WO2023241306A1 - 一种血管支架 - Google Patents

一种血管支架 Download PDF

Info

Publication number
WO2023241306A1
WO2023241306A1 PCT/CN2023/095200 CN2023095200W WO2023241306A1 WO 2023241306 A1 WO2023241306 A1 WO 2023241306A1 CN 2023095200 W CN2023095200 W CN 2023095200W WO 2023241306 A1 WO2023241306 A1 WO 2023241306A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
vascular stent
anchoring
bent
blood vessel
Prior art date
Application number
PCT/CN2023/095200
Other languages
English (en)
French (fr)
Inventor
谢志永
刘庆龙
�田�浩
Original Assignee
微创神通医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221515492.4U external-priority patent/CN217938481U/zh
Priority claimed from CN202210685484.2A external-priority patent/CN117257536A/zh
Application filed by 微创神通医疗科技(上海)有限公司 filed Critical 微创神通医疗科技(上海)有限公司
Publication of WO2023241306A1 publication Critical patent/WO2023241306A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs

Definitions

  • the present invention relates to the technical field of medical devices, and in particular to a vascular stent.
  • stents are usually used as primary or auxiliary devices when treating conditions such as vascular stenosis, vascular embolism, and aneurysms.
  • the stent can be made of woven metal wire, making it more compliant and flexible.
  • stents made of braided metal wires often have poor anchorage in the blood vessels (especially in the curved sections of the blood vessels) due to their poor radial support and the ability to fix the ends of the stent in the blood vessels. Displacement occurs due to insufficient stabilization ability, which can easily lead to the extension of surgical operation time and replacement of instruments, and may even cause medical accidents such as surgical failure and unexpected damage to blood vessels, increase the patient's discomfort during the operation, and even directly endanger the patient. life safety.
  • the purpose of the present invention is to provide a vascular stent that can be better anchored at an expected location in the blood vessel wall, reduce the risk of displacement of the vascular stent, and also avoid the vascular stent from being Other complications caused by displacement.
  • the present invention provides a vascular stent, which includes a stent body made of braided wires, at least a partial area of the wires forms an anchoring portion, and the anchoring portion includes a bent portion. and a non-bent part; along the weaving direction, the outer surface area of the unit length of the bending part is greater than the outer surface area of the unit length of the non-bent part; the anchoring part is used to increase The area when the vascular stent is in contact with the blood vessel wall.
  • At least a portion of the wire is bent and looped around at least one end of the stent body to form a closed end, and at least part of the closed end forms the anchoring portion.
  • At least a portion of the wire is bent and looped at both ends of the stent body to form the closed end, and at least part of each closed end forms the anchoring portion.
  • the angle between the initial extension direction of the wire in the anchoring part and the axis of the stent body is [90°, 180°].
  • the anchoring portion includes at least one arched curved structure, and at least one of the arched curved structures is used to contact the blood vessel wall.
  • At least one of the arched curved structures includes a spring segment formed by spiral winding of the wire, and the at least one arched curved structure is provided with the spring segment on at least one side of a vertex.
  • the diameter of the spring segment in the initial state is 0.001 inch to 1.0 inch, and/or the curvature radius of at least one of the arched curved structures in the initial state is 1 mm to 50 mm, and/or, The ratio of the length of the spring segment in the initial state to the length of at least one of the arched curved structures in the initial state is 1:100 to 1:1.
  • At least one of the arched curved structures includes a rough section formed by surface treatment of the wire, and the at least one arched curved structure is provided with the rough section on at least one side of the apex.
  • the roughness of the rough section is 0.8um ⁇ 100um, and/or the curvature radius of at least one of the arched curved structures in the initial state is 0.5mm ⁇ 50mm, and/or the roughness
  • the ratio of the outer surface area of the segment to at least one of the arched curved structures in the initial state is 1:100 to 1:1.
  • At least one of the arched curved structures includes a deformation section formed by pressing the wire material, the width of the deformation section increases in the first direction, and the thickness in the second direction decreases. .
  • the ratio of the width of the cross section of the wire in the first direction to the thickness in the second direction is 10:1 to 1:1
  • the deformation section is in The ratio of the length in the initial state to the length of at least one of the arched curved structures in the initial state is 1:100 to 1:1.
  • the radius of curvature of the closed end in the initial state is 0.5 mm to 20 mm.
  • the wire is bent and twisted in the same plane and interlaced with itself to form the anchoring part.
  • the wire is interlaced and twisted at least twice to form the lasso-like anchoring portion, wherein the wire is first bent and then interlaced and twisted with itself, and the wire is bent at least multiple times, each phase A staggered kink is formed between two adjacent bends.
  • the wire is bent multiple times in at least two different directions and interlaced and twisted to form the mesh-shaped anchoring portion.
  • the wire is bent multiple times in different planes to form the anchoring portion.
  • the wire is bent in a first plane and a second plane respectively to form the anchoring portion, the first plane forms a first angle with the axis of the stent body, and the second plane is with the axis of the stent body.
  • the first plane is at a second angle.
  • the first angle between the first plane and the axis of the stent body is [90°, 180°), and/or the first angle between the first plane and the second plane The two angles are (0, 180°].
  • the wire is bent outward to form the anchoring portion with a landslide surface, and the angle between the landslide surface of the anchoring portion and the axis of the stent body is [90°, 180° ).
  • the minimum side length of the wire material is 0.005 inch to 1.0 inch.
  • the present invention provides a vascular stent, which can increase the contact area between the vascular stent and the blood vessel wall and the anchoring ability of the vascular stent on the blood vessel wall through the arrangement of the anchoring portion, so that the vascular stent can be better anchored in the blood vessel. It can reduce the risk of vascular stent migration and avoid other complications and damage to the vessel wall caused by vascular stent migration.
  • Figure 1 is a schematic structural diagram of a vascular stent in a preferred embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a curved structure in which the anchoring part is a first arch in the preferred embodiment 1 of the present invention
  • Figure 3 is a schematic structural diagram of a curved structure in which the anchoring part is a second arch in the preferred embodiment 1 of the present invention
  • Figure 4 is a schematic structural diagram of a curved structure in which the anchoring part is a third arch in the first preferred embodiment of the present invention
  • Figure 5 is a schematic structural diagram of the anchoring part in a preferred embodiment of Embodiment 2 of the present invention.
  • Figure 6 is a schematic structural diagram of the anchoring part in another preferred embodiment of Embodiment 2 of the present invention.
  • Figure 7 is a schematic structural diagram of the anchoring part in a preferred embodiment of Embodiment 3 of the present invention.
  • Figure 8 is a schematic structural diagram of the anchoring portion in another preferred embodiment of Embodiment 3 of the present invention.
  • stent body 1 wire 10; closed end 11; anchoring parts 2, 3, 4; first arched curved structure 21; spring segment 211; second arched curved structure 22; rough section 221; Smooth section 222; third arched curved structure 23; deformation section 231; first staggered kink position 31; second staggered kink position 32; third staggered kink position 33; fourth staggered kink position 34; first plane 41; The second plane 42; the landslide surface 43; the first bending section 431; the second bending section 432.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation or be constructed in a specific orientation. and operation, and therefore cannot be construed as limitations of the present invention.
  • proximal end usually refers to the end that is close to the operator of the vascular stent; the “distal end” is the end opposite to the “proximal end” and usually refers to the end that is first implanted in the patient's body.
  • Figure 1 is a schematic structural diagram of a vascular stent in a preferred embodiment of the present invention.
  • a preferred embodiment of the present invention provides a vascular stent, which includes a stent body 1 made of braided wires 10, and a portion of at least one wire 10 forms an anchoring portion (for example, in Figure 1 a area), the anchoring part is divided into a bent part and a non-bent part.
  • the outer surface area of the bent part per unit length (along the weaving direction) is larger than the unit length of the non-bent part (along the weaving direction). direction) outer surface area.
  • Another partial area of at least one wire 10 forms the main body of the stent, that is, the non-anchoring portion (for example, area b in FIG. 1 ).
  • the anchoring part is used to increase the area when the vascular stent is in contact with the blood vessel wall.
  • the outer surface of the vascular stent is used to contact the blood vessel wall, and the stent mainly contacts the blood vessel wall through the anchoring part, and the anchoring part includes a bending part and a non-bending part, where the bending part mainly To be in contact with the blood vessel wall.
