WO2023241268A1 - 前置光源和显示装置 - Google Patents

前置光源和显示装置 Download PDF

Info

Publication number
WO2023241268A1
WO2023241268A1 PCT/CN2023/092979 CN2023092979W WO2023241268A1 WO 2023241268 A1 WO2023241268 A1 WO 2023241268A1 CN 2023092979 W CN2023092979 W CN 2023092979W WO 2023241268 A1 WO2023241268 A1 WO 2023241268A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting
wave plate
light source
Prior art date
Application number
PCT/CN2023/092979
Other languages
English (en)
French (fr)
Other versions
WO2023241268A9 (zh
Inventor
刘玉杰
方正
韩佳慧
孙艳六
闫雨桐
赵伟利
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023241268A1 publication Critical patent/WO2023241268A1/zh
Publication of WO2023241268A9 publication Critical patent/WO2023241268A9/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/07Polarisation dependent

Definitions

  • the present invention relates to the field of display technology, and in particular to a front light source and a display device.
  • the reflective display device is, for example, a reflective liquid crystal display device or an electronic paper display device.
  • the display principle is as follows: after the ambient light outside the reflective display panel or the light from the front light source is incident on the reflective display panel, it is reflected back. By controlling the deflection state of the liquid crystal molecules, the reflective Each pixel of the display panel reflects light at a different ratio to achieve the display.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a front light source and a display device.
  • the present invention provides a front light source, which includes: a base substrate and a plurality of light-emitting parts arranged on the base substrate.
  • Each of the light-emitting parts includes a light-emitting layer and a reflective layer, and the The reflective layer is located between the light-emitting layer and the base substrate; at least one side of the light-emitting element away from the base substrate is provided with a first quarter-wave plate and a polarizing layer, and the polarizing layer is located The side of the first quarter-wave plate away from the light-emitting element is used to transmit polarized light in the first polarization direction and reflect polarized light in the second polarization direction; the first polarization direction crosses the second polarization direction.
  • the polarizing layer is a wire grid polarizing layer.
  • the wire grid polarizing layer includes a plurality of metal lines arranged side by side, the arrangement period of the metal lines is between 60nm and 140nm, and the height of each metal line is between 160nm and 300nm.
  • the ratio of the line width of the metal line to the arrangement period of the metal line is between 0.5 and 0.7.
  • the light-emitting layer includes an n-type semiconductor layer, a p-type semiconductor layer and a quantum well layer, and the n-type semiconductor layer and the p-type semiconductor layer are located between the quantum well layer and the reflective layer. between, And both the n-type semiconductor layer and the p-type semiconductor layer are in contact with the quantum well layer;
  • the first quarter-wave plate is in direct contact with the quantum well layer, and the polarizing layer is in direct contact with the first quarter-wave plate.
  • the plurality of light-emitting elements are arranged in multiple rows in the first direction, each row includes multiple light-emitting elements arranged along the second direction, and the luminescent colors of the multiple light-emitting elements in the same row include multiple , the plurality of light-emitting parts arranged in the first direction emit the same color;
  • the first direction intersects the second direction.
  • the distance between two adjacent light-emitting elements in the first direction is 2 to 4 times the distance between two adjacent light-emitting elements in the same row.
  • the front light source has multiple partitions, and multiple light-emitting elements are provided in each partition. Multiple light-emitting elements with the same light-emitting color in the same partition are connected in parallel.
  • multiple light-emitting elements are divided into multiple light-emitting groups, the multiple light-emitting groups are arranged side by side in the first direction, and each of the light-emitting groups includes a plurality of light-emitting components arranged along the second direction.
  • Light-emitting parts, the light-emitting colors of multiple light-emitting parts in the same light-emitting group include multiple colors;
  • the first poles of multiple light-emitting parts are connected to the same first voltage lead, the second poles of the light-emitting parts of the same color are connected to the same second voltage lead, and the light-emitting parts of different colors are connected to the same second voltage lead.
  • the second pole of the component is connected to a different second voltage lead;
  • the first voltage leads connected to the plurality of light-emitting groups are connected through first connecting lines.
  • the second voltage leads connected to the multiple light-emitting groups the first voltage leads connected to the light-emitting parts of the same color are connected to each other.
  • the second voltage lead is connected via a second connection line.
  • the orthographic projections of the first quarter-wave plate and the polarizing layer on the base substrate are both located within the orthographic projection range of the light-emitting element on the base substrate.
  • the material of the polarizing layer includes aluminum.
  • An embodiment of the present disclosure also provides a display device, including: a reflective display panel, a polarizer, a second quarter-wave plate, and the above-mentioned front light source, the front light source, the second quarter-wave plate
  • the wave plate and the polarizer are both disposed on the display side of the reflective display panel, the second quarter wave plate is disposed between the front light source and the reflective display panel, the polarizer slice is set in the second The quarter wave plate is on a side away from the reflective display panel, and the polarization direction of the polarizer is the first polarization direction.
  • the polarizer is disposed on a side of the front light source facing away from the reflective display panel.
  • the display device further includes a half-wave plate, and the half-wave plate is disposed between the front light source and the second quarter-wave plate.
  • the reflective display panel includes: an array substrate and a cell substrate arranged oppositely, and a liquid crystal layer located between them;
  • the array substrate includes:
  • a thin film transistor disposed on the side of the first substrate facing the liquid crystal layer;
  • a first insulating layer is provided on a side of the thin film transistor away from the first substrate, and a first via hole corresponding to the drain of the thin film transistor is provided in the first insulating layer;
  • a reflective electrode disposed on a side of the first insulating layer away from the first substrate, and connected to the drain of the thin film transistor through the first via hole;
  • a second insulating layer is provided on the side of the reflective electrode away from the first substrate, and a second via hole corresponding to the reflective electrode is provided on the second insulating layer;
  • the pixel electrode is disposed on a side of the second insulating layer away from the first substrate, and is connected to the reflective electrode through the second via hole.
  • the surface of the reflective electrode away from the first substrate is an uneven surface.
  • the plurality of light-emitting elements are arranged in multiple rows in the first direction, each row includes multiple light-emitting elements arranged along the second direction, and the luminescent colors of the multiple light-emitting elements in the same row include multiple , the plurality of light-emitting elements arranged in the first direction emit the same color; the first direction intersects the second direction;
  • the distance between two adjacent light-emitting parts with the same light-emitting color in the second direction is smaller than the distance between the light-emitting parts and the reflective electrode.
  • Figure 1 is a schematic diagram of a display device provided in some embodiments.
  • Figure 2 is a relationship curve between the contrast of the display device and the contrast of the reflective display panel when the interface reflectance is different.
  • Figure 3 is a schematic diagram of a front light source provided in some embodiments of the present disclosure.
  • Figure 4 is a schematic diagram of a light emitting element provided in some embodiments of the present disclosure.
  • Figure 5 is an enlarged view of the Q area in Figure 3.
  • Figure 6 shows the relationship between the polarization degree of the polarizing layer and the wavelength when the metal lines adopt different arrangement periods.
  • Figure 7 shows the relationship between the polarization degree of the polarizing layer and the wavelength when the metal lines are set to different heights.
  • Figure 8 shows the relationship between the polarization degree of the polarizing layer and the wavelength when the metal lines adopt different arrangement duty ratios.
  • Figure 9 shows the relationship between the polarization degree of the polarizing layer and the wavelength when the polarizing layer is made of different materials.
