WO2023241394A1 - 环行器、功放模组以及通信设备 - Google Patents

环行器、功放模组以及通信设备 Download PDF

Info

Publication number
WO2023241394A1
WO2023241394A1 PCT/CN2023/098403 CN2023098403W WO2023241394A1 WO 2023241394 A1 WO2023241394 A1 WO 2023241394A1 CN 2023098403 W CN2023098403 W CN 2023098403W WO 2023241394 A1 WO2023241394 A1 WO 2023241394A1
Authority
WO
WIPO (PCT)
Prior art keywords
branches
conductor part
circulator
conductor
interface
Prior art date
Application number
PCT/CN2023/098403
Other languages
English (en)
French (fr)
Inventor
王佳雨
曾志雄
王瑞
鲍晓凤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023241394A1 publication Critical patent/WO2023241394A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular to a circulator, a power amplifier module and a communication device.
  • the circulator is a multi-interface device, and the transmission of electromagnetic waves in the circulator circulates in one direction and is isolated in the opposite direction.
  • the working principle of the circulator is to use ferrite material as the medium, set up a conductor structure on the ferrite, add a constant magnetic field, and the circulator has gyromagnetic characteristics. If the direction of the bias magnetic field is changed, the ring direction will change. Based on the gyromagnetic characteristics of circulators, circulators are widely used in base station power amplifier links, which can provide one-way signal transmission and better isolation to avoid signal backflow.
  • a circulator often has a first interface, a second interface and a third interface.
  • One of the interfaces can be used as an input interface, the other can be used as an isolation interface, and the third interface can be used as an isolation interface. It can be used as an output interface and connected to the load.
  • Embodiments of the present application provide a circulator, power amplifier module and communication equipment, which reduce link loss, improve link efficiency, and reduce the area and cost occupied by the circulator in the link.
  • a first aspect of the present application provides a circulator.
  • the circulator has at least four interface terminals.
  • One of the at least four interface terminals is used to receive a first input signal.
  • the other interface terminal is used to receive the second input signal, and the third interface terminal among the at least four interface terminals is at least used to output a combined signal, and the combined signal is the first input signal and the combined signal.
  • the circulator provided by the embodiment of the present application has at least four interface terminals through the circulator, one of the at least four interface terminals is used to receive the first input signal, and the other of the at least four interface terminals
  • the interface terminal is used to receive the second input signal
  • the third interface terminal among the at least four interface terminals is at least used to output a combined signal
  • the combined signal is the first input signal and the second input signal.
  • the circulator When applied, when the circulator provided by the embodiment of the present application is used in a power amplifier link, two of the circulator interfaces with four or more interface ends
  • the terminals can be input ports, so that the circulator can realize the simultaneous input of two input signals.
  • the two interface terminals of the circulator can be connected to the output terminals of two parallel power amplifiers respectively, and receive the first output of the two power amplifiers.
  • the input signal and the second input signal, the other interface end of the circulator can be an output port, used to output the combined signal, the combined signal is the combined signal of the first input signal and the second input signal, the embodiment of the present application
  • the provided circulator When the provided circulator is used in a power amplifier link, it avoids introducing combining components in the power amplifier link, thereby reducing the insertion loss of the power amplifier link and improving the output efficiency of the power amplifier link.
  • the embodiments of the present application provide The circulator avoids the introduction of combining components. On the one hand, the board area occupied by the entire link device is reduced, making the layout of the power amplifier link on the circuit board easier. On the other hand, it reduces the cost of the power amplifier link.
  • each interface end is concentrated on one circulator.
  • the circulator provided by the embodiment of the present application occupies a smaller area and is lower in cost, and avoids the need for The problem of increased insertion loss caused by spanning the two interface ends of two circulators.
  • the circulator provided by this application solves the technical problems in the related art of increased link loss, large board area, and high cost caused by the coupler cascading the three-port circulator in the power amplifier link.
  • the fourth interface terminal among the at least four interface terminals is used to be electrically connected to a load or circuit. In this way, when connected to the load, the isolation effect is achieved; when connected to the circuit, the input and output of the third interface end can be shared to realize the reception of the third input signal.
  • the third interface terminal among the at least four interface terminals is also used to receive a third input signal; when the third interface terminal is used to output a combined signal, The fourth interface terminal is used for electrical connection with the load; when the third interface terminal is used for receiving the third input signal, the fourth interface terminal is used for electrical connection with the circuit. , so that the third input signal is output to the circuit through the fourth interface terminal.
  • the circulator includes: a central conductor, the central conductor includes a central junction, at least four first branches and at least four second branches, the first branches and the second Branches are arranged at alternating intervals along the circumferential direction of the central node, and first ends of the first branch and the second branch are electrically connected to the central node.
  • the second end is away from the central node and radiates outward; and each of the interface ends is electrically connected to one of the first branches, or each of the interface ends is electrically connected to one of the second branches.
  • the central conductor includes one or more conductor parts, and the plurality of conductor parts are electrically connected; each of the conductor parts includes one of the central junctions, and spacers around the central junctions.
  • a plurality of first branches and a plurality of second branches are provided.
  • the central conductor includes two conductor parts, the two conductor parts are respectively a first conductor part and a second conductor part, and the first conductor part and the second conductor part They are arranged side by side, and the first conductor part and the second conductor part are electrically connected.
  • the first conductor part includes: the first conductor part includes a first central junction, and at least two first branches and at least two first branches electrically connected to the first central junction. two second branches; the second conductor part includes a second central junction, and at least two first branches and at least two second branches electrically connected to the second central junction; at least The first central junction and the second central junction are electrically connected, And at least two first branches in the first conductor part are electrically connected to the corresponding interface terminals, and at least two first branches in the second conductor part are respectively connected to the corresponding interface terminals.
  • the interface end is electrically connected.
  • the first conductor part includes two first branches and three second branches, and the two first branches in the first conductor part are respectively connected with each other.
  • the two interface terminals are electrically connected;
  • the second conductor part includes two first branches and three second branches; the two first branches in the second conductor part are respectively connected with another The two interface ends are electrically connected; it also includes a first connection junction, the first central junction and the second central junction are electrically connected through the first connection junction; and the first conductor part is located in the first
  • the two second branches on both sides of the connection joint are respectively connected to the two second branches of the second conductor part located on both sides of the first connection joint.
  • the first conductor part includes three first branches and two second branches;
  • the second conductor part includes three first branches and two second branches; it also includes a first connecting node, and the first central node and the second central node pass through the first connecting node. Connected; the two first branches located on both sides of the first connection node in the first conductor part are respectively connected with the two first branches located on both sides of the first connection node in the second conductor part.
  • the two first branches that are connected and connected among the first conductor part and the second conductor part are electrically connected to one of the interface terminals; the remaining ones among the first conductor part and the second conductor part
  • the first branches are electrically connected to the corresponding interface terminals.
  • the first conductor part includes three first branches and three second branches;
  • the second conductor part includes three first branches and three second branches; it also includes a second connection junction, one of the first branches in the first conductor part and the second One of the first branches in the conductor part is electrically connected through the second connection junction, and the remaining first branches in the first conductor part and the second conductor part are respectively connected to the corresponding interfaces. terminal electrical connection.
  • the central conductor includes two conductor parts, the two conductor parts are respectively a first conductor part and a second conductor part, and the first conductor part and the second conductor part They are stacked and arranged, and the first conductor part and the second conductor part are electrically connected.
  • the first conductor part includes a first central node, and at least three first branches and at least three second branches connected to the first central node;
  • the second conductor part includes a second central node, and at least three first branches and at least three second branches connected to the second central node;
  • At least two of the first branches in the first conductor part are electrically connected to the corresponding interface terminals;
  • At least two first branches in the second conductor part are electrically connected to corresponding interface terminals respectively.
  • two of the first branches in the first conductor part are electrically connected to two of the interface terminals respectively; two of the two first branches in the second conductor part are electrically connected respectively.
  • the first branch is electrically connected to the other two interface terminals respectively; it also includes a conductive member, the other first branch of the first conductor part is connected to the other first branch of the second conductor part.
  • the branches are electrically connected through the conductive member, so that the first conductor part and the second conductor part are electrically connected.
  • the angle between two adjacent first branches connected to the same central node is 120°, or the angle between two adjacent first branches connected to the same central node is 120°. of the second branch of The angle between them is 120°.
  • the central conductor includes a conductor part, and the conductor part includes a central junction, four first branches and four second branches; four first branches The branches are electrically connected to the four interface terminals respectively.
  • the angle between two adjacent first branches among the four first branches is 90°.
  • the first branch has a first matching node.
  • the second branch has a second matching node.
  • it further includes: at least one magnet, the magnet is provided on one side of the central conductor, and the magnet is used to provide a magnetic field bias.
  • it also includes a support column, the support column is located between the central conductor and the magnet, and one end of the support column is connected to the central node of the central conductor, and the support column The other end of the post is connected to the magnet.
  • it also includes: one or more layers of ferrite, the central conductor is located on the ferrite, or at least part of the central conductor is located on two adjacent layers of ferrite. between bodies.
  • the method further includes: a dielectric ring, which is sleeved on the outer periphery of at least one layer of the ferrite.
  • it also includes: a grounded back silver and a bottom plate, the ground back silver is located between the ferrite and the bottom plate; and the ground back silver and the bottom plate are respectively provided with Pins, the pins are electrically connected to the interface terminal.
  • the method further includes: a shell, the shell has a cavity, the ferrite and the central conductor are located in the cavity, and there are holes on the side walls of the shell for the The gap that comes out of the interface end.
  • it also includes: a magnetic uniform piece, a temperature compensation piece, and a fixed piece, and the uniform magnetic piece is located on the side of the ferrite facing away from the central conductor;
  • the temperature compensation piece is located between the uniform magnetic piece and the fixed piece.
  • a second aspect of the embodiment of the present application provides a power amplifier module, including at least one circulator and at least two power amplifiers as described above, two interface ends of the circulator are respectively connected to the at least two power amplifiers. Two of the power amplifiers are connected; the third interface end of the circulator is used to output a combined signal, and the combined signal is received by the two interface ends of the circulator respectively.
  • the power amplifier module provided by the embodiment of the present application reduces the insertion loss of the power amplifier link and improves the output efficiency of the power amplifier link by including the above-mentioned four-port or more than four-port circulator. In addition, it is related to the power amplifier link of related technologies. Compared with the power amplifier module provided by the embodiment of the present application, the introduction of combining components is avoided. On the one hand, the board area occupied by the entire link device is reduced, making the layout of the power amplifier link on the circuit board easier. On the other hand, Reduces the cost of the power amplifier link. In addition, in the power amplifier module provided by the embodiment of the present application, each interface terminal is concentrated on one circulator.
  • the circulator provided by the embodiment of the present application occupies a smaller area and is lower in cost. It also avoids the problem of increased insertion loss caused by crossing the two interface ends of two circulators.
  • the power amplifier module provided by this application solves the technical problems of increased link loss, large floor space and high cost caused by the coupler cascading the three-interface circulator in the power amplifier link.
  • a third aspect of the embodiment of the present application provides a communication device, including any one of the above-mentioned circulators; or, the above-mentioned power amplifier module.
  • the communication equipment provided by the embodiments of the present application can achieve the effect of not increasing insertion loss when the number of channels in the radio frequency module increases, making the transmission efficiency of the communication equipment higher.
  • it also includes: an antenna, two ports of the circulator are used to receive input signals, and a third port of the circulator is connected to the antenna and is used to connect the The input signals are combined and output to the antenna.
  • it also includes: at least one of a load and a circuit, and the fourth port of the circulator is connected to the load or to the circuit; wherein, when the antenna is used as a transmitting antenna , the fourth port of the circulator is connected to the load; when the antenna is used as a receiving antenna, the fourth port of the circulator is connected to the circuit.
  • Figure 1 is a schematic diagram of a scenario where the related technology provides a power amplifier link
  • Figure 2 is a schematic top view of a circulator provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of an application scenario of a circulator provided by an embodiment of the present application.
  • Figure 4 is a schematic three-dimensional structural diagram of a circulator provided by an embodiment of the present application.
  • FIG. 5 is an exploded schematic diagram of the circulator provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the central conductor of the circulator provided by the embodiment of the present application.
  • Figure 7 is another structural schematic diagram of the central conductor of the circulator provided by the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the unassembled core conductor and ferrite of the circulator provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of the assembled central conductor and ferrite in Figure 8.
  • Figure 10 is another structural schematic diagram of the central conductor in Figure 8.
  • Figure 11 is another structural schematic diagram of the unassembled central conductor and ferrite of the circulator provided by the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the center conductor and ferrite in Figure 11 after assembly;
  • Figure 13 is another structural schematic diagram of the unassembled central conductor and ferrite of the circulator provided by the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of the assembled central conductor and ferrite in Figure 13;
  • Figure 15 is another structural schematic diagram of the unassembled central conductor and ferrite of the circulator provided by the embodiment of the present application.
  • Figure 16 is a schematic structural diagram of the assembled central conductor and ferrite in Figure 15;
  • Figure 17 is a schematic structural diagram of the circulator center conductor and double-layer ferrite provided by the embodiment of the present application.
  • Figure 18 is a schematic diagram of the stacked structure of the two conductor parts of the central conductor in Figure 17;
  • Figure 19 is another structural schematic diagram of the central conductor and double-layer ferrite of the circulator provided by the embodiment of the present application.
  • Figure 20 is a schematic structural diagram of the structure shown in Figure 19 in another direction;
  • Figure 21 is a schematic structural diagram of the two conductor parts of the central conductor in Figure 19;
  • Figure 22 is a schematic structural diagram of a magnet installed between the central conductor and the double-layer ferrite of the circulator according to the embodiment of the present application;
  • Figure 23 is another structural schematic diagram of a circulator provided by an embodiment of the present application.
  • Figure 24 is a schematic structural diagram of the structure shown in Figure 23 in another direction;
  • Figure 25 is a schematic top view of yet another structure of a circulator provided by an embodiment of the present application.
  • Figure 26 is another three-dimensional structural schematic diagram of the circulator provided by the embodiment of the present application.
  • Figure 27 is an exploded schematic diagram of the circulator shown in Figure 26;
  • Figure 28 is a schematic structural diagram of the assembled central conductor and ferrite of the circulator provided by the embodiment of the present application.
  • Figure 29 is a schematic diagram of the exploded structure of the circulator provided by the embodiment of the present application.
  • Figure 30 is a schematic diagram of the circulator test provided by the embodiment of the present application.
  • Figure 31 is a schematic diagram of the central conductor, ferrite and dielectric ring of the circulator provided by the embodiment of the present application;
  • Figure 32 is a schematic diagram of the split structure of the two-layer central conductor and the three-layer ferrite of the circulator provided by the embodiment of the present application;
  • Figure 33 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 34 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Circulator 100. Circulator; 110. Central conductor; 110a, first conductor part; 110b, second conductor part; 111, first branch; 1111-the first radial node; 1112-the first circumferential node 1112; 112, the second branch; 1121-the second radial node; 1122-the second circumferential node; 113, the first connecting node; 114, the second Connection node; 115, center node, 115a, first center node; 115b, second center node; 119a, conductive member; 119b, conductive member; 120. Ferrite, 121. Conductive sheet; 122.
  • Dielectric ring 130, 130a, 130b, grounding back silver; 131, first pin; 140. Base plate; 141. Second pin; 150. Magnet; 160. Support column; 170. Shell, 171. Cover; 172. Base; 1721. Cavity; 1722. Gap; 180. Magnetic uniformity sheet; 191. Warming patch; 192. Fixed patch; 193. Test chamber; 200, 200a, 200b, power amplifier.
  • FIG 1 is a schematic diagram of a scenario where the related technology provides a power amplifier link.
  • the power amplifier link includes at least two parallel power amplifiers 201 and 202.
  • the power amplifier 201 and the power amplifier 202 are specifically power amplifiers.
  • Amplifier Power Amplifier, PA.
  • the direction of signal transmission can be seen in the direction of the arrow in Figure 1.
  • a circulator 10 is often used in the power amplifier link.
  • the circulator 10 utilizes the gyromagnetic characteristics of ferrite to achieve the one-way transmission function.
  • the combining component 20 such as a coupler or microstrip
  • two three-port circulators 10 are used in series, the input port of one of the three-port circulators 10 is connected to the power amplifier 201, and the input port of the other three-port circulator 10 is connected to the power amplifier 201.
  • the input port of the three-port circulator 10 is connected to the power amplifier 202 to finally realize one-way output of the signal.
  • the combining component 20 when the combining component 20 is introduced into the power amplifier link, the combining component 20 will have a loss of 0.1 to 0.2dB. This will cause the overall loss of the power amplifier link to be larger, affecting the output efficiency of the power amplifier by 3%, which is serious. Affects the efficiency of the power amplifier.
  • the combining component 20 when two three-port circulators are used in series to connect to the output ends of two power amplifiers, when two three-port circulators are used in series, if a signal is input from one of the circulators When a port comes in and outputs from the output port of another circulator, it needs to span the two ports of the two circulators, and the insertion loss between the two ports spanning the two circulators is twice the insertion loss of a single three-port circulator. left and right, thereby affecting the efficiency of the power amplifier output link, and in addition, the input of any port cannot be realized.
  • the circulator has at least four interface terminals, and one of the at least four interface terminals is used to receive the first input signal. , at least another interface end among the four interface ends is used to receive the second input signal, and the third interface end among the at least four interface ends is at least used to output a combined signal, and the combined signal is the first input signal and The signal formed after the second input signal is combined, thus realizing the function of arranging four or more interface terminals on the same circulator, so that the circulator is a circulator with four or more ports with one-way transmission characteristics.
  • two of the interface ends of the circulator with four or more interface ends can be input ports, so that The circulator can realize the simultaneous input of two input signals.
  • the two interface terminals of the circulator can be connected to the output terminals of two parallel power amplifiers 200 (for example, the power amplifier 200a and the power amplifier 200b), and receive the output of the power amplifier 200a.
  • the first input signal and the second input signal output by the receiving power amplifier 200b.
  • the other interface end of the circulator can be an output port for outputting a combined signal.
  • the combined signal is the combined signal of the first input signal and the second input signal.
  • the circulator provided by the embodiment of the present application avoids introducing the combining component 20 in the power amplifier link, thereby reducing the insertion loss of the power amplifier link and improving The output efficiency of the power amplifier link is improved.
  • the circulator provided by the embodiment of the present application avoids the introduction of combining components.
  • the board area occupied by the entire link device is reduced. Small, making the layout of the power amplifier link on the circuit board easier, on the other hand, reducing the cost of the power amplifier link.
  • each interface end is concentrated on one circulator. Compared with two three-port circulators connected in series, the circulator provided by the embodiment of the present application occupies a smaller area and is lower in cost, and avoids the need for The problem of increased insertion loss caused by spanning the two interface ends of two circulators.
  • the circulator provided by this application solves the technical problems in the related art of increased link loss, large board area, and high cost caused by the coupler cascading the three-port circulator in the power amplifier link.
  • the circulator 100 in the embodiment of the present application can be a circulator such as a microstrip circulator, a strip line circulator, a coaxial circulator, or a surface mount circulator.
  • the circulator 100 is a microstrip circulator, or as shown in Figure 26 below, the circulator 100 can be a stripline circulator.
  • the microstrip circulator and the stripline circulator will be discussed below. device is explained.
  • the circulator 100 provided by the embodiment of the present application has at least four interface terminals.
  • the circulator 100 has four interface terminals A.
  • the four interface terminals A are respectively the interface terminal A1, the interface terminal A1 and the interface terminal A1.
  • the circulator 100 may also have four or more
  • the circulator 100 may have 5 interface terminals A, or 6 interface terminals, etc. Therefore, in the embodiment of the present application, the number of interface terminals A of the circulator 100 includes but is not limited to 4. .
  • One of the at least four interface terminals is used to receive the first input signal.
  • the interface terminal A1 can be used as an input port and is used to receive the first input signal.
  • Another interface terminal among at least four interface terminals is used for receiving the second input signal.
  • the interface terminal A2 can be used as another input interface for receiving the second input signal.
  • the third interface terminal among at least four interface terminals is at least used to output a combined signal.
  • the interface terminal A3 can be used as an output port for outputting a combined signal.
  • the combined signal is a signal formed by combining the first input signal and the second input signal. Therefore, the circulator provided by the embodiment of the present application can realize simultaneous input of two ports, and the two input signals are combined in the circulator. After the circuit is connected, it can be output in one direction from an output port.
  • the interface terminal A1 and the interface terminal A2 can be connected to the output terminals of the power amplifier 200a and the power amplifier 200b respectively, and the interface terminal A1 receives the power amplifier
  • the first input signal transmitted by 200b, the interface terminal A2 receives the second input signal transmitted by the power amplifier 200a, the first input signal and the second input signal are synthesized inside the circulator 100, and output from the interface terminal A3, therefore, through Providing a circulator 100 with four or more ports avoids the setting method of combining circuit components at the circulator level in the power amplifier link, thereby reducing the insertion loss of the power amplifier link and improving the output efficiency of the power amplifier link.
  • the circulator 100 provided by the embodiment of the present application does not need to be provided with a combining component 20 (see Figure 1).
  • the entire link device The occupied board area is reduced, achieving an area reduction of more than 25%, making it easier to lay out power amplifier links on a single board.
  • each interface end is concentrated on one circulator.
  • the circulator provided by the embodiment of the present application occupies a smaller area and is lower in cost. Avoid the problem of increased insertion loss caused by crossing the two interface ends of two circulators.
  • the third interface terminal among at least four interface terminals can be used to output the combined signal.
