WO2023241413A1 publication Critical patent/WO2023241413A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/10Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
    • B24B31/116Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using plastically deformable grinding compound, moved relatively to the workpiece under the influence of pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/12Accessories; Protective equipment or safety devices; Installations for exhaustion of dust or for sound absorption specially adapted for machines covered by group B24B31/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of precision machining of internal flow channels, and in particular, to a pressurized container, a supercharger, a finishing device and a pressurizing method of hydraulic oil.
  • Parts with fine and complex internal flow channel structures are widely used in aerospace, shipbuilding, nuclear, automobile, mold and other industrial fields.
  • parts related to fluid power systems often have fine flow channels, deep holes and fine Complex inner cavity structures such as flow channels and deep holes are connected to transport, exchange or apply hydraulic pressure to fluids, such as fuel nozzles, heat exchangers, hydraulic components, etc. for various types of aviation/aerospace/ship/automotive engines. Oil circuit control throttle, etc.
  • Process technologies that can process fine and complex internal flow channels include precision machining, femtosecond/water guide/long pulse laser processing, electric discharge machining, and additive manufacturing (3D printing).
  • the structures of fine and complex internal flow channels processed by other single processes are relatively simple and have a small length-to-diameter ratio. They need to be combined with other combined processes such as welding to process fine and complex internal flow channels.
  • the fine and complex inner flow channel processed by precision machining will produce problems such as burrs, sharp corners or tool joint steps; the surface of the inner flow channel processed by femtosecond laser will produce adhered residue particles and surface "step” effect; water conduction/long
  • the inner flow channel surface of pulse laser and EDM processing will produce a remelted layer;
  • additive manufacturing (3D printing) is a technology that discretes complex three-dimensional structural part models into two-dimensional structures for layer-by-layer superposition forming. It makes complex and micro Integrated molding of complex internal flow channel parts has become possible, and therefore its applications in industrial fields such as aerospace, automobiles, and molds are increasing. However, additive manufacturing technology has its own process characteristics such as temperature gradients and layer-by-layer molding during the molding process, resulting in the presence of semi-sintered or bonded powder particles and surface "step” effects on the surface of the inner flow channel of the part.
  • Machining burrs, femtosecond laser processing inner flow channel adhering sintered particles, additive manufacturing inner flow channel surface bonding powder, etc. will affect the performance and safety of the parts: when the fluid introduced in the inner flow channel and the surface friction at high speed, it will cause When burrs, adhered residue particles or bonded powder fall off, they will become redundant and spread everywhere with the fluid, or block the oil circuit or cause mechanical wear and failure, thus causing major safety accidents; the inner surface with large roughness is easy to be damaged during long-term use.
  • the internal flow channels and connecting holes are prone to appear on the surface of the remelted layer. Microcracks may cause premature failure of parts, so the thickness of the remelted layer must be reduced or the remelted layer must not be allowed to appear.
  • the purpose of this application is to provide a pressurized container, a supercharger, a finishing device and a method for pressurizing hydraulic oil.
  • this application provides a pressurizing container for a supercharger, including: distributed in sequence from upstream to downstream: a first straight line segment with an aspect ratio > 5; a second arc segment with a 1/4 circle shape.
  • the arc is a concave arc; and the third straight line segment has an aspect ratio ⁇ 3; wherein the first straight line segment and the third straight line segment are coaxially parallel; the downstream end of the third straight line segment is the pressurized container The output end; the cross-sectional area ratio of the first straight line segment and the third straight line segment is 2.5 ⁇ 3.
  • the pressurized container adopts a structure in which the first straight line segment, the second arc segment is a 1/4 arc and is a concave arc, and the third straight line segment is used.
  • the hydraulic oil outputs a large and stable pressure after passing through the supercharger.
  • the principle is that the structure of the first straight line segment is Under higher hydraulic pressure, there will be a volume loss after the hydraulic oil becomes a compressible fluid.
  • the longer movement stroke of the piston can compensate for the volume loss of the hydraulic oil, and the second arc segment passes through the concave arc structure to achieve both It has a larger surface area to disperse the hydraulic pressure, so that the hydraulic pressure will not produce a high concentrated pressure on the wall due to the roll force.
  • the force and angle changes between the fluid mass elements also have a longer movement stroke to achieve stability and consistency, and also realize the The diversion effect of the hydraulic oil allows the fluid to advectively move to the throat at a low speed.
  • the concave arc provides a squeezing force to the fluid, which helps the fluid to be squeezed and densified, thereby improving greater and more stable hydraulic force.
  • the setting of the three straight line segments ensures that the aspect ratio is less than 3 to avoid excessively long fluid movement strokes, which will cause the final output hydraulic instability due to increased turbulence in the boundary layer.
  • the shorter stroke of the third section is conducive to the fluid advection state, stabilizing the outflowing hydraulic oil and improving the final hydraulic pressure adjustment accuracy and stability.
  • the first straight line section and the third straight line section are coaxially parallel, and the first straight line section is coaxially parallel to the third straight section.
  • the structure with a cross-sectional area ratio of the third straight line segment of 2.5 to 3 further ensures that the hydraulic oil flows stably and is pressurized in the pressurized container.
  • the length ratio of the first straight line segment, the radius of the second arc segment, and the third straight line segment is 11:5:4.
  • the chamfering radius at the connection between the first straight line segment and the second arc segment is 0.1 mm to 0.5 mm.
  • the pressurized vessel is made of steel.
  • the material of the pressurized container is 45# steel.
  • the inner wall of the pressurized container has a roughness Ra of 0.1 ⁇ m to 0.4 ⁇ m, a roundness of ⁇ 100 ⁇ m, and a cylindricity of ⁇ 200 ⁇ m.
  • this application provides a supercharger, including: a supercharging container as described in the first aspect, with hydraulic oil in the supercharging container; a piston is disposed in the supercharging container for use in a The hydraulic oil side receives the driving force and can move along the container wall of the first linear segment to push the hydraulic oil located on the other side of the piston to be output from the downstream end of the third linear segment.
  • the driving force received by the piston is 1MPa ⁇ 15MPa, and the output pressure is 2.5MPa ⁇ 45MPa.
  • this application provides a finishing device, including: a thrust system; a sealing system for accommodating the finishing medium for finishing processing; a conveying pipeline system connected to the sealing system; wherein the pusher The force system can exert thrust on the sealing system, so that the finishing medium contained in the sealing system is pushed through the delivery pipeline system to the workpiece to be finished; wherein the thrust system includes a hydraulic pump,
  • the hydraulic pump provides the driving force to the piston of the supercharger, and the hydraulic oil passes through the supercharged output of the supercharger.
  • the thrust system further includes a motor and a vertical plunger pump.
  • the hydraulic pump driven by the motor pushes the piston, and the hydraulic oil is boosted by the supercharger and output to the
  • the vertical plunger pump is connected with the sealing system and applies pressure to the finishing medium accommodated by the sealing system.
  • the pressure provided by the thrust system to the sealing system is greater than 50MPa, the adjustment accuracy is 0.01MPa ⁇ 0.1MPa, and the output pressure deviation is ⁇ 0.1%.
  • the present application provides a method for pressurizing hydraulic oil, which includes: pushing the hydraulic oil through a first straight line segment, a second arc segment, and a third straight line segment in order to pressurize and output; wherein, the first The aspect ratio of the straight line segment is >5, the second arc segment is a 1/4 arc and a concave arc, and the aspect ratio of the third straight line segment is ⁇ 3; the first straight line segment and the third straight line segment Coaxially parallel; the cross-sectional area ratio of the first straight line segment and the third straight line segment is 2.5-3.
  • Figure 1 is a schematic flowchart of a finishing method according to some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of finishing equipment according to some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a pressure vessel of a supercharger according to some embodiments of the present application.
  • the average roughness described below is to select multiple areas on the measured surface to measure and average the values to obtain the average roughness of the measured surface.
  • the optimal roughness described below is to select multiple areas on the measured surface to measure and take the minimum value to obtain the optimal roughness of the measured surface.
  • a certain area of roughness measurement can be a pipeline segment with a length of 8 mm. In the measured pipeline, select multiple pipeline segments with a length of 8 mm to measure and remove the minimum value.
  • Parts with fine and complex internal flow channel structures are widely used in aerospace, shipbuilding, nuclear, automotive, mold and other industrial fields.
  • current processing techniques such as precision machining, femtosecond/water conduction/long pulse
  • EDM processing, additive manufacturing (3D printing) and other technologies process the inner flow channel surface of fluid power components, they will bring disadvantages such as burrs, residues such as bonded powder and sintered particles, rough surfaces, and remelted layers. problem, it is necessary to use appropriate surface finishing technology to eliminate these adverse effects in order to meet the performance requirements of the product.
  • the inventor tried and compared a variety of inner flow channel surface finishing methods and found that the internal flow channel diameter of the part is larger (>3mm), the length-to-diameter ratio is smaller ( ⁇ 50:1), and the shape is approximately When running in a straight line, common methods such as manual polishing, chemistry, electrochemistry, plasma, magnetism, magnetorheology, abrasive flow, water jet and ultrasonic can be used for finishing.
  • common methods such as manual polishing, chemistry, electrochemistry, plasma, magnetism, magnetorheology, abrasive flow, water jet and ultrasonic can be used for finishing.
  • a large length-to-diameter ratio greater than or equal to 50:1:
  • abrasive water jet technology also known as microabrasive slurry jet, high-speed flow and high-speed water particle finishing
  • the nozzle uses the impact kinetic energy of the water jet with abrasive particles to be ejected Erosion removes the surface material of the workpiece, and the water jet nozzle maintains a short distance from the surface of the part. Therefore, the abrasive water jet technology is difficult to act on small internal flow channels (less than or equal to 3 mm) and large length-to-diameter ratios (greater than or equal to 50).
  • Fine internal flow channel is difficult to act on small internal flow channels (less than or equal to 3 mm) and large length-to-diameter ratios (greater than or equal to 50).
  • magnetic finishing is a flexible processing that uses larger-sized magnetic needle abrasive particles.