  • FIG. 10 is a schematic diagram of the arrangement of multiple light-emitting components provided in some embodiments of the present disclosure.
  • Figure 11 is a schematic diagram of the connection of the light-emitting components in one of the partitions provided in some embodiments of the present disclosure.
  • Figure 12 is a schematic diagram of the driving circuit layer in the front light source provided in some embodiments of the present disclosure.
  • FIGS 13A to 13D are schematic diagrams of the manufacturing process of the front light source in the embodiment of the present disclosure.
  • Figure 14 is a schematic diagram of a display device provided in some embodiments of the present disclosure.
  • Figure 15 is a schematic diagram of a reflective display panel provided in some embodiments of the present disclosure.
  • FIG. 1 is a schematic diagram of a display device provided in some embodiments.
  • the display device is a reflective display device, which includes: a reflective display panel, a front light source 10, a polarizer 20, a quarter Wave plate 30 , wherein the front light source 10 is disposed on the display side of the reflective display panel, and the front light source 10 includes a base substrate 11 and a light emitting component 12 disposed on the base substrate 11 .
  • the polarizer 20 is disposed between the front light source 10 and the reflective display panel, and the quarter wave plate 30 is disposed between the reflective display panel and the polarizer 20 .
  • the reflective display panel includes: an array substrate 40 and a cell alignment substrate 50 arranged opposite each other, and a liquid crystal layer 60 located between them.
  • the array substrate 40 includes a plurality of pixels, and a reflective electrode 41 is provided in each pixel.
  • the liquid crystal layer 60 has a phase modulation effect on light equivalent to that of the quarter-wave plate 30 in an unpowered state.
  • the light (natural light) of the light-emitting element 12 passes through the polarizer 20 to form first linearly polarized light.
  • the first linearly polarized light passes through the quarter-wave plate 30 to form circularly polarized light.
  • Circularly polarized light After the light passes through the liquid crystal layer 60, it becomes second linearly polarized light.
  • the polarization direction of the second linearly polarized light is the same as that of the first polarized light. The direction is vertical. After the second linearly polarized light is reflected by the reflective electrode 41, the polarization direction does not change. After passing through the liquid crystal layer 60 and the quarter-wave plate 30, the reflected light becomes the third linearly polarized light.
  • the polarization direction of the third linearly polarized light is the same as that of the third linearly polarized light.
  • the linearly polarized light has the same polarization direction and can be emitted through the polarizer 20 so that the reflective display device displays a white screen.
  • a voltage is applied to the liquid crystal layer 60 so that it has no effect on the phase of light.
  • the light (natural light) of the light-emitting element 12 passes through the polarizer 20 to form first linearly polarized light.
  • the first linearly polarized light passes through the quarter-wave plate 30 to form circularly polarized light.
  • the circularly polarized light passes through the liquid crystal layer. 60 and after reflection by the reflective electrode 41, the polarization direction does not change.
  • the circularly polarized light passes through the quarter-wave plate 30 to form a second linearly polarized light.
  • the second linearly polarized light has the same polarization as the first linearly polarized light.
  • the direction is vertical, so that it cannot emit from the polarizer 20, causing the reflective display device to display a black screen.
  • a voltage is applied to the liquid crystal layer 60 to cause it to deflect to a certain extent.
  • the light (natural light) of the light-emitting element 12 passes through the polarizer 20 to form a first linearly polarized light.
  • the first linearly polarized light passes through the quarter-wave plate 30 to form an elliptically polarized light.
  • the elliptically polarized light is Taking left-handed elliptically polarized light as an example, after the left-handed elliptical polarized light is reflected by the reflective electrode 41, it becomes right-handed elliptically polarized light.
  • the right-handed elliptically polarized light passes through the liquid crystal layer 60 and the quarter-wave plate 30, it forms the fourth linear polarization.
  • the angle between the polarization directions of the fourth linearly polarized light and the first linearly polarized light is greater than 0° and less than 90°, so that part of the light can be emitted through the polarizer 20 to form a grayscale image.
  • polarizers usually include multiple stacked optical films, such as TAC (triacetate) film, PSA (pressure sensitive adhesive) film, adhesive layer, etc.
  • TAC triacetate
  • PSA pressure sensitive adhesive
  • the refractive index of optical films of different materials is different. , which causes the interface between optical films of different materials to produce a certain reflection of the light emitted by the light-emitting component.
  • the reflectivity of the interface in the polarizing layer is 0.5%, which causes part of the light to pass through the liquid crystal layer. Modulated and directly reflected to the human eye, resulting in a low contrast ratio (CR) of the display device.
  • CR contrast ratio
  • Figure 2 shows the contrast of the display device and the reflective display panel when the interface reflectivity is different. Ratio relationship curve. As shown in Figure 2, when the interface reflectance in the polarizing layer is 0.2%, when the contrast of the reflective display panel is high, the contrast of the display device is also high; while the interface reflectance in the polarizing layer is In the case of 0.5%, when the contrast of the reflective display panel is high, the contrast of the display device does not reach a high value.
  • FIG 3 is a schematic diagram of the front light source provided in some embodiments of the present disclosure.
  • the front light source 10 includes: a base substrate 11 and a plurality of light-emitting components 12 provided on the base substrate 11.
  • the light-emitting components 12 are, for example, micro-light emitting diodes (mini-LED/micro LED).
  • Figure 4 is a schematic diagram of a light-emitting component provided in some embodiments of the present disclosure.
  • the light-emitting component 12 may be a flip-chip light-emitting diode, which includes: a light-emitting layer 12a, and a third light-emitting element electrically connected to the light-emitting layer 12a respectively.
  • An electrode 125 and a second electrode 126 wherein one of the first electrode 125 and the second electrode 126 is a positive electrode, and the other is a negative electrode.
  • the light-emitting layer 12a may include: an n-type semiconductor layer 122, a p-type semiconductor layer 123, and a quantum well layer 121 in contact with them.
  • the n-type semiconductor layer 122 and the p-type semiconductor layer 123 are located on the same side of the quantum well layer 121, and the n-type semiconductor layer 122 and the p-type semiconductor layer 123 are separated by an insulating layer (not shown).
  • the light-emitting element 12 also includes a reflective layer 124.
  • the reflective layer 124 is located between the light-emitting layer 12a and the base substrate 11, so that the light emitted by the light-emitting layer 12a can be emitted toward the side away from the base substrate 11 as much as possible.
  • the reflective layer 124 may include a stacked multi-layer dielectric layer, and the multi-layer dielectric layer may include a silicon oxide layer, a titanium oxide layer, etc.
  • the first electrode 125 may be electrically connected to the n-type semiconductor layer 122 through a via hole in the reflective layer 124
  • the second electrode 126 may be electrically connected to the p-type semiconductor layer 123 through a via hole in the reflective layer 124 .
  • FIG. 5 is an enlarged view of the Q region shown in FIG. 3.
  • at least one light-emitting element 12 is also provided with a first quarter-wave plate 13 and a polarizer on the side away from the base substrate 11.
  • Layer 14, the polarizing layer 14 is located on the side of the first quarter-wave plate (1/4-wave plate) 13 away from the light-emitting element 12, and is used to transmit polarized light in the first polarization direction, and to transmit polarized light in the second polarization direction. The polarized light is reflected; the first polarization direction crosses the second polarization direction.
  • one of the polarized light in the first polarization direction and the polarized light in the second polarization direction is TM light, and the other is TE light.