  • increasing the outer surface area per unit length of the bending portion can increase the contact area with the blood vessel wall, thereby improving the anchoring performance.
  • the anchoring part in this application is directly made of the wire 10.
  • surface roughness treatment is performed on the wire 10 to form protrusions on the surface of the wire 10, thereby increasing the surface area of the wire 10, or
  • the wire material 10 is subjected to processes such as bending, winding, and knotting to change the shape of the wire material 10, thereby increasing the surface area of the wire material 10.
  • the method is not limited to this example, and other methods to increase the size of the wire material 10 can also be used.
  • the surface area of the material 10 is not limited by this application.
  • the vascular stent can be shaped (for example, heat treated to shape), so that a shape-stable vascular stent structure can be obtained.
  • the anchoring portion can be used to increase the friction between the vascular stent and the blood vessel wall, thereby resisting the impact of the blood flow on the vascular stent and increasing the friction between the vascular stent and the blood vessel wall.
  • the anchoring ability allows the vascular stent to be better anchored at the expected location in the blood vessel, reducing the risk of vascular stent displacement, and also avoiding other complications and damage to the vessel wall caused by the displacement of the vascular stent. .
  • the anchoring part can be made of one or more wires through a predetermined processing method, and the predetermined processing method preferably includes bending and forming.
  • This application also does not limit the position of the anchoring portion.
  • the anchoring portion can be disposed at any position where the vascular stent is in contact with the blood vessel wall.
  • This application does not limit the structure of the anchoring portion.
  • the anchoring portion can be configured into any structure that can increase the contact area between the vascular stent and the blood vessel wall as needed.
  • This application does not limit the number of anchoring parts.
  • the number of anchoring parts can be set according to the type and shape of the vascular stent.
  • the anchoring portion can be disposed in the middle of the stent body 1 , in which case the vascular stent can increase friction with the blood vessel wall through the anchoring portion.
  • the “middle part of the stent body 1 ” here should not be understood in a narrow sense as the absolute middle position, but should be understood as the portion between the proximal end and the distal end of the stent body 1 .
  • the anchoring portion is provided at the end of the stent body 1 , such as the proximal end, the distal end, or the proximal and distal ends. This can be avoided by anchoring the end of the stent body 1 Displacement of vascular stents.
  • the anchoring portion is provided both at the end of the stent body 1 and on the support body 1 .
  • the number of the anchoring parts is multiple, and the multiple anchoring parts can be provided in the middle and/or end of the vascular stent.
  • the cross-sectional shape of the wire 10 includes but is not limited to circular, square, elliptical, trapezoidal and other shapes.
  • the minimum side length of the wire 10 is preferably 0.005 inch to 1.0 inch. It should be understood that when the wire 10 has a square structure, the minimum side length refers to the length of the shortest side in the cross section of the wire 10; when the wire 10 has a circular structure, the minimum side length refers to the length of the shortest side of the cross section of the wire 10. The length of the middle diameter; when the wire 10 is an ellipse or other shaped structure, the minimum side length refers to the shortest distance between any two points in the cross section of the wire 10 .
  • the application does not limit the material of the wire 10.
  • the material of the wire 10 can be one or more of stainless steel, nickel-titanium alloy, cobalt and cobalt alloy, platinum and platinum alloy, tungsten and tungsten alloy, and magnesium and magnesium alloy. combination of species.
  • the material of the wire 10 can also be a medical polymer material. Further, at least part of the material of the wire 10 contains a metal developing material.
  • At least a portion of the wire 10 is bent around at least one end of the stent body 1 to form a closed end 11 , and at least part of the closed end 11 forms an anchoring portion.
  • the closed end 11 here refers to the closed structure provided at the end position of at least one end of the stent body 1 on the axis.
  • At least a portion of the wire 10 is bent and circled at both ends of the stent body 1 to form a closed end 11.
  • the bent section forms a bent portion, and the two extended structures connected to the bent section are non-bent portions.
  • the folded portion and the non-folded portion together form the anchoring portion.
  • the number of anchoring parts is multiple, and at least one anchoring part is provided at the proximal and distal ends of the stent body 1 along the axis. This can further increase the anchoring capacity of the vascular stent, thereby preventing the vascular stent from being attached to the blood vessel. displacement in.
  • the angle between the initial extension direction of the wire 10 in the anchoring part and the axis of the stent body 1 is [90°, 180°].
  • Such a structure prevents the anchoring part from being in contact with the blood vessel wall on the one hand. It will affect and interfere with the contact between the stent body 1 and the blood vessel wall, thereby ensuring the therapeutic effect of the vascular stent; on the other hand, due to the limited pressure that the blood vessel wall can withstand, the clamping between the anchoring part and the axis of the stent body 1 The angle should not be too small to avoid damage to the blood vessel wall by the vascular stent.
  • the A direction in Figure 1 is defined as the positive direction of the axis of the stent body 1.
  • the angle between the initial extension direction of the wire 10 in this application and the axis of the stent body 1 means that the wire 10 is in the anchoring part.
  • the angle between the initial extension direction and the positive direction of the axis of the stent body 1 i.e., direction A in Figure 1.
  • the initial extension direction of the wire 10 in the anchoring part refers to the extension direction of the wire 10 in the anchoring part at the connection between the anchoring part and the area where the anchoring part is not formed in the closed end 11 , that is,
  • the extension direction of the wire 10 in the anchor portion before it is first bent during the formation of the anchor portion is the extension direction of the non-bent portion in the anchor portion, which is also the braiding extension direction of the wire.
  • the vascular stent includes a stent body 1 woven from wires 10, wherein the wires 10 are braided to form the stent body.
  • at least part of the wire 10 also forms an anchoring portion 2 in certain areas, where the anchoring portion 2 includes a bent portion and a non-bent portion.
  • the anchoring part 2 can be used to improve the anchoring ability of the vascular stent and prevent the vascular stent from being displaced in the blood vessel.
  • the anchoring portion 2 includes at least one arched curved structure, and the at least one arched curved structure is used to contact the blood vessel wall. Since the wire 10 can form multiple arched bending structures in the middle or end portions during the process of braiding the stent body 1 , anchoring portions can be provided at the positions of the arched bending structures so that the stent body 1 The structure remains unchanged and facilitates the setting of the anchoring part. That is to say, the anchoring portion 2 is provided at the bending portion of the wire 10 .
  • the anchoring portion 2 includes at least one first arched bending structure 21
  • the first arched bending structure 21 includes a spring segment formed by spirally winding the wire 10 211, that is, the bent portion c, and the figure also identifies the non-bent portions d located on both sides of the bent portion c.
  • the spring segments 211 are preferably in the same plane, so that the plane where the first arched curved structure 21 is located contacts the blood vessel wall; in other embodiments, the spring segments 211 may not be disposed in the same plane. At this time, any position of the spring segment 211 can contact the blood vessel wall.
  • the spring segment 211 can increase the contact area between the vascular stent and the blood vessel wall; on the other hand, since the spring segment 211 It has elastic force, so the spring segment 211 in contact with the blood vessel wall can exert tension on the blood vessel wall to limit the anchoring part 2 on the blood vessel wall, thereby achieving good anchoring of the vascular stent on the blood vessel wall and the anchoring effect. good.
  • first arched curved structure 21 may be provided with a spring segment 211 on at least one side of the apex. This application does not limit the position of the spring section 211 on the first arched curved structure 21.
  • the spring section 211 can be arranged symmetrically or asymmetrically with respect to both sides of the apex of the first arched curved structure 21, and is preferably arranged symmetrically. In this way, the contact area between the spring segment 211 and the blood vessel wall is larger, and the tension on the blood vessel wall is greater.
  • the two sides of the apex of the first arched curved structure 21 refer to the left side of the first arched curved structure 21 relative to its apex ( That is, the L side in Figure 2) and the right side (that is, the R side in Figure 2); similarly, at least one side of the vertex of the first arched curved structure 21 refers to the first arched curved structure 21 relative to its The left or right side of the vertex.