  • the principle is Surface convex points and concave points will be processed simultaneously under the action of an external magnetic field. Therefore, these flexible processing methods can only slightly brighten and improve the surface. Even if the amount of material removal is large, they cannot significantly improve the "step" effect and reduce the surface temperature. Surface roughness and large-scale peeling of powder, particles and burrs adhered to the surface are improved; in addition, this method cannot cope with the finishing of complex internal flow channels in the three-dimensional space due to the restricted magnetic field movement;
  • the inventor found after in-depth research that the above-mentioned processing methods, for the structure of the fine internal flow channel, will face the problem of being difficult to penetrate into the internal finishing of the fine internal flow channel and/or the finishing quality is not ideal. problem, so it is difficult to apply to finishing processing of fine internal flow channels.
  • the inventor further conducted in-depth research and invented a surface finishing method for fine internal flow channels.
  • a two-phase flow finishing medium with a viscosity of less than 1000cP liquid phase the two-phase flow finishing medium is in the fine inner flow channel.
  • the flow rate is >5m/s, and the flow rate flowing into the fine inner flow channel at one end reaches the saturation value that the diameter of the fine inner flow channel can accommodate.
  • the hydraulic pressure inside the inner flow channel is in a suppressed state, forming
  • the method of controlling the saturated flow rate of the liquid relative to the fine internal flow channel that is, through the synergistic effect of the low viscosity liquid phase, the fluid flow rate of the finishing medium, and the saturated flow rate, solves the problem of finishing processing of the fine internal flow channel.
  • the principle is that, first of all, due to the synergistic effect of the low-viscosity liquid phase, fluid flow rate and saturation flow, the smooth medium can smoothly enter the fine and complex internal flow channels and form a non-Newtonian flow path in the fine and complex internal flow channels.
  • the fluid boundary layer is parallel to the inner flow channel surface, and the abrasive shear friction in the hard non-Newtonian fluid like a "knife" enables targeted processing of surface bumps.
  • the synergistic effect of the above three causes the friction and micro-cutting force generated by the abrasive particles in the finishing medium and the surface of the fine and complex internal flow channels. Therefore, the optimal surface roughness can be obtained without being limited by the material of the fine and complex internal flow channels. Consistent with the average contact length range of the abrasive tip, it can even achieve super mirror quality with an optimal surface roughness Ra of 0.05 ⁇ m. This breaks through the limitations of the principles of abrasive flow and water jet technology.
  • the principle is that abrasive flow
  • the technical cutting mechanism is the volume force generated by the extrusion of abrasive particles onto the surface. Therefore, pits and pitting are prone to occur when processing metals with low hardness and polymer flexible materials (Ra>0.8 ⁇ m).
  • the cutting force is the erosion force caused by the impact of abrasive particles on the surface. Processing soft metals is prone to surface roughening (Ra>0.8 ⁇ m).
  • the current supercharger that uses a piston to supercharge is difficult to output stable and large hydraulic pressure.
  • the inventor designed a pressure vessel for a supercharger.
  • the hydraulic oil can output a large and stable pressure after passing through the supercharger.
  • the principle is that the first straight line section
  • the function of the structure is that under high hydraulic pressure, there will be a volume loss after the hydraulic oil becomes a compressible fluid. The longer movement stroke of the piston can compensate for the volume loss of the hydraulic oil, and the second arc segment passes through the concave circle.
  • the arc structure not only achieves a larger surface area to disperse the hydraulic pressure, so that the hydraulic pressure will not produce a high concentrated pressure on the wall due to the roll force, but also has a longer movement stroke to achieve stability in the force and angle changes between the fluid mass elements. Consistent with each other, it also achieves the diversion effect on the hydraulic oil, allowing the fluid to advectively move to the throat at a lower speed. At the same time, the concave arc provides squeezing force to the fluid, which helps the fluid to be squeezed and densified, making the lift larger and more stable.
  • the hydraulic force of the fluid, and the setting of the third straight line segment makes the aspect ratio less than 3, so as to avoid the hydraulic instability of the final output due to the increase of turbulence in the boundary layer due to too long fluid motion stroke.
  • the shorter stroke of the third section is conducive to the fluid advection state, stabilizing the outflowing hydraulic oil and improving the final hydraulic pressure adjustment accuracy and stability.
  • the first straight line section and the third straight line section are coaxially parallel, and the first straight line section and the third straight line section are coaxially parallel.
  • the structure with a cross-sectional area ratio of the third straight line segment of 2.5 to 3 further ensures that the hydraulic oil flows stably and is pressurized in the pressurized container.
  • the output pressure of the supercharger is achieved. 2.5MPa ⁇ 45MPa, while the adjustment accuracy is 0.01MPa ⁇ 0.1MPa, and the output pressure deviation is ⁇ 0.1%, ensuring that the output pressure is large and stable. Ensure the stability of the flow rate of the finishing medium during finishing processing to ensure the effect of finishing processing.
  • the pressurizing container of the supercharger disclosed in the embodiment of the present application enables the finishing device to provide a large and stable pressure to the finishing medium during operation, so that the corresponding finishing medium has >5m during processing. /s high-speed motion, and stably provide non-Newtonian fluid shear friction as hard as a "tool" to the workpiece to achieve targeted processing of surface bumps, and enable the abrasive particles to generate high micro-cutting forces.
  • the disclosure of the embodiments of the present application is not only applicable to the finishing method and finishing device introduced, but can also be applied to the pressurization of hydraulic oil in other equipment to provide a large and stable hydraulic force.
  • this application provides a surface finishing method for an internal flow channel, including:
  • a liquid-solid two-phase flow finishing medium is used, the liquid phase viscosity of the finishing medium is ⁇ 1000cP, and the solid phase is abrasive particles;
  • a predetermined pressure is applied to the smoothing medium, so that the smoothing medium flows in the fine inner flow channel at a flow rate of >5m/s, and the smoothing medium flows into the internal flow rate of the fine inner flow channel at one end. , reaching the saturation value that the diameter of the fine inner flow channel can accommodate the flow, and the hydraulic pressure inside the inner flow channel is in a suppressed state. state;
  • the liquid here has a viscosity of less than 1000cP.
  • the numerical description of the viscosity in this application refers to the Ubbelohde viscosity at normal temperature (about 25 degrees Celsius).
  • the optimal value of the viscosity of the liquid phase corresponding to the smoothing method for fine internal flow channels of different materials, sizes, and initial average roughness can be obtained by continuously increasing the viscosity based on a lower limit value.
  • the lower limit of viscosity in the current embodiment is about 50 cP.
  • the inventor obtained through a large amount of test data that for the fine internal flow channels of common materials such as titanium alloys, high-temperature alloys, steel, ceramics, aluminum alloys, polymer materials, etc., the liquid phase
  • the viscosity needs to be at least 50cP, and the roughness target value can be reached only after smoothing.
  • the critical value 1000cP here is generally not the optimal value, but the limit value for the smoothing medium to flow continuously, smoothly and stably in the fine internal flow channel.
  • the liquid phase described in the embodiment takes the water-based liquid phase as an example.
  • a certain thickening agent is added to the deionized water to make the water-based liquid have a certain viscosity.
  • the beneficial effect of using water-based liquid is that it is low-cost, easy to obtain, and more environmentally friendly, and the finishing medium is easy to clean after finishing.
  • the liquid phase here is not limited to water-based liquid, as long as it is a liquid with a viscosity ⁇ 1000cP.
  • the material of solid phase abrasive grains can be common abrasive grain materials, such as carbide ceramics: including silicon carbide, tungsten carbide, etc.; oxide ceramics: including alumina, zirconia, cerium oxide, etc.; nitride ceramics: including nitride Boron, chromium nitride, etc.; natural minerals: including diamond/sand, mica, quartz, olivine, etc. Preferably, it can be one or more combinations of diamond/sand and oxide ceramics.
  • carbide ceramics including silicon carbide, tungsten carbide, etc.
  • oxide ceramics including alumina, zirconia, cerium oxide, etc.
  • nitride ceramics including nitride Boron, chromium nitride, etc.
  • natural minerals including diamond/sand, mica, quartz, olivine, etc.
  • it can be one or more combinations of diamond/sand and oxide ceramics.
  • the particle size and mass concentration of abrasive particles When selecting the particle size and mass concentration of abrasive particles, it is generally based on a lower limit value and gradually increases the range to obtain the optimal value. If the particle size and mass concentration of the abrasive particles are lower than the lower limit, the expected finishing effect cannot be achieved, that is, the fine internal flow channel cannot reach the target value of surface roughness. The principle is that if the particle size is too small, the abrasive particles Its own mass is too low to generate enough kinetic energy to achieve effective grinding and polishing. If the mass concentration is too small, the probability of grinding surface processing points is reduced and effective grinding and polishing cannot be achieved. The selection of the lower limit value is generally more conservative, for example, it can be , conservatively select any lower limit value without exceeding the upper limit of the particle size.
  • the lower limit of the ratio of the inner flow channel diameter to the particle size of the abrasive particles is usually 20, that is, the inner flow channel diameter must ensure at least 20 abrasive grains. There is no clogging when passing through in parallel, that is, the upper limit of the particle size of the abrasive particles is usually 1/20 of the internal flow channel diameter, and the lower limit of the abrasive particles is generally 1/5 of the upper limit.
  • the lower limit of the mass concentration of abrasive particles is generally 10g/L. The selection of the lower limit value is generally more conservative because the pressure of the system is relatively large. If abrasive particles are blocked, it will lead to scrapping of the workpiece and the system, or even failure. Cracking and exploding.
  • the particle size of the abrasive particles and the mass concentration of the abrasive particles are gradually increased. Until significant flow resistance occurs due to excessively large abrasive particle size or excessive mass concentration, which causes a decrease in flow rate, and the collision between abrasive particles affects the flow rate, thereby reducing the flow rate, flow rate and grinding effect, that is, the optimal value can be Obtained through experiments based on the lower limit value.
  • a predetermined pressure is applied to the smoothing medium, so that the smoothing medium flows at a flow rate of >5m/s in the fine inner flow channel.