  • the principle of the front light source 10 shown in FIG. 3 providing linearly polarized light for the reflective display panel is as follows: after the natural light emitted by the light-emitting element 12 passes through the first quarter-wave plate 13, it is still natural light, and the natural light is irradiated to the polarized light source.
  • layer 14 When layer 14 is formed, the polarized light in the first polarization direction passes through the polarizing layer 14, and the polarized light in the second polarization direction is reflected by the polarizing layer 14. After the reflected light passes through the first quarter-wave plate 13, it becomes circularly polarized light. After the circularly polarized light is reflected by the reflective layer 124, its rotation direction changes.
  • the circularly polarized light with the changed rotation direction becomes polarized light in the first polarization direction, thereby passing through The polarizing layer 14 is emitted.
  • the natural light emitted by the light-emitting element 12 is still natural light after passing through the first quarter-wave plate 13.
  • the natural light irradiates the polarizing layer 14
  • the TM light passes through the polarized light. layer 14, and the TE light is reflected by the polarizing layer 14.
  • the reflected TE light becomes left-handed circularly polarized light after passing through the first quarter-wave plate 13, and the left-handed circularly polarized light becomes right-handed circularly after being reflected by the reflective layer 124.
  • the polarized light, right-hand circularly polarized light passes through the first quarter-wave plate 13 again, and then becomes TM light, and then is emitted through the polarizing layer 14 . It can be seen that after the first quarter-wave plate 13 and the polarizing layer 14 are provided, part of the light emitted by the light-emitting element 12 is directly emitted through the polarizing layer 14, and part of the remaining light is finally reflected after multiple reflections.
  • the polarizing layer 14 emits light, thereby improving the light efficiency of the front light source 10 .
  • the polarizing layer 14 is a wire grid polarizing layer 14 , which includes a plurality of metal lines 141 .
  • the plurality of metal lines 141 may be located on the same plane, so that the light of the light-emitting element 12 is polarized. After layer 14 is emitted, the light is distributed more evenly.
  • the wire grid polarizing layer 14 includes a plurality of metal lines 141 arranged side by side along the first direction (X direction), and each metal line 141 can extend along the second direction (Y direction), wherein the first direction Can be perpendicular to the second direction.
  • Figure 6 is a relationship curve between the polarization degree of the polarizing layer and the wavelength when the metal lines adopt different arrangement periods. As shown in Figure 6, when the arrangement period P of the metal lines 141 is less than or equal to 140nm, the polarization layer 14 is sensitive to visible light. The degree of polarization in the entire wavelength band is high. Therefore, in some embodiments, setting the arrangement period P of the metal lines 141 to less than or equal to 140 nm is beneficial to improving the degree of polarization of the polarizing layer 14 in the entire wavelength band of visible light.
  • the arrangement period P of the metal lines 141 is set between 60 nm and 140 nm, thereby improving the sensitivity of the polarizing layer 14 to visible light.
  • the full-band polarization degree facilitates the production of wire grid polarizing layers.
  • the layout cycle Set to 60nm or 80nm or 100nm or 120nm or 140nm.
  • Figure 7 is a relationship curve between the polarization degree of the polarizing layer and the wavelength when the metal lines are set to different heights.
  • the height of the metal line 141 is greater than or equal to 160nm, the polarization degree of the polarizing layer 14 for the entire visible light band are higher.
  • the height H of the metal line 141 is set between 160 nm and 300 nm, thereby ensuring that the polarizing layer 14 is transparent. While improving the pass rate, the polarization degree of the polarizing layer 14 for the entire visible light band is increased.
  • the height H is set to 160 nm, or 200 nm, or 250 nm, or 300 nm.
  • FIG. 8 shows the relationship between the polarization degree of the polarizing layer and the wavelength when the metal lines adopt different arrangement duty ratios.
  • the arrangement duty ratio is the ratio of the line width w of the metal line 141 to the arrangement period P.
  • the duty ratio of the arrangement of the metal lines 141 is greater than 0.5, the polarization degree of the polarizing layer 14 for the entire visible light band is relatively high.
  • the arrangement duty cycle of the metal lines 141 (metal line The ratio of the line width w of 141 to the arrangement period P) is set between 0.5 and 0.7, thereby ensuring the transmittance of the polarizing layer 14 while also improving the polarization degree of the polarizing layer 14 for the entire visible light band.
  • the arrangement duty cycle is set to 0.5, or 0.6, or 0.7.
  • the material of polarizing layer 14 includes aluminum.
  • the material of the polarizing layer 14 refers to the material of the metal line 141 .
  • Figure 9 is a curve showing the relationship between the degree of polarization and the wavelength of the polarizing layer when the polarizing layer is made of different materials. As shown in Figure 9, compared to other materials, when the polarizing layer 14 is made of aluminum, the polarizing layer 14 can operate in the entire visible light band. The degree of polarization is higher.
  • the first quarter-wave plate 13 may be in direct contact with the quantum well layer 121 of the light-emitting element, and the polarizing layer 14 may be in direct contact with the first quarter-wave plate 13, thereby improving the light It is effective and can prevent the metal lines 141 of the polarizing layer 14 from affecting the light emission angle.
  • "direct contact" between two structures means that no other structures are placed between the two structures.
  • FIG. 10 is a schematic diagram of the arrangement of multiple light-emitting components provided in some embodiments of the present disclosure.
  • the luminescent colors of the multiple light-emitting components 12 may include multiple colors, such as red, green, and blue.
  • the field-sequential driving method can be used to drive the front light source 10 to emit light, that is, in each display cycle of the reflective display device, the red light-emitting element 12r and the blue light-emitting element 12b are sequentially driven. and the green light-emitting component 12g emit light, so that the reflective display device sequentially displays the red sub-picture, the blue sub-picture and the green sub-picture within one display cycle.
  • each pixel in the display panel no longer needs to be divided into multiple sub-pixels of different colors, which is beneficial to improving product resolution.
  • the plurality of light-emitting elements 12 can be arranged in an array. Specifically, the plurality of light-emitting elements 12 are arranged in multiple rows in the first direction, and each row includes multiple light-emitting elements 12 arranged in the second direction. The first direction intersects the second direction, for example, the first direction is perpendicular to the second direction. Among them, the multiple light-emitting components 12 in the same row can emit multiple colors. For example, the multiple light-emitting components 12 in the same row include a red light-emitting component 12r, a green light-emitting component 12g and a blue light-emitting component 12b, which respectively emit red light.
  • the plurality of light-emitting parts 12 arranged in the same row in the first direction emit the same color, which facilitates the transfer of the plurality of light-emitting parts 12 to the front light source 10 through a transfer process. on the base substrate 11.
  • the plurality of light-emitting elements 12 are arranged in multiple rows and columns, the first direction is the column direction, and the second direction is the row direction. That is, the multiple light-emitting elements 12 in the same row can emit multiple colors, the same color. The light-emitting elements 12 in the column emit light in the same color.
  • the distance d1 between two adjacent light-emitting elements 12 in the first direction is 2 to 4 times the distance d2 between two adjacent light-emitting elements 12 in the same row in the second direction. This facilitates the uniform mixing of light from the light-emitting components 12 of different colors.
  • d1 is 2 times, or 3 times, or 4 times d2.
  • the front light source 10 can be controlled to emit light through zone control.
  • the front light source 10 has multiple partitions, and multiple light-emitting elements 12 are provided in each partition.