  • the diameter of the spring segment 211 in the initial state is preferably 0.001 inch to 1 inch.
  • the curvature radius of the first arch-shaped curved structure 21 in the initial state is preferably 1 mm to 50 mm.
  • the ratio of the length of the spring segment 211 in the initial state to the length of the first arch-shaped curved structure 21 in the initial state is preferably 1:100 to 1:1. It should be noted that the initial state of the spring segment 211 and the first arch-shaped bending structure 21 refers to the state of the spring segment 211 when only its own gravity acts, that is, when the spring segment 211 is not compressed or stretched.
  • the surface of the spring segment 211 that contacts the blood vessel wall can be configured as a concave and convex surface (such as a corrugated surface) to further increase the contact area and friction between the spring segment 211 and the blood vessel wall.
  • the surface of the spring segment 211 that contacts the blood vessel wall may also be configured as a smooth surface.
  • the uneven surface means that the surface of the spring segment 211 in contact with the blood vessel wall is an uneven surface
  • the smooth surface means that the surface of the spring segment 211 that is in contact with the blood vessel wall is a generally smooth surface.
  • the anchoring portion 2 includes a second arched curved structure 22
  • the second arched curved structure 22 includes a rough segment formed by surface treatment of the wire 10 221, that is, the bending portion c, and the figure also identifies the non-bending portions d located on both sides of the bending portion c.
  • the second arch-shaped bending structure 22 is provided with a rough section 221 on at least one side of the apex.
  • the rough section 221 is preferably in the same plane, so that the plane where the second arched curved structure 22 is located is connected to the blood vessel wall. In other embodiments, the roughened segments 221 may not be disposed in the same plane.
  • any position of the roughened segments 221 may be in contact with the blood vessel wall.
  • the contact area and friction between the anchoring portion 2 and the blood vessel wall can be increased by increasing the surface roughness of the wire 10, thereby increasing the anchoring ability of the vascular stent on the blood vessel.
  • the wire material 10 of the braided vascular stent is usually made of surface polished or oxidized material
  • the surface of the wire material 10 can be subjected to micro-arc oxidation, grinding, or sandblasting. , shot peening, pickling and etching to increase the surface roughness, so as to form the rough section 221 . Therefore, this application does not limit the surface treatment method of the wire 10 .
  • the roughness Ra of the surface of the rough section 221 is preferably 0.8 um to 100 um.
  • This application does not limit the position of the rough section 221 on the anchoring portion 2 , as long as the rough section 221 is provided on at least one side of the apex of the second arch-shaped curved structure 22 .
  • the rough section 221 can be arranged symmetrically or asymmetrically with respect to the apex of the second arch-shaped curved structure 22 on both sides, preferably symmetrically, so that the rough section 221 has a greater friction force.
  • the curvature radius of the second arch-shaped curved structure 22 in the initial state is preferably 0.5 mm. ⁇ 50mm.
  • the area ratio of the rough section 221 and the second arched curved structure 22 in the initial state is 1:100 to 1:1.
  • the second arched curved structure 22 may also include a smooth section 222 , and the roughness of the rough section 221 is greater than the roughness of the smooth section 222 .
  • the smooth section 222 here can be composed of the wire material 10 that has not undergone surface treatment. In this case, only a rough section 221 is provided on a partial area of the second arch-shaped curved structure 22, so that the vascular stent can have better anchoring ability.
  • the initial state of the second arch-shaped curved structure 22 also refers to the state when the second arch-shaped curved structure 22 is not subjected to external forces other than its own gravity, that is, the second arch-shaped curved structure 22 is not subjected to compression or compression. The state of stretching.
  • the treatment can be performed on the wire 10 in advance before the wire 10 is woven into the stent body 1 , or the wire 10 can be woven into the stent body 1
  • the wire 10 is then processed to form the rough section 221 on the anchoring part 2 .
  • the anchoring portion includes at least one third arched curved structure 23
  • the third arched curved structure 23 includes a deformation formed by pressing the wire 10 Section 231 is the bent portion c, and the figure also identifies the non-bent portions d located on both sides of the bent portion c.
  • the width of the deformation section 231 increases in the first direction B, and the thickness decreases in the second direction (not shown).
  • the first direction B is perpendicular to the second direction.
  • the third arch-shaped curved structure 23 contacts the blood vessel wall in the first direction B, which can increase the friction between the anchoring part 2 and the blood vessel wall by increasing the contact area between the wire 10 and the blood vessel wall. force, thereby increasing the anchoring ability of the vascular stent on the vessel wall.
  • This application does not limit the position of the deformation section 231 on the third arch-shaped curved structure 23 , as long as the deformation section 231 is arranged on at least one side of the apex of the third arch-shaped curved structure 23 .
  • the deformation section 231 can be arranged symmetrically or asymmetrically with respect to both sides of the apex of the third arch-shaped curved structure 23, preferably symmetrically, so that the deformation section 231 has a larger contact area with the blood vessel wall.
  • the pressing method of the wire 10 includes but is not limited to hot and cold extrusion, hot and cold rolling, and hot and cold forging.
  • the cross-sectional shape of the wire 10 includes but is not limited to square, elliptical or trapezoidal.
  • the width increase ratio of the cross section of the deformation section 231 in the first direction B does not exceed 90% of the original width of the deformation section 231 and is not less than the deformation section 231 10% of the original length (that is, the width of the wire 10 in the first direction B increases by 10% to 90%).
  • the thickness reduction ratio of the deformation section 231 in the second direction does not exceed the original thickness of the deformation section 231 90%, and not less than 10% of the original thickness of the deformation section 231 (that is, the thickness of the wire 10 in the second direction is reduced by 10% to 90%).
  • the ratio of the width of the cross section of the wire 10 in the first direction B to the thickness in the second direction is 10:1 ⁇ 1:1.
  • the ratio of the length of the deformation section 231 in the initial state to the length of the third arch-shaped curved structure 23 in the initial state is 1:100 to 1:1.
  • the initial state of the deformation section 231 and the third arch-shaped curved structure 23 refers to the state when the deformation section 231 is not subjected to external forces other than its own gravity, that is, when the deformation section 231 is not subjected to compression or tension. .
  • the vascular stent includes a stent body 1 woven from wires 10, wherein the wires 10 are braided to form the stent body.
  • the wire 10 In the process of 1, at least part of the wire 10 also forms anchoring portions 3 in certain areas.
  • the anchoring part 3 includes a bent part c and a non-bent part d.
  • the anchoring part 3 can be used to improve the anchorage of the vascular stent The ability to stabilize the vascular stent and prevent the vascular stent from shifting in the blood vessel.
  • the anchoring part 3 is a structure formed by the wire 10 being bent and twisted in the same plane and interlaced with itself, and the anchoring part 3 is provided on the closed end 11 of the vascular stent, that is, the anchoring part 3 is provided at at least one end of the stent body 1 along the axis, such as the proximal end and/or the distal end.
  • the radius of curvature of each bend is preferably 0.5mm ⁇ 20mm.
  • the wire 10 is staggered and twisted at least twice in the same plane to form a lasso-like bending part c.
  • the bending part c should be understood as being along the weaving direction of the wire. Starting from this point, it is the bending point at the end of the entire anchoring part.
  • the bending part c at this time should be understood as a combined structure formed by the wire material being staggered and twisted multiple times. Specifically, the wire 10 is first bent and then interlaced and twisted with itself, and the wire 10 is bent at least multiple times, and a staggered kink is formed between each two adjacent bends; thus, the anchoring portion 3 can be on the wire 10 In contact with the blood vessel wall in the curved plane.
  • the contact area between the vascular stent and the blood vessel wall can be increased through multiple bends and staggered twists.
  • the lasso-like anchoring portion 3 can exert additional radial force on the blood vessel wall, so that the stent body 1. It can be better limited on the blood vessel wall, thereby achieving good anchoring of the vascular stent on the blood vessel wall.
  • the interlaced kink is a structure formed by the wire 10 being interlaced with itself and then changing the winding direction.
  • the wire 10 undergoes at least one staggered twist on both sides of the vertex of the lasso-shaped anchoring portion 3 , and the lasso-shaped anchoring portion 3 includes the first staggered twist.