  • the third interface terminal among at least four interface terminals can also be used for outputting the combined signal.
  • Receive input signals as shown in Figure 3.
  • the third interface terminal among at least four interface terminals is also used to receive a third input signal.
  • interface terminal A3 can be used to output a combined signal and can also receive a third input signal. According to the one-way transmission characteristics of the circulator 100, after the third input signal is input from the interface terminal A3, it is output from the interface terminal A4 along the clockwise arrow on the circulator 100 in Figure 3.
  • the interface terminal A3 of the circulator 100 receives the third input signal
  • the interface terminal A1 and the interface terminal A2 cannot receive the first input signal and the second input signal.
  • the power amplifier 200a and the power amplifier can be controlled. 200b stops working and has no signal output.
  • the interface terminal A4 can be used as an output port, and the third input signal is output from the interface terminal A4 after passing through the circulator 100 .
  • the interface terminal A3 only serves as an output port and outputs the combined signal outward from the interface terminal A3.
  • the fourth interface terminal among the at least four interface terminals is used to electrically connect with the load or circuit.
  • four The fourth interface end (for example, interface end A4) in interface end A is electrically connected to the load or circuit.
  • the interface end A4 can be used as an isolation port to play an isolation role.
  • the interface end A4 A4 is connected to the circuit
  • the third input signal received from the interface terminal A3 can be transmitted to the circuit, and the interface terminal A4 serves as an output port and plays the role of signal output.
  • the fourth interface terminal when the third interface terminal among the at least four interface terminals of the circulator is used to output the combined signal, the fourth interface terminal is used to electrically connect with the load, for example , the interface terminal A4 can be connected to a load, and the load can be a resistor; when the third interface terminal of at least four interface terminals of the circulator is used to receive the third input signal, the fourth of the at least four interface terminals of the circulator Each interface terminal is used to be electrically connected to the circuit.
  • the interface terminal A4 is electrically connected to the circuit, so that the third input signal is output to the circuit through the interface terminal A4, so that the circuit can receive the third input signal.
  • the interface end A4 of the circulator when the interface end A4 of the circulator is electrically connected to the load or circuit, the interface end A4 of the circulator can be controlled by setting a switch in the power amplifier link (see 34 below). Connected to the load or the circuit. For example, when the interface terminal A3 is used to output the combined signal, the interface terminal A4 is connected to the load through the switch to achieve isolation. When the interface terminal A3 is used to input the third input signal, the interface terminal A4 is connected to the load through the switch. The switch connects the interface terminal A4 to the circuit, so that the third input signal can be transmitted to the circuit.
  • each interface A of the circulator 100 provided by this application can also be set as One input interface terminal, one interface terminal A is an isolation interface, one interface terminal A is used to connect to the circuit, and one interface terminal A is the interface terminal shared by output and input.
  • interface terminal A1 serves as the input interface
  • Interface A2 is an isolated port
  • interface A3 is a port shared by input and output
  • interface A4 is used to connect to the circuit.
  • FIG. 4 The specific structure of the circulator 100 in the embodiment of the present application can be seen in Figures 4 and 5.
  • Figure 5 is an exploded view of the circulator 100 shown in Figure 4. Referring to Figures 4 and 5, the circulator 100 It may include: a central conductor 110, which is used to form a radio frequency microwave propagation circuit.
  • the central conductor 110 may include a central junction 115 , at least four first branches 111 and at least four second branches 112 .
  • the central conductor 110 may include two central junctions 115 , for example. , the first central node 115a and the second central node 115b, four first branches 111 and four second branches 112.
  • the first central node 115a and the second central node 115b are connected.
  • the central knot 115 is a knot formed at the intersection point where one end of the first branch 111 and the second branch 112 intersect.
  • all the first branches 111 and all the second branches 112 are connected into a whole through a central junction.
  • all the first branches 111 and all the second branches 112 can be equivalent to two The components are connected in series. In this way, when the circulator is working, all the first branches 111 and all the second branches 112 will each have a corresponding resonance point on the resonance curve.
  • the structure can adjust the position of the resonance point to achieve the purpose of increasing the bandwidth. Therefore, the bandwidth can be increased by the central conductor 110 including the first branch 111 and the second branch 112 .
  • the first branches 111 and the second branches 112 are alternately spaced along the circumferential direction of the central node 115 .
  • the first ends of the first branch 111 and the second branch 112 ie, the end connected to the central node 115
  • the second ends of the first branch 111 and the second branch 112 ie, the end connected to the central node 115
  • the central node 115 radiates outward. For example, as shown in FIG.
  • one end of the two first branches 111 and the three second branches 112 are connected to the first central node 115a.
  • the two first branches 111 and three second branches 112 are arranged radially outward with the first central node 115a as the center.
  • At least four interface terminals A of the circulator 100 are electrically connected to the central conductor 110.
  • each interface terminal A is electrically connected to a first branch 111, or each interface terminal A is electrically connected to a second branch 112.
  • connection the number of interface terminals A and the number of first branches 111 or second branches 112 may be consistent.
  • the number of first branches 111 of the central conductor 110 is 4, or There are four second branches 112 of the central conductor 110, so that one interface end is connected to a first branch, or one interface end is connected to a second branch, so that the four interface ends are respectively connected to four first branches or four third branches. Two branch electrical connections.
  • the circulator 100 has four interface terminals A, namely interface terminal A1 , interface terminal A2 , interface terminal A3 and interface terminal A4 .
  • One branch 111c is electrically connected, and the interface terminal A4 can be electrically connected to the first branch 111d, so that each interface terminal A can be electrically connected to one first branch 111.
  • each interface terminal A is electrically connected to the corresponding first branch 111.
  • each interface terminal A can also be electrically connected to the second branch 112.
  • the description takes the electrical connection between the interface end A and the first branch 111 as an example.
  • each interface end A of the circulator 100 is electrically connected to the first branch 111, as shown in FIG. 6, the end of the first branch 111 away from the central node 115 can be used as the interface end A, and the interface end A is connected to the first branch 111. It can be integrally formed, or, in some examples, as shown in FIG. 7 , the second end of the first branch 111 (the end away from the central junction 115 ) is connected to the conductive piece 121 , and the first branch 111 can be connected to the interface end through the conductive piece 121 A is conductive. Of course, in some examples, the second end of the first branch 111 can also be conductive with the interface end A of the circulator 100 through a via hole or a wire.
  • each interface end A outputs in one direction along the clockwise or counterclockwise direction.
  • the interface end A1, the interface end A2, the interface end A3 and the interface end A4 are output along the clockwise or counterclockwise direction.
  • the unidirectional output is: Interface A1 ⁇ Interface A2 ⁇ Interface A3 ⁇ Interface A4 ⁇ Interface A1
  • the signal can be transmitted from interface A2 If it enters, it can be output from interface terminal A3, but not output from interface terminal A1.
  • the circulator 100 may also include a ferrite 120 .
  • the central conductor 110 is disposed on the ferrite 120 (see FIG. 4 ).
  • the ferrite 120 is used to utilize its gyromagnetic characteristics to implement a single signal. transfer.
  • the ferrite 120 can be a ferrite with gyromagnetic characteristics. Under the condition of magnetic field bias or self-bias, it has tensor permeability, so that microwaves can propagate in the ferrite 120 medium. Propagation has the characteristics of non-reciprocal and anisotropic scattering, that is, the gyromagnetic characteristics of the ferrite 120. Therefore, in the embodiment of the present application, when the ferrite 120 needs a magnetic field bias, it also includes: at least one magnet 150, For example, as shown in Figure 5, the number of magnets 150 is one. The magnet 150 can be disposed on the central conductor 110.
  • the central conductor 110 can be located between the ferrite 120 and the magnet 150.
  • the magnet 150 can be used to provide a magnetic field so that the iron The oxygen body 120 is biased.
  • the number of magnets 150 is two. For details, please refer to the following description of the wired circulator.
  • the magnet 150 when the magnet 150 is disposed on the central conductor 110, at this time, the magnet 150 needs to be insulated. Magnets, such as ferrite magnets, can be used.
  • the embodiment of the present application also includes: a support
  • the support column 160 is located between the magnet 150 and the central conductor 110 (as shown in Figure 4).
  • the support of the support column 160 makes the magnet 150 and the central conductor 110 bracket have an interval H. In this way, the distance between the magnet 150 and the central conductor 110 is There will be no contact between the magnets 150.
  • the magnet 150 can be a non-insulated magnet 150, so that the magnetic performance is greater. Therefore, the support column 160 provided in the embodiment of the present application can adjust the magnetic field of the magnet 150 by adjusting the height of the support column 160.
  • a non-insulated magnet 150 that is more magnetic and can meet the requirements can be selected to satisfy the purpose of biasing the ferrite 120 .
  • the support column 160 When the support column 160 is disposed between the magnet 150 and the central conductor 110, as shown in Figures 4 and 5, one end of the support column 160 is in contact with the central node 115 of the central conductor 110, and the other end of the support column 160 is in contact with the magnet. 150 abuts.
  • the number of support pillars 160 is also two.
  • the two support pillars 160 are located at the first central junction 115a and the second central junction. At the junction 115b, this achieves a stable supporting effect on the magnet 150.
  • the support column 160 since the support column 160 is located at the central junction 115 of the central conductor 110, the support column 160 will not affect the first branch 111 and the second branch of the central conductor 110. 112 effects.
  • the ferrite 120 when the ferrite 120 can realize self-biasing, for example, the ferrite 120 is a self-biased ferrite.
  • the structure improvement of the ferrite 120 can provide a magnetic field and make the ferrite 120
  • the magnet 150 provides a magnetic field to bias the ferrite 120 as an example for description.
  • the material of the ferrite 120 is not limited to the 4 ⁇ Ms (saturation magnetization), dielectric constant and other parameters of the ferrite 120.
  • Low field and low 4 ⁇ Ms ferrites can be used, and high field and high 4 ⁇ Ms ferrites can also be used.
  • Ferrite, high dielectric constant ferrite can also be used to reduce device size.
  • each interface end A is located on the back of the ferrite 120, as shown in FIG. 5, the second ends of the first branch 111 and the second branch 112 of the central conductor 110 can extend to the outer edge of the ferrite 120. , and when the second end of the first branch 111 is electrically connected to the interface terminal A, each interface terminal A can be extended to the back of the ferrite 120 through the conductive sheet 121 provided on the outer edge of the ferrite 120.
  • the second end of the first branch 111 is passed through the opening on the ferrite 120 to the side of the ferrite 120 facing away from the central conductor 110 (ie, the back side of the ferrite 120), and is electrically connected to the interface end A. connect.
  • one end of the first branch 111 matched with the interface end A and the conductive sheet 121 can form an integral structure (see Figure 7).
  • the center conductor 110 is assembled, the conductive sheet 121 is stuck on the outer periphery of the ferrite 120. The conductive assembly between the central conductor 110, each interface terminal A and the conductive sheet 121 is reduced.
  • the circulator 100 also includes: a grounded back silver 130 and a bottom plate 140.
  • the ground back silver 130 is located between the ferrite 120 and the bottom plate 140, and is on the ground back silver 130 and the bottom plate 140.
  • Pins are respectively provided that are electrically connected to each interface end A.
  • the ground back silver 130 is provided with a first pin 131
  • the base plate 140 is provided with a second pin 141, wherein the first pin 131 It is in electrical contact with the second pin 141, and the first pin 131 is electrically connected to the first branch 111 through the conductive sheet 121.
  • the first branch 111 of the central conductor 110 is connected to each interface terminal A.
  • Each interface terminal A can extend to the base plate 140
  • the second pin 141 can serve as each interface terminal A of the circulator 100 .
  • the first branch 111 may include: a first radial node 1111 and at least one first circumferential node 1112 .
  • each first branch 111 includes a first A radial knot 1111 and a first circumferential knot 1112.
  • the first end of the first radial junction 1111 is electrically connected to the central conductor 110.
  • the first circumferential junction 1112 is disposed close to the second end of the first radial junction 1111 and connected to the first radial junction 1111.
  • the first circumferential junction 1112 is electrically connected to the central conductor 110.
  • the number of 1112 may be one or multiple.
  • the number of first circumferential knots 1112 is 1, and one first circumferential knot 1112 is arranged symmetrically relative to the first radial knot 1111.
  • the number of the first circumferential knots 1112 can also be two (see Figure 31 below).
  • the number of the first circumferential knots 1112 includes but is not limited to one or two. It can also be for more than two.
  • each interface end A When each interface end A is electrically connected to the first branch 111, each interface end A can be electrically connected to the first circumferential junction 1112 of the first branch 111. Of course, each interface end A can be electrically connected to the first circumferential junction 1112 of the first branch 111.
  • the radial junction 1111 is electrically connected to realize the electrical connection between the interface end A and the first branch 111 .
  • one end of the first circumferential node 1112 of the first branch 111 forms a bulge, and the bulge can serve as the interface end A.
  • the first branch 111 includes the first radial junction 1111 and the first circumferential junction 1112. In this way, the first branch 111 can be equivalent to the connected capacitance and inductance.
  • the first circumferential junction 1112 When the first circumferential junction 1112 is disposed, the first branch The capacitance in the equivalent circuit of 111 will change, so that the position of the resonance point on the resonance curve corresponding to the first branch 111 can change. Since the frequency range between the two resonance points is the bandwidth, so when the first branch When the resonance point corresponding to 111 changes, the bandwidth can change. Therefore, in the embodiment of the present application, the first circumferential junction 1112 can be used as a matching junction.
  • the first branch 111 has a first matching junction (ie, the first circumferential junction).
  • the matching junction can play a role in adjusting the bandwidth of the circulator, thereby achieving the purpose of increasing the bandwidth.
  • the first branch 111 may only include the first radial node 1111, and the first circumferential node 1112 may not be provided.
  • the number and structure of the first circumferential junctions 1112 can be adjusted according to the required bandwidth.
  • the first circumferential node 1112 and the first radial node 1111 can be an integrated structure, or the first circumferential node 1112 and the first radial node 1111 can be connected by bonding, welding or snapping. .
  • the second branch 112 may include: a second radial node 1121 and at least one second circumferential node 1122 .
  • each second branch 112 includes a second branch 112 .
  • Two radial junctions 1121 and a second circumferential junction 1122 The first end of the second radial junction 1121 is electrically connected to the central junction 115 of the central conductor 110.
  • the second circumferential junction 1122 is close to the second radial junction 1121. Two ends are provided and connected with the second radial node 1121.
  • the second circumferential knot 1122 extends circumferentially around the central knot 115 .
  • the second circumferential junction 1122 and the second radial junction 1121 can be equivalent to a parallel capacitor and an inductor. Therefore, when the second circumferential junction 1122 is disposed, the second branch 112 is equivalent to a circuit. The medium capacitance will change, so that the position of the resonance point on the resonance curve corresponding to the second branch 112 can change. Since the frequency range between the two resonance points is the bandwidth, when the resonance point corresponding to the second branch 112 When a change occurs, the bandwidth can be transformed. Therefore, in the embodiment of the present application, the second circumferential junction 1122 can play a role in adjusting the bandwidth of the circulator, thereby achieving the purpose of increasing the bandwidth.
  • the second circumferential knot 1122 can be used as a matching knot.
  • the second branch 112 has a second matching knot (ie, the second circumferential knot 1122), and the matching knot can function to adjust the circulator.
  • the role of bandwidth thereby achieving the purpose of increasing bandwidth.
  • the second branch 112 may only include the second radial node 1121, that is, Yes, the second circumferential node 1122 may not be set.
  • all the first branches 111 are equivalent to a set of parallel capacitors and inductors
  • all the second branches 112 are equivalent to another set of parallel capacitors and inductors
  • all the first branches are equivalent to a set of parallel capacitors and inductors.
  • the parallel capacitors and inductors corresponding to 111 are connected in series with all the parallel capacitors and inductors corresponding to the second branch 112.
  • a resonance point appears in the first branch 111 and the second branch 112 respectively.
  • the directional junction 1112 and the second circumferential junction 1122 realize the adjustment of the resonance point, thereby achieving the purpose of increasing the bandwidth.
  • the first circumferential junction 1112 and the second circumferential junction 1122 can be set according to the performance of the circulator. For example, in some examples, only the first circumferential junction 1112 can be set, The second circumferential knot 1122 may not be provided, or, in some examples, only the second circumferential knot 1122 may be provided, and the first circumferential knot 1112 may not be provided.
  • the central conductor 110 may be provided with a first circumferential junction 1112 and a second circumferential junction 1122 at the same time.
  • the structures of the first circumferential junction 1112 and the second circumferential junction 1122 include but are not limited to those shown in Figures 8-32. According to the performance requirements of the circulator, other structures can be provided.
  • the area sizes of the first circumferential junction 1112 and the second circumferential junction 1122 can be specifically set according to the performance requirements of the circulator 100. In the embodiment of the present application, the area sizes of the first circumferential junction 1112 and the second circumferential junction 1122 are The area size is not limited.
  • the central conductor 110 includes one or more conductor parts.
  • the central conductor 110 may include one conductor part, or may include two conductor parts as shown in FIG. 8 .
  • the two conductor parts They are the first conductor part 110a and the second conductor part 110b respectively, wherein when the central conductor 110 includes a plurality of conductor parts, the plurality of conductor parts are electrically connected.
  • Each conductor part includes a central junction 115 and a plurality of first branches 111 and a plurality of second branches 112 spaced around the central junction 115 .
  • the central conductor 110 when the central conductor 110 includes two conductor parts, the two conductor parts may be arranged side by side or stacked. The following is an example of two conductor parts arranged side by side.
  • the central conductor 110 includes a third conductor part.
  • the first conductor part 110a and the second conductor part 110b are connected and arranged side by side.
  • the first conductor part 110a and the second conductor part 110b are located on the same plane, and the central conductor 110 is a layer conductor layer.
  • the first conductor part 110a includes a first central junction 115a, and at least two first branches 111 and at least two second branches 112 electrically connected to the first central junction 115a, for example, Figure 8 , the first conductor part 110a includes two first branches 111 and three second branches 112.
  • the second conductor portion 110b includes a second central junction 115b, and at least two first branches 111 and at least two second branches 112 electrically connected to the second central junction 115b; for example, in Figure 8,
  • the second conductor part 110b includes two first branches 111 and three second branches 112.
  • the first central junction 115a and the second central junction 115b are electrically connected, and at least two first branches 111 in the first conductor part 110a are electrically connected to the corresponding interface terminals A, for example, the Two first branches 111 of a conductor portion 110a are electrically connected to the interface end A1 and the interface end A2 respectively. At least two first branches 111 in the second conductor part 110b are electrically connected to corresponding other interface terminals A respectively. For example, the two first branches 111 in the second conductor part 110b are electrically connected to the interface end A3 and the interface end A4 respectively. In this way, the four first branches 111 of the central conductor 110 are electrically connected to the four interface ends A respectively, forming four Port 100 of the circulator.
  • first connecting node 113 it also includes a first connecting node 113.
  • the two ends of the first connecting node 113 are respectively located at Between the two second branches 112, the first central node 115a and the second central node 115b are electrically connected through the first connection node 113, and the two second conductor portions 110a located on both sides of the first connection node 113 are electrically connected.
  • the branches 112 are respectively connected to the two second branches 112 located on both sides of the first connection node 113 in the second conductor part 110b. For example, as shown in FIG.
  • a second branch 112a in the first conductor part 110a is connected to a second branch 112b in the second conductor part 110b, and another second branch 112c in the first conductor part 110a is connected to the second branch 112c in the first conductor part 110a.
  • Another second branch 112d in the conductor part 110b is connected, so that the two second branches 112 of the first conductor part 110a are respectively coupled with the two second branches 112 of the second conductor part 110b, so that the first connection node 113 is Two paths are formed on both sides, so that the signal transmission on the central conductor 110 is faster.
  • the central conductor 110 includes: two central junctions 115, four first branches 111 and four second branches 112.
  • first connection node 113 may be a first branch 111 of the first conductor part 110a, or may also be a first branch 111 of the second conductor part 110b.
  • the first conductor part 110a and the second conductor part 110b multiplexes a first branch 111, and both ends of the first branch 111 are connected to the first central node 115a and the second central node 115b.
  • the first conductor part 110 a and the second conductor part 110 b are located on the same ferrite 120 .
  • the central conductor 110 connected to each interface terminal A is located on a ferrite 120, which saves the board area of the circulator 100 and reduces the cost.
  • signal crossover is easy to occur.
  • the two interface ends of the two circulators 100 increase the insertion loss.
  • the first conductor part 110a and the second conductor part 110b are concentrated on one ferrite 120 to avoid signals crossing the two interfaces.
  • the circulator 100 provided by the embodiment of the present application achieves an optimization of the insertion loss of more than 0.2dB, a reduction of the area of more than 25%, and a reduction of the cost. It has the advantages of miniaturization, high performance and low cost.
  • the angle a between two adjacent first branches 111 connected to the same central node 115 can be set to 120 °. In this way, the interference between the formed interface terminals A can be reduced.
  • FIG. 10 another structure of the central conductor 110 can be shown in Figure 10.
  • Figure 10 the shape of the second circumferential junction 1122 has been adjusted.
  • the first connecting junction Matching junctions 1131 are connected to both ends of 113 respectively.
  • the matching junction 1131 is combined with the central junction 115 to form an overall structure.
  • the setting of the matching junction 1131 can adjust the performance (such as bandwidth) of the circulator.
  • the first branch 111 in the first conductor part 110a may also be connected to the first branch 111 in the second conductor part 110b.
  • the first conductor part 110a includes three first branches 111 and two second branches 112; the three first branches 111 and the two second branches 112 are respectively arranged at alternate intervals along the circumferential direction of the first central node 115a.
  • the second conductor part 110b includes three first branches 111 and two second branches 112; the three first branches 111 and the two second branches 112 are respectively arranged at alternate intervals along the circumferential direction of the second central node 115b.
  • first connecting node 113 two ends of the first connecting node 113 are respectively located between the two first branches 111 , and the first central node 115 a and the second central node 115 b are connected through the first connecting node 113 .
  • the two first branches 111 located on both sides of the first connection node 113 in the first conductor part 110a are respectively the two first branches 111 located on both sides of the first connection node 113 in the second conductor part 110b.
  • a first branch 111a of the first conductor part 110a is coupled and conductive with one end of a first branch 111b of the second conductor part 110b, and the first branch 111a is connected to the first branch 111b and then connected to an interface terminal A2 Electrical connection;
  • the other first branch 111c of the first conductor part 110a is coupled and conductive with one end of the other first branch 111d of the second conductor part 110b, and the first branch 111c is connected to the first branch 111d and then connected to an interface terminal A4 is electrically connected, and the remaining first branch 111 in the first conductor part 110a is electrically connected to the interface terminal A1.
  • the remaining first branch 111 in the second conductor part 110b is electrically connected to the interface terminal A3.
  • the central conductor 110 includes two centers Knot 115, four first branches 111 and four second branches 112.
  • the first connection node 113 may be a second branch 112 , and the first conductor part 110 a and the second conductor part 110 b share the second branch 112 .
  • the first conductor part 110 a and the second conductor part 110 b are collectively provided on one ferrite 120 .