  • Figure 11 is a schematic diagram of the electrical connection of light-emitting components in one of the partitions provided in some embodiments of the present disclosure. As shown in Figure 11, in the same partition, multiple light-emitting components 12 of the same luminous color are connected in parallel. By connecting the light-emitting elements 12 of the same luminous color in the same partition in parallel, the driving current can be increased to meet the electrical driving requirements of the light-emitting elements 12; in addition, each partition can be independently controlled according to the image to be displayed, thereby conducive to reducing the Driver power consumption. For example, when a certain area of the image to be displayed is dark, the corresponding partition can be controlled The light-emitting element 12 in does not emit light.
  • multiple light-emitting elements 12 are divided into multiple light-emitting groups 120 , and the multiple light-emitting groups 120 are arranged side by side in the first direction.
  • Each light-emitting group 120 Including a plurality of light-emitting elements 12 arranged along the second direction, the plurality of light-emitting elements 12 in the same light-emitting group 120 include multiple light-emitting colors.
  • the multiple light-emitting elements 12 in the same light-emitting group 120 include multiple red light-emitting colors. 12r, a plurality of green light-emitting parts 12g and a plurality of blue light-emitting parts 12b.
  • the first electrodes 125 of multiple light-emitting elements 12 are connected to the same first voltage lead 151, and the second electrodes 126 of the light-emitting elements 12 of the same color are connected to the same second voltage lead. 152 is connected, and the second electrodes 126 of the light-emitting parts 12 of different colors are connected to different second voltage leads 152 .
  • the first electrode 125 of each light-emitting element 12 can be connected to the first voltage lead 151 through the first electrode lead 161
  • the second electrode 126 of each light-emitting element 12 can be connected to the second voltage through the second electrode lead 162.
  • Lead 152 is connected.
  • the first voltage leads 151 connected to the plurality of light-emitting groups 120 are connected through the first connection lines 171.
  • the second voltage leads 152 connected to the multiple light-emitting groups 120 are connected to the light-emitting elements 12 of the same color.
  • the connected second voltage lead 152 is connected by a second connection line 172 .
  • each light-emitting group 120 includes a plurality of red light-emitting parts 12r, a plurality of green light-emitting parts 12g and a plurality of blue light-emitting parts 12b.
  • the plurality of light-emitting parts 12 in each light-emitting group 120 are connected to a first voltage lead 151 and Three second voltage leads 152 are respectively denoted as lead 152A, lead 152B and lead 152C.
  • the first electrodes of the red light-emitting element 12r, the green light-emitting element 12g and the blue light-emitting element 12b are connected to the same first voltage lead 151, and the second electrodes of the multiple red light-emitting elements 12r are connected to the same first voltage lead 151.
  • the lead 152A is connected, the second electrodes of the plurality of green light-emitting components 12g are connected to the lead 152B, and the second electrodes of the plurality of blue light-emitting components 12b are connected to the lead 152C.
  • the first voltage leads 151 connected to the plurality of light-emitting groups 120 are connected to each other through the first connection line 171, and the leads 152A connected to the multiple light-emitting groups 120 are connected to each other through the first second connection line 172.
  • the lead wires 152B connected to each light-emitting group 120 are connected through the second second connection line 172 , and the lead wires 152C connected to multiple light-emitting groups 120 are connected through the third second connection line 172 .
  • the power-on signal can sequentially turn on the red light-emitting element 12r, the green light-emitting element 12g and the blue light-emitting element 12b in the partition.
  • the base substrate 11 is provided with a first metal layer M1, a second metal layer M2, a first passivation layer PVX1, a second passivation layer PVX2, a first protrusion 181, and a second protrusion 182.
  • the third passivation layer PVX3, the first contact electrode 191 and the second contact electrode 192 wherein the first metal layer M1 includes the above-mentioned first voltage lead 151 and the second voltage lead 152, and the first passivation layer PVX1 is provided on the A metal layer M1 is located on the side away from the base substrate 11, the first protrusion 181 and the second protrusion 182 are located on the side of the first passivation layer PVX1 away from the base substrate 11, and the second passivation layer PVX2 is located on the side of the first passivation layer PVX1 away from the base substrate 11.
  • the chemical layer PVX1 is on a side away from the base substrate 11 and covers the first protrusion 181 and the second protrusion 182 .
  • the second metal layer M2 is disposed on the side of the second passivation layer PVX2 away from the base substrate 11 .
  • the second metal layer M2 includes the above-mentioned first electrode lead-out line 161 and second electrode lead-out line 162 , and also includes a first connection line 171 and the second connection line 172; the first electrode lead line 161 is connected to the corresponding first voltage lead 151 through a via hole penetrating the first passivation layer PVX1 and the second passivation layer PVX2, and the second electrode lead line 162 passes through the first passivation layer PVX1 and the second passivation layer PVX2.
  • the via holes of the first passivation layer PVX1 and the second passivation layer PVX2 are connected to the corresponding second voltage lead-out lines.
  • the first connection line 171 is connected to the corresponding via holes through the first passivation layer PVX1 and the second passivation layer PVX2.
  • the first voltage lead 151 is connected, and the second connection is connected to the corresponding second voltage lead 152 through a via hole penetrating the first passivation layer PVX1 and the second passivation layer PVX2.
  • the first contact electrode 191 and the second contact electrode 192 are located on the side of the third passivation layer PVX3 away from the base substrate 11 , the first contact electrode 191 is provided at a position corresponding to the first protrusion 181 , and the second contact electrode 192 is provided At a position corresponding to the second protrusion 182, the first contact electrode 191 is connected to the first electrode lead line 161 through a via hole on the third passivation layer PVX3, and the second contact electrode 192 passes through a via hole on the third passivation layer PVX3. The via hole is connected to the second electrode lead line 162 .
  • the first contact electrode 191 is used to connect the first electrode 125 of the light-emitting element 12
  • the second contact electrode 192 is used to connect the second electrode 126 of the light-emitting element 12 .
  • FIG. 13A to 13D are schematic diagrams of the manufacturing process of the front light source in the embodiment of the present disclosure. As shown in FIG. 13A to 13D, the manufacturing process of the front light source 10 includes the following steps:
  • Step S1 as shown in FIG. 13A, a driving circuit layer is formed on the base substrate 11.
  • the driving circuit layer includes the above-mentioned first voltage leads 151, second voltage leads 152, first connection lines 171, and second connection lines 171. , the first electrode lead wire 161, the second electrode lead wire 162, the first contact electrode 191 and the second contact electrode 192. Among them, only the first contact electrode 191 and the second contact electrode 192 are shown in FIG. 13A.
  • Step S2 use the transfer substrate 90 to transfer the plurality of light-emitting elements 12 to the base substrate 11 , and electrically connect the first electrode 125 of the light-emitting element 12 to the first contact electrode 191 to emit light.
  • the second electrode 126 of the element 12 is electrically connected to the second contact electrode 192 . After that, the transfer substrate 90 is removed.
  • Step S3 as shown in FIG. 13D, the first quarter-wave plate 13 and the polarizing layer 14 are sequentially formed on the light-emitting element 12.
  • the orthographic projections of the first quarter-wave plate 13 and the polarizing layer 14 on the base substrate 11 are both located within the orthographic projection range of the light-emitting element 12 on the base substrate 11 , that is, when not set In the area of the light-emitting element 12, the first quarter-wave plate 13 and the polarizing layer 14 are no longer provided.
  • the first quarter-wave plate 13 may be formed through vapor deposition and etching processes.
  • the polarizing layer 14 can be formed using a nanoimprint process.
  • FIG. 14 is a schematic diagram of a display device provided in some embodiments of the present disclosure.