  • the predetermined pressure here refers to the use of this pressure in the initial state of the finishing process so that the finishing medium flows at a flow rate of >5m/s inside the fine inner flow channel.
  • the predetermined pressure is a concept of a range, rather than a specific value that can only be applied to the smooth medium.
  • Ultrasonic velocity measurement can be used, or the Hagen-Poasui law of viscous fluids can be used: Indirect measurement is performed; in the formula, D is the diameter of the internal flow channel, l is the length of the fine internal flow channel, p is the pressure difference acting on both ends of the fine internal flow channel, that is, the hydraulic pressure p, Re is the Reynolds number, u m is the flow rate of the liquid phase in the water-based two-phase flow, ⁇ l is the density of the liquid phase, and the flow rate of the liquid phase is roughly equal to the flow rate of the smoothing medium.
  • the flow velocity of the smooth medium is greater than 5m/s, which is based on the theoretical critical conditions for forming a non-Newtonian fluid and the critical value obtained by the inventor's long-term practice.
  • Engineering fluid mechanics data shows (for example, books and materials: Yang Shuren, Wang Zhiming, He Guangyu, et al. Engineering Fluid Mechanics [M]. Petroleum Industry Press, 2006.) that pure water with a viscosity of 1cP reaches the critical motion velocity of non-Newtonian fluid >16.6m /s, and the lower limit of the viscosity of the liquid phase in this embodiment is 50 cP, which is greater than 1 cP, so the critical flow velocity of the non-Newtonian fluid is less than 16.6 m/s.
  • the ideal processing effect cannot be obtained when it is less than 5m/s, so the critical value is 5m/s.
  • the smooth medium flows into the internal flow rate at one end of the fine inner flow channel, reaching the saturation value that the diameter of the fine inner flow channel can accommodate.
  • the hydraulic pressure inside the inner flow channel is in a suppressed state, which is what is known in the art. The state of saturated flow.
  • the meaning of the saturation value of the accommodating flow rate and the state of the saturated flow rate here is that when the fluid flows into the pipe, the pipe cross section is filled, and the pipe cross section can accommodate the maximum number of fluid molecules in parallel.
  • the two-phase flow smoothing medium By using a smoothing medium whose liquid phase viscosity is less than 1000cP, the two-phase flow smoothing medium
  • the flow velocity in the fine inner flow channel is >5m/s, and the flow rate flowing into the fine inner flow channel at one end reaches the saturation value that the diameter of the fine inner flow channel can accommodate.
  • the hydraulic pressure inside the inner flow channel The method of forming a saturated flow rate of the liquid relative to the fine internal flow channel in a pressure-suppressed state is through the synergistic effect of the low-viscosity liquid phase, fluid flow rate and saturated flow rate, which solves the problem of finishing processing of the fine internal flow channel.
  • the principle is that, first of all, due to the synergistic effect of the low viscosity liquid phase, fluid flow rate and saturated flow rate, the smooth medium is in a low viscosity and high flow rate state, so that it can smoothly enter the fine internal flow channels and flow within the fine internal flow channels.
  • a state of non-Newtonian fluid is formed in the channel.
  • the fluid boundary layer is parallel to the surface of the inner flow channel.
  • the micro-cutting force generated by the friction between the abrasive grains of the finishing medium and the surface of the fine inner flow channel it can be achieved without being limited by the material of the fine inner flow channel.
  • Obtain the optimal surface roughness consistent with the average contact length range of the abrasive tip which breaks through the limitations of the principles of abrasive flow and water jet technology.
  • the principle is that the cutting mechanism of abrasive flow technology is the extrusion of abrasive particles on the surface. Because of the volume force, pits and pitting are prone to occur when processing metals with low hardness and flexible polymer materials (Ra>0.8 ⁇ m).
  • the cutting force is the erosion force caused by the impact of abrasive particles on the surface. Processing soft metals is prone to surface roughening (Ra>0.8 ⁇ m).
  • the fluid dynamics conformal processing method of low viscosity and high flow rate causes the inner flow channel surface steps, sharp corners, geometric contour curvature and other positions that do not conform to fluid engineering to be polished more heavily. Inflection points, sharp edges, inner flow channels, etc.
  • the contour curvature and hole shape will achieve geometric streamline shaping, further improving the fluid movement performance of the internal flow channel.
  • the above embodiments propose that the critical flow rate for achieving targeted processing of surface bumps by utilizing the flow rate of the finishing medium to achieve hard non-Newtonian fluid and abrasive shear friction similar to that of a tool is 5 m/s.
  • the smoothing medium can finish the fine inner flow channel in a standard time period until the optimal surface roughness of the fine inner flow channel is the target value.
  • the standard time period here can be a predetermined continuous period of time, or it can be an intermittent period of time, or it can be a non-predetermined continuous period of time after the start, when the flow rate of the smoothing medium is detected to reach a fine internal flow.
  • the finishing process automatically stops. For example, as mentioned above, in some embodiments, after starting processing, the smoothing medium in the fine inner flow channel is measured.
  • the flow velocity or flow rate indirectly represents the optimal surface roughness.
  • the optimal surface roughness is the target value, which does not limit the need to directly measure the optimal surface roughness, but can also be characterized indirectly, for example As introduced above, the flow rate, flow rate, etc. of the smooth medium inside the fine internal flow channel can be characterized.
  • the above target value refers to the set optimal surface roughness value, which generally refers to the requirements for the final optimal surface roughness of the fine internal flow channel, but it does not rule out further finishing after the above finishing step. , what is set at this time is not the final optimal surface roughness requirement.
  • the finishing method introduced in the above embodiments uses a low-viscosity, high-speed solid-liquid two-phase fluid to achieve the saturated flow rate and two-phase flow rate of the inner flow channel to be processed by constructing a hydraulic pressure system at both ends of the inner flow channel to be processed.
  • the combination of the micro-cutting mechanism caused by the high-speed friction of the abrasive particles in the flow with the surface of the inner flow channel solves the long-standing problem in the industry of finishing fine inner flow channels with diameters less than or equal to 3mm and length-to-diameter ratios greater than or equal to 50:1. problem.
  • the present application provides a finishing device 100 , including: a thrust system 101 , multiple sealing systems 102 , and multiple conveying pipeline systems 103 .
  • Each sealing system 102 includes a piston 21 and a cylinder 18 mated with the piston 21 for accommodating the finishing medium 8 for finishing processing.
  • the thrust system 101 is connected to one end of the piston 21 to provide driving force for the piston 21 to push
  • the finishing medium 8 is output from the outlet end of the cylinder 18 .
  • Each conveying pipeline system 103 transports the finishing medium 8 contained in the corresponding sealing system 102 to different ports of the inner flow channel workpiece 34 for finishing, such as a set of sealing systems 102 and pipeline conveying systems 103 shown in Figure 2 Corresponding to the inlet of the workpiece 34, another set corresponds to the outlet, so that multiple sealing systems are connected through the workpiece 34.
  • the upstream end of the conveying pipeline system 103 is connected to the outlet end 190 of the sealing system 102, and the downstream end is used to output the finishing medium 8 for finishing the inner flow channel workpiece 34.
  • the thrust system 101 may be a hydraulic system, as shown in Figure 2, including a motor 1, a hydraulic oil tank 2, a hydraulic pump 3, a supercharger 6, a vertical plunger pump 5 and an oil pipe 4.
  • the motor 1 drives the hydraulic pump 2 from the oil tank. 2 extracts hydraulic oil of a certain pressure, and the pressure oil supercharged by the supercharger 6 is transported to the vertical plunger pump 5.
  • the vertical plunger pump 5 is connected to the piston 21 through a ball head to drive the piston 21 to push the finishing medium 8 to be output from the cylinder 18 .
  • a motor-driven hydraulic system it not only has larger thrust but also has higher precision.
  • the pressure delivered by the vertical plunger pump 5 to the piston 21 needs to be above 50MPa, and the pressure must be stable.
  • the required output to the vertical plunger pump 5 needs to reach 2.5MPa ⁇ 45MPa, while the adjustment accuracy is 0.01MPa ⁇ 0.1MPa, and the output pressure deviation is ⁇ 0.1%, ensuring that the output pressure is large and Stablize.
  • the supercharger 6 includes a supercharger container 61, a piston 62 and hydraulic oil 63.
  • the hydraulic oil 63 is located in the pressurized container 61.
  • the piston 62 receives driving force on one side and can move along the container wall of the pressurized container 61 to push the hydraulic oil 63 located on the other side of the piston 62 to be pressurized and output from the supercharger.
  • a motor-driven hydraulic pump is used to provide driving force for the piston 62, and the range of the driving force it receives is 1MPa to 15MPa.
  • a driving structure of a motor-driven hydraulic pump it can provide a larger driving force and at the same time, It can also have higher accuracy.
  • the meaning of the supercharger 6 here refers to a device that supercharges the input hydraulic fluid.
  • the piston 62 refers to a component that can move reciprocally along the pressurized container 61 .
  • the pressurized container 61 includes a first straight line segment 11 , a second arc segment 12 and a third straight line segment 13 sequentially distributed from upstream to downstream.
  • the upstream and downstream here refer to the flow direction of the hydraulic oil in the pressurized container 61 as a reference, that is, the flow direction of the fluid is from upstream to downstream.
  • the inner wall of the first linear section 11 allows the piston 62 to move along the wall surface to push the hydraulic oil 63 .
  • the straight line segments, arc segments and the expressions of straight lines and arcs here are all visual descriptions of the cross-sectional structure of the pressurized container 61.
  • the actual structure of the pressurized container 61 is the above-mentioned straight lines and arcs.
  • the 360° axis of the supercharger forms a chamber structure, for example, a straight line around the axis 360° forms a cylindrical chamber structure.
  • the aspect ratio of the first straight section 11 is >5. If the length of the corresponding piston 62 is 40mm, the length Ls1 of the first straight section 11 is generally greater than 120mm. The reason is that the length of the first straight section 11 needs to consider the compressible fluid.