  • the interface end A1, the interface end A2, the interface end A3 and the interface end A4 are respectively located at the outer periphery of the ferrite 120, wherein the interface end A1, the interface end A2, the interface end A3 and the interface end A4 can be symmetrical on the ferrite 120 Setting, when the interface terminal A1, interface terminal A2, interface terminal A3 and interface terminal A4 are set symmetrically, the input of any interface terminal A can be realized.
  • the first conductor part 110a and the second conductor part 110b in the central conductor 110 provided in Figures 8 and 11 are connected through the first connection node 113, and the central conductor 110 has a bridge-type structure, thereby forming a bridge-type four-interface circulator. 100.
  • the circulator 100 is not limited to high field (normalized internal magnetic field ⁇ >1) or low field (normalized internal magnetic field ⁇ 1).
  • the central conductor 110 includes a first conductor part 110a and a second conductor part 110b, wherein the first conductor part 110a includes a first central junction 115a, Three first branches 111 and three second branches 112 .
  • the second conductor part 110b includes a second central junction 115b, three first branches 111 and three second branches 112.
  • the central conductor 110 further includes a second connection node 114 , through which one of the first branches 111 a of the first conductor part 110 a and one of the first branches 111 b of the second conductor part 110 b pass through the second connection node 114 Electrically connected, so that the first central junction 115a and the second central junction 115b are electrically connected.
  • the other two first branches 111 in the first conductor part 110a are electrically connected to the interface terminal A2 and the interface terminal A1 respectively.
  • Second conductor part 110b The other two first branches 111 are electrically connected to the interface terminal A3 and the interface terminal A4 respectively.
  • the first conductor part 110 a and the second conductor part 110 b are collectively provided on one ferrite 120 .
  • the interface end A1, the interface end A2, the interface end A3 and the interface end A4 can be axially symmetrical, thereby realizing the input of any interface end A.
  • the structure of the central conductor 110 is not limited to whether it is rotationally symmetrical, that is, the interface end A1, the interface end A2, the interface end A3, and the interface end A4 may also be asymmetrical.
  • the central conductor 110 in FIG. 13 connects the two first branches 111 to form a path through the second connection node 114.
  • the central conductor 110 has a twin structure, and finally forms a twin four-port circulator 100.
  • the circulator 100 is not limited to high field (normalized internal magnetic field ⁇ >1) or low field (normalized internal magnetic field ⁇ 1).
  • the first conductor part 110a and the second conductor part 110b of the central conductor 110 are connected through the second connection node 114, so that the first conductor part 110a and the second conductor part 110b are concentrated on the same ferrite. 120, compared with two three-interface terminal circulators connected in series, the circulator provided by the embodiment of the present application occupies a smaller area and has a lower cost, and avoids crossing the two interface terminals of the two circulators, resulting in an increase in the insertion loss of the circulator. Big question.
  • the central conductor 110 includes a conductor part 110A.
  • the conductor part 110A includes a central junction 115, four first branches 111 and four second branches. 112.
  • the four first branches 111 are electrically connected to the four interface terminals A respectively.
  • the four first branches 111 are electrically connected to the interface terminal A1, the interface terminal A2, the interface terminal A3 and the interface terminal A4, and the four first branches 111 are electrically connected to the interface terminal A1, the interface terminal A2, the interface terminal A3 and the interface terminal A4 respectively.
  • the first branches 111 are arranged at intervals along the circumference of the central node 115, in which the interface end A1, the interface end A2, the interface end A3 and the interface end A4 can be output in one direction in a clockwise or counterclockwise direction.
  • each interface end A can perform unidirectional transmission in a clockwise direction: interface end A1 ⁇ interface end A2 ⁇ interface end A3 ⁇ interface end A4 ⁇ interface end A1, or, in some examples, it can also be transmitted along the Counterclockwise one-way output, interface end A1 ⁇ interface end A4 ⁇ interface end A3 ⁇ interface end A2 ⁇ interface end A1, for example, when the one-way output is: interface end A1 ⁇ interface end A2 ⁇ interface end A3 ⁇ interface end A4 ⁇ When the interface is A1, the signal can enter through the interface A2, and can be output from the interface A3, but will not be output from the interface A1. Correspondingly, the signal enters from the interface end A3 and can only be outputted in one direction from the interface end A4. The signal enters from the interface end A4 and can only be outputted in one direction from the interface end A1.
  • the number of the first branches 111 and the second branches 112 of the central conductor 110 includes but is limited to four.
  • the number of the central conductor may be greater than 4.
  • each first branch 111 includes a first radial node 1111 and a first circumferential node 1112 .
  • the angle a between two adjacent first branches 111 among the four first branches 111 is 90°.
  • the interface terminal A1, the interface terminal A2, the interface terminal A3 and the interface terminal A4 are axially symmetrical on the ferrite 120, so that the input of any interface terminal A can be realized.
  • the angle a between two adjacent first branches 111 among the four first branches 111 includes but is not limited to 90°.
  • the central conductor 110 has an The internal magnetic field ⁇ 1).
  • the central conductor 110 includes two conductor parts, namely a first conductor part 110a and a second conductor part 110b, and the first conductor part 110a and the second conductor part 110b are stacked.
  • the first conductor part 110a and the second conductor part 110b are connected through the conductive member 119a.
  • the central conductor 110 is two conductor layers. As shown in FIG. 17, the central conductor 110 is the first conductor part 110a and the second conductor part 110b respectively.
  • the first The conductor part 110a and the second conductor part 110b are stacked.
  • the ferrite 120 may be two layers, such as ferrite 120a and ferrite 120b.
  • the first conductor part 110 is provided on the ferrite 120a, and the second conductor part 110b Provided on the ferrite 120b, there is a ferrite 120a between the first conductor part 110a and the second conductor part 110b.
  • the two layers may be spaced apart.
  • a certain spacing is provided, or no spacing may be provided between the two layers of ferrite 120 except for the central conductor 110 .
  • the first conductor part 110a includes a first central junction 115a, and at least three first branches 111 and at least three second branches 112 connected to the first central junction 115a. At least two first branches 111 in the first conductor part 110a are electrically connected to the corresponding interface terminal A respectively.
  • the two first branches 111 in the first conductor part 110a are respectively connected to the interface terminal A1 and the interface terminal A1.
  • the terminal A2 is electrically connected, and the first conductor portion 110a is electrically connected to two of the interface terminals A.
  • the second conductor part 110b includes a second central junction 115b, and at least three first branches 111 and at least three second branches 112 connected to the second central junction 115b. At least two first branches 111 in the second conductor part 110b are electrically connected to corresponding other interface terminals A respectively. For example, as shown in FIG. 18 , the two first branches 111 in the second conductor part 110b are respectively connected to the interface terminals A3, The interface terminal A4 is electrically connected, and the second conductor portion 110b is electrically connected to the other two interface terminals A. In this way, the four first branches 111 of the central conductor 110 are electrically connected to the four interface terminals A of the circulator 100 respectively.
  • interface end A1, interface end A2, interface end A3, and interface end A4 can be: interface end A1 ⁇ interface end A2-interface end A4 ⁇ interface end A3 ⁇ interface end A1, or it can also be: interface end A1 ⁇ interface end A2-interface end A4 ⁇ interface end A3 ⁇ interface end A1.
  • the two conductor portions of the central conductor 110 are stacked up and down to form the four-port circulator 100, a higher surface area integration can be achieved at the expense of less height, saving more than 30% of the area, making the circulator 100 more compact.
  • the interface terminals A are spatially spaced apart, making it easier to achieve better isolation.
  • each conductor part of the central conductor 110 is not limited to the size of the circuit, the interface end is not limited to whether it is rotationally symmetrical, the circulator 100 is not limited to a strip line circulator/microstrip circulator, and is not limited to high field (normalized Normalized internal magnetic field ⁇ >1)/low field (normalized internal magnetic field ⁇ 1), the material of each layer of ferrite 120 is not limited to the 4 ⁇ Ms, dielectric constant and other parameters of the ferrite, low field and low 4 ⁇ Ms can be used Ferrite, high field high 4 ⁇ Ms ferrite can also be used, and high dielectric constant ferrite can also be used to reduce device size.
  • the first conductor part 110 a and the second conductor part 110 b each include three first branches 111 and three second branches 112 , wherein the first conductor part 110 a
  • the branch 111a is connected to the second branch 112b of the second conductor part 110b through the conductive member 119a, thereby achieving the purpose of electrical connection between the first conductor part 110a and the second conductor part 110b.
  • the remaining two first branches 111 in the first conductor part 110a and the second conductor part 110b are electrically connected to corresponding interface ends respectively.
  • each conductor part may include four first branches 111 and four second branches 112 to form a six-port circulator 100 .
  • the first conductor part 110a and the second conductor part 110b when the first conductor part 110a and the second conductor part 110b are stacked, in addition to the layer arrangement shown in Figure 17, the first conductor part 110a and the second conductor part 110b can also be arranged as shown in Figures 19 and 20.
  • the part 110a and the second conductor part 110b can also be stacked face to face.
  • the second conductor part 110b is provided on one side of the ferrite 120b.
  • the first conductor part 110a is provided on On the side of the ferrite 120a facing the ferrite 120b, in this way, the first conductor part 110a and the second conductor part 110b are stacked face to face.
  • the first conductor part 110a and the second conductor part 110b can be supported by the ferrite 120a and the second conductor part 110b.
  • the conductive elements 119 between the ferrites 120b are electrically connected.
  • the first conductor part 110a and the second conductor part 110b are stacked face to face, when the spacing between the ferrite 120a and the ferrite 120b is the same, the first conductor part 110a and the second conductor part The distance between 110b is smaller, so that the height of the circulator in the thickness direction is reduced, so that the volume of the circulator is reduced. In addition, the distance between the first conductor part 110a and the second conductor part 110b becomes smaller, and during signal transmission The loss is reduced, making the circulator perform better.
  • the interface terminal A1 is used to receive the first input signal
  • the interface terminal A1 is used to receive the first input signal
  • Terminal A2 is used to receive the second input signal.
  • the first input signal and the second input signal are combined and transmitted to the second conductor part 111a through the conductive member 119a.
  • the combined signal can be output from the interface terminal A3.
  • the interface terminal A4 can is connected to the load and serves as an isolation port, or the interface terminal A3 can also be used as an input port for receiving the third input signal.
  • the third input signal is output from the interface terminal A4 along the counterclockwise arrow. At this time, the interface terminal A4 It can be connected to the circuit, so that the third input signal can be transmitted to the circuit through the interface terminal A4.
  • first conductor part 110a and the second conductor part 110b when they are stacked and arranged face to face, they can be as shown in Figure 22
  • the magnet 150 is between the first conductor part 110a (see Figure 20) and the second conductor part 110b.
  • the ferrite 120a and the ferrite 120b can share a magnet 150, and the magnet 150 can provide a magnetic field, so that the ferrite 120a and ferrite 120b are offset. Since ferrite 120a and ferrite 120b can share a magnet 150, it is avoided to increase the volume of the circulator when a magnet 150 is provided for ferrite 120a and ferrite 120b respectively. question.
  • the side of the ferrite 120a facing away from the ferrite 120b (for example, the top of the ferrite 120a) is provided with a grounded back silver 130a.
  • the ferrite 120b There is a grounding back silver 130b on the back side of function to avoid external signals from interfering with the signals transmitted on the central conductor 110.
  • the ground back silver 130a and the ground back silver 130b are insulated from each other from each branch of the central conductor 110.
  • the following describes the structure of the circulator 100 by taking the circulator 100 as a strip circulator as an example.
  • the circulator 100 has four interface terminals A, interface terminal A1, interface terminal A2, interface terminal A3, and interface terminal A4.
  • the circulator 100 can also have 5 or 6 interface terminals A.
  • the following description takes the circulator 100 having four interface terminals A as an example.
  • four interface terminals A protrude outward from the outer surface of the circulator 100.
  • the usage of the four interface terminals A can refer to the description of the above embodiment, and will not be described again in the embodiment of this application.
  • the circulator 100 may include: a housing 170 , and the housing 170 may include a base 172 and a cover 171 .
  • the base 172 of the housing 170 has a cavity 1721 , a ferrite 120 and a central conductor 110 It is located in the cavity 1721 and has a gap 1722 on the side wall of the base 172 of the housing 170 for the interface end A (for example, the interface end A1, the interface end A2, the interface end A3, and the interface end A4) to pass through.
  • the interface end A for example, the interface end A1, the interface end A2, the interface end A3, and the interface end A4
  • the circulator 100 includes a central conductor 110 and two layers of ferrite 120.
  • the two layers of ferrite 120 can be ferrite 120a and ferrite 120b respectively, see Figures 28 and 29.
  • the central conductor 110 is located between the ferrite 120a and the ferrite 120b, and the central conductor 110 is connected to the interface terminal A1, the interface terminal A2, the interface terminal A3, and the interface terminal A4.
  • the structure of the central conductor 110 can refer to the structure of the central conductor 110 mentioned above.
  • the structures of the first branch 111 and the second branch 112 of the central conductor 110 can be adjusted as needed.
  • the central conductor 110 in Figure 27 has a fork-shaped structure, but the structure of the second branch 112 in the fork-shaped structure in Figure 15 is different.
  • the second branch 112 of the central conductor 110 has a shorter structure. , wider, one end of the first branch 111 of the central conductor 110 extends outward to form the interface end A.
  • the number of magnets 150 is two, and also includes: two uniform magnetic sheets 180, a temperature compensation sheet 191, and a fixed sheet 192.
  • One of the uniform magnetic sheets 180 is located on the ferrite body. 120b and one of the magnets 150a, another uniform magnet is located between the ferrite 120a and the other magnet 150b, the temperature patch 191 is located on the magnet 150b, the fixing piece 192 is located on the temperature patch 191, and the cover plate 171 covers Provided on the fixed piece 192, the uniform magnetic piece 180 is used for uniform magnetic field, and the temperature compensation piece 191 is used for temperature compensation.
  • the fixing piece 192 is used to fix each layer structure in the cavity 1721 of the base 172 to prevent the ferrite 120, the central conductor 110, the uniform magnetic piece 180, the magnet 150 and the temperature patch 191 from shifting.
  • the structure of the central conductor 110 may be the bridge structure shown in Figure 8.
  • the difference from Figure 8 is that in the embodiment of the present application, in Figure 29, the structure of the second branch 112 Depending on the structure, the second branch 112 may not include the second circumferential node 1122 (see FIG. 8 above).
  • the interface end A1 , the interface end A2 , the interface end A3 , and the interface end A4 can be located in the test cavity 193 for testing.
  • a dielectric ring 122 is also included.
  • the dielectric ring 122 is sleeved on the outer periphery of at least one layer of ferrite 120 .
  • the dielectric ring 122 increases the dielectric constant of the signal transmission path, so that the signal loss is smaller.
  • the dielectric ring 122 can also be placed on the ferrite 120 in Figure 5.
  • the conductive sheet 121 (see Figure 5) can be placed between the dielectric ring 122 and the ferrite. 120 may also be located on the outer surface of the dielectric ring 122.
  • the structure of the first branch 111 and the second branch 112 of the central conductor 110 is different from that of the central conductor 110 shown in FIG. 15 .
  • the structures of the central conductor 110 are different.
  • Each first branch 111 is provided with two first circumferential nodes 1112, and one of the first circumferential nodes 1112 is located at the dielectric ring 122, and the other first circumferential node 1112 is located on the ferrite 120.
  • the sizes of the first circumferential knots 1112 are different.
  • the first branch 111 of the central conductor 110 is shorter and wider than the second branch 112 in FIG. 15 .
  • the bandwidth of the circulator 100 is adjusted by changing the structures of the first branch 111 and the second branch 112 on the central conductor 110 .
  • the structure of another circulator 100 can be as shown in Figure 32.
  • the central conductor 110 includes a first conductor part 110a and a second conductor part 110b.
  • the ferrite 120 has three layers, each of which is ferrite. 120c, ferrite 120e, ferrite 120d, the second conductor part 110b is provided between the ferrite 120c and the ferrite 120e, and the first conductor part 110a is provided between the ferrite 120e and the ferrite 120d.
  • the structure of the first conductor part 110a and the second conductor part 110b can refer to the above-mentioned FIG. 18.
  • the first conductor part 110a includes a first central junction 115a and at least three first branches connected to the first central junction 115a. 111 and at least three second branches 112; at least two first branches 111 in the first conductor part 110a are electrically connected to the corresponding interface end A, for example, the two first branches 111 of the first conductor part 110a are respectively connected to The interface terminal A3 and the interface terminal A4 are electrically connected.
  • the second conductor part 110b includes a second central node 115b, and at least three first branches 111 and at least three second branches 112 connected to the second central node 115b; at least two of the second conductor part 110b are One branch 111 is electrically connected to the remaining interface terminal A respectively.
  • the two first branches 111 of the second conductor part 110b are electrically connected to the interface terminal A1 and the interface terminal A2 respectively.
  • the other branch of the second conductor part 110b is electrically connected to the interface terminal A1 and the interface terminal A2 respectively.
  • One first branch 111 (for example, the first branch 111a) is connected to another first branch 111 (ie, the first branch 111b) of the first conductor part 110a through a conductive member 119a, so that the first conductor part 110a and the second conductor part 110b conduction.
  • the four-port circulator 100 when the four-port circulator 100 is formed by stacking the two conductor parts of the central conductor 110 one above the other, it can achieve higher surface area integration at the expense of less height, saving more than 30% of the area, making the circulator 100 is more compact.
  • the interface terminals A are spatially spaced apart, making it easier to achieve better isolation.
  • the power amplifier module may include at least one circulator 100 and at least two power amplifiers 200 of any of the above embodiments.
  • the power amplifier module may include at least one circulator 100 and at least two power amplifiers 200 of any of the above embodiments.
  • There are two power amplifiers 200 namely a power amplifier 200a and a power amplifier 200b. Wherein, at least two power amplifiers are arranged in parallel.
  • the power amplifier 200a and the power amplifier 200b are arranged in parallel, and the output end of one of the power amplifiers 200a of the at least two power amplifiers 200 is connected to one of the circulators 100.
  • the interface terminal A is connected, and the output terminal of another power amplifier 200b of at least two power amplifiers 200 is connected to another interface terminal A of the circulator 100.
  • the interface terminal A1 of the circulator 100 serves as an input interface to the power amplifier 200b.
  • the output end of the circulator 100 is turned on, the interface end A2 of the circulator 100 is turned on as an input interface and the output end of the power amplifier 200a, and the interface end A4 of the circulator 100 is connected to the matching load 500 (such as a resistor) to form an isolated port.
  • the interface A3 of the 100 is an output interface, using an output signal.
  • the power amplifier module may also include filters, radio frequency modules, antennas and other devices.
  • the radio frequency modules are connected to the two power amplifiers respectively.
  • the filter is connected to the output interface of the circulator 100.
  • the antenna is connected to the filter. connected.
  • the power amplifier module provided by the embodiment of the present application includes the circulator 100 in the above embodiment, avoiding the introduction of couplers and microstrip lines cascaded with the ring circuit in the power amplifier link, thereby reducing the insertion loss of the power amplifier link. , improving the output efficiency of the power amplifier link.
  • the circulator 100 provided by the embodiment of the present application does not need to be provided with a combining component 20 (see Figure 1) , On the one hand, the board area occupied by the entire link device is reduced, making it easier to lay out the power amplifier link on the circuit board. On the other hand, it reduces the cost of the power amplifier link.
  • An embodiment of the present application also provides a communication device.
  • the communication device 1000 includes at least one upper
  • the circulator 100 of the above embodiment, the circulator 100 may include but is not limited to a four-interface terminal circulator 100, a five-interface terminal circulator 100, or a six-interface terminal circulator 100.
  • the interface terminals that can be set in the circulator 100 The quantity of A is an example.
  • the communication device 1000 also includes a radio frequency module 600, at least one power amplifier 200, an antenna 400, and a filter 300.
  • the radio frequency module 600 is connected to the input end of the power amplifier, and the output end of the power amplifier is connected to the circulator.
  • the input interface end is connected, the output interface end of the circulator is connected to the filter 300 , and the filter 300 is connected to the antenna 400 .
  • the number of power amplifiers is two, namely power amplifier 200a and power amplifier 200b.
  • the radio frequency module 600 is connected to both the power amplifier 200a and the power amplifier 200b.
  • the filter 300 is connected to the output interface end of the circulator.
  • the antenna 400 is connected to the filter 300. In Figure 33, the number of the antenna 400 is one.
  • the antenna 400 can be used as a transmitting antenna and a receiving antenna.
  • the number of the antenna 400 can be two. , one of which can be a transmitting antenna 400a, and the other can be a receiving antenna 400b.
  • the number of antennas 400 can be set according to actual applications. In the embodiment of the present application, the structure and number of antennas 400 are not limited.
  • the number of power amplifiers is two, the power amplifier 200a and the power amplifier 200b are arranged in parallel, and the output end of at least one of the power amplifiers 200a of the two power amplifiers 200 is connected to one of the interface ends of the circulator 100.
  • A is connected, and the output end of another power amplifier 200b of at least two power amplifiers 200 is connected to another interface end A of the circulator 100.
  • the interface end A1 of the circulator 100 serves as an input interface and the output of the power amplifier 200b.
  • the interface terminal A2 of the circulator 100 is connected to the output terminal of the power amplifier 200a as an input interface.
  • the interface terminal A4 of the circulator 100 is connected to the matching load 500 (such as a resistor) to form an isolated port.
  • Interface A3 is the output interface.
  • the communication device 1000 can achieve the effect of not increasing insertion loss when the number of channels in the radio frequency module 600 increases, making the communication device 1000 have higher transmission efficiency and larger bandwidth.
  • FIG. 33 it also includes: a circuit board 700, a radio frequency module 600, a circulator 100, a power amplifier, a filter 300 and an antenna 400 are all arranged on the circuit board 700 and integrated into an overall structure.
  • the radio frequency module 600, the power amplifier, the filter 300 and the antenna 400 are electrically connected to each other through traces on the circuit board 700.
  • the area saved on the circuit board 700 makes it easier to lay out the devices on the circuit board 700 .
  • the communication device 1000 can also be used in another scenario.
  • the interface terminal A3 of the circulator 100 can also be used to receive the third input signal, and the interface terminal A3 can be used for input and output.
  • the shared interface terminal, interface terminal A3, can be connected to the load 500 or the circuit 800.
  • the interface terminal A4 when the interface terminal A4 is connected to the load, the interface terminal A4 can be used as an isolation port to play an isolation role.
  • the interface terminal A4 is connected to the circuit 800, the third input signal received from the interface terminal A3 can be transmitted to In the circuit 800, the interface terminal A4 serves as an output port and plays the role of signal output.
  • the third input signal may be a signal received by the receiving antenna 400b.
  • a switch can be set to control the interface terminal A4 of the circulator to be connected to the load or the circuit.
  • the interface terminal A3 is used for output closing When receiving a signal, the interface terminal A4 is connected to the load through the switch to achieve isolation.
  • the interface terminal A4 is connected to the circuit 800 through the switch, so that the third input signal can transmitted to circuit 800.
  • the interface terminal A3 of the circulator 100 receives the third input signal, the interface terminal A1 and the interface terminal A2 cannot receive the first input signal and the second input signal.
  • the power amplifier 200a and the power amplifier can be controlled. 200b stopped working, no signal output.
  • the interface terminal A1 and the interface terminal A2 receive input signals, the interface terminal A3 can only output but cannot receive the third input signal.
  • the communication device 1000 can achieve the effect of not increasing the insertion loss when the number of channels in the radio frequency module 600 increases.
  • the transmission efficiency of the communication device 1000 is higher.
  • the circulator 100 on the circuit board 700 is saved.
  • the occupied area reduces the cost of the communication device 1000, making the integrated communication device 1000 more miniaturized.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Indirect connection through an intermediary can be the internal connection between two elements or the interaction between two elements.
  • plural means two or more.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects before and after are an “or” relationship; in the formula, the character "/" indicates that the related objects before and after are a "division" relationship.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the implementation of the present application.
  • the implementation of the examples does not constitute any limitations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例提供一种环行器、功放模组以及通信设备。所述环行器具有至少四个接口端,所述至少四个接口端中其中一个接口端用于接收第一输入信号,所述至少四个接口端中的另一个接口端用于接收第二输入信号,所述至少四个接口端中的第三个接口端至少用于输出合路信号,且所述合路信号为所述第一输入信号和所述第二输入信号合路后形成的信号。本申请实施例提供的环行器,减小了链路损耗,提升链路效率,降低了链路中环行器占用面积和成本。