  • the display device includes: a reflective display panel 4, a polarizer 80, a second The quarter wave plate 72 and the front light source 10 in the above embodiment, wherein the front light source 10, the second quarter wave plate 72 and the polarizer 80 are all arranged on the display side of the reflective display panel 4,
  • the second quarter-wave plate 72 is disposed between the front light source 10 and the reflective display panel 4 .
  • the polarization direction of the polarizer 80 is the first polarization direction, and the polarizer 80 is disposed on the side of the front light source 10 away from the reflective display panel 4 .
  • FIG. 15 is a schematic diagram of a reflective display panel provided in some embodiments of the present disclosure.
  • the reflective display panel 4 has a display area AA and a non-display area NA.
  • the display area AA includes a plurality of pixel areas.
  • the display panel 4 includes: an array substrate and a cell substrate arranged oppositely, and a liquid crystal layer 50 located between them.
  • the array substrate includes: a first substrate 42, a thin film transistor 43, a first insulating layer, a reflective electrode 41, second insulating layer 46 and pixel electrode 45.
  • the array substrate also includes a plurality of gate lines and a plurality of data lines provided on the first substrate 42. The plurality of gate lines and the plurality of data lines intersect to define a plurality of pixel areas. In each pixel area, Thin film transistors 43, reflective electrodes 41 and pixel electrodes 45 are provided.
  • the thin film transistor 43 is disposed on the side of the first substrate 42 facing the liquid crystal layer 50 .
  • the thin film transistor 43 includes an active layer 431 , a gate electrode 432 , a source electrode 433 and a drain electrode 434 .
  • a gate insulating layer GI is provided between the active layer 431 and the gate electrode 432, and an interlayer dielectric layer ILD is provided between the layer where the gate electrode 432 is located and the layer where the source electrode 433 and the drain electrode 434 are located.
  • the active layer 431 is located between the gate electrode 432 and the first substrate 42 .
  • the active layer 431 may include, for example, inorganic semiconductor materials (eg, polysilicon, amorphous silicon, etc.), organic semiconductor materials, and oxide semiconductor materials.
  • the active layer 431 may include a channel region opposite to the gate electrode 432 and source and drain regions respectively disposed on both sides of the channel region. Both the source region and the drain region may include impurities with a higher impurity concentration than that of the channel region.
  • the impurities may include N-type impurities or P-type impurities.
  • the gate insulating layer GI covers the active layer 431.
  • the gate insulating layer GI may include silicon oxynitride (SiON), silicon oxide (SiOx), silicon nitride (SiNx), silicon oxycarbonate (SiOxCy), silicon nitride carbide (SiCxNy), Aluminum oxide (AlOx), aluminum nitride (AlNx), tantalum oxide (TaOx), hafnium oxide (HfOx), zirconium oxide (ZrOx), titanium oxide (TiOx), etc.
  • the gate insulating layer GIGI1 may be formed as a single layer or multiple layers.
  • the gate electrode 432 is disposed on a side of the gate insulating layer GI away from the first substrate 42 .
  • the material of the gate 432 may include gold (Au), gold alloy, silver (Ag), silver alloy, aluminum (Al), aluminum alloy, aluminum nitride (AlNx), tungsten (W), nitride Tungsten (WNx), copper (Cu), copper alloy, nickel (Ni), chromium (Cr), chromium nitride (CrNx), molybdenum (Mo), molybdenum alloy, titanium (Ti), titanium nitride (TiN x), platinum (Pt), tantalum (Ta), tantalum nitride (TaNx), neodymium (Nd), scandium (Sc), strontium ruthenium oxide (SRO), zinc oxide (ZnOx), tin oxide (SnOx), oxide Indium (InOx), gallium oxide (GaOx), indium
  • the interlayer dielectric layer ILD is provided with a gate 432 on a side away from the first substrate 42 .
  • the interlayer dielectric layer ILD may include silicon oxynitride (SiON), silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxycarbide. (SiOxCy), silicon carbide nitride (SiCxNy), aluminum oxide (AlOx), aluminum nitride (AlNx), tantalum oxide (TaOx), hafnium oxide (HfOx), zirconium oxide (ZrOx), titanium oxide (TiOx), etc.
  • the interlayer dielectric layer ILD may be formed as a single layer or multiple layers.
  • the source electrode 433 and the drain electrode 434 are disposed on a side of the interlayer dielectric layer ILD away from the first substrate 42 .
  • the source electrode 433 is connected to the source region of the active layer 431 through a via hole penetrating the gate insulation layer GI and the interlayer dielectric layer ILD.
  • the drain electrode 434 is electrically connected to the drain region of the active layer 431 through a via hole penetrating the gate insulating layer GI and the interlayer dielectric layer ILD.
  • the materials of the source electrode 433 and the drain electrode 434 can be gold (Au), gold alloy, silver (Ag), silver alloy, aluminum (Al), aluminum alloy, aluminum nitride (AlNx), tungsten (W) , Tungsten nitride (WNx), copper (Cu), copper alloy, nickel (Ni), chromium (Cr), chromium nitride (CrNx), molybdenum (Mo), molybdenum alloy, titanium (Ti), nitride Titanium (TiN ), indium oxide (InOx), gallium oxide (GaOx), indium tin oxide (ITO), indium zinc oxide (IZO), etc.
  • a buffer layer BFL may also be provided between the first substrate 42 and the active layer 431 of the thin film transistor 43.
  • the buffer layer BFL may prevent or reduce the diffusion of metal atoms and/or impurities from the first substrate 42 into the active layer 431.
  • the first insulating layer 44 is disposed on a side of the thin film transistor 43 away from the first substrate 42 , and a first via hole corresponding to the drain electrode 434 may be disposed in the first insulating layer 44 .
  • the first insulating layer 44 may include a first planarization layer PLN1 and a bump layer BU.
  • the bump layer BU is located on a side of the first planarization layer PLN1 away from the first substrate 42 .
  • the first planarization layer PLN1 is away from the first substrate 42 .
  • the surface of a substrate 42 is generally flat, and a plurality of convex structures are formed on the surface of the convex layer BU away from the first substrate 42, so that the surface of the convex layer BU away from the first substrate 42 is an uneven surface.
  • the first via hole simultaneously penetrates the first planarization layer PLN1 and the bump layer BU.
  • the materials of the first planarization layer PLN1 and the bumping layer BU may include organic insulating materials.
  • the organic insulating materials include, for example, polyimide, epoxy resin, acrylic, polyester, photoresist, polyester, etc. Resin materials such as acrylate, polyamide, and silicone.
  • the organic insulating material includes elastic materials, such as urethane, thermoplastic polyurethane (TPU), and the like.
  • the reflective electrode 41 is disposed on the side of the first insulating layer 44 away from the first substrate 42 , and the reflective electrode 41 is disposed on the surface of the protruding layer away from the first substrate 42 , so that the reflective layer 124 is away from the first substrate 42
  • the surface is also formed into a concave and convex surface, so that the light provided by the front light source 10 can be diffusely reflected, thereby increasing the viewing angle of the reflective display device.
  • the reflective electrode 41 may be a single layer or multiple layers.
  • the reflective electrode 41 may include a stack of indium tin oxide (ITO), a metal layer, and indium tin oxide (ITO).
  • the metal layer is located between the two indium tin oxide layers.
  • the metal layer is, for example, silver (Ag) metal with high reflectivity.
  • the second insulating layer 46 is disposed on the side of the reflective electrode 41 away from the first substrate 42 .