  • the volume loss is due to the volume loss of the hydraulic oil 63 after it becomes a compressible fluid under high hydraulic pressure. The longer motion range of the piston can compensate for the volume loss of the hydraulic oil 63.
  • the second arc segment 12 is a 1/4 arc and a concave arc.
  • the function of the contracted throat is to constrain the fluid and increase hydraulic pressure.
  • concave arc here is that the arc structure is oriented toward the inside of the pressurized container 61 rather than toward the outside of the pressurized container 61 , that is, the center of the arc is located outside the pressurized container 61 .
  • the meaning of 1/4 arc is that it is 1/4 of the circle, that is, the corresponding central angle is 90°. Since the first straight line segment 11 and the third straight line segment 13 with different diameters are coaxially parallel, they need to be 1/4 Arcs can smoothly connect the two structures.
  • the concave arc structure has a larger surface area, so that the hydraulic pressure will not produce a high concentrated pressure on the wall due to the roll force.
  • the force and angle changes between the fluid mass elements also have a longer movement stroke to achieve stability and consistency.
  • Another part of the arc is to guide the hydraulic oil, allowing the fluid to advectively move to the throat at a lower speed.
  • the concave arc provides squeezing force to the fluid, which helps the fluid to be squeezed and densified, resulting in greater improvement. More stable hydraulic power.
  • the third straight line segment 13 is the final movement stroke after the hydraulic oil is pressurized.
  • the downstream end of the third straight line segment 13 is the output end of the pressurized container 61 .
  • the cross-sectional area S1 of the first straight line segment 11 is the same as the cross-sectional area S1 of the third straight line segment 13 .
  • the ratio of the cross-sectional area S3 is 2.5-3, that is, the supercharging ratio is 2.5-3.
  • the length L s3 of the third straight section 13 is generally less than 50mm. The inventor found that if the hydraulic oil movement stroke in the third straight section 13 is too long, it will cause turbulence and final output hydraulic instability due to the increase of the boundary layer.
  • the third section The shorter length of the straight section 13 makes the fluid stroke shorter and is conducive to the fluid advection state, stabilizing the flow rate of the outgoing hydraulic oil and improving the final hydraulic pressure adjustment accuracy.
  • the cross-sectional area ratio between the first straight section 11 and the third straight section 13 is 2.5 to 3.
  • the radius value R corresponding to the diameter of the third straight line segment is too small.
  • the hydraulic oil has a good acceleration effect, the pressure p after supercharging is large but the flow is not enough and the thrust is insufficient. On the contrary, if the port radius R is too large, the hydraulic oil accelerates even though the flow is large.
  • the optimal thrust is not as simple as the thrust calculation formula, but a complex issue affected by multiple factors.
  • the beneficial effect of adopting the above embodiment is that the pressurized container adopts a structure in which the first straight line segment, the second arc segment is a 1/4 arc and is a concave arc, and the third straight line segment is used, and through the synergy of the three,
  • the hydraulic oil outputs a large and stable pressure after passing through the supercharger.
  • the ratio of the length L s1 of the first straight line segment 11 , the radius rs of the second arc segment 12 , and the length L s3 of the third straight line segment 13 is 11:5:4.
  • the hydraulic oil The pressure can be kept stable, the flow of hydraulic oil in each section is difficult to cause turbulence, and the stress and direction of each mass element of the hydraulic oil can converge stably and consistently during the convergence and contraction process.
  • the above ratio of 11:5:4 is not strictly limited, but allows a certain error range, such as an error range of 5%.
  • the chamfer radius R s at the connection between the first straight line segment 11 and the second arc segment 12 is 0.1 mm to 0.5 mm. Since the second arc segment 12 is a concave arc and a 1/4 circle arc, so the second arc segment 12 and the third straight line segment 13 are connected tangentially, so there is no need to chamfer the connection.
  • the use of chamfers can eliminate the stress concentration on the steps/tips caused by the fluid movement at the connection, and prevent the steps/tips from disturbing the fluid and causing turbulence.
  • the material of the pressurized container 61 is steel, such as common 45# steel, which can make the material cost of the pressurized container 61 low and easy to process.