Description

环行器、功放模组以及通信设备
本申请要求于2022年06月15日提交中国专利局、申请号为202210673094.3、申请名称为“环行器、功放模组以及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,特别涉及一种环行器、功放模组以及通信设备。
背景技术
环行器是一种多接口端器件,且电磁波在环行器中的传输沿单方向环行,反方向是隔离的。环行器的工作原理是用铁氧体材料作介质,铁氧体上设置导体结构,加恒定磁场,环行器具有旋磁特性。若改变偏置磁场的方向,环行方向就会改变。基于环行器的旋磁特性,在基站功放链路上,环行器被广泛地应用,可以起到信号的单向传输以及较好的隔离,避免出现信号倒灌。
相关技术中,环行器往往具有第一接口端、第二接口端和第三接口端,其中一个接口端可以作为输入接口端,另一接口端可以用来作为隔离接口端,第三个接口端可以作为输出接口端并与负载相连。
然而,随着射频模块中功放链路的增多,往往需要将两个功放链路先进行一次合路,再输入至环行器的输入接口端并单向传输至输出接口端,但是两个功放链路合路时往往会引入合路器件,合路器件的引入增加了链路的损耗,对功率放大器输出效率造成影响。
发明内容
本申请实施例提供一种环行器、功放模组以及通信设备,减小了链路损耗,提升链路效率,降低了链路中环行器占用面积和成本。
本申请第一方面提供一种环行器,所述环行器具有至少四个接口端,所述至少四个接口端中其中一个接口端用于接收第一输入信号,所述至少四个接口端中的另一个接口端用于接收第二输入信号,所述至少四个接口端中的第三个接口端至少用于输出合路信号,且所述合路信号为所述第一输入信号和所述第二输入信号合路后形成的信号。
本申请实施例提供的环行器,通过环行器具有至少四个接口端,所述至少四个接口端中其中一个接口端用于接收第一输入信号,所述至少四个接口端中的另一个接口端用于接收第二输入信号,所述至少四个接口端中的第三个接口端至少用于输出合路信号,且所述合路信号为所述第一输入信号和所述第二输入信号合路后形成的信号,这样实现在同一个环行器上排布四接口端或更多接口端的功能,从而使得环行器为四 个或四个以上端口的单向传输特性的环行器,应用时,本申请实施例提供的环行器在功放链路中应用时,四个或四个以上接口端的环行器中的其中两个接口端可以为输入端口,这样环行器可以实现两个输入信号的同时输入,例如环行器的两个接口端可以分别与并列的两个功率放大器的输出端相连,接收两个功率放大器输出的第一输入信号和第二输入信号,环行器的另一接口端可以为输出端口,用于输出合路信号,合路信号为第一输入信号和第二输入信号合路后的信号,本申请实施例提供的环行器在功放链路中应用时,避免在功放链路中引入合路组件,从而降低了功放链路的插损,提升了功放链路的输出效率,另外,本申请实施例提供的环行器,避免合路组件的引入,一方面,整个链路器件占用的板面积减小,使得功放链路在电路板上的布局更易,另一方面,降低了功放链路的成本。此外,本申请实施例提供的环行器,各个接口端集中在一个环行器上,与两个三端口环行器串联相比,本申请实施例提供的环行器占用面积减小且成本低,而且避免跨越两个环行器的两个接口端而导致插损增大的问题。
因此,本申请提供的环行器,解决了相关技术中由于功放链路中的耦合器级联三端口环行器而导致的链路损耗增大、占板面积大以及成本高的技术问题。
在一种可能的实施方式中,所述至少四个接口端中的第四个接口端用于与负载或电路电连接。这样与负载相连时,实现隔离作用,与电路相连时,可以实现第三接口端输入和输出共用的目的,实现第三输入信号的接收。
在一种可能的实施方式中,所述至少四个接口端中的所述第三个接口端还用于接收第三输入信号;当所述第三个接口端用于输出合路信号时,所述第四个接口端用于与所述负载电连接;当所述第三个接口端用于接收所述第三输入信号时,所述第四个接口端用于与所述电路电连接,以使所述第三输入信号通过所述第四个接口端输出给所述电路。实现了环行器在不同场景下的使用。
在一种可能的实施方式中,所述环行器包括:中心导体,所述中心导体包括中心结、至少四个第一分支和至少四个第二分支,所述第一分支和所述第二分支沿着所述中心结的周向交替间隔设置,且所述第一分支和所述第二分支的第一端与所述中心结电连接,所述第一分支和所述第二分支的第二端远离所述中心结且向外呈辐射状;且每个所述接口端与一个所述第一分支电连接,或者每个所述接口端与一个所述第二分支电连接。
在一种可能的实施方式中,所述中心导体包括一个或多个导体部,所述多个导体部电连接;每个所述导体部包括一个所述中心结、以及绕所述中心结间隔设置的多个所述第一分支和多个所述第二分支。
在一种可能的实施方式中,所述中心导体包括两个导体部,两个所述导体部分别为第一导体部和第二导体部,所述第一导体部和所述第二导体部并排设置,且所述第一导体部与所述第二导体部电连接。
在一种可能的实施方式中,所述第一导体部包括:所述第一导体部包括第一中心结、以及与所述第一中心结电连接的至少两个所述第一分支和至少两个所述第二分支;所述第二导体部包括第二中心结、以及与所述第二中心结电连接的至少两个所述第一分支和至少两个所述第二分支;至少所述第一中心结和所述第二中心结电连接, 且所述第一导体部中的至少两个所述第一分支分别与对应的所述接口端电连接,所述第二导体部中的至少两个所述第一分支分别与对应的所述接口端电连接。
在一种可能的实施方式中,所述第一导体部包括两个所述第一分支和三个所述第二分支,所述第一导体部中的所述两个第一分支分别与其中两个所述接口端电连接;所述第二导体部包括两个所述第一分支和三个所述第二分支;所述第二导体部中的所述两个第一分支分别与另外两个所述接口端电连接;还包括第一连接结,所述第一中心结和所述第二中心结通过第一连接结电连接;且所述第一导体部中位于所述第一连接结两侧的两个所述第二分支分别与所述第二导体部中位于所述第一连接结两侧的两个第二分支相连。
在一种可能的实施方式中,所述第一导体部包括三个所述第一分支和两个所述第二分支;
所述第二导体部包括三个所述第一分支和两个所述第二分支;还包括第一连接结,所述第一中心结和所述第二中心结通过所述第一连接结相连;所述第一导体部中位于所述第一连接结两侧的两个所述第一分支分别与所述第二导体部中位于所述第一连接结两侧的两个第一分支相连、且所述第一导体部和所述第二导体部中相连的两个所述第一分支与一个所述接口端电连接;所述第一导体部和所述第二导体部中其余的所述第一分支分别与对应的所述接口端电连接。
在一种可能的实施方式中,所述第一导体部包括三个所述第一分支和三个所述第二分支;
所述第二导体部包括三个所述第一分支和三个所述第二分支;还包括第二连接结,所述第一导体部中的其中一个所述第一分支与所述第二导体部中的其中一个所述第一分支通过所述第二连接结电连接,所述第一导体部中和所述第二导体部中其余的所述第一分支分别与对应的所述接口端电连接。
在一种可能的实施方式中,所述中心导体包括两个导体部,两个所述导体部分别为第一导体部和第二导体部,所述第一导体部和所述第二导体部层叠设置,且所述第一导体部与所述第二导体部电连接。
在一种可能的实施方式中,所述第一导体部包括第一中心结、以及与所述第一中心结相连的至少三个所述第一分支和至少三个所述第二分支;所述第二导体部包括第二中心结、以及与所述第二中心结相连的至少三个所述第一分支和至少三个所述第二分支;
所述第一导体部中的至少两个所述第一分支分别与对应的所述接口端电连接;
所述第二导体部中的至少两个所述第一分支分别与对应的所述接口端电连接。
在一种可能的实施方式中,所述第一导体部中的其中两个所述第一分支分别与其中两个所述接口端电连接;所述第二导体部中的其中两个所述第一分支分别与另外两个所述接口端电连接;还包括导电件,所述第一导体部中的另一个所述第一分支与所述第二导体部中的另一个所述第一分支通过所述导电件电连接,以使所述第一导体部与所述第二导体部导通。
在一种可能的实施方式中,与同一个所述中心结相连的两个相邻的所述第一分支之间的角度为120°,或者,与同一个所述中心结相连的两个相邻的所述第二分支之 间的角度为120°。
在一种可能的实施方式中,所述中心导体包括一个导体部,且所述导体部包括一个中心结、四个所述第一分支和四个所述第二分支;四个所述第一分支分别与四个所述接口端电连接。
在一种可能的实施方式中,所述四个第一分支中相邻两个所述第一分支之间的夹角为90°。
在一种可能的实施方式中,所述第一分支上具有第一匹配结。
在一种可能的实施方式中,所述第二分支上具有第二匹配结。
在一种可能的实施方式中,还包括:至少一个磁铁,所述磁铁设在所述中心导体的一侧,所述磁铁用于提供磁场偏置。
在一种可能的实施方式中,还包括支撑柱,所述支撑柱位于所述中心导体和所述磁铁之间,且所述支撑柱的一端与所述中心导体的中心结相连,所述支撑柱的另一端与所述磁铁相连。
在一种可能的实施方式中,还包括:一层或多层铁氧体,所述中心导体位于所述铁氧体上,或者所述中心导体的至少部分位于相邻两层所述铁氧体之间。
在一种可能的实施方式中,还包括:介质环,所述介质环套设在至少一层所述铁氧体的外周上。
在一种可能的实施方式中,还包括:接地背银和底板,所述接地背银位于所述铁氧体和所述底板之间;且所述接地背银和所述底板上分别设有管脚,所述管脚与所述接口端电连接。
在一种可能的实施方式中,还包括:外壳,所述外壳具有腔体,所述铁氧体和所述中心导体位于所述腔体内,且所述外壳的侧壁上具有可供所述接口端穿出的豁口。
在一种可能的实施方式中,还包括:匀磁片、温补片、固定片,所述匀磁片位于所述铁氧体背向所述中心导体的一面上;
所述温补片位于所述匀磁片和所述固定片之间。
本申请实施例第二方面提供一种功放模组,包括上述所述的至少一个环行器以及至少两个功率放大器,所述环行器的其中两个接口端分别与所述至少两个功率放大器中的其中两个功率放大器相连;所述环行器的第三个接口端用于输出合路信号,所述合路信号为所述环行器的两个接口端分别接收两个所述功率放大器传输的两个输入信号合路后形成的信号。
本申请实施例提供的功放模组,通过包括上述四端口或四端口以上的环行器,降低了功放链路的插损,提升了功放链路的输出效率,另外,与相关技术的功放链路相比,本申请实施例提供的功放模组,避免合路组件的引入,一方面,整个链路器件占用的板面积减小,使得功放链路在电路板上的布局更易,另一方面,降低了功放链路的成本。另外,本申请实施例提供的功放模组,各个接口端集中在一个环行器上,与两个三接口端环行器串联相比,本申请实施例提供的环行器占用面积减小且成本低,而且避免跨越两个环行器的两个接口端而导致插损增大的问题。本申请提供的功放模组,解决了功放链路中的耦合器级联三接口端环行器而导致的链路损耗增大、占板面积大以及成本高的技术问题。
本申请实施例第三方面提供一种通信设备,包括上述任一所述的环行器;或者,包上述所述的功放模组。本申请实施例提供的通信设备,通过包括上述环行器,可以实现在射频模块中通道数量增多时不增加插损的作用,使得通信设备的传输效率更高。
在一种可能的实施方式中,还包括:天线,所述环行器的其中两个端口用于接收输入信号,所述环行器的第三个端口与所述天线相连、且用于将所述输入信号合路后向所述天线输出。
在一种可能的实施方式中,还包括:负载和电路中的至少一个,所述环行器的第四个端口与所述负载或与所述电路相连;其中,当所述天线作为发射天线时,所述环行器的第四个端口与所述负载相连;当所述天线作为接收天线时,所述环行器的第四个端口与所述电路相连。
附图说明
图1为相关技术提供一种功放链路的场景示意图;
图2为本申请实施例提供的环行器的俯视示意图;
图3为本申请实施例提供的一种环行器的应用场景示意图;
图4为本申请实施例提供的环行器的立体结构示意图;
图5为本申请实施例提供的环行器的爆炸示意图;
图6为本申请实施例提供的环行器的中心导体的示意图;
图7为本申请实施例提供的环行器的中心导体的另一种结构示意图;
图8为本申请实施例提供的环行器的心导体与铁氧体的未装配时的结构示意图;
图9为图8中的中心导体与铁氧体的装配后的结构示意图;
图10为图8中的中心导体的另一结构示意图;
图11为本申请实施例提供的环行器的中心导体与铁氧体的未装配时的另一结构示意图;
图12为图11中的中心导体与铁氧体的装配后的结构示意图;
图13为本申请实施例提供的环行器的中心导体与铁氧体的未装配时的又一结构示意图;
图14为图13中的中心导体与铁氧体的装配后的结构示意图;
图15为本申请实施例提供的环行器的中心导体与铁氧体的未装配时的再一结构示意图;
图16为图15中的中心导体与铁氧体的装配后的结构示意图;
图17为本申请实施例提供的环行器中心导体与双层铁氧体的结构示意图;
图18为图17中的中心导体的两个导体部层叠结构示意图;
图19为本申请实施例提供的环行器中心导体与双层铁氧体的另一结构示意图;
图20为图19所示的结构在另一方向的结构示意图;
图21为图19中的中心导体的两个导体部的结构示意图;
图22为本申请实施例提供的环行器中心导体与双层铁氧体之间设置磁铁的结构示意图;
图23为本申请实施例提供的环行器的再一结构示意图;
图24为图23所示的结构在另一方向的结构示意图;
图25为本申请实施例提供的环行器的再一结构的俯视示意图;
图26为本申请实施例提供的环行器的另一立体结构示意图;
图27为图26所示的环行器的爆炸示意图;
图28为本申请实施例提供的环行器的中心导体与铁氧体组装后的结构示意图;
图29为本申请实施例提供的的环行器的爆炸结构示意图;
图30为本申请实施例提供的环行器测试时的示意图;
图31为本申请实施例提供的环行器的中心导体、铁氧体以及介质环的示意图;
图32为本申请实施例提供的环行器两层中心导体与三层铁氧体的拆分结构示意图;
图33为本申请实施例提供的通信设备的结构示意图;
图34为本申请实施例提供的通信设备的另一结构示意图。
附图标记说明:
100、环行器;
110、中心导体;110a、第一导体部;110b、第二导体部;111、第一分支;
1111-第一径向结;1112-第一周向结1112;112、第二分支;1121-第二径向结;1122-第二周向结;113、第一连接结;114、第二连接结;115、中心结、115a、第一中心结;115b、第二中心结;119a、导电件;119b、导通件;
120、铁氧体、121、导电片;122、介质环;
130、130a、130b、接地背银;131、第一管脚;
140、底板;141、第二管脚;
150、磁铁;
160、支撑柱;
170、外壳、171、盖板;172、底座;1721、腔体;1722、豁口;
180、匀磁片;
191、温补片;192、固定片;193、测试腔;
200、200a、200b、功率放大器。
具体实施方式
图1为相关技术提供一种功放链路的场景示意图,参见图1所示,功放链路至少包括两个并列的功率放大器201和功率放大器202,其中,功率放大器201和功率放大器202具体为功率放大器(Power Amplifier,PA)。
其中,信号传输方向可以参见图1中的箭头方向,为了实现信号的单向输出,功放链路中往往使用环行器10,其中,环行器10利用铁氧体的旋磁特性实现单向传输功能,图1中功放链路中具有两个并列的功率放大器,而环行器10具有一个输入端口,为此,两个功率放大器先通过合路组件20(例如耦合器或微带)进行一次合路,再通过环行器10单向传输至输出端口。或者,一些技术中,采用两个串联的三端口环行器10,其中一个三端口环行器10的输入端口与功率放大器201相连,另一 个三端口环行器10的输入端口与功率放大器202进行相连,最终实现信号的单向输出。
但是,当功放链路中引入合路组件20,合路组件20会有0.1~0.2dB损耗,这样,导致功放链路整体的损耗会较大,对功率放大器输出效率有3%的影响,严重影响功率放大器效率,相关技术中,而采用两个三端口环行器串联实现与两个功率放大器的输出端相连时,当两个三三端口环行器串联使用时,若信号从其中一个环行器输入端口进来后从另一个环行器的输出端口输出时,需要跨越两个环行器的两个端口,而跨越两个环行器的两个端口间的插损为单个三端口环行器插损的2倍左右,从而影响功率放大器输出链路效率,另外,无法实现任意端口的输入。
为此,为了解决上述提到的至少一个问题,本申请实施例提供一种环行器,通过环行器具有至少四个接口端,至少四个接口端中其中一个接口端用于接收第一输入信号,至少四个接口端中的另一个接口端用于接收第二输入信号,至少四个接口端中的第三个接口端至少用于输出合路信号,且合路信号为第一输入信号和第二输入信号合路后形成的信号,这样实现在同一个环行器上排布四接口端或更多接口端的功能,从而使得环行器为四个或四个以上端口的单向传输特性的环行器,应用时,如图3所示,本申请实施例提供的环行器在功放链路中应用时,四个或四个以上接口端的环行器中的其中两个接口端可以为输入端口,这样环行器可以实现两个输入信号的同时输入,例如环行器的两个接口端可以分别与并列的两个功率放大器200(例如功率放大器200a和功率放大器200b)的输出端相连,接收功率放大器200a输出的第一输入信号以及接收功率放大器200b输出的第二输入信号,环行器的另一接口端可以为输出端口,用于输出合路信号,合路信号为第一输入信号和第二输入信号合路后的信号,与图1相比,本申请实施例提供的环行器在功放链路中应用时,避免在功放链路中引入合路组件20,从而降低了功放链路的插损,提升了功放链路的输出效率,另外,与图1所示的功放链路相比,本申请实施例提供的环行器,避免合路组件的引入,一方面,整个链路器件占用的板面积减小,使得功放链路在电路板上的布局更易,另一方面,降低了功放链路的成本。此外,本申请实施例提供的环行器,各个接口端集中在一个环行器上,与两个三端口环行器串联相比,本申请实施例提供的环行器占用面积减小且成本低,而且避免跨越两个环行器的两个接口端而导致插损增大的问题。
因此,本申请提供的环行器,解决了相关技术中由于功放链路中的耦合器级联三端口环行器而导致的链路损耗增大、占板面积大以及成本高的技术问题。
下面对本申请实施例提供的几种环行器的结构进行详细描述。
本申请实施例中的环行器100可以为微带环行器、带线环行器、同轴环行器、或者表贴环行器等环行器,下面主要以微带环行器和带线环行器为例进行说明,例如,参见图2所示,该环行器100为微带环行器,或者参见下述图26所示,环行器100可以为带线环行器,下面分别对微带环行器和带线环行器进行阐述。
参见图2所示,本申请实施例提供的环行器100具有至少四个接口端,例如,图2中,环行器100具有四个接口端A,四个接口端A分别为接口端A1、接口端A2、接口端A3、接口端A4。当然,在一些示例中,环行器100还可以具有四个以 上的接口端A,例如,环行器100可以具有5个接口端A,或者6个接口端等,所以,本申请实施例中,环行器100的接口端A的数量包括但不限于为4个。
其中,至少四个接口端中其中一个接口端用于接收第一输入信号,例如,图3中,接口端A1可以作为输入端口,用于接收第一输入信号。至少四个接口端中的另一个接口端用于接收第二输入信号,例如,图3中,接口端A2可以作为另一个输入接口,用于接收第二输入信号。至少四个接口端中的第三个接口端至少用于输出合路信号,例如,例如,图3中,接口端A3可以作为输出端口,用于输出合路信号。其中,合路信号为第一输入信号和第二输入信号合路后形成的信号,所以,本申请实施例提供的环行器可以实现两个端口同时输入,且两个输入信号在环行器内合路后可以从一个输出端口向外单向输出。
这样,本申请实施例提供的环行器100在图3所示的场景中应用时,接口端A1和接口端A2可以分别与功率放大器200a和功率放大器200b的输出端相连,接口端A1接收功率放大器200b传输的第一输入信号,接口端A2接收功率放大器200a传输的第二输入信号,第一输入信号和第二输入信号在环行器100的内部合成一路,并从接口端A3输出,因此,通过提供四端口或者四端口以上的环行器100,避免了功放链路中环行器级联合路组件进行合路的设置方式,从而降低了功放链路的插损,提升了功放链路的输出效率,实现插损0.2dB以上的优化,另外,与图1相比,本申请实施例提供的环行器100,由于不需要设置合路组件20(参见图1所示),一方面,整个链路器件占用的板面积减小,实现了面积25%以上的减少,使得功放链路在单板的布局更易,另一方面,降低了功放链路的成本。
其次,本申请实施例提供的环行器,各个接口端集中在一个环行器上,与两个三接口端环行器串联相比,本申请实施例提供的环行器占用面积减小且成本低,而且避免跨越两个环行器的两个接口端而导致插损增大的问题。
其中,本申请实施例中,至少四个接口端中的第三个接口端可以用于输出合路信号,但是在一些示例中,至少四个接口端中的第三个接口端还可以用于接收输入信号,参见图3所示,至少四个接口端中的第三个接口端还用于接收第三输入信号,例如,接口端A3可以用于输出合路信号,还可以接收第三输入信号,根据环行器100单向传输特性,第三输入信号从接口端A3输入后,沿着图3中环行器100上的顺时针箭头从接口端A4输出。
需要说明的是,在环行器100的接口端A3接收第三输入信号时,接口端A1和接口端A2无法接收到第一输入信号和第二输入信号,例如,可以控制功率放大器200a和功率放大器200b停止工作,没有信号输出,这样,接口端A4可以作为输出端口,将第三输入信号经过环行器100后从接口端A4输出。相应的,在环行器100的接口端A1和接口端A2在接收第一输入信号和第二输入信号时,接口端A3只作为输出端口,将合路信号从接口端A3向外输出。
本申请实施例中,当环行器100具有至少四个接口端A时,至少四个接口端中的第四个接口端用于与负载或电路电连接,例如,参见图3所示,四个接口端A中第四个接口端(例如接口端A4)与负载或电路电连接,其中,当接口端A4与负载相连时,该接口端A4可以作为隔离端口,起到隔离作用,当接口端A4与电路相连 时,可以将从接口端A3接收到的第三输入信号传输给电路,接口端A4作为输出端口,起到信号输出的作用。