  • the second insulating layer 46 is provided with a second via hole corresponding to the reflective electrode 41 .
  • the pixel electrode is disposed on the second insulating layer 46 away from the first substrate 42 .
  • One side of the substrate 42 is connected to the reflective electrode 41 through a second via hole.
  • the orthographic projections of the second via hole and the first via hole on the first substrate 42 do not overlap, thereby preventing the pixel electrode from breaking in the second via hole.
  • the second insulating layer 46 can be made of the organic insulating material mentioned above, and the pixel electrode can be made of a transparent conductive material, such as indium tin oxide (ITO), indium zinc oxide (IZO), etc.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the cell substrate includes: a second substrate 61, and a common electrode 63 provided on the second substrate 61.
  • the common electrode 63 can be made of the above-mentioned transparent conductive material, and the common electrode 63 can be a planar electrode.
  • the cell substrate also includes a spacer PS.
  • the spacer PS is disposed on the side of the common electrode 63 away from the second substrate 61.
  • the spacer PS is used to support the reflective display panel 4 to maintain the reflective display panel. 4. Maintain a certain box thickness.
  • the cell substrate may also include a black matrix (not shown) disposed on the second substrate 61 and a covering layer 62.
  • the covering layer 62 is located on a side of the black matrix away from the second substrate 61, and the common electrode 63 is located on the covering layer.
  • the layer 62 is on the side away from the second substrate 61 .
  • the reflective display panel 4 also includes a common voltage line 54, which can be disposed on the array substrate and located in the non-display area NA.
  • the common electrode 63 can be connected to the common voltage line 54 through a connector, and the connector includes, for example, a gold ball 51 and connecting electrode 53.
  • the connection electrode 53 may be provided in the same layer as the pixel electrode 45
  • the common voltage line 54 may be provided in the same layer as the source electrode 433 and the drain electrode 434 of the thin film transistor 43 .
  • the connection electrode 53 is connected to the common voltage line 54 through a via hole.
  • the display panel 4 also includes a first alignment layer PI1 and a second alignment layer PI2.
  • the first alignment layer PI1 is provided on the side of the array substrate facing the liquid crystal layer 50
  • the second alignment layer PI2 is provided on the side of the cell substrate facing the liquid crystal layer 50.
  • the first alignment layer PI1 and the second alignment layer PI2 are used to align the liquid crystal molecules in the liquid crystal layer 50 .
  • the first alignment layer PI1 and the second alignment layer PI2 at least cover the display area.
  • the polarizer 80 is disposed between the front light source 10 and the second quarter-wave plate 72 , or is disposed on a side of the front light source 10 away from the reflective display panel 4 , it can be Implement display. Considering that when the polarizer 80 is disposed between the front light source 10 and the second quarter-wave plate 72 , part of the light from the front light source 10 will be reflected between the film layers inside the polarizer 80 , so that This results in a reduction in the contrast of the display device.
  • the polarizer 80 is disposed on a side of the front light source 10 away from the reflective display panel 4 , thereby reducing the contrast caused by the reflection of the polarizer 80 reduced situation.
  • the display device may further include a half-wave plate (1/2-wave plate) 71 , which is disposed between the second quarter-wave plate 72 and the front light source 10 between.
  • a half-wave plate (1/2-wave plate) 71 which is disposed between the second quarter-wave plate 72 and the front light source 10 between.
  • first quarter-wave plate 13 the second quarter-wave plate 72 and the half-wave plate 71 .
  • first quarter-wave plate 13 , the second quarter-wave plate 72 and the half-wave plate 71 are made of materials.
  • the first wave plate 13, the second quarter wave plate 72 and the half wave plate 71 are all made of anisotropic materials, such as COP (Cyclo Olefin Polymer) material or PC (Polycarbonate) material.
  • the display device further includes an adhesive layer 73, which is disposed between the front light source and the half-wave plate 71, thereby connecting the front light source and the half-wave plate 71. 71 bonding.
  • the distance between adjacent light-emitting elements of the same light-emitting color in the same row in the second direction is smaller than the distance between the light-emitting elements and the reflective electrode.
  • distance For example, if the distance between the light-emitting element and the reflective electrode is 0.6mm, then the distance between adjacent light-emitting elements of the same light-emitting color in the same row in the second direction is less than 0.6mm.
  • Such an arrangement is conducive to the light of each light-emitting element 12 being able to Mix evenly to make the light output consistent.
  • the reflective display panel 4 in the normally white mode Taking the reflective display panel 4 in the normally white mode as an example, the following explains the principle of display implementation of the display device in FIG. 14 .
  • the phase modulation effect of the liquid crystal layer 50 on the light is equivalent to the effect of a quarter-wave plate when it is not powered.
  • the following description takes the example that the polarized light in the first polarization direction is TM light and the polarized light in the second polarization direction is TE light.
  • the natural light emitted by the light-emitting element 12 is still natural light after passing through the first quarter-wave plate 13.
  • the natural light irradiates the polarizing layer 14
  • the TM light passes through the polarizing layer 14 and is emitted to the half-wave plate.
  • Wave plate 71 TE light is reflected by the polarizing layer 14.
  • the reflected TE light becomes left-handed circularly polarized light after passing through the first quarter-wave plate 13.
  • the left-handed circularly polarized light is reflected by the reflective layer 124 and becomes right-handed circularly polarized light.
  • right-hand circularly polarized light passes through the first quarter-wave plate 13 again, it becomes TM light, and then is emitted to the half-wave plate 71 through the polarizing layer 14 .
  • the TM light turns into right-hand circularly polarized light
  • the right-hand circularly polarized light turns into TM light after passing through the liquid crystal layer 50.
  • the TM light is reflected by the reflective electrode 41, the polarization direction does not change.
  • the reflected light passes through the liquid crystal layer 50, it becomes right-handed circularly polarized light.
  • the right-handed circularly polarized light passes through the second quarter wave plate 72 and the second half wave plate 72.
  • the wave plate 71 turns into TM light, which can be emitted through the polarizer 80 to achieve bright display.
  • a voltage is applied to the liquid crystal layer 50 so that the liquid crystal layer 50 has no effect on the phase of light.
  • the TM light emitted by the front light source 10 towards the half-wave plate 71 passes through the half-wave plate 71 and the second quarter-wave plate 72 and becomes right-handed circularly polarized light.
  • the polarized light is reflected by the reflective electrode 41 after passing through the liquid crystal layer 50, and becomes left-handed circularly polarized light.
  • the left-handed circularly polarized light remains unchanged after passing through the liquid crystal layer 50, and then passes through the second quarter-wave plate 72 and the half-wave plate 72.
  • the polarizer 71 becomes a TE wave and cannot pass through the polarizer 80, thus achieving a dark state.
  • a voltage is applied to the liquid crystal layer 50 to cause it to deflect to a certain extent.
  • the TM light emitted by the front light source 10 towards the half-wave plate 71 passes through the half-wave plate 71 and the second quarter-wave plate 72 and becomes right-handed circularly polarized light.
  • the polarized light turns into right-handed elliptically polarized light, and is then reflected by the reflective electrode 41 and turns into left-handed elliptically polarized light.
  • the left-handed elliptically polarized light passes through the liquid crystal layer 50, the second quarter wave plate 72 and the second quarter wave plate 72.
  • the half-wave plate 71 After the half-wave plate 71, it becomes linearly polarized light, and the angle between the polarization direction and the first polarization direction is greater than 0° and less than 90°, so that part of the light can be emitted through the polarizer 80 to form a grayscale picture.