  • the inner wall of the pressurized container 61 has a roughness Ra of 0.1 ⁇ m to 0.4 ⁇ m, a roundness of ⁇ 100 ⁇ m, and a cylindrical degree of ⁇ 200 ⁇ m. This can ensure a stable flow state of the hydraulic oil, avoid local turbulence and cavitation in the boundary layer caused by poor surface quality, thereby improving the thrust stability of supercharging.
  • the realization of the above dimensional parameters can be achieved through the honing process.
  • the supercharger 6 introduced above combines the motor and hydraulic pump at its front end to provide the thrust of the piston 62 of the supercharger 6, and combines its rear end, that is, the supercharger 6 outputs pressurized hydraulic oil.
  • the vertical plunger pump constitutes a thrust system that can meet the pressure of the sealing system 102 of the finishing device to be greater than 50MPa.
  • the adjustment accuracy is 0.01MPa ⁇ 0.1MPa, and the pressure deviation is ⁇ 0.1%, ensuring that the finishing medium is stable. , finish processing of workpieces with internal flow channels at high speed and high pressure.
  • the present application provides a method for pressurizing hydraulic oil, so that the hydraulic oil is pushed and output through the first straight line segment 11, the second arc segment 12, and the third straight line segment 13 in sequence; wherein, the first The aspect ratio of the straight line segment 11 is >5, the second arc segment 12 is a 1/4 arc and a concave arc, and the aspect ratio of the third straight line segment 13 is ⁇ 3; the first straight line segment 11 and the third straight line segment 13 have a total length of The axes are parallel, and the cross-sectional area ratio of the first straight section 11 to the third straight section 13 is 2.5 to 3, so that the hydraulic oil can be pressurized stably and reliably, so that the output pressure is large and stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种增压容器,包括从上游至下游依次分布的:第一直线段(11),长径比>5;第二弧线段(12),为1/4圆弧且为凹弧;以及第三直线段(13),长径比<3;其中,第一直线段(11)与第三直线段(13)共轴线平行;第三直线段(13)的下游端为增压容器的输出端;第一直线段(11)与第三直线段(13)的截面积比为2.5~3。增压容器各段结构的协同作用保证输出压力很大且稳定。还提供了一种增压器、一种光整装置以及一种液压油的增压方法。

Description

增压容器、增压器、光整装置以及液压油的增压方法 技术领域
本发明涉及内流道的精密加工领域,尤其涉及一种增压容器、增压器、光整装置以及液压油的增压方法。
背景技术
具有微细复杂内流道结构的零件在航空航天、船舶、核、汽车、模具等工业领域有着极其广泛的应用,特别是与流体动力系统相关的零部件常常具有微细流道、深小孔及微细流道与深小孔联通等复杂内腔结构,起到对流体的输运、交换或施加液压力等功能,如航空/航天/船舶/汽车各类发动机燃油喷嘴、热交换器、液压组件、油路控制节流器等。
可加工微细复杂内流道的工艺技术包括精密机加工、飞秒/水导/长脉冲激光加工、电火花加工及增材制造(3D打印)等。除增材制造技术外,其他单一工艺加工的微细复杂内流道结构相对简单,且长径比较小,需结合焊接等其他组合工艺才可加工微细复杂内流道。精密机加工的微细复杂内流道会产生毛刺、拐点尖角或接刀台阶等问题;飞秒激光加工的内流道表面会产生粘附的残渣颗粒和表面“台阶”效应;水导/长脉冲激光及电火花加工的内流道表面会产生重熔层;增材制造(3D打印)是一种将复杂三维结构零件模型离散为二维结构进行逐层叠加成形的技术,它使复杂微细复杂内流道零件一体化成型成为可能,因而在航空航天、汽车、模具等工业领域的应用日趋增多。然而,增材制造技术在成型零件过程中因存在温度梯度和逐层成型等自身工艺特点,导致零件内流道表面存在半烧结或粘结的粉末颗粒以及表面“台阶”效应。
机加工毛刺、飞秒激光加工内流道粘附烧结颗粒、增材制造内流道表面粘结粉末等都会影响零件的使用性能和安全性:当内流道中通入的流体与表层高速摩擦造成毛刺、粘附残渣颗粒或粘结粉末脱落时会成为多余物而随流体到处扩散,或堵塞油路或引起机械磨损故障,从而造成重大安全事故;粗糙度大的内表面在长期使用过程中易成为疲劳裂纹源,若是高温油路系统还易导致积碳现象发生;机加工流道表面的刀纹、拐点尖角或接刀台阶,飞秒激光及增材制造加工内流道表面的“台阶”现象等都会导致流体运动过程产生湍流、涡流和流体沿程阻力急剧增加,甚至 造成流体失控,产生振动而降低零件使用寿命。粗糙表面也会使流体中产生大量空化气泡影响燃烧和液力,甚至产生空化腐蚀;对于一些特定材质的零件(如空心叶片)内流道及联通小孔,因重熔层表面易出现微裂纹而导致零件过早失效,因而要求减少重熔层厚度或不允许出现重熔层。
因此,通过精密机加工、飞秒/水导/长脉冲激光加工、电火花加工、增材制造(3D打印)等技术加工流体动力零部件内流道表面时,会带来毛刺、粘结粉末和烧结颗粒等残留物、表面粗糙及重熔层等不利问题,需要采用合适的表面光整技术消除这些不利影响后才能满足产品的性能要求。
但目前可以有效地对微细复杂内流道表面光整的技术尚未出现,以至于目前对于增材制造的微细复杂内流道工件,其内表面的粗糙度一般都只具有增材制造后的原始平均粗糙度Ra≥6.3μm,没有出现内流道的表面最优粗糙度Ra小于或等于1.6μm的产品,对于激光加工、电火花加工的微细复杂内流道工件没有出现内流道的表面最优粗糙度Ra小于或等于0.8μm的产品;以及对于机加工的微细复杂内流道工件没有出现内流道的表面最优粗糙度Ra小于或等于0.4μm的产品,而目前微细复杂内流道若具有S型弯、L型弯、U型弯、O型弯等复杂异形流道,无法采用只能进行直线进给的机加工实现,而只能通过增材制造等方式实现,因此目前也没有出现对于增材制造的微细异形复杂内流道表面最优粗糙度Ra小于或等于1.6μm的产品。
发明内容
本申请的目的在于提供一种增压容器、增压器、光整装置以及液压油的增压方法。
第一方面,本申请提供一种用于增压器的增压容器,包括从上游至下游依次分布的:第一直线段,长径比>5;第二弧线段,为1/4圆弧且为凹弧;以及第三直线段,长径比<3;其中,所述第一直线段与第三直线段共轴线平行;所述第三直线段的下游端为所述增压容器的输出端;所述第一直线段与所述第三直线段的截面积比为2.5~3。
本申请实施例的技术方案中,增压容器通过采用第一直线段、第二弧线段为1/4圆弧且为凹弧、第三直线段的结构,通过三者的协同作用,实现液压油经过增压器后输出很大且稳定的压力,其原理在于,第一直线段的结构的作用在于,由于 较高的液压力下,液压油变为可压缩流体后会有体积损失,活塞较长的运动行程可以补偿液压油的体积损失,而第二弧线段的通过凹圆弧的结构,既实现了更大的表面积分散液压力,使液压力不会因侧倾力对壁面产生较高的集中压力,流体质量元间受力及角度变化也有较长的运动行程实现稳定一致,也实现了对液压油导流作用,让流体以较低的速度平流运动到喉部,同时凹圆弧对流体提供挤压力有助于流体受挤压致密化,提升更大更稳定的液力,而第三直线段的设置,使得长径比<3,避免流体运动行程过长将会因边界层增加湍流导致最终输出的液力不稳定。第三段更短的行程利于流体平流状态,实现流出的液压油稳定和提高最终液压力调节精度及稳定性,而第一直线段与第三直线段共轴线地平行,且第一直线段与所述第三直线段的截面积比为2.5~3的结构,进一步保证了液压油在增压容器中稳定地流动和增压,通过以上手段的协同作用,实现了增压器的输出压力为2.5MPa~45MPa,同时调节精度为0.01MPa~0.1MPa,且输出压力偏差<0.1%,保证输出压力很大且稳定。
在一些实施例中,所述第一直线段的长度、所述第二弧线段的半径、所述第三直线段的长度比为11∶5∶4。
在一些实施例中,所述第一直线段与所述第二弧线段的连接处的倒角半径为0.1mm~0.5mm。
在一些实施例中,所述增压容器的材料为钢。
在一些实施例中,所述增压容器的材料为45#钢。
在一些实施例中,所述增压容器的内壁的粗糙度Ra为0.1μm~0.4μm,圆度为≤100μm,圆柱度为≤200μm。
第二方面,本申请提供一种增压器,包括:如第一方面所述的增压容器,所述增压容器内具有液压油;活塞设置于所述增压容器内,用于在一侧接受驱动力,能够沿着所述第一直线段的容器壁移动,以推动位于所述活塞的另一侧的所述液压油从所述第三直线段的下游端输出。
在一些实施例中,所述活塞接受的驱动力为1MPa~15MPa,输出的压力为2.5MPa~45MPa。
第三方面,本申请提供一种光整装置,包括:推力系统;密封系统,用于容纳进行光整加工的光整介质;输送管路系统,与所述密封系统连接;其中,所述推 力系统能够对所述密封系统施加推力,使得所述密封系统容纳的所述光整介质被推动而通过所述输送管路系统至待光整的工件;其中,所述推力系统包括液压泵、如第二方面所述的增压器,所述液压泵提供所述驱动力至所述增压器的所述活塞,所述液压油经过所述增压器的增压输出。
在一些实施例中,所述推力系统还包括电机、立式柱塞泵,所述电机驱动的所述液压泵推动所述活塞,所述液压油经过所述增压器的增压输出至所述立式柱塞泵,所述立式柱塞泵与所述密封系统连接,施加压力至所述密封系统容纳的所述光整介质。
在一些实施例中,所述推力系统提供至所述密封系统的压力为大于50MPa,调节精度为0.01MPa~0.1MPa,且输出压力偏差<0.1%。
第四方面,本申请提供一种对液压油的增压方法,包括:将液压油推动依次经过第一直线段、第二弧线段、第三直线段增压输出;其中,所述第一直线段长径比>5,所述第二弧线段为1/4圆弧且为凹弧,以及所述第三直线段长径比<3;所述第一直线段与第三直线段共轴线地平行;所述第一直线段与所述第三直线段的截面积比为2.5~3。