  • Position 31 and second staggered kink position 32 are two staggered kink position 32.
  • the lasso-like anchoring portion 3 changes the winding direction of the wire 10 three times in the same plane, and after being staggered and twisted with itself at the first staggered kink position 31, then changes the winding direction twice more in the same plane.
  • the wire 10 extends in a direction substantially parallel to the axis after each staggered twisting, on the one hand, the wire can be stretched in a consistent manner
  • the direction has stronger anchoring ability to the blood vessel wall in contact.
  • the consistent extension direction of the wire will not increase the friction during transportation too much.
  • This application does not impose special restrictions on the bending direction and the number of staggered twists of the wire 10.
  • the bending direction and the number of staggered twists of the wire 10 can be set as needed.
  • the wire 10 in the anchoring part 3 is in the same plane as itself. At least two staggered twists are formed, and the more times the wire 10 is staggered and twisted, the larger the contact area between the anchoring part 3 and the blood vessel wall, and the better the anchoring effect of the vascular stent.
  • the wire 10 is bent multiple times in at least two different directions in the same plane and is staggered and twisted to form a network-shaped bending part c.
  • the network-shaped bending part c is formed on the wire.
  • the material 10 is in contact with the blood vessel wall in the bending plane.
  • the bending part c should be understood as starting from the weaving direction of the wire material and is the bending point of the end of the entire anchoring part.
  • the bending part c at this time should be understood as a combination formed by the wire material being staggered and twisted multiple times. structure.
  • the mesh-like anchoring part 3 can increase the contact area between the vascular stent and the blood vessel wall; on the other hand, the mesh-like anchoring part 3 can also exert additional radial force on the blood vessel wall, so that the stent body 1. It can be better limited on the blood vessel wall, thereby achieving good anchoring of the vascular stent on the blood vessel wall.
  • the mesh-shaped anchoring portion 3 includes a third staggered kink position 33 and a fourth staggered kink position 34 .
  • the mesh-shaped anchoring part 3 is made by first bending the wire 10 in its initial extension direction to form an arch, and then winding it multiple times on the arched bending structure to form a plurality of third staggered kink positions 33, and then At the fourth staggered twisting position 34, it is staggered and twisted with itself and passes through the winding position to form a network-shaped anchoring part 3.
  • the density of the mesh structure of the anchoring part 3 can be increased by increasing the number of bends and staggered twists of the wire 10, thereby further increasing the contact area between the anchoring part 3 and the blood vessel wall.
  • the initial extension direction and the winding direction of the wire 10 can be at any angle.
  • the initial extension direction and the winding direction of the wire 10 are perpendicular.
  • the wires 10 in the anchoring portion 3 can also be interlaced and twisted in other ways to form a network-shaped anchoring portion 3.
  • the wires 10 can be first bent into a structure parallel to the initial extension direction. group, and then the wire 10 is wound around the structural group to form a mesh-shaped anchoring portion 3 .
  • the extension direction of the wire 10 after each staggered twist or the winding direction after bending is at an angle to the braiding extension direction of the wire or the extension direction of the non-bent portion, preferably close to parallel or vertical.
  • the vascular stent in the vascular stent provided in Embodiment 3 of the present invention, includes a stent body 1 woven from wires 10, wherein the wires 10 are braided to form the stent body 1. , at least part of the wire 10 also forms anchoring portions 4 in certain areas.
  • the anchoring part 4 can be used to improve the anchoring ability of the vascular stent and prevent the vascular stent from being displaced in the blood vessel.
  • the wire 10 is bent in different planes to form the anchoring portion 4.
  • the anchoring portion 4 is provided on the closed end 11 of the vascular stent. That is, the anchoring portion 4 is provided on at least one side of the stent body 1 along the axis. One end, such as the proximal end and/or the distal end.
  • the wire 10 is changed.
  • the radius of curvature of each bend is preferably 0.5 mm to 20 mm.
  • the wire 10 is bent in the first plane 41 and the second plane 42 to form a bending part c.
  • the bending part c should be understood as being along the weaving direction of the wire. Starting from this point, it is the bend at the end of the entire anchoring portion.
  • the bend c at this time should be understood as a combined structure formed by two planes.
  • the first plane 41 forms a first angle ⁇ 1 with the axis of the stent body 1
  • the second plane 42 forms a second angle ⁇ 2 with the first plane 41 .
  • the anchoring portion 4 can also exert additional tension on the blood vessel wall, thereby achieving good anchoring of the vascular stent on the blood vessel wall.
  • the second plane 42 can be parallel to the axis of the stent body 1 , or can be arranged at a certain angle with the axis of the stent body 1 .
  • the first plane 41 is used to contact the blood vessel wall to exert tension on the blood vessel wall;
  • the second plane 42 is at a certain angle with the axis of the stent body 1 , the first plane 41 is used to contact the blood vessel wall.
  • Both the first flat surface 41 and the second flat surface 42 can be used to contact the blood vessel wall to apply tension to the blood vessel wall.
  • the anchoring portion 4 is made of the wire 10 that is bent multiple times in a plane that is at a first angle ⁇ 1 with the axis of the stent body 1 to form a first plane 41, and then is bent at a second angle with the first plane 41.
  • the second plane 42 is formed by multiple bends in the plane of ⁇ 2, and finally a closed anchoring portion 4 is formed on the closed end 11 of the stent body 1 .
  • the anchoring portion 4 is provided at at least one end of the axis of the stent body 1 .
  • the number of anchoring parts 4 is multiple, and they are arranged at the proximal end and the distal end of the axis of the stent body 1 .
  • the first angle ⁇ 1 between the first plane 41 and the axis of the stent body 1 is preferably [90°, 180°), so that the anchoring part 4 will not be in contact with the blood vessel wall. will affect and Interfering with the contact between the vascular stent and the blood vessel wall can ensure the therapeutic effect of the vascular stent.
  • the second angle ⁇ 2 between the first plane 41 and the second plane 42 is preferably (0°, 180°]. At this time, the anchoring part 4 can exert a certain tension on the blood vessel wall.
  • the wire 10 is bent outward to form an anchoring portion 4 with a landslide surface 43 .
  • the angle between the landslide surface 43 of the anchoring portion 4 and the axis of the bracket body 1 is is [90°, 180°), so that the landslide surface 43 of the anchoring part 4 can be in contact with the blood vessel wall to increase the contact area between the vascular stent and the blood vessel wall; and the landslide surface 43 can also be in contact with the blood vessel wall when it is in contact with the blood vessel wall.
  • a certain tension is applied to the blood vessel wall to achieve good anchoring of the vascular stent on the blood vessel wall.
  • the anchoring portion 4 can be configured to have a symmetrical structure, that is, the landslide surface 43 can be configured to have a symmetrical structure, so that the anchoring portion 4 can more fully contact the blood vessel wall.
  • the landslide surface 43 can be configured as an arched structure, that is, forming a bent portion c.
  • a connecting portion is provided between the landslide surface 43 and the area of the wire 10 in which the anchoring portion 4 is not formed. The connecting portion can enable a smooth connection between the landslide surface 43 and the area of the wire 10 in which the anchoring portion 4 is not formed.
  • the anchoring portion 4 is a symmetrical structure formed by multiple bends of the wire 10, wherein the wire 10 includes first bending sections on both sides of the apex of the anchoring portion 4. 431 and the second bending section 432.
  • the first bending section 431 on both sides of the vertex of the anchoring part 4 constitutes a connecting part, and the second bending section 432 is bent and circled to form the landslide surface 43.
  • the third angle ⁇ 3 between the first bending section 431 and the axis of the stent body 1 is [90°, 180°) .
  • the angle between the first bending section 431 and the second bending section 432 can be set according to the required tension of the anchoring part 4 .
  • the structure of the anchoring portion in the present invention can be any one or a combination of more of the above-mentioned Embodiment 1 to Embodiment 3. Therefore, the structure of the anchoring part can be flexibly designed as needed to ensure that the anchoring part has a larger contact area when it contacts the blood vessel wall, thereby increasing the anchoring capacity of the vascular stent on the blood vessel wall.
  • the vascular stent provided by the present invention can increase the contact area between the vascular stent and the blood vessel wall and the anchoring ability of the vascular stent on the blood vessel wall through the arrangement of the anchoring portion, so that the vascular stent can be better anchored in the blood vessel. to the intended site, reducing the risk of vascular stent migration and avoiding vascular branching. Other complications caused by frame displacement and damage to the vessel wall.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