  • the transmittance of light in the first polarization direction can be increased to about 80%, which is the same as in Figure 1 Compared with the display device, the light efficiency can be improved by about 2 times; in addition, by arranging the polarizer 80 on the side of the front light source 10 away from the reflective display panel 4, the contrast ratio of the display device can be increased from 40:1 to 200: 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种前置光源(10)和显示装置,前置光源(10)包括:衬底基板(11)和设置在衬底基板(11)上的多个发光件(12),每个发光件(12)均包括发光层(12a)和反射层(124),反射层(124)位于发光层(12a)与衬底基板(11)之间;至少一个发光件(12)远离衬底基板(11)的一侧设置有第一四分之一波片(13)和偏振层(14),偏振层(14)位于第一四分之一波片(13)远离发光件(12)的一侧,用于对第一偏振方向的偏振光进行透射,并对第二偏振方向的偏振光进行反射;第一偏振方向与第二偏振方向交叉。

Description

前置光源和显示装置 技术领域
本发明涉及显示技术领域,具体涉及一种前置光源和显示装置。
背景技术
反射式显示装置例如是反射式液晶显示装置或者电子纸显示装置等。以反射式液晶显示装置为例,其显示原理如下:反射式显示面板外部的环境光线或者前置光源的光线入射到反射式显示面板后,被反射回去,通过控制液晶分子的偏转状态使得反射式显示面板的每个像素反射的光的比率不同,从而实现显示。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种前置光源和显示装置。
为了实现上述目的,本发明提供一种前置光源,包括:衬底基板和设置在所述衬底基板上的多个发光件,每个所述发光件均包括发光层和反射层,所述反射层位于所述发光层与所述衬底基板之间;至少一个所述发光件远离所述衬底基板的一侧设置有第一四分之一波片和偏振层,所述偏振层位于所述第一四分之一波片远离所述发光件的一侧,用于对第一偏振方向的偏振光进行透射,并对第二偏振方向的偏振光进行反射;所述第一偏振方向与所述第二偏振方向交叉。
在一些实施例中,所述偏振层为线栅偏振层。
在一些实施例中,所述线栅偏振层包括并排设置的多条金属线,所述金属线的排布周期在60nm~140nm之间,各所述金属线的高度在160nm~300nm之间,所述金属线的线宽与所述金属线的排布周期之比在0.5~0.7之间。
在一些实施例中,所述发光层包括n型半导体层、p型半导体层和量子阱层,所述n型半导体层和所述p型半导体层均位于所述量子阱层与所述反射层之间, 且所述n型半导体层和所述p型半导体层均与所述量子阱层接触;
所述第一四分之一波片与所述量子阱层直接接触,所述偏振层与所述第一四分之一波片直接接触。
在一些实施例中,所述多个发光件在第一方向上排成多排,每排包括沿第二方向排列的多个发光件,同一排中的多个发光件的发光颜色包括多种,在第一方向上排列的多个发光件的发光颜色相同;
所述第一方向与所述第二方向交叉。
在一些实施例中,在所述第一方向上相邻的两个所述发光件之间的间距为同一排中相邻的两个所述发光件之间间距的2~4倍。
在一些实施例中,所述前置光源具有多个分区,每个所述分区中设置有多个所述发光件,同一个分区中的发光颜色相同的多个发光件并联。
在一些实施例中,同一个分区中,多个发光件分为多个发光组,所述多个发光组在第一方向并排设置,每个所述发光组包括沿第二方向排列的多个发光件,同一发光组中的多个发光件的发光颜色包括多种;
在同一个分区中的同一发光组中,多个发光件的第一极与同一条第一电压引线连接,相同颜色的发光件的第二极与同一条第二电压引线连接,不同颜色的发光件的第二极连接不同的第二电压引线;
在同一个分区中,所述多个发光组所连接的各第一电压引线通过第一连接线连接,多个发光组所连接的各第二电压引线中,与相同颜色的发光件连接的各第二电压引线通过第二连接线连接。
在一些实施例中,所述第一四分之一波片和所述偏振层在所述衬底基板上的正投影均位于所述发光件在所述衬底基板上的正投影范围内。
在一些实施例中,所述偏振层的材料包括铝。
本公开实施例还提供一种显示装置,包括:反射式显示面板、偏光片、第二四分之一波片以及上述的前置光源,所述前置光源、所述第二四分之一波片和所述偏光片均设置在所述反射式显示面板的显示侧,所述第二四分之一波片设置在所述前置光源与所述反射式显示面板之间,所述偏光片设置在所述第二 四分之一波片远离所述反射式显示面板的一侧,所述偏光片的偏振方向为所述第一偏振方向。
在一些实施例中,所述偏光片设置在所述前置光源背离所述反射式显示面板的一侧。
在一些实施例中,所述显示装置还包括二分之一波片,所述二分之一波片设置在所述前置光源与所述第二四分之一波片之间。
在一些实施例中,所述反射式显示面板包括:相对设置的阵列基板和对盒基板、以及位于二者之间的液晶层;
所述阵列基板包括:
第一衬底;
薄膜晶体管,设置在所述第一衬底朝向所述液晶层的一侧;
第一绝缘层,设置在所述薄膜晶体管远离所述第一衬底的一侧,所述第一绝缘层中设置有与所述薄膜晶体管的漏极对应的第一过孔;
反射电极,设置在所述第一绝缘层远离所述第一衬底的一侧,并通过所述第一过孔与所述薄膜晶体管的漏极连接;
第二绝缘层,设置在所述反射电极远离所述第一衬底的一侧,所述第二绝缘层上设置有与所述反射电极对应的第二过孔;
像素电极,设置在所述第二绝缘层远离所述第一衬底的一侧,并通过所述第二过孔与所述反射电极连接。
在一些实施例中,所述反射电极远离所述第一衬底的表面为凹凸面。
在一些实施例中,所述多个发光件在第一方向上排成多排,每排包括沿第二方向排列的多个发光件,同一排中的多个发光件的发光颜色包括多种,在第一方向上排列的多个发光件的发光颜色相同;所述第一方向与所述第二方向交叉;
在所述第二方向上相邻的发光颜色相同的两个所述发光件之间的间距小于所述发光件到所述反射电极之间的距离。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为一些实施例中提供的显示装置的示意图。
图2为界面反射率为不同值时,显示装置的对比度与反射式显示面板的对比度的关系曲线。
图3为本公开的一些实施例中提供的前置光源的示意图。
图4为本公开的一些实施例中提供的发光件的示意图。
图5为图3中Q区域的放大图。
图6为金属线采用不同的排布周期时,偏振层的偏振度与波长的关系曲线。
图7为金属线设置为不同高度时,偏振层的偏振度与波长的关系曲线。
图8为金属线采用不同的排布占空比时,偏振层的偏振度与波长的关系曲线。
图9为偏振层采用不同材料制作时,偏振层的偏振度与波长的关系曲线。
图10为本公开的一些实施例中提供的多个发光件的排布示意图。
图11为本公开的一些实施例中提供的其中一个分区中的发光件的连接示意图。
图12本公开的一些实施例中提供的前置光源中的驱动线路层示意图。