因此,本实施例中,参见图3所示,当环行器的至少四个接口端中的第三个接口端用于输出合路信号时,第四个接口端用于与负载电连接,例如,接口端A4可以负载相连,负载可以为电阻;当环行器的至少四个接口端中的第三个接口端用于接收第三输入信号时,环行器的至少四个接口端中的第四个接口端用于与电路电连接,例如,接口端A4与电路电连接,这样第三输入信号通过接口端A4输出给电路,使得电路可以接收到第三输入信号。
需要说明的是,在功放链路中,环行器的接口端A4与负载或电路电连接时,可以通过在功放链路中设置开关(参见下述34),通过开关控制环行器的接口端A4与负载或与电路相连,例如,当接口端A3用于输出合路信号时,通过开关将接口端A4与负载导通,实现隔离作用,当接口端A3用于输入第三输入信号时,通过开关将接口端A4与电路导通,使得第三输入信号可以传输给电路。
需要说明的是,本申请提供的环行器100各个接口端A的设置不限于在图3对应的场景下,在一些示例中,本申请实施例提供的环行器100的各个接口端还可以设置为一个输入接口端,一个接口端A为隔离接口,一个接口端A用于与电路相连,一个接口端A为输出和输入共用的接口端,例如,在图2中,接口端A1作为输入接口,接口端A2为隔离端口,接口端A3为输入和输出共用的端口,接口端A4用于与电路相连。
其中,本申请实施例的环行器100的具体结构可以参见图4和图5所示,图5为图4所示的环行器100的爆炸图,参见图4和图5所示,环行器100可以包括:中心导体110,中心导体110用于构成射频微波的传播电路。
其中,参见图6所示,中心导体110可以包括中心结115、至少四个第一分支111和至少四个第二分支112,例如,图6中,中心导体110包括两个中心结115,例如,第一中心结115a和第二中心结115b,四个第一分支111以及4个第二分支112。第一中心结115a和第二中心结115b相连。需要说明的是,中心结115为第一分支111和第二分支112的一端相交的交汇点形成的结。
本申请实施例中,所有的第一分支111和所有的第二分支112通过中心结相连成一个整体,在电路上,所有的第一分支111和所有的第二分支112可以等效为两个串联的组件,这样,环行器在工作时,所有的第一分支111和所有的第二分支112在谐振曲线上会各自出现对应的一个谐振点,通过调整第一分支111和第二分支112的结构便可以实现对谐振点位置的调整,从而达到增加带宽的目的。所以,通过中心导体110包括第一分支111和第二分支112可以达到增加带宽的作用。
参见图6所示,第一分支111和第二分支112沿着中心结115的周向交替间隔设置,例如,相邻两个第一分支111之间具有一个第二分支112,或者相邻两个第二分支112之间具有一个第一分支111。其中,第一分支111和第二分支112的第一端(即与中心结115相连的一端)均与中心结115电连接,第一分支111和第二分支112的第二端(即)远离中心结115且向外呈辐射状,例如,如图6所示,两个第一分支111和3个第二分支112的一端均与第一中心结115a相连,两个第一分支111 和3个第二分支112以第一中心结115a为中心向外呈辐射状设置。
其中,环行器100的至少四个接口端A均与中心导体110电连接,连接时,每个接口端A与一个第一分支111电连接,或者每个接口端A与一个第二分支112电连接,接口端A的数量与第一分支111或第二分支112的数量可以一致,例如,当环行器100具有四个接口端A时,则中心导体110的第一分支111为4个,或者中心导体110的第二分支112为4个,这样一个接口端与一个第一分支相连,或者一个接口端与一个第二分支相连,这样四个接口端分别与四个第一分支或四个第二分支电连接。
如图6所示,例如,环行器100具有四个接口端A,分别为接口端A1、接口端A2、接口端A3和接口端A4。中心导体110中具有四个第一分支111和四个第二分支112,则接口端A1可以与第一分支111a电连接,接口端A2可以与第一分支111b电连接,接口端A3可以与第一分支111c电连接,接口端A4可以与第一分支111d电连接,这样每个接口端A可以实现与一个第一分支111电连接。需要说明的是,图6中,每个接口端A与对应的第一分支111电连接,在一些示例中,每个接口端A也可以与第二分支112电连接,本申请实施例中,是以接口端A与第一分支111电连接为例进行描述。
其中,环行器100的各个接口端A与第一分支111电连接时,可以如图6所示,第一分支111远离中心结115的一端可以作为接口端A,接口端A与第一分支111可以一体成型,或者,在一些示例中,如图7所示,第一分支111的第二端(远离中心结115的一端)连接导电片121,第一分支111可以通过导电片121与接口端A导通,当然,在一些实例中,第一分支111的第二端还可以采用过孔或者导线与环行器100的接口端A导通。
其中,本申请实施例中,各个接口端A沿着顺时针或者逆时针方向单向输出,例如,如图6所示,接口端A1、接口端A2、接口端A3和接口端A4沿着顺时针方向单向输出,接口端A1→接口端A2→接口端A3→接口端A4→接口端A1,或者,在一些示例中,也可以沿着逆时针方向单向输出,接口端A1→接口端A4→接口端A3→接口端A2→接口端A1,例如,当单向输出为:接口端A1→接口端A2→接口端A3→接口端A4→接口端A1时,则信号可以从接口端A2进,则可以从接口端A3输出,不会从接口端A1输出。
继续参见图5所示,环行器100还可以包括铁氧体120,中心导体110设置在铁氧体120上(参见图4所示),铁氧体120用于利用其旋磁特性实现信号单向传输。
其中,本申请实施例中,铁氧体120可以为旋磁特性的铁氧体,在磁场偏置或自偏置的情况下,具有张量磁导率,使得微波在铁氧体120介质中传播具有非互异性和各向异性散射的特性,即铁氧体120的旋磁特性,所以,本申请实施例中,当铁氧体120需要磁场偏置时,还包括:至少一个磁铁150,例如图5所示,磁铁150的数量为一个,磁铁150可以设在中心导体110上,例如,中心导体110可以位于铁氧体120和磁铁150之间,磁铁150可以用来提供磁场,使得铁氧体120发生偏置。磁铁150的数量为两个具体可以参见下述关于带线环行器的描述。
需要说明的是,当磁铁150设在中心导体110上时,此时,磁铁150需采用绝缘 磁铁,例如可以选用铁氧体磁铁。
其中,当磁铁150选用绝缘磁铁时,磁性往往较低,所以,可能出现磁场不满足铁氧体120偏置的要求,为此,本申请实施例中,如图5所示,还包括:支撑柱160,支撑柱160位于磁铁150和中心导体110之间(如图4所示),支撑柱160的支撑,使得磁铁150和中心导体110支架具有间隔H,这样,磁铁150与中心导体110之间不会接触,磁铁150可以选用非绝缘的磁铁150,从而磁性能更大点,因此,本申请实施例提供的支撑柱160,一方面可以通过调节支撑柱160的高度达到调整磁铁150磁场的目的,另一方面,可以选择磁性更大且能满足要求的非绝缘的磁铁150,从而满足铁氧体120偏置的目的。
其中,支撑柱160在磁铁150和中心导体110之间设置时,参见图4和图5所示,支撑柱160的一端与中心导体110的中心结115抵接,支撑柱160的另一端与磁铁150抵接,其中,本申请实施例中,由于中心导体110具有两个中心结115,所以,支撑柱160的数量也为两个,两个支撑柱160位于第一中心结115a和第二中心结115b处,这样实现了对磁铁150稳定的支撑作用,另外,由于支撑柱160位于中心导体110的中心结115处,这样支撑柱160不会对中心导体110的第一分支111和第二分支112造成影响。
需要说明的是,当铁氧体120可以实现自偏置时,例如,铁氧体120为自偏置铁氧体,例如通过铁氧体120的结构改进可以达到提供磁场且使得铁氧体120自身发生偏置的要求时,此时,不需要设置磁铁150提供磁场。本申请实施例中,具体以磁铁150提供磁场对铁氧体120进行偏置为例进行说明。
本申请实施例中,铁氧体120的材料不局限于铁氧体120的4πMs(饱和磁化强度)、介电常数等参数,可使用低场低4πMs铁氧体,也可使用高场高4πMs铁氧体,也可使用高介电常数铁氧体减小器件尺寸。
其中,若各个接口端A位于铁氧体120的背面时,参见图5所示,中心导体110的第一分支111和第二分支112的第二端可以延伸至铁氧体120的外边缘处,且第一分支111的第二端与接口端A电连接时,各个接口端A可以通过设在铁氧体120外边缘的导电片121延伸到铁氧体120的背面,当然,在一些示例中,通过在铁氧体120上的开孔将第一分支111的第二端穿到铁氧体120背向中心导体110的一面(即铁氧体120的背面)、且与接口端A电连接。
其中,匹配有接口端A的第一分支111的一端与导电片121可以形成整体式的结构(参见图7),装配中心导体110时,导电片121卡在铁氧体120的外周边上,减小了中心导体110、各个接口端A与导电片121的导通装配。
本申请实施例中,参见图5所示,环行器100还包括:接地背银130和底板140,接地背银130位于铁氧体120和底板140之间,且接地背银130和底板140上分别设有与各个接口端A电连接的管脚,例如图5中,接地背银130上设有第一管脚131,底板140上设有第二管脚141,其中,第一管脚131和第二管脚141电接触,且第一管脚131通过导电片121与第一分支111电连接,这样,实现中心导体110的第一分支111与各个接口端A导通的目的。各个接口端A可以延伸到底板140上,第二管脚141可以作为环行器100的各个接口端A。
本申请实施例中,参见图8所示,第一分支111可以包括:第一径向结1111和至少一个第一周向结1112,例如,图8中,每个第一分支111均包括第一径向结1111和一个第一周向结1112。第一径向结1111的第一端与中心导体110电连接,第一周向结1112靠近第一径向结1111的第二端设置且与第一径向结1111相连,第一周向结1112的数量可以为一个,也可以为多个,例如,图8中,第一周向结1112的数量为1个,1个第一周向结1112相对第一径向结1111的对称设置,当然,在一些示例中,第一周向结1112的数量还可以为两个(参见下述图31所示),第一周向结1112的数量包括但不限于为一个或两个,还可以为两个以上。
其中,各个接口端A与第一分支111电连接时,各个接口端A可以与第一分支111的第一周向结1112电连接,当然,各个接口端A可以与第一分支111的第一径向结1111电连接,以实现接口端A与第一分支111电连接的作用。例如,图8中,第一分支111的第一周向结1112的一端形成凸起部,该凸起部可以作为接口端A。
通过第一分支111包括第一径向结1111和第一周向结1112,这样,第一分支111可以等效为连接的电容和电感,当第一周向结1112设置时,使得第一分支111等效的电路中电容会发生变化,这样,第一分支111对应的谐振曲线上的谐振点位置可以发生变化,由于两个谐振点之间的频率范围即为带宽,所以,当第一分支111对应的谐振点发生变化时,带宽便可以发生变化,所以,本申请实施例中,第一周向结1112可以作为匹配结,例如,第一分支111具有第一匹配结(即第一周向结1112),该匹配结可以起到调整环行器的带宽的作用,从而达到增加带宽的目的。当然,在一些不需要增加带宽的场景中,第一分支111可以只包括第一径向结1111即可,第一周向结1112可以不进行设置。
因此,本申请实施例中,第一周向结1112的数量和结构可以根据所需的带宽进行调整。
其中,第一周向结1112与第一径向结1111之间可以为一体式结构,或者,第一周向结1112与第一径向结1111可以通过粘接、焊接或者卡接等方式相连。
本申请实施例中,如图8所示,第二分支112可以包括:第二径向结1121和至少一个第二周向结1122,例如,图6中,每个第二分支112均包括第二径向结1121和一个第二周向结1122,第二径向结1121的第一端与中心导体110的中心结115电连接,第二周向结1122靠近第二径向结1121的第二端设置且与第二径向结1121相连。第二周向结1122绕着中心结115的周向延伸设置。
本申请实施例中,第二周向结1122和第二径向结1121可以等效为并联的电容和电感,所以,当第二周向结1122设置时,使得第二分支112等效的电路中电容会发生变化,这样,第二分支112对应的谐振曲线上的谐振点位置可以发生变化,由于两个谐振点之间的频率范围即为带宽,所以,当第二分支112对应的谐振点发生变化时,带宽便可以发生变换,所以,本申请实施例中,第二周向结1122可以起到调整环行器的带宽的作用,从而达到增加带宽的目的。所以,本申请实施例中,第二周向结1122可以作为匹配结,例如,第二分支112具有第二匹配结(即第二周向结1122),该匹配结可以起到调整环行器的带宽的作用,从而达到增加带宽的目的。当然,在一些不需要增加带宽的场景中,第二分支112可以只包括第二径向结1121即 可,第二周向结1122可以不进行设置。
综上,本申请实施例中,所有的第一分支111等效为一组并联的电容和电感,所有的第二分支112等效为另一组并联的电容和电感,且所有的第一分支111对应的并联的电容和电感与所有的第二分支112对应的并联的电容和电感串联,环行器工作时,第一分支111和第二分支112分别对应出现一个谐振点,通过调整第一周向结1112和第二周向结1122,实现了对谐振点的调整,从而达到增加带宽的目的。
需要说明的是,本申请实施例中,第一周向结1112和第二周向结1122可以根据环行器的性能进行设置,例如,在一些示例中,可以只设置第一周向结1112,第二周向结1122也可以不设置,或者,在一些示例中,可以只设置第二周向结1122,第一周向结1112可以不设置,当然,在一些示例中,如图8所示,中心导体110可以同时设置第一周向结1112和第二周向结1122。
需要说明的是,本申请实施例中,第一周向结1112和第二周向结1122的结构包括但不限于图8-图32所示,根据环行器的性能要求,可以设置其他结构的第一周向结1112和第二周向结1122。第一周向结1112和第二周向结1122的面积大小具体可以根据环行器100的性能要求进行设定,本申请实施例中,对第一周向结1112和第二周向结1122的面积大小不做限定。
在一种可能的实现方式中,中心导体110包括一个或多个导体部,例如,中心导体110可以包括一个导体部,或者也可以如图8所示,包括两个导体部,两个导体部分别为第一导体部110a和第二导体部110b,其中,当中心导体110包括多个导体部时,多个导体部电连接。其中,每个导体部包括一个中心结115、以及绕中心结115间隔设置的多个第一分支111和多个第二分支112。
其中,中心导体110包括两个导体部时,两个导体部可以并排设置,也可以层叠设置,下面首先以两个导体部并排设置为例进行说明,参见图8所示,中心导体110包括第一导体部110a和第二导体部110b,第一导体部110a和第二导体部110b相连且并排设置,例如,第一导体部110a和第二导体部110b位于同一平面上,中心导体110为一层导体层。
其中,参见图8所示,第一导体部110a包括第一中心结115a、以及与第一中心结115a电连接的至少两个第一分支111和至少两个第二分支112,例如,图8中,第一导体部110a包括两个第一分支111和三个第二分支112。
参见图8所示,第二导体部110b包括第二中心结115b、以及与第二中心结115b电连接的至少两个第一分支111和至少两个第二分支112;例如,图8中,第二导体部110b包括两个第一分支111和三个第二分支112。
其中,参见图8所示,第一中心结115a和第二中心结115b电连接,且第一导体部110a中的至少两个第一分支111分别与对应的接口端A电连接,例如,第一导体部110a的两个第一分支111分别与接口端A1和接口端A2电连接。第二导体部110b中的至少两个第一分支111分别与对应的其他接口端A电连接。例如,第二导体部110b中的两个第一分支111分别接口端A3和接口端A4电连接,这样,中心导体110的四个第一分支111分别与四个接口端A电连接,形成四端口的环行器100。
其中,参见图8所示,还包括第一连接结113,第一连接结113的两端分别位于 两个第二分支112之间,且第一中心结115a和第二中心结115b通过第一连接结113电连接,且第一导体部110a中位于第一连接结113两侧的两个第二分支112分别与第二导体部110b中位于第一连接结113两侧的两个第二分支112相连。例如,图8所示,第一导体部110a中的一个第二分支112a和第二导体部110b中的一个第二分支112b相连,第一导体部110a中的另一个第二分支112c和第二导体部110b中的另一个第二分支112d相连,这样,第一导体部110a的两个第二分支112分别与第二导体部110b的两个第二分支112耦合,使得第一连接结113两侧形成两条通路,这样,中心导体110上信号传输更快。
本申请实施例中,参见图8所示,第一导体部110a中的第二分支112a(112c)与第二导体部110b中的第二分支112b(112d)相连时,具体为,第一导体部110a中的第二分支112a的第二周向结1122与第二导体部110b中的第二分支112b的第二周向结1122相连。
参见图8所示,第一导体部110a中的第二分支112a与第二导体部110b中的第二分支112b相连后,第二分支112a和第二分支112b可以作为一个第二分支112,所以,中心导体110包括:两个中心结115、四个第一分支111和四个第二分支112。
需要说明的是,第一连接结113可以为第一导体部110a的一个第一分支111,或者也可以为第二导体部110b的一个第一分支111,第一导体部110a和第二导体部110b复用一个第一分支111,且该第一分支111的两端均与第一中心结115a和第二中心结115b相连。
本申请实施例中,如图9所示,第一导体部110a和第二导体部110b位于同一铁氧体120上,这样与两个三端口的环行器100串联相比,本申请实施例中,与各个接口端A相连的中心导体110位于一个铁氧体120上,节省了环行器100的占板面积以及降低了成本,另外,三端口的两个环行器100串联时,易出现信号跨越两个环行器100的两个接口端,从而使得插损增大,而本申请实施例中,第一导体部110a和第二导体部110b集中在一个铁氧体120上,避免了信号跨越两个环行器100的两个接口端的问题,因此,本申请实施例提供的环行器100,实现插损0.2dB以上的优化、面积25%以上的减少和成本的降低。兼具小型化、高性能、低成本的优势。
本申请实施例中,为了降低各个接口端A之间的干扰,如图9所示,可以将与同一个中心结115相连的两个相邻的第一分支111之间的角度a设置为120°。这样,形成的各个接口端A之间的干扰可以降低。
本申请实施例中,中心导体110的另一种结构可以图10所示,与图8的区别在于:图10所示,第二周向结1122的形状进行了调整,另外,第一连接结113的两端分别连接有匹配结1131,匹配结1131与中心结115结合成为整体结构,匹配结1131的设置可以对环行器的性能(例如带宽)起到调整的作用。
在另一种可能的实现方式中,也可以将第一导体部110a中的第一分支111与第二导体部110b中的第一分支111相连,例如,参见图11所示,第一导体部110a包括三个第一分支111和两个第二分支112;三个第一分支111和两个第二分支112分别沿着第一中心结115a的周向交替间隔设置。
第二导体部110b包括三个第一分支111和两个第二分支112;三个第一分支111和两个第二分支112分别沿着第二中心结115b的周向交替间隔设置。
如图11所示,第一连接结113的两端分别位于两个第一分支111之间,且第一中心结115a和第二中心结115b通过第一连接结113相连。
参见图11所示,第一导体部110a中位于第一连接结113两侧的两个第一分支111分别与第二导体部110b中位于第一连接结113两侧的两个第一分支111相连,例如,第一导体部110a的一个第一分支111a与第二导体部110b的一个第一分支111b的一端耦合导通,且第一分支111a与第一分支111b相连后与一个接口端A2电连接;第一导体部110a的另一个第一分支111c与第二导体部110b的另一个第一分支111d的一端耦合导通,且第一分支111c与第一分支111d相连后与一个接口端A4电连接,第一导体部110a中剩余的一个第一分支111与接口端A1电连接。第二导体部110b中剩余的一个第一分支111与接口端A3电连接。
所以,本申请实施例中,可以通过将两个第一分支111耦合导通,实现第一导体部110a和第二导体部110b之间除了第一连接结113外增加两条通路,从而提升信号传输效率。
参见图11所示,第一导体部110a中的第一分支111c与第二导体部110b中的第一分支111d相连时,具体为,第一导体部110a中的第一分支111c的第一周向结1112与第二导体部110b中的第一分支111d的第一周向结1112相连。第一分支111c与第一分支111d相连可以作为一个第一分支111,第一分支111a与第一分支111b相连可以作为另一个第一分支111,所以,图11中,中心导体110包括两个中心结115、四个第一分支111和四个第二分支112。
需要说明的是,图11中,第一连接结113可以为第二分支112,且第一导体部110a和第二导体部110b共用该第二分支112。参见图12所示,第一导体部110a和第二导体部110b集中设在一个铁氧体120上。接口端A1、接口端A2、接口端A3和接口端A4分别位于铁氧体120的外周处,其中,接口端A1、接口端A2、接口端A3和接口端A4在铁氧体120上可以对称设置,当接口端A1、接口端A2、接口端A3和接口端A4对称设置时,可以实现任意接口端A的输入。