本发明提供一种血管支架,包括由丝材编织制成的支架主体,至少一根所述丝材的一部分区域形成锚定部,所述锚定部包括弯折部和非弯折部;在沿编织方向上,所述弯折部的单位长度上的外表面面积大于所述非弯折部的单位长度上的外表面面积;所述锚定部用于增大所述血管支架与血管壁相接触时的面积。所述血管支架利用锚定部获取了较强的锚定能力,以使血管支架能够较好的锚定在血管中的预期部位,降低血管支架的移位风险,还可避免血管支架因移位造成的其他并发症和对血管壁的损伤。

Description

一种血管支架 技术领域
本发明涉及医疗器械技术领域,特别涉及一种血管支架。
背景技术
对于人体血管的介入治疗,如颅内血管,在治疗诸如血管狭窄、血管栓塞、动脉瘤等病症时,通常会使用支架作为主要或辅助器械。为了使支架能够顺利的通过迂曲的血管并到达病灶部位,支架可以由金属丝材编织制成,从而使其具备较好的顺应性和灵活性。
但是,使用金属丝材编织制成的支架,由于其径向的支撑力以及支架端部在血管中的固定能力均较差,常常导致支架在血管中(尤其是在血管的弯曲段)的锚定能力不足而发生移位,从而较易导致手术操作时间的延长和器械的更换、甚至还可能造成手术失败和血管非预期损伤等医疗事故,增加病人手术过程中的不适感,甚至直接危及病人的生命安全。
发明内容
为解决现有技术中存在的技术问题,本发明的目的在于提供一种血管支架,能够较好的锚定在血管壁中的预期部位,降低血管支架的移位风险,还可避免血管支架由于移位而造成的其他并发症。
为实现上述目的,本发明提供了一种血管支架,其包括由丝材编织制成的支架主体,至少一根所述丝材的一部分区域形成锚定部,所述锚定部包括弯折部和非弯折部;在沿编织方向上,所述弯折部的单位长度上的外表面面积大于所述非弯折部的单位长度上的外表面面积;所述锚定部用于增大所述血管支架与血管壁相接触时的面积。
可选的,至少一部分所述丝材在所述支架主体的至少一端弯曲回绕形成封闭端,所述封闭端的至少部分区域形成所述锚定部。
可选的,至少一部分所述丝材在所述支架主体的两端均弯曲回绕形成所述封闭端,每个所述封闭端的至少部分区域形成所述锚定部。
可选的,所述锚定部中的所述丝材的初始延伸方向和所述支架主体的轴线的夹角为[90°,180°]。
可选的,所述锚定部包括至少一个拱形的弯曲结构,至少一个所述拱形的弯曲结构用于与血管壁相接触。
可选的,至少一个所述拱形的弯曲结构包括由所述丝材螺旋绕制形成的弹簧段,至少一个所述拱形的弯曲结构在顶点的至少一侧设置所述弹簧段。
可选的,所述弹簧段在初始状态下的直径为0.001inch~1.0inch,和/或,至少一个所述拱形的弯曲结构在初始状态下的曲率半径为1mm~50mm,和/或,所述弹簧段在初始状态下的长度与至少一个所述拱形的弯曲结构在初始状态下的长度之比为1:100~1:1。
可选的,至少一个所述拱形的弯曲结构包括由所述丝材经过表面处理形成的粗糙段,至少一个所述拱形的弯曲结构在顶点的至少一侧设置所述粗糙段。
可选的,所述粗糙段的粗糙度为0.8um~100um,和/或,至少一个所述拱形的弯曲结构在初始状态下的曲率半径为0.5mm~50mm,和/或,所述粗糙段与至少一个所述拱形的弯曲结构在初始状态下的外表面面积之比为1:100~1:1。
可选的,至少一个所述拱形的弯曲结构包括由所述丝材经过压制形成的变形段,所述变形段在第一方向上的宽度增大,并在第二方向上的厚度减小。
可选的,所述变形段在所述第一方向上的宽度增大比例不超过所述变形段的原始宽度的90%,且不小于所述变形段的原始宽度的10%;所述变形段在所述第二方向上的厚度减小比例不超过所述变形段的原始厚度的90%,且不小于所述变形段的原始厚度的10%。
可选的,所述丝材的横截面在所述第一方向上的宽度与在所述第二方向上的厚度之比为10:1~1:1,和/或,所述变形段在初始状态下的长度与至少一个所述拱形的弯曲结构在初始状态下的长度之比为1:100~1:1。
可选的,所述封闭端在初始状态下的曲率半径为0.5mm~20mm。
可选的,所述丝材在同一平面内弯曲回绕并与自身交错扭结形成所述锚定部。
可选的,所述丝材经过至少两次交错扭结形成套索状的所述锚定部,其中所述丝材先弯曲后与自身交错扭结,且所述丝材至少弯曲多次,每相邻两个弯曲之间形成一次交错扭结。
可选的,所述丝材多次沿至少两个不同方向弯曲并交错扭结形成网状的所述锚定部。
可选的,所述丝材在不同平面内多次弯曲形成所述锚定部。
可选的,所述丝材分别在第一平面和第二平面内弯曲形成所述锚定部,所述第一平面与所述支架主体的轴线呈第一角度,所述第二平面与所述第一平面呈第二角度。
可选的,所述第一平面与所述支架主体的轴线之间的第一角度为[90°,180°),和/或,所述第一平面与所述第二平面之间的第二角度为(0,180°]。
可选的,所述丝材向外弯折形成具有滑坡面的所述锚定部,所述锚定部的滑坡面与所述支架主体的轴线之间的夹角为[90°,180°)。
可选的,所述丝材的最小边长为0.005inch~1.0inch。
本发明提供一种血管支架,可通过锚定部的设置增加血管支架与血管壁的接触面积以及血管支架在血管壁上的锚定能力,以使血管支架能够较好的锚定在血管中的预期部位,降低血管支架的移位风险,还可避免血管支架因移位造成的其他并发症和对血管壁的损伤。
附图说明
图1为本发明一优选实施例中血管支架的结构示意图;
图2为本发明优选实施例一中锚定部为第一拱形的弯曲结构的结构示意图;
图3为本发明优选实施例一中锚定部为第二拱形的弯曲结构的结构示意图;
图4为本发明优选实施例一中锚定部为第三拱形的弯曲结构的结构示意图;
图5为本发明实施例二的一优选实施例中锚定部的结构示意图;
图6为本发明实施例二的另一优选实施例中锚定部的结构示意图;
图7为本发明实施例三的一优选实施例中锚定部的结构示意图;
图8为本发明实施例三的另一优选实施例中锚定部的结构示意图。
图中:支架主体1;丝材10;封闭端11;锚定部2、3、4;第一拱形的弯曲结构21;弹簧段211;第二拱形的弯曲结构22;粗糙段221;平滑段222;第三拱形的弯曲结构23;变形段231;第一交错扭结位置31;第二交错扭结位置32;第三交错扭结位置33;第四交错扭结位置34;第一平面41;第二平面42;滑坡面43;第一弯折段431;第二弯折段432。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。术语“近端”通常是指靠近血管支架操作者的一端;“远端”是与“近端”相对的一端,通常是指首先植入患者体内的一端。
图1为本发明一优选实施例中血管支架的结构示意图。
如图1所示,本发明一优选实施例提供一种血管支架,包括由丝材10编织制成的支架主体1,至少一根丝材10的一部分区域形成锚定部(例如图1中的a区域),所述锚定部又分为弯折部和非弯折部,弯折部的单位长度上(沿编织方向上)的外表面面积大于非弯折部的单位长度上(沿编织方向上)的外表面面积。至少一根丝材10的另一部分区域形成支架主体,也即非锚定部(例如图1中的b区域)。所述锚定部用于增大血管支架与血管壁相接触时的面积。本申请中,血管支架的外表面用于与血管壁相接触,且支架主要通过锚定部与血管壁相接触,而锚定部又包括弯折部和非弯折部,其中弯折部主 要与血管壁相接触。在沿编织方向上,增大弯折部的单位长度上的外表面面积能够提高与血管壁的接触面积,进而提升锚定性能。
还应理解,本申请中的锚定部直接由丝材10制成,如对丝材10进行表面粗糙度处理,使丝材10表面形成凸起,以此增大丝材10的表面积,或者对丝材10进行弯曲、缠绕、打结等工艺处理,使丝材10在形状上发生改变,从而增大丝材10的表面积,当然不限于此举例说明的方式,还可以是其他增大丝材10表面积的方式,本申请对此不限定。此外,在实际制备过程中,所述丝材10在绕制成锚定部和支架主体1后,可对血管支架进行定型处理(例如热处理定型),即可得到形状稳定的血管支架结构。
在应用本实施例提供的血管支架植入血管后,利用锚定部可增大血管支架与血管壁之间的摩擦力,从而可以抵抗血流对血管支架的冲击,增加血管支架在血管壁上的锚定能力,以使该血管支架能够较好的锚定在血管中的预期部位,降低血管支架的移位风险,还可避免血管支架因移位造成的其他并发症和对血管壁的损伤。
所应理解,本申请对制成锚定部所用的丝材10的数量不作限制。如所述锚定部可由一根或多根丝材通过预定加工方式制成,所述预定加工方式优选包括弯曲成型。本申请对锚定部的位置亦不作限定,所述锚定部可设置在血管支架与血管壁相接触的任意位置。本申请对锚定部的结构不作限定,所述锚定部可根据需要设置成能够增大血管支架与血管壁的接触面积的任意结构。本申请对锚定部的数量也不作限定,所述锚定部的数量可根据血管支架的种类和形状进行设置。
在一实施例中,所述锚定部可设置在支架主体1的中部,此时血管支架可通过锚定部增大与血管壁之间的摩擦力。这里的“支架主体1的中部”不应狭义理解为绝对的中间位置,而是应理解为在支架主体1的近端和远端之间的部分。
在另一实施例中,所述锚定部设置在支架主体1的端部,如近端、远端或近端和远端,此时可通过对支架主体1端部的锚定部来避免血管支架的移位。
在其他实施例中,所述锚定部既设置在支架主体1的端部,还设置在支 架主体1的中部。
作为一优选实施例,所述锚定部的数量为多个,且多个锚定部可设置在血管支架的中部和/或端部。
本申请对丝材10的结构不作限定,丝材10的横截面形状包括但不限于圆形、方形、椭圆形、梯形等形状。