附图概述
本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,需要注意的是,附图均仅作为示例,其并非是按照等比例的条件绘制的,并且不应该以此作为对本发明实际要求的保护范围构成限制,其中:
图1是根据本申请的一些实施例的光整方法的流程示意图。
图2是根据本申请的一些实施例的光整设备的结构示意图。
图3是根据本申请的一些实施例的增压器的压力容器的结构示意图。
本发明的较佳实施方式
下述公开了多种不同的实施所述的主题技术方案的实施方式或者实施例。为简化公开内容,下面描述了各元件和排列的具体实例,当然,这些仅仅为例子而已,并非是对本发明的保护范围进行限制。“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一些实施例、又一 些实施例、再一些实施例等表述中的某些特征、结构或特点可以进行适当的组合。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
另外,以下所述的平均粗糙度,即在测量的表面选取多个区域进行测量取平均值,得到该测量表面的平均粗糙度。以下所述的最优粗糙度,即在测量的表面选取多个区域进行测量并取最小值,得到该测量表面的最优粗糙度。例如进行粗糙度测量时,例如粗糙度测量某个区域可以为长度为8mm的管路段,在测量的管路选取多个长度为8mm的管路段测量并去最小值。
具有微细复杂内流道结构的零件在航空航天、船舶、核、汽车、模具等工业领域有着极其广泛的应用,然而,目前的加工工艺,例如通过精密机加工、飞秒/水导/长脉冲激光加工、电火花加工、增材制造(3D打印)等技术加工流体动力零部件内流道表面时,会带来毛刺、粘结粉末和烧结颗粒等残留物、粗糙表面及重熔层等不利问题,需要采用合适的表面光整技术消除这些不利影响后才能满足产品的性能要求。
目前对于增材制造的微细内流道工件没有出现内流道的表面最优粗糙度Ra小于或等于1.6μm的产品,对于激光加工、电火花加工的微细内流道工件没有出现内流道的表面最优粗糙度Ra小于或等于0.8μm的产品;以及对于机加工的微细内流道工件没有出现内流道的表面最优粗糙度Ra小于或等于0.4μm的产品,而微细内流道若具有S型弯、L型弯、U型弯、O型弯等异形流道结构,无法采用直线进给的机加工实现,而只能通过增材制造等方式实现,因此目前也没有出现对于增材制造的微细内流道表面最优粗糙度Ra小于或等于1.6μm的产品。
发明人经过深入研究,对多种的内流道表面光整方法进行了尝试以及对比,发现对于零件内流道口径较大(>3mm)、长径比较小(<50∶1),且呈近似直线走向时,可采用手工抛磨、化学、电化学、电浆、磁力、磁流变、磨粒流、水射流及超声波等常见方法进行光整,然而,对于内流道口径较小(小于或等于3mm)、长径比较大(大于或等于50∶1)的微细内流道而言:
(1)采用磨粒流技术,利用刚性较大的半固态软性膏体光整介质对内腔通过挤压衍磨机理光整,发明人发现,这种雷诺数极小状态的蠕变流体很难通过复杂长程微细流道实现均匀加工,易于在拐弯及死角堵塞,强行通过会造成流道变形甚至憋裂流道。即使勉强通过长径比≥50∶1内流道时,也会出现随流体行程增加而压力及流速急剧衰减,导致内流道端口“过磨抛”而内部由于压力和流速损失过大而“未磨抛”。此外,不溶于水的胶体磨粒流介质易在内流道拐弯、死角处残留,在完成加工后很难甚至根本无法被彻底清除。
(2)采用磨料水射流技术,也被称为微磨料浆体射流、高速流及高速水粒子光整,通过对水射流喷嘴施加液压力,利用喷嘴喷出带有磨粒的水射流冲击动能冲蚀去除工件表层材料,水射流喷嘴与零件表面保持较短的距离,因此磨料水射流技术很难作用于内流道口径较小(小于或等于3mm)、长径比较大(大于或等于50∶1)的微细内流道;
(3)采用磁力光整技术,其只能对口径>3mm且呈近直线走向的内流道表面做轻微光亮化加工,而无法对口径小于或等于3mm且呈三维空间走向的含S型弯、L型弯、U型弯、O型弯、螺旋弯微细复杂内流道进行有效的表面光整,其原因在于,磁力光整是利用较大尺寸磁针磨粒的一种柔性加工,其原理是表面凸点和凹点在外加磁场的作用下会被同时加工,因而这些柔性加工手段只能对表面做轻微光亮化改善,即使材料去除量很大也不能显著改善表面的“台阶”效应、降低表面粗糙度及大尺度剥离表面粘附的粉末、颗粒和毛刺改善;另外,这种方法由于受制磁场运动也无法应对零件上呈三维空间走向的复杂内流道光整;
(4)采用化学光整的方法,当内流道口径很小,可容纳的腐蚀溶液较少,化学光整方法的效率会极低甚至局部出现反应气泡塞积而无法光整;
(5)采用电化学、电浆光整及超声波方法,因很难在狭小呈三维空间走向的含S型弯、L型弯、U型弯、O型弯、螺旋弯等流道内放置仿形电极,从而无法光整微细复杂内流道;
另外,对于(4)、(5),化学、电化学、电浆光整等方法还会对流道基体材料显微组织产生多种腐蚀及变质层缺陷,腐蚀液和反应气体也会对环境和设备有不利影响;同时,(4)、(5)也是一种柔性加工手段,同样会面临(3)类似的缺点,只能对表 面做轻微光亮化改善,即使材料去除量很大也不能显著改善表面的“台阶”效应、降低表面粗糙度及大尺度剥离表面粘附的粉末、颗粒和毛刺。
综上所述,发明人经过深入研究发现,上述的加工方法,其对于微细内流道的结构而言,都会面临很难深入微细内流道的内部光整和/或光整质量不理想的问题,因此很难适用于微细内流道的光整加工。
基于以上,发明人进一步深入研究,发明了一种微细内流道的表面光整方法,通过采用黏度为小于1000cP液体相的两相流光整介质,两相流的光整介质在微细内流道内的流速>5m/s,以及在微细内流道的一端流入其内部的流量,达到所述微细内流道的口径所能容纳流量的饱和值,内流道内部的液压力处于憋压状态,形成液体相对微细内流道的饱和流量的手段,即通过低黏度的液体相、光整介质的流体流速以及饱和流量这三者的协同作用,解决了微细内流道光整加工的难题。其原理在于,首先,由于低黏度的液体相、流体流速以及饱和流量这三者的协同作用,使得光整介质可以流畅地进入微细复杂内流道并且在微细复杂内流道内形成类似于非牛顿流体的状态,流体边界层平行内流道表面,如“刀刀具般”坚硬的非牛顿流体中的磨粒剪切摩擦实现表面凸点靶向加工。另外,以上三者的协同作用,使得光整介质中磨粒与微细复杂内流道表面产生的摩擦微切削力,因此可以不受微细复杂内流道的材料限制而能够获得表面最优粗糙度与磨粒刃尖平均接触长度范围一致,甚至可以实现表面最优粗糙度Ra为0.05μm的超镜面质量,这突破了磨粒流、水射流技术的原理的限制,其原理在于,磨粒流技术切削机制为磨粒挤压表面产生的体积力,因此加工硬度低的金属及高分子柔性材料易出现坑和麻点(Ra>0.8μm)。磨料水射流技术中切削力为磨粒冲击表面产生的冲蚀力,加工软质金属易表面粗化(Ra>0.8μm)。
发明人发现,对于光整介质需要在高速、高压的状态下对工件进行光整加工,因此需要光整装置的推力系统对光整介质提供很大且稳定的压力。而目前通过活塞进行增压的增压器,其很难输出稳定且很大的液压力。
基于此,发明人经过深入研究,设计了一种增压器的增压容器,通过采用第一直线段、第二弧线段为1/4圆弧且为凹弧、第三直线段的结构,通过三者的协同作用,实现液压油经过增压器后输出很大且稳定的压力,其原理在于,第一直线段的 结构的作用在于,由于较高的液压力下,液压油变为可压缩流体后会有体积损失,活塞较长的运动行程可以补偿液压油的体积损失,而第二弧线段的通过凹圆弧的结构,既实现了更大的表面积分散液压力,使液压力不会因侧倾力对壁面产生较高的集中压力,流体质量元间受力及角度变化也有较长的运动行程实现稳定一致,也实现了对液压油导流作用,让流体以较低的速度平流运动到喉部,同时凹圆弧对流体提供挤压力有助于流体受挤压致密化,提升更大更稳定的液力,而第三直线段的设置,使得长径比<3,避免流体运动行程过长将会因边界层增加湍流导致最终输出的液力不稳定。第三段更短的行程利于流体平流状态,实现流出的液压油稳定和提高最终液压力调节精度及稳定性,而第一直线段与第三直线段共轴线地平行、且第一直线段与所述第三直线段的截面积比为2.5~3的结构,进一步保证了液压油在增压容器中稳定地流动和增压,通过以上手段的协同作用,实现了增压器的输出压力为2.5MPa~45MPa,同时调节精度为0.01MPa~0.1MPa,且输出压力偏差<0.1%,保证输出压力很大且稳定。保证光整介质在进行光整加工时流速流量的稳定性,以保证光整加工的效果。
可以理解到,本申请实施例公开的增压器的增压容器,实现光整装置在运行时对光整介质提供很大且稳定的压力,以使得对应光整介质在加工过程中具有>5m/s的高速运动,以及对工件稳定地提供如“刀具般”坚硬的非牛顿流体剪切摩擦实现表面凸点靶向加工,以及使得磨粒产生很高的微切削力。但可以理解到,本申请实施例公开的不仅适用于介绍的光整方法以及光整装置,也可以适用于其他设备中液压油的增压,以提供很大且稳定的液压力。
首先介绍本申请的增压器可以适用的微细内流道的表面光整方法以及光整装置,以便于理解增压器的效果。
参照图1,本申请提供了一种内流道的表面光整方法,包括:
采用液体固体两相流光整介质,所述光整介质的液体相黏度<1000cP,固体相为磨粒;
对所述光整介质施加预定压力,使得所述光整介质在所述微细内流道内以>5m/s的流速流动,并且所述光整介质在微细内流道的一端流入其内部的流量,达到所述微细内流道的口径所能容纳流量的饱和值,内流道内部的液压力处于憋压状 态;
此处的液体,其具有黏度<1000cP的性质,本申请中关于黏度的数值的描述,均是指常温下(25摄氏度左右)的乌氏黏度。不同材料、尺寸以及初始平均粗糙度的微细内流道对应的光整方法对应的液体相的黏度的最佳值可以通过在一个下限值的基础上不断增加黏度得到。目前实施例的黏度下限值为50cP左右,发明人经过大量试验数据得到,对于常见的材料例如钛合金、高温合金、钢铁、陶瓷、铝合金、高分子材料等的微细内流道,液体相的黏度至少需要在50cP,光整后才达到粗糙度的目标值。而此处的临界值1000cP也一般并非为最佳值,而是光整介质持续、流畅、稳定地在微细内流道中流动的极限值。
实施例中描述的液体相,以水基液体相为例,在去离子水的基础上加入一定增粘剂使得水基液体具备一定的黏度。采用水基液体的有益效果在于,其成本低易于获得,并且较为环保,且在光整结束后光整介质也容易被清洗。但可以理解到,此处的液体相也不限于水基液体,只要是满足黏度μ<1000cP的液体即可。
固体相磨粒的材料,可以是常见的磨粒材料,例如碳化物陶瓷:包括碳化硅、碳化钨等;氧化物陶瓷:包括氧化铝、氧化锆、氧化铈等;氮化物陶瓷:包括氮化硼、氮化铬等;天然矿物:包括金刚石/砂、云母、石英、橄榄石等。优选的,可以是金刚石/砂、氧化物陶瓷的一种或者多种组合。
在选择磨粒的粒径和质量浓度时,一般在一个下限值的基础上逐步增加得到最佳值的范围。若磨粒的粒径、质量浓度低于下限值,则无法达到预期的光整效果,即微细内流道无法达到表面粗糙度的目标值,其原理在于,若粒径过小导致磨粒自身质量过低,无法产生足够的动能实现有效磨抛,若质量浓度过小,则磨削表面加工点位的概率降低导致无法实现有效磨抛,下限值的选取一般较为保守,例如可以是,在不超过粒径上限值的前提下保守的选择任意一个下限值,内流道口径与磨粒的粒径的比值下限通常为20,即内流道口径要保证至少20个磨粒并行通过时不堵塞,即磨粒的粒径的上限通常为内流道口径的1/20,而磨粒的下限值一般为上限值的1/5。磨粒的质量浓度的下限值一般为10g/L,下限值的选择,一般是较为保守的,因为系统的压力较大,若发生磨粒堵塞,会导致工件和系统的报废、甚至出现憋裂和爆炸。因此在规定的下限的基础上,逐步增加磨粒的粒径、磨粒的质量浓度 直至发生因磨粒粒径过大或者质量浓度过高产生显著的流阻而引发流速流量的下降、以及磨粒颗粒间的相互碰撞影响流速继而降低流速流量和磨削效果,即最佳值可以在下限值的基础上通过试验得到。