其中,图8、图11提供的中心导体110中第一导体部110a和第二导体部110b通过第一连接结113导通,中心导体110呈桥型结构,从而形成桥型四接口端环行器100。该环行器100不局限高场(归一化内磁场σ>1)、低场(归一化内磁场σ<1)。
本申请实施例中,中心导体110的另一种结构可以图13所示,中心导体110包括第一导体部110a和第二导体部110b,其中,第一导体部110a包括第一中心结115a、三个第一分支111和三个第二分支112。第二导体部110b包括第二中心结115b、三个第一分支111和三个第二分支112。
参见图13所示,中心导体110还包括第二连接结114,第一导体部110a中的其中一个第一分支111a与第二导体部110b中的其中一个第一分支111b通过第二连接结114电连接,以使第一中心结115a与第二中心结115b电连接。第一导体部110a中的另外两个第一分支111分别与接口端A2和接口端A1电连接。第二导体部110b 中的另外两个第一分支111分别为接口端A3和接口端A4电连接。
参见图14所示,第一导体部110a和第二导体部110b集中设在一个铁氧体120上。接口端A1、接口端A2、接口端A3和接口端A4可以呈轴对称,从而实现任意接口端A的输入。
当然,在一些示例中,中心导体110的结构不局限于是否旋转对称,即接口端A1、接口端A2、接口端A3和接口端A4也可以不对称的。
因此,图13中的中心导体110通过第二连接结114将两个第一分支111相连形成通路,该中心导体110呈双胞胎结构,最终形成双胞胎型四接口端环行器100。该环行器100不局限高场(归一化内磁场σ>1)、低场(归一化内磁场σ<1)。
本申请实施例中,通过将中心导体110的第一导体部110a和第二导体部110b通过第二连接结114相连,这样第一导体部110a和第二导体部110b集中在同一个铁氧体120上,与两个三接口端环行器串联相比,本申请实施例提供的环行器占用面积减小且成本低,而且避免跨越两个环行器的两个接口端而导致环行器插损增大的问题。
下面以中心导体110包括一个导体部为例进行说明,参见图15所示,中心导体110包括一个导体部110A,导体部110A包括一个中心结115、四个第一分支111和四个第二分支112,四个第一分支111的分别与四个接口端A电连接,例如,四个第一分支111分别与接口端A1、接口端A2、接口端A3和接口端A4电连接,且四个第一分支111沿着中心结115的周向间隔设置,其中接口端A1、接口端A2、接口端A3和接口端A4可以按照顺时针或者逆时针的方向单向输出。
其中,图15中,各个接口端A可以按照顺时针进行单向传输:接口端A1→接口端A2→接口端A3→接口端A4→接口端A1,或者,在一些示例中,也可以沿着逆时针方向单向输出,接口端A1→接口端A4→接口端A3→接口端A2→接口端A1,例如,当单向输出为:接口端A1→接口端A2→接口端A3→接口端A4→接口端A1时,则信号可以从接口端A2进,则可以从接口端A3输出,不会从接口端A1输出。相应的,信号从接口端A3进,只能从接口端A4单向输出,信号从接口端A4进,只能从接口端A1单向输出。
需要说明的是,图15中,中心导体110的第一分支111和第二分支112的数量包括但限于为4个,例如,在一些链路中并列的末级功率放大器增多时,则中心导体110的第一分支111和第二分支112的数量可以大于4个。
参见图15所示,每个第一分支111包括第一径向结1111和第一周向结1112。
本申请实施例中,如图16所示,中心导体110设在铁氧体120上时,四个第一分支111中相邻两个第一分支111之间的夹角a为90°。这样,确保了接口端A1、接口端A2、接口端A3和接口端A4在铁氧体120上轴对称,这样可以实现任意接口端A的输入。当然,在一些其它示例中,四个第一分支111中相邻两个第一分支111之间的夹角a包括但不限于为90°。
其中,图15中,中心导体110呈X(叉)型结构,形成叉型四接口端环行器100,该环行器100不局限高场(归一化内磁场σ>1)、低场(归一化内磁场σ<1)。
下面以中心导体110包括两个导体部,分别为第一导体部110a和第二导体部110b,第一导体部110a和第二导体部110b层叠设置为例进行说明,参见图17所示,第一导体部110a和第二导体部110b通过导电件119a相连,中心导体110为两层导体层,参见图17所示,中心导体110分别为第一导体部110a和第二导体部110b,第一导体部110a和第二导体部110b层叠设置,铁氧体120可以为两层,例如铁氧体120a和铁氧体120b,第一导体部110设在铁氧体120a上,第二导体部110b设在铁氧体120b上,第一导体部110a和第二导体部110b之间具有铁氧体120a,本申请实施例中,两层可以间隔设置,例如两层铁氧体120之间可以具有一定的间隔,或者两层铁氧体120之间除了中心导体110可以不设置间隔。
参见图18所示,第一导体部110a包括第一中心结115a、以及与第一中心结115a相连的至少三个第一分支111和至少三个第二分支112。第一导体部110a中的至少两个第一分支111分别与对应的接口端A电连接,例如,图18中,第一导体部110a中的两个第一分支111分别与接口端A1、接口端A2电连接,第一导体部110a与其中两个接口端A电连接。
其中,第二导体部110b包括第二中心结115b、以及与第二中心结115b相连的至少三个第一分支111和至少三个第二分支112。第二导体部110b中的至少两个第一分支111分别与对应的其他接口端A电连接,例如图18所示,第二导体部110b中的两个第一分支111分别与接口端A3、接口端A4电连接,第二导体部110b与另外两个接口端A电连接。这样中心导体110的四个第一分支111分别与环行器100的四个接口端A电连接。
其中,接口端A1、接口端A2、接口端A3、接口端A4单向传输的方向可以为:接口端A1→接口端A2-接口端A4→接口端A3→接口端A1,还可以为:接口端A3→接口端A4→接口端A2-接口端A1→接口端A3。
通过中心导体110的两个导体部上下叠层设置,形成四端口环行器100时,能够牺牲较少的高度实现更高的表面积集成,节省面积30%以上,使得环行器100更加小型化。另外,中心导体110的第一导体部110a和第二导体部110b层叠设置时,各个接口端A在空间上间隔开,从而能够更容易实现较好的隔离度。
其中,中心导体110的每个导体部,不局限电路尺寸大小,接口端不局限于是否旋转对称,该环行器100不局限于带线环行器/微带环行器,不局限高场(归一化内磁场σ>1)/低场(归一化内磁场σ<1),每层铁氧体120的材料不局限于铁氧体的4πMs、介电常数等参数,可使用低场低4πMs铁氧体,也可使用高场高4πMs铁氧体,也可使用高介电常数铁氧体减小器件尺寸。
本申请实施例中,参见图18所示,第一导体部110a和第二导体部110b均包括三个第一分支111和三个第二分支112,其中,第一导体部110a中的第一分支111a与第二导体部110b中的第二分支112b通过导电件119a相连,从而实现,第一导体部110a和第二导体部110b导通的目的。第一导体部110a和第二导体部110b中其余两个第一分支111分别对应对的接口端电连接。
需要说明的是,第一导体部110a和第二导体部110b叠层设置时,第一导体部110a和第二导体部110b中的第一分支111和第二分支112的数量包括但不限于三 个,例如,每个导体部可以包括4个第一分支111和4个第二分支112,形成六端口的环行器100。
在一种可能的实现方式中,第一导体部110a和第二导体部110b层叠设置时,除了图17所示的层得设置方式外,还可以如图19和图20所示,第一导体部110a和第二导体部110b还可以面对面层叠设置,例如,参见图19所示,第二导体部110b设在铁氧体120b的一面上,参见图20所示,第一导体部110a设在铁氧体120a面向铁氧体120b的一面上,这样,第一导体部110a和第二导体部110b面对面层叠设置,第一导体部110a和第二导体部110b可以通过支撑在铁氧体120a和铁氧体120b之间的导电件119导通相连。
本申请实施例中,第一导体部110a和第二导体部110b面对面层叠设置时,在铁氧体120a和铁氧体120b之间间隔相同的情况下,第一导体部110a和第二导体部110b之间的距离更小,从而使得环行器在厚度方向的高度降低,使得环行器的体积减小,另外,第一导体部110a和第二导体部110b之间的间隔变小,信号传输时损耗降低,使得环行器的性能更好。
其中,第一导体部110a和第二导体部110b层叠设置时,各个接口端A在其中一种使用场景中的应用可以如图21所示,例如接口端A1用于接收第一输入信号,接口端A2用于接收第二输入信号,第一输入信号和第二输入信号合路后经导电件119a传输到第二导体部111a上,并可以从接口端A3输出合路信号,接口端A4可以为负载相连,作为隔离端口,或者,接口端A3还可以作为输入端口,用于接收第三输入信号,第三输入信号沿着逆时针箭头从接口端A4向外输出,此时,接口端A4可以与电路相连,这样第三输入信号可以经接口端A4传输给电路。
本申请实施例中,第一导体部110a和第二导体部110b层叠面对面设置时,可以图22所示
示,第一导体部110a(参见图20)和第二导体部110b之间磁铁150,这样,铁氧体120a和铁氧体120b可以共用一个磁铁150,磁铁150可以提供磁场,使得铁氧体120a和铁氧体120b发生偏置,由于铁氧体120a和铁氧体120b可以共用一个磁铁150,避免在铁氧体120a和铁氧体120b分别设置一个磁铁150时造成环行器体积增大的问题。
本申请实施例中,参见图23所示,铁氧体120a背向铁氧体120b的一面(例如铁氧体120a的上面)设有接地背银130a,参见图24所示,铁氧体120b的背面设有接地背银130b,且接地背银130a和接地背银130b通过导通件119b实现导通,这样,接地背银130a和接地背银130b可以对中心导体110上传输的信号形成屏蔽作用,避免了外界信号对中心导体110上传输的信号的干扰。其中,本申请实施例中,接地背银130a和接地背银130b与中心导体110的各个分支相互绝缘。
下面以环行器100为带线环行器为例对环行器100的结构进行阐述。
参见图25所示,环行器100具有四个接口端A,接口端A1、接口端A2、接口端A3、接口端A4,当然,环行器100还可以具有5个或6个等接口端A,下面以环行器100具有四个接口端A为例进行说明。
参见图26和图25所示,四个接口端A从环行器100的外侧面向外伸出,其 中,四个接口端A的使用情况可以参考上述实施例的描述,本申请实施例中不在赘述。
参见图26所示,环行器100可以包括:外壳170,外壳170可以包括底座172和盖板171,参见图27所示,外壳170的底座172具有腔体1721,铁氧体120和中心导体110位于腔体1721内,且外壳170的底座172的侧壁上具有可供接口端A(例如接口端A1、接口端A2、接口端A3、接口端A4)穿出的豁口1722。
其中,图27中,环行器100包括中心导体110和两层铁氧体120,例如,两层铁氧体120可以分别为铁氧体120a和铁氧体120b,参见图28和图29所示,中心导体110位于铁氧体120a和铁氧体120b之间,中心导体110与接口端A1、接口端A2、接口端A3、接口端A4相连。
其中,本申请实施例中,中心导体110的结构可以参考上述中心导体110的结构,本申请实施例中,可以对中心导体110的第一分支111、第二分支112根据需要对结构进行调整,例如图27中的中心导体110为叉型结构,但是与图15中的叉型结构中的第二分支112的结构有所不同,在图29中,中心导体110的第二分支112结构更短、更宽,中心导体110的第一分支111的一端向外延伸形成接口端A。
本申请实施例中,继续参见图27所示,磁铁150的数量为两个,还包括:两个匀磁片180、温补片191、固定片192,其中一个匀磁片180位于铁氧体120b和其中一个磁铁150a之间,另一个匀磁骗位于铁氧体120a和另一个磁铁150b之间,温补片191位于磁铁150b上,固定片192位于温补片191上,盖板171盖设在固定片192上,其中,匀磁片180用于均匀磁场,温补片191用于温度补偿。固定片192用于将各个层结构固定在底座172的腔体1721内,避免铁氧体120、中心导体110、匀磁片180、磁铁150以及温补片191位置发生偏移。
本申请实施例中,参见图29所示,中心导体110的结构可以为图8所示的桥型结构,与图8的区别为,本申请实施例中,图29中,第二分支112的结构不同,第二分支112可以不包括第二周向结1122(参见上述图8)。
参见图30所示,本申请实施例提供的环行器100测试时,接口端A1、接口端A2、接口端A3、接口端A4可以位于测试腔193内进行测试。
本申请实施例中,为了提高信号传输路径介电常数,如图28所示,还包括:介质环122,介质环122套设在至少一层铁氧体120的外周上。通过介质环122提高信号传输路径介电常数,使得信号损耗较小。需要说明的是,在微带环行器中,也可以在图5中的铁氧体120上套设介质环122,这样,导电片121(参见图5)可以设在介质环122和铁氧体120之间,也可以位于介质环122的外表面上。
本申请实施例中,参见图31所示,中心导体110的第一分支111、第二分支112与图15所示的中心导体110的结构有所不同,其中,图31中,中心导体110的每个第一分支111上设有两个第一周向结1112,且其中一个第一周向结1112设置位于介质环122处,另一个第一周向结1112位于铁氧体120上,两个第一周向结1112的大小不同。另外,中心导体110的第一分支111相比较于图15中第二分支112,更短和更宽。其中,通过改变中心导体110上的第一分支111、第二分支112的结构实现对环行器100带宽的调整。
本申请实施例中,另一种环行器100的结构可以如图32所示,中心导体110包括第一导体部110a和第二导体部110b,铁氧体120为三层,分别为铁氧体120c、铁氧体120e、铁氧体120d,铁氧体120c和铁氧体120e之间设置第二导体部110b,铁氧体120e和铁氧体120d之间设有第一导体部110a。其中,第一导体部110a和第二导体部110b的结构可以参考上述图18,例如,第一导体部110a包括第一中心结115a、以及与第一中心结115a相连的至少三个第一分支111和至少三个第二分支112;第一导体部110a中的至少两个第一分支111分别与对应的接口端A电连接,例如,第一导体部110a的两个第一分支111分别与接口端A3和接口端A4电连接。
其中,第二导体部110b包括第二中心结115b、以及与第二中心结115b相连的至少三个第一分支111和至少三个第二分支112;第二导体部110b中的至少两个第一分支111分别与其余的接口端A电连接,例如图32所示,第二导体部110b的两个第一分支111分别与接口端A1和接口端A2电连接,第二导体部110b的另一个第一分支111(例如第一分支111a)与第一导体部110a的另一个第一分支111(即第一分支111b)通过导电件119a相连,使得第一导体部110a和第二导体部110b导通。
本申请实施例中,通过中心导体110的两个导体部上下叠层设置,形成四端口环行器100时,能够牺牲较少的高度实现更高的表面积集成,节省面积30%以上,使得环行器100更加小型化。另外,中心导体110的第一导体部110a和第二导体部110b层叠设置时,各个接口端A在空间上间隔开,从而能够更容易实现较好的隔离度。
本申请实施例还提供一种功放模组,参见上述图3所示,该功放模组可以包括上述任一实施例的至少一个环行器100以及至少两个功率放大器200,例如,图33中,功率放大器200的数量为两个,分别为功率放大器200a和功率放大器200b。其中,至少两个功率放大器并列设置,例如,图33中,功率放大器200a和功率放大器200b并列设置,且至少两个功率放大器200中的其中一个功率放大器200a的输出端与环行器100的其中一个接口端A相连,至少两个功率放大器200中的另一个功率放大器200b的输出端与环行器100中的另一个接口端A相连,例如,环行器100的接口端A1作为输入接口与功率放大器200b的输出端导通,环行器100的接口端A2作为输入接口与功率放大器200a的输出端导通,环行器100的接口端A4与匹配的负载500(例如电阻)相连,形成隔离端口,环行器100的接口端A3为输出接口,用一个输出信号。
需要说明的是,该功放模组中,还可以包括滤波器、射频模块、天线等器件,射频模块分别于两个功率放大器相连,滤波器与环行器100的输出接口端相连,天线与滤波器相连。
本申请实施例提供的功放模组,通过包括上述实施例中的环行器100,避免在功放链路中引入与环形路级联的耦合器以及微带线,从而降低了功放链路的插损,提升了功放链路的输出效率,另外,与图1中耦合器和三端口环行器10相比,本申请实施例提供的环行器100,由于不需要设置合路组件20(参见图1),一方面,整个链路器件占用的板面积减小,使得功放链路在电路板上的布局更易,另一方面,降低了功放链路的成本。
需要说明的是,本申请实施例提供的功放模组中,环行器100的结构和原理可以上述描述,此处对环行器100的结构不再赘述。
本申请实施例还提供一种通信设备,参见图33所示,该通信设备1000包括至少一个上
述实施例的环行器100,该环行器100可以包括但不限于四接口端环行器100、五接口端环行器100,或者六接口端环行器100,具体可以环行器100中可以设置的接口端A的数量为例。
参见图33所示,通信设备1000还包括射频模块600、至少一个功率放大器200、天线400、滤波器300,其中,射频模块600与功率放大器的输入端相连,功率放大器的输出端与环行器的输入接口端相连,环行器的输出接口端与滤波器300相连,滤波器300与天线400相连。其中,图33中,功率放大器的数量为两个,分别为功率放大器200a和功率放大器200b,射频模块600与功率放大器200a和功率放大器200b均相连,滤波器300与环行器的输出接口端相连,天线400与滤波器300相连,图33中,天线400的数量为一个,天线400可以作为发射天线和接收天线,在一些其他的示例中,如图34所示,天线400的数量可以为两个,其中一个可以发射天线400a,另一个可以为接收天线400b。其中,天线400的数量可以根据实际应用进行设置,本申请实施例中,对天线400的结构以及数量不作限定。
其中,图33中,功率放大器的数量为两个,功率放大器200a和功率放大器200b并列设置,且至少两个功率放大器200中的其中一个功率放大器200a的输出端与环行器100的其中一个接口端A相连,至少两个功率放大器200中的另一个功率放大器200b的输出端与环行器100中的另一个接口端A相连,例如,环行器100的接口端A1作为输入接口与功率放大器200b的输出端导通,环行器100的接口端A2作为输入接口与功率放大器200a的输出端导通,环行器100的接口端A4与匹配的负载500(例如电阻)相连,形成隔离端口,环行器100的接口端A3为输出接口。
该通信设备1000通过包括上述四接口端环行器100,可以实现在射频模块600中通道数量增多时不增加插损的作用,使得通信设备1000的传输效率更高、带宽更大。
参见图33所示,还包括:电路板700,射频模块600、环行器100、功率放大器、滤波器300和天线400均设置在电路板700上,集成为一个整体结构。射频模块600、功率放大器、滤波器300和天线400相互之间通过电路板700上的走线实现电连接。本申请实施例中,由于环行器的占用面积减少,电路板700上节省出的面积使得器件在电路板700上的布局更易。
本申请实施例中,通信设备1000还可以应用在另一种场景下,参见图34所示,环行器100的接口端A3还可以用于接收第三输入信号,接口端A3可以为输入和输出共用的接口端,接口端A3可以与负载500或电路800相连。其中,当接口端A4与负载相连时,该接口端A4可以作为隔离端口,起到隔离作用,当接口端A4与电路800相连时,可以将从接口端A3接收到的第三输入信号传输给电路800,接口端A4作为输出端口,起到信号输出的作用。其中,第三输入信号可以为接收天线400b接收到的信号。
需要说明的是,环行器100的接口端A4与负载或电路电连接时,可以设置开关,通过开关控制环行器的接口端A4与负载或与电路相连,例如,当接口端A3用于输出合路信号时,通过开关将接口端A4与负载导通,实现隔离作用,当接口端A3用于接收第三输入信号时,通过开关将接口端A4与电路800导通,使得第三输入信号可以传输给电路800。需要说明的是,在环行器100的接口端A3接收第三输入信号时,接口端A1和接口端A2无法接收到第一输入信号和第二输入信号,例如,可以控制功率放大器200a和功率放大器200b停止工作,没有信号输出。相应的,当接口端A1和接口端A2接收输入信号时,接口端A3只能输出,不能接收第三输入信号。
该通信设备1000通过包括上述环行器100,可以实现在射频模块600中通道数量增多时不增加插损的作用,通信设备1000的传输效率更高,另外,节省环行器100在电路板700上的占用面积,降低了通信设备1000的成本,使得集成后的通信设备1000更趋于小型化。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (29)