为使血管支架具有较好的强度和韧性,丝材10的最小边长优选为0.005inch~1.0inch。应理解,当丝材10为方形结构时,所述最小边长是指丝材10横截面中最短边的长度;当丝材10为圆形结构时,所述最小边长是指丝材10中直径的长度;当丝材10为椭圆形或其他形状结构时,所述最小边长是指丝材10横截面中任意两点间的最短距离。
本申请对丝材10的材料亦不作限定,丝材10的材料可为不锈钢、镍钛合金、钴及钴合金、铂及铂合金、钨及钨合金以及镁及镁合金中的一种或几种的组合。丝材10的材料还可以是医用高分子材料。进一步地,至少部分丝材10的材料中包含有金属显影材料。
继续参照图1所示,在一实施例中,至少一部分丝材10在支架主体1的至少一端弯曲回绕形成封闭端11,封闭端11的至少部分区域形成锚定部。应理解,此处的封闭端11是指支架主体1在轴线上的至少一端的端部位置处设置的封闭结构。如此构造,一方面,可在支架主体1的端部设置不同结构和不同复杂程度的锚定部;另一方面,可使得血管支架在血管中具有较好的顺应性,以使血管支架能够较容易的移动到血管中的预期部位。
在一优选实施例中,至少一部分丝材10在支架主体1的两端均弯曲回绕形成封闭端11,弯曲段形成弯折部,与弯曲段连接的两段延伸结构为非弯折部,弯折部和非弯折部共同形成所述锚定部。此时锚定部的数量为多个,且在支架主体1沿轴线的近端和远端均设置至少一个锚定部,如此可进一步增大血管支架的锚定能力,从而防止血管支架在血管中的移位。
优选的,丝材10在锚定部中的初始延伸方向和支架主体1的轴线的夹角为[90°,180°],如此构造,一方面使锚定部在与血管壁接触时,不会影响和干涉支架主体1与血管壁的接触,从而可保证血管支架的治疗效果;另一方面,由于血管壁所能承受的压力有限,锚定部和支架主体1轴线之间的夹 角不宜过小,以避免血管支架对血管壁造成伤害。定义图1中的A方向为支架主体1轴线的正方向,应知晓,本申请中的丝材10的初始延伸方向与支架主体1的轴线的夹角是指,丝材10在锚定部中的初始延伸方向与支架主体1轴线的正方向(即图1中的A方向)之间的夹角。还应理解,锚定部中丝材10的初始延伸方向是指,锚定部中的丝材10在封闭端11中锚定部与未形成锚定部区域的连接处的延伸方向,也即锚定部中的丝材10在形成锚定部的过程中首次弯曲前的延伸方向,也即锚定部中非弯折部的延伸方向,也即丝材的编织延伸方向。
为了更清楚的解释说明本发明提供的血管支架,以下列举几个具体的优选实施例以进一步解释说明,但以下说明不作为对本申请中锚定部的结构的限定。
实施例一
参考图2至图4,并结合图1,在本发明实施例一提供的血管支架中,所述血管支架包括由丝材10编织而成的支架主体1,其中丝材10在编织形成支架主体1的过程中,至少部分丝材10在某些区域还形成了锚定部2,其中,锚定部2包括弯折部和非弯折部。锚定部2可用于提高血管支架的锚定能力,并防止血管支架在血管中移位。
在本实施例中,所述锚定部2包括至少一个拱形的弯曲结构,至少一个拱形的弯曲结构用于与血管壁相接触。由于丝材10在编织成支架主体1的过程中可在中部或端部形成多个拱形的弯曲结构,如此可在所述拱形的弯曲结构的位置设置锚定部,以使支架主体1的结构保持不变并可方便锚定部的设置。也就是说,在丝材10的弯曲部位设置有锚定部2。
参照图2所示,在一些实施例中,所述锚定部2包括至少一个第一拱形的弯曲结构21,第一拱形的弯曲结构21包括由丝材10螺旋绕制形成的弹簧段211,即弯折部c,同时图中还标识出位于弯折部c两侧的非弯折部d。所述弹簧段211优选在同一个平面内,使得第一拱形的弯曲结构21所在的平面与血管壁相接触;在其他实施例中,所述弹簧段211也可不设置在同一平面内,此时弹簧段211的任意位置均可与血管壁相接触。如此构造,一方面弹簧段211可增加血管支架与血管壁的接触面积,另一方面,由于弹簧段211 具有弹性力,故与血管壁相接触的弹簧段211能够对血管壁施加张力,以使锚定部2限位在血管壁上,从而实现血管支架在血管壁上的良好锚定,锚定效果好。
进一步的,第一拱形的弯曲结构21可在顶点的至少一侧设置弹簧段211。本申请对弹簧段211在第一拱形的弯曲结构21上的位置不作限定,弹簧段211可相对于第一拱形的弯曲结构21的顶点两侧对称或非对称设置,优选为对称设置,以使弹簧段211与血管壁的接触面积更大,并且对血管壁的张力更大。应理解,本申请中第一拱形的弯曲结构21的顶点两侧是指在第一拱形的弯曲结构21形成的平面内,第一拱形的弯曲结构21相对于其顶点的左侧(即图2中的L侧)和右侧(即图2中的R侧);同样的,第一拱形的弯曲结构21顶点的至少一侧是指第一拱形的弯曲结构21相对于其顶点的左侧或右侧。
为使锚定部2的尺寸与支架主体1和血管壁的直径相匹配,同时确保弹簧段211具有足够的强度、韧性和张力,弹簧段211在初始状态下的直径优选为0.001inch~1inch,第一拱形的弯曲结构21在初始状态下的曲率半径优选为1mm~50mm。同时,为使血管支架具有较好的锚定效果,弹簧段211在初始状态下的长度与第一拱形的弯曲结构21在初始状态下的长度之比优选为1:100~1:1。应知晓,弹簧段211和第一拱形的弯曲结构21的初始状态均是指,弹簧段211在只有自身重力作用时的状态,即弹簧段211没有受到压缩或拉伸时的状态。
在一实施例中,可将弹簧段211与血管壁相接触的表面设置为凹凸面(例如波纹面),以进一步增大弹簧段211与血管壁之间的接触面积和摩擦力。在另一实施例中,也可将弹簧段211与血管壁相接触的表面设置为平滑面。应知晓,此处的凹凸面是指弹簧段211与血管壁相接触的表面是凹凸不平的面,此处的平滑面是指弹簧段211与血管壁相接触的表面大致是光滑的面。
参照图3所示,在另一些实施例中,所述锚定部2包括一个第二拱形的弯曲结构22,第二拱形的弯曲结构22包括由丝材10经过表面处理形成的粗糙段221,即弯折部c,同时图中还标识出位于弯折部c两侧的非弯折部d,第二拱形的弯曲结构22在顶点的至少一侧设置粗糙段221。所述粗糙段221优选在同一个平面内,使得第二拱形的弯曲结构22所在的平面与血管壁相接 触;在其他实施例中,所述粗糙段221也可不设置在同一平面内,此时粗糙段221的任意位置均可与血管壁相接触。如此设置,可通过增加丝材10表面的粗糙度,增大锚定部2与血管壁的接触面积和摩擦力,进而增加血管支架在血管上的锚定能力。
具体的,由于编织血管支架的丝材10通常为表面抛光或带有氧化层的材质,为使丝材10表面具有较大的粗糙度,丝材10表面可采用微弧氧化、研磨、喷砂、喷丸和酸洗刻蚀等增大表面粗糙度的方式进行处理,以形成粗糙段221,故本申请对丝材10表面的处理方式不作限定。在本实施例中,为使锚定部2与血管壁之间具有较大的摩擦力,粗糙段221表面的粗糙度Ra优选为0.8um~100um。
本申请对粗糙段221在锚定部2上的位置不作限定,只要在第二拱形的弯曲结构22在顶点的至少一侧设置粗糙段221即可。粗糙段221可相对于第二拱形的弯曲结构22的顶点两侧对称或非对称设置,优选为对称设置,以使粗糙段221具有较大的摩擦力。
为使锚定部2的尺寸与支架主体1和血管壁的直径相匹配,同时确保粗糙段221具有足够的摩擦力,第二拱形的弯曲结构22在初始状态下的曲率半径优选为0.5mm~50mm。同时,为使血管支架具有较好的锚定效果,粗糙段221与第二拱形的弯曲结构22在初始状态下的面积之比为1:100~1:1。
继续参照图3所示,第二拱形的弯曲结构22还可包括平滑段222,粗糙段221的粗糙度大于平滑段222的粗糙度。这里的平滑段222可由未经过表面处理的丝材10构成,此时仅需在第二拱形的弯曲结构22的部分区域上设置粗糙段221,即可使血管支架具备较好的锚定能力。应知晓,第二拱形的弯曲结构22的初始状态亦是指第二拱形的弯曲结构22没有受到除自身重力以外的外力时的状态,即第二拱形的弯曲结构22没有受到压缩或拉伸时的状态。
进一步地,当对锚定部2上的丝材10进行表面处理时,可在丝材10编织成支架主体1前预先在丝材10上进行处理,也可在丝材10编织成支架主体1后再对丝材10进行处理,以形成锚定部2上的粗糙段221。
参照图4所示,在又一些实施例中,所述锚定部包括至少一个第三拱形的弯曲结构23,第三拱形的弯曲结构23包括由丝材10经过压制形成的变形 段231,即弯折部c,同时图中还标识出位于弯折部c两侧的非弯折部d。变形段231在第一方向B上的宽度增大,并在第二方向(未图示)上的厚度减小,第一方向B与第二方向垂直。在使用时,第三拱形的弯曲结构23在第一方向B上与血管壁接触,如此可通过增加丝材10与血管壁的接触面积,增大锚定部2与血管壁之间的摩擦力,从而增加血管支架在血管壁上的锚定能力。
本申请对变形段231在第三拱形的弯曲结构23上的位置不作限定,只要将变形段231设置在第三拱形的弯曲结构23顶点的至少一侧即可。进一步地,变形段231可相对于第三拱形的弯曲结构23的顶点两侧对称或非对称设置,优选为对称设置,以使变形段231与血管壁具有较大的接触面积。
本申请对丝材10的压制方法不作限定,丝材10的压制方法包括但不限于冷热挤压、冷热轧制和冷热锻造。所述丝材10经过压制后,丝材10的截面形状包括但不限于方形、椭圆形或梯形。