对所述光整介质施加预定压力,使得所述光整介质在微细内流道内以>5m/s的流速流动。此处的预定压力,指的是在光整过程的初始状态下使用该压力下使得光整介质在微细内流道的内部就以>5m/s的流速流动,随着光整的进行,内流道表面粗糙度的降低,同样的压力条件下,光整介质在在微细内流道内的流速会越来越快。可以理解到,由于达到的流速是一个范围,此处的预定压力是一个范围的概念,而不是对光整介质只能施加一个特定值。测量光整介质在微细内流道的内部的流动流速,无法采用浸入式测量,否则磨粒会损坏任何传感器探头。可以采用超声测速的方法,也可以利用黏性流体的哈根-泊阿苏依定律:进行间接的测量;在公式中,其中D是内流道口径,l为微细内流道的长度,p为作用在微细内流道两端的压强差,即液压压力p,Re为雷诺数,um为水基两相流中液体相流速,ρl为液体相的密度,液体相的流速大致等同于光整介质的流速。
光整介质的流速大于5m/s,根据理论上形成非牛顿流体的临界条件以及发明人长期实践得到的临界值。工程流体力学资料表明(例如图书资料:杨树人,汪志明,何光渝,等.工程流体力学[M].石油工业出版社,2006.),纯水黏度1cP达到非牛顿流体的临界运动流速>16.6m/s,而本实施例的液体相的黏度的下限值为50cP,大于1cP,因此非牛顿流体的临界流速是小于16.6m/s的。同时结合实践结果,发明人发现小于5m/s时无法得到理想的加工效果,因此临界值为5m/s。
所述光整介质在微细内流道的一端流入其内部流量,达到所述微细内流道的口径所能容纳流量的饱和值,内流道内部的液压力处于憋压状态,即本领域所称的饱和流量的状态。
此处的容纳流量的饱和值以及饱和流量的状态的含义,为流体流入管道时充满管道截面,管道截面并行容纳流体分子的最大数量。
可以理解到,采用以上实施例的光整方法的有益效果在于:
通过采用光整介质的液体相的黏度为小于1000cP的液体,两相流的光整介质 在微细内流道内的流速>5m/s,以及在微细内流道的一端流入其内部的流量,达到所述微细内流道的口径所能容纳流量的饱和值,内流道内部的液压力处于憋压状态,形成液体相对微细内流道的饱和流量的手段,即通过低黏度的液体相、流体流速以及饱和流量这三者的协同作用,解决了微细内流道光整加工的难题。其原理在于,首先,由于低黏度的液体相、流体流速以及饱和流量这三者的协同作用,使得光整介质为低黏度高流速的状态从而可以流畅地进入微细内流道并且在微细内流道内形成非牛顿流体的状态,流体边界层平行内流道表面,如“刀具般”坚硬的液体相中磨粒剪切摩擦实现表面凸点靶向加工,从原理上克服了柔性加工中表面凸点和凹点被同时加工只能轻微光亮化的问题,同时因为光整介质的磨粒与微细内流道表面摩擦产生的微切削力,因此可以不受微细内流道的材料限制,而能够获得与磨粒刃尖平均接触长度范围一致的表面最优粗糙度,这突破了磨粒流、水射流技术的原理的限制,其原理在于,磨粒流技术切削机制为磨粒挤压表面产生的体积力,因此加工硬度低的金属及高分子柔性材料易出现坑和麻点(Ra>0.8μm)。磨料水射流技术中切削力为磨粒冲击表面产生的冲蚀力,加工软质金属易表面粗化(Ra>0.8μm)。另外,低黏度高流速的流体动力学随形加工方式使内流道表面台阶、尖角、几何轮廓曲率等不符合流体工程学的位置被磨抛的更重,拐点、尖边、内流道轮廓曲率及孔型将实现几何学流线型整形,进一步提高内流道的流体运动性能。另外,以上实施例提出了利用光整介质的流速实现类似如刀具般的坚硬的非牛顿流体及磨粒剪切摩擦实现表面凸点靶向加工的临界流速为5m/s。
至于光整介质在微细内流道的加工时间,可以是光整介质在标准时间段光整所述微细内流道,至所述微细内流道的表面最优粗糙度为目标值。此处的标准时间段,可以是预定的连续的一段时间,也可以是间断的多段时间,也可以是开始后非预定的连续的一段时间后,检测到光整介质的流速流量达到微细内流道的表面最优粗糙度为目标值对应的流速流量后,光整过程自动停止,例如承上所述的,在一些实施例中,开始加工后,通过测量光整介质在微细内流道内的流动流速或流量,间接地表征得到表面最优粗糙度,当流速或流量值达到规定值,则对应的表面最优粗糙度对应即达到目标值,此时手动或者自动地停止光整加工。此处的表面最优粗糙度为目标值的含义,并非限定需要直接测量表面最优粗糙度,而也可以间接地表征,例 如以上介绍的,可以表征光整介质在微细内流道的内部的流速、流量等等方法。以上目标值指的是设定的表面最优粗糙度值,一般指的就是对微细内流道最终的表面最优粗糙度的要求,但也不排除在以上光整步骤之后继续进一步的光整,此时设定的便不是最终的表面最优粗糙度的要求。
综上,以上实施例介绍的光整方法,通过构建在待加工内流道两端的液压力系统,利用低黏性、高速的固液两相流体、达到待加工内流道饱和流量、两相流中磨粒高速摩擦内流道表面产生的微切削机理等手段的结合,解决了行业中长期存在的口径在小于或等于3mm、长径比大于或等于50∶1的微细内流道光整的难题。
参考图2所示的,在一些实施例中,本案提供一种光整装置100,包括:推力系统101、多个密封系统102、多个输送管路系统103。
每个密封系统102包括活塞21、与活塞21配合的缸体18,用于容纳进行光整加工的光整介质8,推力系统101与活塞21的一端连通,对活塞21提供驱动力,以推动光整介质8从缸体18的出口端输出。
每个输送管路系统103输送对应的密封系统102容纳的光整介质8至进行光整的内流道工件34的不同端口,例如图2所示的一组密封系统102以及管路输送系统103对应工件34的入口,另一组对应出口,使得多个密封系统之间通过工件34连通。输送管路系统103的上游端与密封系统102的出口端190连接,下游端用于输出光整介质8进行光整的内流道工件34。
推力系统101可以是液压系统,如图2所示的,包括电机1、液压油箱2、液压泵3、增压器6,立式柱塞泵5以及油管4,电机1驱动液压泵2从油箱2中抽取一定压力的液压油,经过增压器6增压后的压力油输送至立式柱塞泵5。立式柱塞泵5通过球头与活塞21连接,以驱动活塞21,以推动光整介质8从缸体18输出。采用电机驱动的液压系统,其不仅推力较大且也能具有较高的精度。
以上介绍的光整装置,在提供光整介质高压、高速流动以进行光整作业的过程中,立式柱塞泵5输送至活塞21的压力需要达到50MPa以上,且压力稳定。而对于增压器6而言,需要的输出至立式柱塞泵5需要达到2.5MPa~45MPa,同时调节精度为0.01MPa~0.1MPa,且输出压力偏差<0.1%,保证输出压力很大且稳定。
参考图3所示的,增压器6包括增压容器61、活塞62以及液压油63,活塞 62、液压油63均位于增压容器61内。活塞62在一侧接受驱动力,能够沿增压容器61的容器壁移动,以推动位于活塞62的另一侧的液压油63从增压器增压输出。
例如图2所示的,通过电机驱动液压泵为活塞62提供驱动力,其接收驱动力的范围为1MPa~15MPa,采用电机驱动液压泵的驱动结构,其可以在提供较大驱动力的同时,也能具有较高的精度。
此处的增压器6的含义,指的是对输入的液压流体进行增压的装置。活塞62的含义,指的是可沿着增压容器61进行往复式移动的部件。
参考图3所示的,在一些实施例中,增压容器61包括从上游至下游依次分布的,第一直线段11、第二弧线段12以及第三直线段13。此处的上游、下游,是相对于液压油在增压容器61中的流动方向作为参照的,即流体的流动方向为从上游流动至下游。其中,第一直线段11的内壁供活塞62沿着壁面移动,以推动液压油63。
可以理解到,此处的直线段、弧线段及直线、弧线的表述,均是对增压容器61的截面结构的形象化描述,增压容器61的实际结构为上述直线、弧线绕增压器的轴线360°形成的腔室结构,例如直线绕轴线360°形成圆柱状腔室结构。
第一直线段11的长径比>5,若对应活塞62的长度为40mm,则第一直线段11的长度Ls1一般大于120mm,其原因在于,第一直线段11的长度需要考虑可压缩流体的体积损失,由于较高的液压力下,液压油63变为可压缩流体后会有体积损失,活塞较长的运动形程可以补偿液压油63的体积损失。
第二弧线段12为1/4圆弧且为凹弧,收缩后的喉部作用是对流体产生约束并增压液力。此处的“凹弧”的含义,为该弧线结构为朝向增压容器61的内部的,而不是朝向增压容器61的外部,即圆弧的圆心位于增压容器61的外部。1/4圆弧的含义为其为1/4圆周,即对应的圆心角为90°,由于口径不同的第一直线段11与第三直线段13共轴线地平行,因此需要是1/4圆弧才能将两者结构平滑地连接。凹弧的结构具有更大的表面积,使液压力不会因侧倾力对壁面产生较高的集中压力,流体质量元间受力及角度变化也有较长的运动行程实现稳定一致。圆弧另一部分作用是实现对液压油导流作用,让流体以较低的速度平流运动到喉部,同时凹圆弧对流体提供挤压力有助于流体受挤压致密化,提升更大更稳定的液力。
第三直线段13为是液压油增压后最后的运动行程,第三直线段13的下游端为增压容器61的输出端,第一直线段11的截面积S1与第三直线段13的截面积S3的比为2.5~3,即增压倍率为2.5~3。第三直线段13的长度Ls3一般小于50mm,发明人发现,在第三直线段13的液压油运动行程过长将会因边界层增加导致湍流和最终输出的液力不稳定,第三段直线段13的长度更短使流体行程更短有利于流体平流状态,实现流出的液压油流速稳定并提高最终液压力调节精度。而第一直线段11与第三直线段13的截面积比为2.5~3,发明人在实践中发现,可以提供最大的增压推力。可以理解而到,根据推力计算公式:F=πR2×p。其中第三直线段的口径对应的半径值R过小,则虽然液压油加速效果好,增压后压强p大但流量不够推力不够,反之端口半径R如果过大,流量虽大但液压油加速效果不佳,增压后压强p过小也会导致推力不够。实践中,最佳的推力并不像推力计算公式这样简单,而是多种因素影响的复杂问题,发明人发现,第一直线段11与第三直线段13的口径比例有一个最佳的范围对应推力最大,即为2.5~3。
采用以上实施例的有益效果在于,增压容器通过采用第一直线段、第二弧线段为1/4圆弧且为凹弧、第三直线段的结构,通过三者的协同作用,实现液压油经过增压器后输出很大且稳定的压力。
在一些实施例中,第一直线段11的长度Ls1、第二弧线段12的半径rs、第三直线段13的长度Ls3比为11∶5∶4,采用该比例,液压油可以保持压力的稳定,液压油在各个段落的流动均很难发生湍流,且汇聚收缩过程中液压油各质量元受力和方向能稳定收敛一致。可以理解到,以上11∶5∶4的比例并非严格限制,而是允许一定的误差范围内,例如5%的误差范围内。
在一些实施例中,第一直线段11与第二弧线段12的连接处的倒角半径Rs为0.1mm~0.5mm,由于第二弧线段12为凹弧且为1/4圆弧,因此第二弧线段12与第三直线段13为相切地连接,因此无需进行连接处的倒角。采用倒角可以消除连接处流体运动过程对台阶/尖端产生的应力集中,避免台阶/尖端对流体扰动而形成湍流。
在一些实施例中,增压容器61的材料为钢,例如常见的45#钢即可,如此可以使得增压容器61的材料成本低,且易于加工。
增压容器61的内壁的粗糙度Ra为0.1μm~0.4μm,圆度为≤100μm,圆柱度为<200μm。如此可以保证液压油的流动状态稳定,避免表面质量不佳导致的边界层局部湍流和产生空化,从而提高增压的推力稳定性。以上尺寸参数的实现,可以通过珩磨工艺实现。
承上所述的,以上介绍的增压器6,结合其前端的电机、液压泵提供增压器6的活塞62的推力,以及结合其后端,即增压器6输出增压的液压油的立式柱塞泵,构成的推力系统可以满足对光整装置的密封系统102的压力为大于50MPa,同时调节精度为0.01MPa~0.1MPa,且压力偏差<0.1%,保证光整介质稳定地、高速地、高压地对具有内流道的工件进行光整加工。
承上所述的,本申请提供了一种液压油的增压方法,使液压油被推动依次经过第一直线段11、第二弧线段12、第三直线段13输出;其中,第一直线段11长径比>5,第二弧线段12为1/4圆弧且为凹弧,以及第三直线段13长径比<3;第一直线段11与第三直线段13共轴线地平行,第一直线段11与第三直线段13的截面积比为2.5~3,使得液压油可以被稳定、可靠的增压,从而输出压力很大且稳定。