  1. 一种环行器,其特征在于,环行器具有至少四个接口端,所述至少四个接口端中其中一个接口端用于接收第一输入信号,所述至少四个接口端中的另一个接口端用于接收第二输入信号,所述至少四个接口端中的第三个接口端至少用于输出合路信号,且所述合路信号为所述第一输入信号和所述第二输入信号合路后形成的信号。
  2. 根据权利要求1所述的环行器,其特征在于,所述至少四个接口端中的第四个接口端用于与负载或电路电连接。
  3. 根据权利要求2所述的环行器,其特征在于,所述至少四个接口端中的所述第三个接口端还用于接收第三输入信号;
    当所述第三个接口端用于输出合路信号时,所述第四个接口端用于与所述负载电连接;
    当所述第三个接口端用于接收所述第三输入信号时,所述第四个接口端用于与所述电路电连接,以使所述第三输入信号通过所述第四个接口端输出给所述电路。
  4. 根据权利要求1-3任一所述的环行器,其特征在于,所述环行器包括:中心导体,
    所述中心导体包括中心结、至少四个第一分支和至少四个第二分支,所述第一分支和所述第二分支沿着所述中心结的周向交替间隔设置,且所述第一分支和所述第二分支的第一端与所述中心结电连接,所述第一分支和所述第二分支的第二端远离所述中心结且向外呈辐射状;
    且每个所述接口端与一个所述第一分支电连接,或者
    每个所述接口端与一个所述第二分支电连接。
  5. 根据权利要求4所述的环行器,其特征在于,所述中心导体包括一个或多个导体部,所述多个导体部电连接;
    每个所述导体部包括一个所述中心结、以及绕所述中心结间隔设置的多个所述第一分支和多个所述第二分支。
  6. 根据权利要求5所述的环行器,其特征在于,所述中心导体包括两个导体部,两个所述导体部分别为第一导体部和第二导体部,所述第一导体部和所述第二导体部并排设置,且所述第一导体部与所述第二导体部电连接。
  7. 根据权利要求6所述的环行器,其特征在于,所述第一导体部包括:所述第一导体部包括第一中心结、以及与所述第一中心结电连接的至少两个所述第一分支和至少两个所述第二分支;
    所述第二导体部包括第二中心结、以及与所述第二中心结电连接的至少两个所述第一分支和至少两个所述第二分支;
    至少所述第一中心结和所述第二中心结电连接,且所述第一导体部中的至少两个所述第一分支分别与对应的所述接口端电连接,所述第二导体部中的至少两个所述第一分支分别与对应的所述接口端电连接。
  8. 根据权利要求7所述的环行器,其特征在于,所述第一导体部包括两个所述第一分支和三个所述第二分支,所述第一导体部中的所述两个第一分支分别与其中两个 所述接口端电连接;
    所述第二导体部包括两个所述第一分支和三个所述第二分支;所述第二导体部中的所述两个第一分支分别与另外两个所述接口端电连接;
    还包括第一连接结,所述第一中心结和所述第二中心结通过第一连接结电连接;
    且所述第一导体部中位于所述第一连接结两侧的两个所述第二分支分别与所述第二导体部中位于所述第一连接结两侧的两个第二分支相连。
  9. 根据权利要求7所述的环行器,其特征在于,所述第一导体部包括三个所述第一分支和两个所述第二分支;
    所述第二导体部包括三个所述第一分支和两个所述第二分支;
    还包括第一连接结,所述第一中心结和所述第二中心结通过所述第一连接结相连;
    所述第一导体部中位于所述第一连接结两侧的两个所述第一分支分别与所述第二导体部中位于所述第一连接结两侧的两个第一分支相连、且所述第一导体部和所述第二导体部中相连的两个所述第一分支与一个所述接口端电连接;
    所述第一导体部和所述第二导体部中其余的所述第一分支分别与对应的所述接口端电连接。
  10. 根据权利要求7所述的环行器,其特征在于,
    所述第一导体部包括三个所述第一分支和三个所述第二分支;
    所述第二导体部包括三个所述第一分支和三个所述第二分支;
    还包括第二连接结,所述第一导体部中的其中一个所述第一分支与所述第二导体部中的其中一个所述第一分支通过所述第二连接结电连接,所述第一导体部中和所述第二导体部中其余的所述第一分支分别与对应的所述接口端电连接。
  11. 根据权利要求5所述的环行器,其特征在于,所述中心导体包括两个导体部,两个所述导体部分别为第一导体部和第二导体部,所述第一导体部和所述第二导体部层叠设置,且所述第一导体部与所述第二导体部电连接。
  12. 根据权利要求11所述的环行器,其特征在于,所述第一导体部包括第一中心结、以及与所述第一中心结相连的至少三个所述第一分支和至少三个所述第二分支;
    所述第二导体部包括第二中心结、以及与所述第二中心结相连的至少三个所述第一分支和至少三个所述第二分支;
    所述第一导体部中的至少两个所述第一分支分别与对应的所述接口端电连接;
    所述第二导体部中的至少两个所述第一分支分别与对应的所述接口端电连接。
  13. 根据权利要求12所述的环行器,其特征在于,所述第一导体部中的其中两个所述第一分支分别与其中两个所述接口端电连接;
    所述第二导体部中的其中两个所述第一分支分别与另外两个所述接口端电连接;
    还包括导电件,所述第一导体部中的另一个所述第一分支与所述第二导体部中的另一个所述第一分支通过所述导电件电连接,以使所述第一导体部与所述第二导体部导通。
  14. 根据权利要求4-13任一所述的环行器,其特征在于,与同一个所述中心结相连的两个相邻的所述第一分支之间的角度为120°,或者,与同一个所述中心结相连 的两个相邻的所述第二分支之间的角度为120°。
  15. 根据权利要求14所述的环行器,其特征在于,所述中心导体包括一个导体部,且所述导体部包括一个中心结、四个所述第一分支和四个所述第二分支;
    四个所述第一分支分别与四个所述接口端电连接。
  16. 根据权利要求15所述的环行器,其特征在于,所述四个第一分支中相邻两个所述第一分支之间的夹角为90°。
  17. 根据权利要求4-16任一所述的环行器,其特征在于,所述第一分支上具有第一匹配结。
  18. 根据权利要求4-16任一所述的环行器,其特征在于,所述第二分支上具有第二匹配结。
  19. 根据权利要求4-16任一所述的环行器,其特征在于,还包括:至少一个磁铁,所述磁铁设在所述中心导体的一侧,所述磁铁用于提供磁场偏置。
  20. 根据权利要求19所述的环行器,其特征在于,还包括支撑柱,所述支撑柱位于所述中心导体和所述磁铁之间,且所述支撑柱的一端与所述中心导体的中心结相连,所述支撑柱的另一端与所述磁铁相连。
  21. 根据权利要求4-16任一所述的环行器,其特征在于,还包括:一层或多层铁氧体,所述中心导体位于所述铁氧体上,或者所述中心导体的至少部分位于相邻两层所述铁氧体之间。
  22. 根据权利要求21所述的环行器,其特征在于,还包括:介质环,所述介质环套设在至少一层所述铁氧体的外周上。
  23. 根据权利要求21或22所述的环行器,其特征在于,还包括:接地背银和底板,所述接地背银位于所述铁氧体和所述底板之间;
    且所述接地背银和所述底板上分别设有管脚,所述管脚与所述接口端电连接。
  24. 根据权利要求21-23任一所述的环行器,其特征在于,还包括:外壳,所述外壳具有腔体,所述铁氧体和所述中心导体位于所述腔体内,且所述外壳的侧壁上具有可供所述接口端穿出的豁口。
  25. 根据权利要求24所述的环行器,其特征在于,还包括:匀磁片、温补片、固定片,所述匀磁片位于所述铁氧体背向所述中心导体的一面上;
    所述温补片位于所述匀磁片和所述固定片之间。
  26. 一种功放模组,其特征在于,包括:权利要求1-25任一所述的至少一个环行器以及至少两个功率放大器,所述环行器的其中两个接口端分别与所述至少两个功率放大器中的其中两个功率放大器相连;
    所述环行器的第三个接口端用于输出合路信号,所述合路信号为所述环行器的两个接口端分别接收两个所述功率放大器传输的两个输入信号合路后形成的信号。
  27. 一种通信设备,其特征在于,包括:权利要求1-25任一所述的环行器;或者,包括权利要求26所述的功放模组。
  28. 根据权利要求27所述的通信设备,其特征在于,还包括:天线,所述环行器的其中两个端口用于接收输入信号,所述环行器的第三个端口与所述天线相连、且用于将所述输入信号合路后向所述天线输出。
  29. 根据权利要求28所述的通信设备,其特征在于,还包括:负载和电路中的至少一个,所述环行器的第四个端口与所述负载或与所述电路相连;
    其中,当所述天线作为发射天线时,所述环行器的第四个端口与所述负载相连;
    当所述天线作为接收天线时,所述环行器的第四个端口与所述电路相连。
PCT/CN2023/098403 2022-06-15 2023-06-05 环行器、功放模组以及通信设备 WO2023241394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210673094.3 2022-06-15
CN202210673094.3A CN117276834A (zh) 2022-06-15 2022-06-15 环行器、功放模组以及通信设备