进一步地,为同时保证丝材10的强度和锚定能力,变形段231的横截面在第一方向B上的宽度增大比例不超过变形段231原始宽度的90%,且不小于变形段231原始长度的10%(即丝材10在第一方向B上的宽度增大10%~90%),同样的,变形段231在第二方向上的厚度减小比例不超过变形段231原始厚度的90%,且不小于变形段231原始厚度的10%(即丝材10在第二方向上的厚度减少10%~90%)。优选,丝材10的横截面在第一方向B上的宽度与在第二方向上的厚度之比为10:1~1:1。
为使血管支架具有较好的锚定效果,变形段231在初始状态下的长度与第三拱形的弯曲结构23在初始状态下的长度之比为1:100~1:1。应知晓,变形段231和第三拱形的弯曲结构23的初始状态均是指,变形段231没有受到除自身重力以外的外力时的状态,即变形段231没有受到压缩或拉伸时的状态。
实施例二
参考图5和图6,并结合图1,在本发明实施例二提供的血管支架中,所述血管支架包括由丝材10编织而成的支架主体1,其中丝材10在编织形成支架主体1的过程中,至少部分丝材10在某些区域还形成了锚定部3。如图所示,锚定部3包括弯折部c和非弯折部d。锚定部3可用于提高血管支架的锚 定能力,并防止血管支架在血管中移位。
在本实施例中,所述锚定部3为丝材10在同一平面内弯曲回绕并与自身交错扭结形成的结构,且锚定部3设置在血管支架的封闭端11上,即锚定部3设置在支架主体1沿轴线的至少一端,如近端和/或远端。
为使锚定部3的尺寸与支架主体1和血管壁的直径相匹配,且使丝材10能够形成锚定部3,丝材10改变绕制方向时,其每次弯曲的曲率半径优选为0.5mm~20mm。
参照图5所示,在一些实施例中,丝材10在同一平面内经过至少两次交错扭结形成套索状的弯折部c,该弯折部c应理解为是沿丝材的编织方向出发,为整个锚定部端部的弯折处,此时的弯折部c应理解为是丝材多次交错扭结后形成的组合结构。具体地,丝材10先弯曲后与自身交错扭结,且丝材10至少弯曲多次,每相邻两个弯曲之间形成一次交错扭结;从而,所述锚定部3能够在丝材10的弯曲平面内与血管壁相接触。如此设置,一方面可通过多次弯曲和交错扭结增加血管支架与血管壁的接触面积,另一方面,套索状的锚定部3可对血管壁施加额外的径向力,以使支架主体1能够较好的限位在血管壁上,从而实现血管支架在血管壁上的良好锚定。应理解,所述交错扭结为丝材10与自身交错后又改变绕制方向而形成的结构。
继续参照图5所示,在本实施例中,丝材10分别在套索状的锚定部3的顶点两侧均发生至少一次交错扭结,套索状的锚定部3包括第一交错扭结位置31和第二交错扭结位置32。具体的,套索状的锚定部3为丝材10在同一平面内改变三次绕制方向,并在第一交错扭结位置31与其自身交错扭结后,再在该平面内再次改变两次绕制方向,并再次在第二交错扭结位置32与其自身交错扭结而形成的结构,且丝材10在每次交错扭结后均沿与轴线大致平行的方向延伸,一方面能够使借助丝材一致的延伸方向对接触的血管壁有更强的锚定能力,另一方面丝材一致的延伸方向也不会过于增大输送过程中的摩擦力。
本申请对丝材10的弯曲方向和交错扭结的次数不作特别的限制,丝材10的弯曲方向和交错扭结的次数可根据需要进行设置。为方便锚定部3中丝材10的回绕和对支架主体1的编织,锚定部3中丝材10在同一平面内与其自身 至少形成两次交错扭结,且丝材10交错扭结的次数越多,锚定部3与血管壁的接触面积越大,血管支架的锚定效果越好。
参照图6所示,在另一些实施例中,丝材10在同一平面内多次沿至少两个不同方向弯曲并交错扭结形成网状的弯折部c,网状的弯折部c在丝材10的弯曲平面内与血管壁相接触。该弯折部c应理解为是沿丝材的编织方向出发,为整个锚定部端部的弯折处,此时的弯折部c应理解为是丝材多次交错扭结后形成的组合结构。如此设置,一方面网状的锚定部3可增加血管支架与血管壁的接触面积,另一方面,网状的锚定部3同样可对血管壁施加额外的径向力,以使支架主体1能够较好的限位在血管壁上,从而实现血管支架在血管壁上的良好锚定。
在本实施例中,网状的锚定部3包括第三交错扭结位置33和第四交错扭结位置34。具体的,网状的锚定部3为丝材10先在其初始延伸方向上进行弯曲并形成拱形,然后在拱形的弯曲结构上多次缠绕形成多个第三交错扭结位置33,而后在第四交错扭结位置34与自身交错扭结并穿过缠绕位置而形成网状的锚定部3。此时可通过增加丝材10的弯曲次数和交错扭结的次数,增加锚定部3的网状结构的致密度,从而进一步增加锚定部3与血管壁的接触面积。
本申请对丝材10的初始延伸方向和缠绕方向不做特别的限制,丝材10的初始延伸方向和缠绕方向之间可呈任意角度,优选丝材10的初始延伸方向和缠绕方向垂直。在其他实施例中,锚定部3中的丝材10也可按照其他的方式交错扭结而形成的网状的锚定部3,例如可先将丝材10弯曲成与初始延伸方向平行的结构组,再将丝材10在该结构组上进行缠绕而形成网状的锚定部3。
参考图5和图6,丝材10在每次交错扭结后的延伸方向或弯折后的缠绕方向均与丝材的编织延伸方向或非弯折部的延伸方向成角度,优选为接近平行或垂直。
实施例三
参考图7和图8,在本发明实施例三提供的血管支架中,该血管支架包括由丝材10编织而成的支架主体1,其中丝材10在编织形成支架主体1的过程 中,至少部分丝材10在某些区域还形成了锚定部4。锚定部4可用于提高血管支架的锚定能力,并防止血管支架在血管中移位。
在本实施例中,丝材10在不同平面内弯曲形成锚定部4,锚定部4设置在血管支架的封闭端11上,也即,锚定部4设置在支架主体1沿轴线的至少一端,如近端和/或远端。
为使锚定部4的尺寸与支架主体1和血管壁的直径相匹配,且使丝材10能够形成锚定部4,并使锚定部4具有较好的锚定能力,丝材10改变绕制方向时,其每次弯曲的曲率半径优选为0.5mm~20mm。
参照图7所示,在一实施例中,丝材10分别先后在第一平面41和第二平面42内弯曲形成弯折部c,该弯折部c应理解为是沿丝材的编织方向出发,为整个锚定部端部的弯折处,此时的弯折部c应理解为是两个平面形成的组合结构。第一平面41与支架主体1的轴线呈第一角度θ1,第二平面42与第一平面41呈第二角度θ2。如此设置,一方面在一个平面(第一平面41或第二平面42)与血管壁相接触时,增加血管支架与血管壁的接触面积;另一方面,当第一平面41与血管壁相接触时,锚定部4还可对血管壁施加额外的张力,从而实现血管支架在血管壁上的良好锚定。
具体的,第二平面42可与支架主体1的轴线平行,也可与支架主体1的轴线呈一定角度设置。当第二平面42与支架主体1的轴线平行时,第一平面41用于与血管壁相接触,以对血管壁施加张力;当第二平面42与支架主体1的轴线呈一定角度时,第一平面41和第二平面42均可用于与血管壁相接触,以对血管壁施加张力。
在本实施例中,锚定部4由丝材10在与支架主体1的轴线呈第一角度θ1的平面内进行多次弯曲形成第一平面41,再在与第一平面41呈第二角度θ2的平面内进行多次弯曲形成第二平面42,最终在支架主体1的封闭端11形成封闭的锚定部4。
进一步地,锚定部4设置在支架主体1轴线的至少一端。优选的,锚定部4的数量为多个,且设置在支架主体1轴线的近端和远端。
继续参照图7所示,所述第一平面41与支架主体1的轴线之间的第一角度θ1优选为[90°,180°),如此可使锚定部4在与血管壁接触时不会影响和 干涉血管支架与血管壁的接触,从而可保证血管支架的治疗效果。此外,第一平面41与第二平面42之间的第二角度θ2优选为(0°,180°],此时锚定部4能够对血管壁施加一定的张力。
图7中的两个平面形成夹角的结构,利用了三角形的稳定原理,使得锚定部的结构更稳固,不再相互移动,进一步提升了锚定性能。
参照图8所示,在另一实施例中,丝材10向外弯折形成具有滑坡面43的锚定部4,锚定部4的滑坡面43与支架主体1的轴线之间的夹角为[90°,180°),如此可使锚定部4的滑坡面43与血管壁相接触,以增加血管支架与血管壁的接触面积;并且滑坡面43在与血管壁相接触时还可对血管壁施加一定的张力,从而实现血管支架在血管壁上的良好锚定。
优选的,锚定部4可设置为对称结构,即滑坡面43设置为对称结构,如此可使锚定部4能够更充分的与血管壁相接触。
在一优选实施例中,滑坡面43可设置为拱形的结构,即形成弯折部c。滑坡面43与丝材10中未形成锚定部4的区域之间设置有连接部,连接部可使滑坡面43与丝材10中未形成锚定部4的区域能够光滑连接。
如图8所示,在本实施例中,锚定部4为丝材10经过多次弯曲形成的对称结构,其中,丝材10在锚定部4的顶点两侧均包括第一弯折段431和第二弯折段432,锚定部4顶点两侧的第一弯折段431构成连接部,第二弯折段432弯曲回绕形成滑坡面43。为保证锚定部4能够充分的与血管壁接触并可对血管壁施加一定的张力,第一弯折段431和支架主体1的轴线之间的第三角度θ3为[90°,180°)。此外,所述第一弯折段431和第二弯折段432之间的夹角可根据锚定部4所需的张力大小进行设置。
应知晓,本发明中的锚定部的结构可以是上述实施例一至实施例三中的任意一种或多种的组合。因此,可根据需要灵活的设计锚定部的结构,以确保锚定部与血管壁相接触时具备较大的接触面积,从而可增加血管支架在血管壁上的锚定能力。
综上,本发明提供的血管支架可通过锚定部的设置,增加血管支架与血管壁的接触面积以及血管支架在血管壁上的锚定能力,以使血管支架能够较好的锚定在血管中的预期部位,降低血管支架的移位风险,还可避免血管支 架因移位造成的其他并发症和对血管壁的损伤。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明的保护范围。