本发明虽然以上述实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (12)

  1. 一种用于增压器的增压容器,其特征在于,包括从上游至下游依次分布的:
    第一直线段,长径比>5;
    第二弧线段,为1/4圆弧且为凹弧;以及
    第三直线段,长径比<3;
    其中,所述第一直线段与第三直线段共轴线平行;所述第三直线段的下游端为所述增压容器的输出端;所述第一直线段与所述第三直线段的截面积比为2.5~3。
  2. 如权利要求1所述的增压容器,其特征在于,所述第一直线段的长度、所述第二弧线段的半径、所述第三直线段的长度比为11∶5∶4。
  3. 如权利要求1所述的增压容器,其特征在于,所述第一直线段与所述第二弧线段的连接处的倒角半径为0.1mm~0.5mm。
  4. 如权利要求1所述的增压容器,其特征在于,所述增压容器的材料为钢。
  5. 如权利要求4所述的增压容器,其特征在于,所述增压容器的材料为45#钢。
  6. 如权利要求4所述的增压容器,其特征在于,所述增压容器的内壁的粗糙度Ra为0.1μm~0.4μm,圆度为≤100μm,圆柱度为≤200μm。
  7. 一种增压器,其特征在于,包括:如权利要求1-6任意一项所述的增压容器,所述增压容器内具有液压油;活塞设置于所述增压容器内,用于在一侧接受驱动力,能够沿着所述第一直线段的容器壁移动,以推动位于所述活塞的另一侧的所述液压油从所述第三直线段的下游端输出。
  8. 如权利要求7所述的增压器,其特征在于,所述活塞接受的驱动力为1MPa~15MPa,输出的压力为2.5MPa~45MPa。
  9. 一种光整装置,其特征在于,包括:
    推力系统;
    密封系统,用于容纳进行光整加工的光整介质;
    输送管路系统,与所述密封系统连接;
    其中,所述推力系统能够对所述密封系统施加推力,使得所述密封系统容纳的所述光整介质被推动而通过所述输送管路系统至待光整的工件;
    其中,所述推力系统包括液压泵、如权利要求7或8所述的增压器,所述液压泵提供所述驱动力至所述增压器的所述活塞,所述液压油经过所述增压器的增压输出。
  10. 如权利要求9所述的光整装置,其特征在于,所述推力系统还包括电机、立式柱塞泵,所述电机驱动的所述液压泵推动所述活塞,所述液压油经过所述增压器的增压输出至所述立式柱塞泵,所述立式柱塞泵与所述密封系统连接,施加压力至所述密封系统容纳的所述光整介质。
  11. 如权利要求10所述的光整设备,其特征在于,所述推力系统提供至所述密封系统的压力为大于50MPa,调节精度为0.01MPa~0.1MPa,且输出压力偏差<0.1%。
  12. 一种对液压油的增压方法,其特征在于,包括:将液压油推动依次经过第一直线段、第二弧线段、第三直线段增压输出;其中,所述第一直线段长径比>5,所述第二弧线段为1/4圆弧且为凹弧,以及所述第三直线段长径比<3;所述第一直线段与第三直线段共轴线地平行;所述第一直线段与所述第三直线段的截面积比为2.5~3。
PCT/CN2023/098699 2022-06-13 2023-06-06 增压容器、增压器、光整装置以及液压油的增压方法 WO2023241413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210659758.0A CN114734369B (zh) 2022-06-13 2022-06-13 增压容器、增压器、光整装置以及液压油的增压方法
CN202210659758.0 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023241413A1 true WO2023241413A1 (zh) 2023-12-21

Family

ID=82288116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098699 WO2023241413A1 (zh) 2022-06-13 2023-06-06 增压容器、增压器、光整装置以及液压油的增压方法

Country Status (2)

Country Link
CN (1) CN114734369B (zh)
WO (1) WO2023241413A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734369B (zh) * 2022-06-13 2023-01-13 中国航发上海商用航空发动机制造有限责任公司 增压容器、增压器、光整装置以及液压油的增压方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289154A (ja) * 2000-04-11 2001-10-19 Kosmek Ltd 増圧ポンプ
JP2004114241A (ja) * 2002-09-26 2004-04-15 Nachi Fujikoshi Corp 微細穴の処理装置
CN208872360U (zh) * 2018-09-14 2019-05-17 杭州成套节流装置有限公司 一种文丘里喷嘴
CN110195725A (zh) * 2019-04-26 2019-09-03 长江大学 一种手摇-自动双控型液压增压系统
CN210371398U (zh) * 2019-07-15 2020-04-21 三和油缸(常州)有限公司 高效节能增压式抽芯油缸
CN114734369A (zh) * 2022-06-13 2022-07-12 中国航发上海商用航空发动机制造有限责任公司 增压容器、增压器、光整装置以及液压油的增压方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1815795A1 (de) * 1967-12-21 1969-07-31 Jiri Cervenka Belastungsregler fuer hydraulische Bremsen
SE359482B (zh) * 1970-04-24 1973-09-03 Krauss Maffei Ag
CN202768323U (zh) * 2012-03-27 2013-03-06 中南大学 空调压缩机排气增压节能装置
CN207796260U (zh) * 2018-01-26 2018-08-31 阿谷巴科技(唐山)有限公司 一种简易的液体增压定压阀
CN109203371B (zh) * 2018-08-10 2021-10-22 爱珂勒电子元器件(珠海)有限公司 一种基于注塑机的过滤结构
CN211116859U (zh) * 2019-12-20 2020-07-28 济南中路昌试验机制造有限公司 一种压力试验机液压动力增压控制系统
CN112049993A (zh) * 2020-07-24 2020-12-08 中国航天空气动力技术研究院 能够快速更换的高压气流量测量与控制装置及更换方法
CN212513163U (zh) * 2020-07-29 2021-02-09 北京洁明伟业环境工程有限公司 一种喷嘴流量计
CN214748176U (zh) * 2021-04-07 2021-11-16 北京博思达新世纪测控技术有限公司 喷嘴流量计的内廓形曲面检测模板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289154A (ja) * 2000-04-11 2001-10-19 Kosmek Ltd 増圧ポンプ
JP2004114241A (ja) * 2002-09-26 2004-04-15 Nachi Fujikoshi Corp 微細穴の処理装置
CN208872360U (zh) * 2018-09-14 2019-05-17 杭州成套节流装置有限公司 一种文丘里喷嘴
CN110195725A (zh) * 2019-04-26 2019-09-03 长江大学 一种手摇-自动双控型液压增压系统
CN210371398U (zh) * 2019-07-15 2020-04-21 三和油缸(常州)有限公司 高效节能增压式抽芯油缸
CN114734369A (zh) * 2022-06-13 2022-07-12 中国航发上海商用航空发动机制造有限责任公司 增压容器、增压器、光整装置以及液压油的增压方法

Also Published As

Publication number Publication date
CN114734369B (zh) 2023-01-13
CN114734369A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023241412A2 (zh) 光整装置、光整方法以及密封系统
WO2023241411A1 (zh) 光整装置以及光整方法
WO2023241408A1 (zh) 微细内流道的表面光整方法、微细内流道工件及光整介质
WO2023241413A1 (zh) 增压容器、增压器、光整装置以及液压油的增压方法
CN101564831B (zh) 磨料浆体射流微孔喷嘴内流道加工设备及实时流量检测和控制方法
US10759018B2 (en) Method and apparatus for machining a component
CN105538048A (zh) 一种自增压高速磨粒流孔内表面抛光方法
CN105234824A (zh) 一种微磨料多相射流加工表面织构的装置及方法
CN110340469B (zh) 气液组合电极及电解加工方法
CN105252405A (zh) 一种内圆柱面气流辅助磨粒流抛光加工方法
CN205057753U (zh) 一种变曲率截面内柱面气流辅助磨粒流抛光加工装置
CN103286642A (zh) 一种液体磁性磨具孔光整加工装置
CN114734307B (zh) 具有转弯结构的微细内流道的表面光整方法
Dehghanghadikolaei et al. Abrasive machining techniques for biomedical device applications
CN105108631A (zh) 一种变曲率截面内柱面气流辅助磨粒流抛光加工装置
Hoogstrate et al. High performance cutting with abrasive waterjets beyond 400 MPa
CN105108632A (zh) 一种内圆柱面气流辅助磨粒流抛光加工装置
CN114750078B (zh) 喷嘴、喷挡阀、以及光整装置
Liu et al. Abrasive liquid jet as a flexible polishing tool
CN111975621B (zh) 一种微小复杂孔腔内表面抛光装置及其控制方法
CN114193242A (zh) 基于抛光液自激振荡与力流变复合效应的抛光方法
CN111230752A (zh) 浸没式气射流驱动抛光设备及抛光方法
RU2407625C2 (ru) Способ формирования шлифовального круга водоледяной струей
JP2020066072A (ja) 流体研磨装置
CN117563799A (zh) 一种提升微细喷嘴射流性能的流线型廓形结构及整形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822982

Country of ref document: EP

Kind code of ref document: A1