Publications (1)

Publication Number Publication Date
WO2023241394A1 true WO2023241394A1 (zh) 2023-12-21

Family

ID=89192116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098403 WO2023241394A1 (zh) 2022-06-15 2023-06-05 环行器、功放模组以及通信设备

Country Status (2)

Country Link
CN (1) CN117276834A (zh)
WO (1) WO2023241394A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2494916A1 (fr) * 1980-11-25 1982-05-28 Thomson Csf Circulateur pour la transmission d'ondes electromagnetiques hyperfrequence
CN1988248A (zh) * 2005-12-23 2007-06-27 中兴通讯股份有限公司 一种合路器
CN101673863A (zh) * 2009-10-19 2010-03-17 华为技术有限公司 一种双频合路器及其合路方法
CN107546450A (zh) * 2017-07-23 2018-01-05 西南电子技术研究所(中国电子科技集团公司第十研究所) 基于铁氧体环形器的负群时延电路
CN108682928A (zh) * 2018-05-23 2018-10-19 优译有限公司 一种射频通信环行器和隔离器
CN213879768U (zh) * 2020-09-30 2021-08-03 中国航空工业集团公司雷华电子技术研究所 一种用于提高输出功率的固态功放模块
CN113225028A (zh) * 2021-04-30 2021-08-06 清华大学 一种具有非互易性的片上反射型量子放大器
CN113540710A (zh) * 2020-04-22 2021-10-22 华为技术有限公司 铁氧体开关、微波天线及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2494916A1 (fr) * 1980-11-25 1982-05-28 Thomson Csf Circulateur pour la transmission d'ondes electromagnetiques hyperfrequence
CN1988248A (zh) * 2005-12-23 2007-06-27 中兴通讯股份有限公司 一种合路器
CN101673863A (zh) * 2009-10-19 2010-03-17 华为技术有限公司 一种双频合路器及其合路方法
CN107546450A (zh) * 2017-07-23 2018-01-05 西南电子技术研究所(中国电子科技集团公司第十研究所) 基于铁氧体环形器的负群时延电路
CN108682928A (zh) * 2018-05-23 2018-10-19 优译有限公司 一种射频通信环行器和隔离器
CN113540710A (zh) * 2020-04-22 2021-10-22 华为技术有限公司 铁氧体开关、微波天线及电子设备
CN213879768U (zh) * 2020-09-30 2021-08-03 中国航空工业集团公司雷华电子技术研究所 一种用于提高输出功率的固态功放模块
CN113225028A (zh) * 2021-04-30 2021-08-06 清华大学 一种具有非互易性的片上反射型量子放大器

Also Published As

Publication number Publication date
CN117276834A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
EP1010209B1 (en) Narrow-band overcoupled directional coupler in multilayer package
JP3120985B2 (ja) 線路変成器
US7714679B2 (en) Spiral coupler
US7528676B2 (en) Balun circuit suitable for integration with chip antenna
US20200044331A1 (en) Multi-antenna system and mobile terminal
CN108682928A (zh) 一种射频通信环行器和隔离器
US3334317A (en) Ferrite stripline circulator having closed magnetic loop path and centrally located, conductive foil overlying radially extending center conductors
US9954265B2 (en) Two-transmitter two-receiver antenna coupling unit for microwave digital radios
KR100868690B1 (ko) 고주파 스위치
WO2001017058A1 (en) Four port hybrid
EP1371109B1 (en) Circulator and network
WO2023241394A1 (zh) 环行器、功放模组以及通信设备
CN112838344A (zh) 一种环形器
US20080062723A1 (en) Multilayer directional coupler
CA2667761C (en) Broadband hybrid junction and associated methods
US11405012B2 (en) Balun and method for manufacturing the same
JPH11239009A (ja) 非可逆回路素子の広帯域化構造
US20010020883A1 (en) Nonreciprocal circuit device and communication device using same
US7746193B2 (en) Miniature 180 degree hybrid coupler
US8279017B2 (en) Magnetic resonance type isolator
WO2013094256A1 (ja) 非可逆回路素子及び送受信装置
KR101697277B1 (ko) 메타물질 회로를 이용한 광대역 소형 마천드 발룬
US11362407B2 (en) Directional couplers with DC insulated input and output ports
WO2021197277A1 (en) Au and ru having cwg filters, and bs having the au or ru
WO2023092372A1 (zh) 一种环行器、隔离器和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822963

Country of ref document: EP

Kind code of ref document: A1