Claims (21)

  1. 一种血管支架,其特征在于,包括由丝材编织制成的支架主体,至少一根所述丝材的一部分区域形成锚定部,所述锚定部包括弯折部和非弯折部;
    在沿编织方向上,所述弯折部的单位长度上的外表面面积大于所述非弯折部的单位长度上的外表面面积;
    所述锚定部用于增大所述血管支架与血管壁相接触时的面积。
  2. 如权利要求1所述的血管支架,其特征在于,至少一部分所述丝材在所述支架主体的至少一端弯曲回绕形成封闭端,所述封闭端的至少部分区域形成所述锚定部。
  3. 如权利要求2所述的血管支架,其特征在于,至少一部分所述丝材在所述支架主体的两端均弯曲回绕形成所述封闭端,每个所述封闭端的至少部分区域形成所述锚定部。
  4. 如权利要求2所述的血管支架,其特征在于,所述锚定部中的所述丝材的初始延伸方向和所述支架主体的轴线的夹角为[90°,180°]。
  5. 如权利要求1-4任一项所述的血管支架,其特征在于,所述锚定部包括至少一个拱形的弯曲结构,至少一个所述拱形的弯曲结构用于与血管壁相接触。
  6. 如权利要求5所述的血管支架,其特征在于,至少一个所述拱形的弯曲结构包括由所述丝材螺旋绕制形成的弹簧段,至少一个所述拱形的弯曲结构在顶点的至少一侧设置所述弹簧段。
  7. 如权利要求6所述的血管支架,其特征在于,所述弹簧段在初始状态下的直径为0.001inch~1.0inch,和/或,至少一个所述拱形的弯曲结构在初始状态下的曲率半径为1mm~50mm,和/或,所述弹簧段在初始状态下的长度与至少一个所述拱形的弯曲结构在初始状态下的长度之比为1:100~1:1。
  8. 如权利要求5所述的血管支架,其特征在于,至少一个所述拱形的弯曲结构包括由所述丝材经过表面处理形成的粗糙段,至少一个所述拱形的弯曲结构在顶点的至少一侧设置所述粗糙段。
  9. 如权利要求8所述的血管支架,其特征在于,所述粗糙段的粗糙度为 0.8um~100um,和/或,至少一个所述拱形的弯曲结构在初始状态下的曲率半径为0.5mm~50mm,和/或,所述粗糙段与至少一个所述拱形的弯曲结构在初始状态下的外表面面积之比为1:100~1:1。
  10. 如权利要求5所述的血管支架,其特征在于,至少一个所述拱形的弯曲结构包括由所述丝材经过压制形成的变形段,所述变形段在第一方向上的宽度增大,并在第二方向上的厚度减小,所述第一方向与所述第二方向垂直。
  11. 如权利要求10所述的血管支架,其特征在于,所述变形段在所述第一方向上的宽度增大比例不超过所述变形段的原始宽度的90%,且不小于所述变形段的原始宽度的10%;所述变形段在所述第二方向上的厚度减小比例不超过所述变形段的原始厚度的90%,且不小于所述变形段的原始厚度的10%。
  12. 如权利要求10所述的血管支架,其特征在于,所述丝材的横截面在所述第一方向上的宽度与在所述第二方向上的厚度之比为10:1~1:1,和/或,所述变形段在初始状态下的长度与至少一个所述拱形的弯曲结构在初始状态下的长度之比为1:100~1:1。
  13. 如权利要求2-4任一项所述的血管支架,其特征在于,所述封闭端在初始状态下的曲率半径为0.5mm~20mm。
  14. 如权利要求2-4任一项所述的血管支架,其特征在于,所述丝材在同一平面内弯曲回绕并与自身交错扭结形成所述锚定部。
  15. 如权利要求14所述的血管支架,其特征在于,所述丝材经过至少两次交错扭结形成套索状的所述锚定部,其中所述丝材先弯曲后与自身交错扭结,且所述丝材至少弯曲三次,每相邻两个弯曲之间形成一次交错扭结。
  16. 如权利要求14所述的血管支架,其特征在于,所述丝材多次沿至少两个不同方向弯曲并交错扭结形成网状的所述锚定部。
  17. 如权利要求2-4任一项所述的血管支架,其特征在于,所述丝材在不同平面内多次弯曲形成所述锚定部。
  18. 如权利要求17所述的血管支架,其特征在于,所述丝材分别在第一平面和第二平面内弯曲形成所述锚定部,所述第一平面与所述支架主体的轴线呈第一角度,所述第二平面与所述第一平面呈第二角度。
  19. 如权利要求18所述的血管支架,其特征在于,所述第一平面与所述支 架主体的轴线之间的第一角度为[90°,180°),和/或,所述第一平面与所述第二平面之间的第二角度为(0,180°]。
  20. 如权利要求17所述的血管支架,其特征在于,所述丝材向外弯折形成具有滑坡面的所述锚定部,所述锚定部的滑坡面与所述支架主体的轴线之间的夹角为[90°,180°)。
  21. 如权利要求1所述的血管支架,其特征在于,所述丝材的最小边长为0.005inch~1.0inch。
PCT/CN2023/095200 2022-06-15 2023-05-19 一种血管支架 WO2023241306A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221515492.4 2022-06-15
CN202210685484.2 2022-06-15
CN202221515492.4U CN217938481U (zh) 2022-06-15 2022-06-15 一种血管支架
CN202210685484.2A CN117257536A (zh) 2022-06-15 2022-06-15 一种血管支架

Publications (1)

Publication Number Publication Date
WO2023241306A1 true WO2023241306A1 (zh) 2023-12-21

Family

ID=89192236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095200 WO2023241306A1 (zh) 2022-06-15 2023-05-19 一种血管支架

Country Status (1)

Country Link
WO (1) WO2023241306A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080097568A1 (en) * 2006-10-20 2008-04-24 Savage Douglas R Drug-delivery endovascular stent and method of use
CN102961200A (zh) * 2012-11-30 2013-03-13 宁波健世生物科技有限公司 带锚定机构的肺动脉瓣膜支架
CN103547238A (zh) * 2011-04-27 2014-01-29 百乐仕医疗器械有限公司 支架
JP2019092931A (ja) * 2017-11-24 2019-06-20 株式会社ジェイ・エム・エス ステント
US20190223879A1 (en) * 2018-01-23 2019-07-25 Swaminathan Jayaraman Device to treat vascular defect and method of making the same
CN112754584A (zh) * 2021-01-06 2021-05-07 微创神通医疗科技(上海)有限公司 一种血管植入物及医疗设备
CN113288535A (zh) * 2021-05-28 2021-08-24 成都百瑞恒通医疗科技有限公司 一种颅内血管支架
CN214180706U (zh) * 2020-11-10 2021-09-14 苏州中天医疗器械科技有限公司 混合编织支架
CN113693799A (zh) * 2021-06-01 2021-11-26 上海苏畅医疗科技有限公司 一种辅助弹簧圈支架
CN216676047U (zh) * 2020-12-22 2022-06-07 微创神通医疗科技(上海)有限公司 支架
CN217938481U (zh) * 2022-06-15 2022-12-02 微创神通医疗科技(上海)有限公司 一种血管支架

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080097568A1 (en) * 2006-10-20 2008-04-24 Savage Douglas R Drug-delivery endovascular stent and method of use
CN103547238A (zh) * 2011-04-27 2014-01-29 百乐仕医疗器械有限公司 支架
CN102961200A (zh) * 2012-11-30 2013-03-13 宁波健世生物科技有限公司 带锚定机构的肺动脉瓣膜支架
JP2019092931A (ja) * 2017-11-24 2019-06-20 株式会社ジェイ・エム・エス ステント
US20190223879A1 (en) * 2018-01-23 2019-07-25 Swaminathan Jayaraman Device to treat vascular defect and method of making the same
CN214180706U (zh) * 2020-11-10 2021-09-14 苏州中天医疗器械科技有限公司 混合编织支架
CN216676047U (zh) * 2020-12-22 2022-06-07 微创神通医疗科技(上海)有限公司 支架
CN112754584A (zh) * 2021-01-06 2021-05-07 微创神通医疗科技(上海)有限公司 一种血管植入物及医疗设备
CN113288535A (zh) * 2021-05-28 2021-08-24 成都百瑞恒通医疗科技有限公司 一种颅内血管支架
CN113693799A (zh) * 2021-06-01 2021-11-26 上海苏畅医疗科技有限公司 一种辅助弹簧圈支架
CN217938481U (zh) * 2022-06-15 2022-12-02 微创神通医疗科技(上海)有限公司 一种血管支架

Similar Documents

Publication Publication Date Title
US6007574A (en) Stent
AU2018253740B2 (en) Braid expansion ring with markers
JP6755878B2 (ja) ステントプロテーゼ
US7753948B2 (en) Intraluminal device with unsymmetric tapered beams
JP4898990B2 (ja) カニューレステント
JP2005505345A (ja) カニョーレステント
WO2021128938A1 (zh) 一种封堵器及系统
JP2024503633A (ja) 血管インプラントおよび医療機器
WO2020125315A1 (zh) 编织支架
WO2019128703A1 (zh) 覆膜支架
CN211534616U (zh) 一种封堵器及系统
CN217938481U (zh) 一种血管支架
WO2023241306A1 (zh) 一种血管支架
CN109966015B (zh) 覆膜支架
CN117257536A (zh) 一种血管支架
US20190053925A1 (en) Braided stent crown geometry and flare
CN112914793B (zh) 一种导管输送系统
CN220632154U (zh) 血流导向栓塞支架
CN220632297U (zh) 编织支架、输送系统及支架系统
US20230398006A1 (en) Neurovascular Stent
WO2010024380A1 (ja) ステント
US20200238055A1 (en) Guide wire
CN116602724A (zh) 血流导向栓塞支架
WO2024009055A1 (en) An expandable tube for deployment within a blood vessel
CN114652486A (zh) 覆膜支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822876

Country of ref document: EP

Kind code of ref document: A1