图13A至图13D为本公开实施例中的前置光源的制作过程示意图
图14为本公开的一些实施例中提供的显示装置的示意图。
图15为本公开的一些实施例中提供的反射式显示面板的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开 实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,本公开实施例使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为一些实施例中提供的显示装置的示意图,如图1所示,该显示装置为反射式显示装置,其包括:反射式显示面板、前置光源10、偏光片20、四分之一波片30,其中,前置光源10设置在反射式显示面板的显示侧,前置光源10包括衬底基板11以及设置在衬底基板11上的发光件12。偏光片20设置在前置光源10与反射式显示面板之间,四分之一波片30设置在反射式显示面板与偏光片20之间。反射式显示面板包括:相对设置的阵列基板40和对盒基板50、以及位于二者之间的液晶层60,阵列基板40包括多个像素,每个像素中设置有反射电极41。
下面以反射式显示面板为常白模式为例,对图1中的显示装置实现显示的原理进行介绍。其中,在常白模式的反射式显示面板中,液晶层60在未加电的状态下,对光线的相位调制作用相当于四分之一波片30的作用。
在实现亮态显示时,发光件12的光线(自然光)经过偏光片20,从而形成第一线偏振光,该第一线偏振光经过四分之一波片30,形成圆偏振光,圆偏振光经过液晶层60后变成第二线偏振光,该第二线偏振光的偏振方向与第一偏振 方向垂直。第二线偏振光被反射电极41反射后,偏振方向未发生变化,反射光线经过液晶层60、四分之一波片30后,变成第三线偏振光,该第三线偏振光的偏振方向与第一线偏振光的偏振方向相同,从而可以透过偏光片20而射出,使得反射式显示装置显示白画面。
在实现暗态显示时,为液晶层60施加电压,使其对光线的相位不起作用。此时,发光件12的光线(自然光)经过偏光片20,从而形成第一线偏振光,该第一线偏振光经过四分之一波片30,形成圆偏振光,圆偏振光经过液晶层60后以及反射电极41的反射后,偏振方向并不发生变化,之后,圆偏振光经过四分之一波片30,形成第二线偏振光,该第二线偏振光与第一线偏振光的偏振方向垂直,从而无法从偏光片20射出,使得反射式显示装置显示黑画面。
在实现中间态显示时(即显示介于白画面和黑画面之间的灰度画面)时,为液晶层60施加电压,使其发生一定的偏转。此时,发光件12的光线(自然光)经过偏光片20,从而形成第一线偏振光,该第一线偏振光经过四分之一波片30,形成椭圆偏振光,以该椭圆偏振光为左旋椭圆偏振光为例,左旋椭圆偏振光被反射电极41反射后,变成右旋椭圆偏振光,右旋椭圆偏振光经过液晶层60和四分之一波片30后,形成第四线偏振光,该第四线偏振光与第一线偏振光的偏振方向之间的夹角大于0°且小于90°,从而使得一部分光可以透过偏光片20射出,形成灰度画面。
在图1所示的反射式显示装置中,前置光源所发出的光线照射至偏光片20时,只有42%的光线会被透过,另一部分光线被偏光片20吸收,从而导致显示装置的光效较低。
另外,通常偏光片包括堆叠设置的多个光学膜,例如包括TAC(三醋酸纤维薄)膜、PSA(压敏胶)膜、粘结层等等,不同材质的光学膜的折射率有所差别,这就导致不同材质的光学膜之间的界面会对发光件所发射的光线产生一定的反射,通常,偏光层中的界面的反射率为0.5%,这就导致一部分光线未经液晶层的调制而直接被反射至人眼,从而导致显示装置的对比度(CR)较低。
图2为界面反射率为不同值时,显示装置的对比度与反射式显示面板的对 比度的关系曲线。如图2所示,在偏光层中的界面反射率为0.2%的情况下,当反射式显示面板的对比度较高时,显示装置的对比度也较高;而在偏光层中的界面反射率为0.5%的情况下,当反射式显示面板的对比度较高时,显示装置的对比度并没有达到较高值。
为了至少解决上述技术问题之一,本公开的实施例提供了一种前置光源,用于反射式显示装置中,图3为本公开的一些实施例中提供的前置光源的示意图,如图3所示,前置光源10包括:衬底基板11和设置在衬底基板11上的多个发光件12,该发光件12例如为微发光二极管(mini-LED/micro LED)。图4为本公开的一些实施例中提供的发光件的示意图,如图4所示,发光件12可以为倒装型发光二极管,其包括:发光层12a、分别与发光层12a电连接的第一电极125和第二电极126,其中,第一电极125和第二电极126中的一者为正极,另一者为负极。发光层12a可以包括:n型半导体层122、p型半导体层123以及与二者接触的量子阱层121。其中,n型半导体层122和p型半导体层123位于量子阱层121的同一侧,且n型半导体层122和p型半导体层123被绝缘层(未示出)间隔开。另外,发光件12还包括反射层124,反射层124位于发光层12a与衬底基板11之间,以使发光层12a所发射的光线能够尽量朝向远离衬底基板11的一侧射出。在一个示例中,反射层124可以包括层叠设置的多层介质层,多层介质层可以包括氧化硅层、氧化钛层等。第一电极125可以通过反射层124中的过孔与n型半导体层122电连接,第二电极126可以通过反射层124中的过孔与p型半导体层123电连接。
图5为图3所示的Q区域的放大图,结合图3至图5所示,至少一个发光件12远离衬底基板11的一侧还设置有第一四分之一波片13和偏振层14,偏振层14位于第一四分之一波片(1/4波片)13远离发光件12的一侧,用于对第一偏振方向的偏振光进行透射,并对第二偏振方向的偏振光进行反射;第一偏振方向与第二偏振方向交叉。
在一个示例中,第一偏振方向的偏振光和第二偏振方向的偏振光中,一者为TM光,另一者为TE光。
图3中所示的前置光源10为反射式显示面板提供线偏振光的原理如下:发光件12所发射的自然光经过第一四分之一波片13后,仍为自然光,自然光照射至偏振层14时,第一偏振方向的偏振光透过偏振层14,第二偏振方向的偏振光被偏振层14反射,反射光线经过第一四分之一波片13后,变为圆偏振光,圆偏振光经过反射层124的反射后,旋向发生变化,旋向发生变化后的圆偏振光再次经过第一四分之一波片13后,变成第一偏振方向的偏振光,从而经偏振层14射出。以第一偏振方向的偏振光为TM光为例,发光件12所发射的自然光经过第一四分之一波片13后,仍为自然光,自然光照射至偏振层14时,TM光透过偏振层14,而TE光被偏振层14反射,被反射的TE光经过第一四分之一波片13后变成左旋圆偏振光,左旋圆偏振光被反射层124反射后变成右旋圆偏振光,右旋圆偏振光再次经过第一四分之一波片13后,变成TM光,从而经偏振层14射出。可见,在设置第一四分之一波片13和偏振层14后,发光件12所发射的光线中,一部分直接经过偏振层14射出,其余光线中,一部分光经过多次反射后,最终经偏振层14射出,从而可以提高前置光源10的光效。
在一些实施例中,如图5所示,偏振层14为线栅偏振层14,其包括多条金属线141,多条金属线141可以位于同一平面上,以使发光件12的光线经偏振层14射出后,光线分布的更均匀。
在一些实施例中,线栅偏振层14包括沿第一方向(X方向)并排设置的多条金属线141,每条金属线141可以沿第二方向(Y方向)延伸,其中,第一方向与第二方向可以垂直。
图6为金属线采用不同的排布周期时,偏振层的偏振度与波长的关系曲线,如图6所示,当金属线141的排布周期P小于或等于140nm时,偏振层14对可见光全波段的偏振度均较高,因此,在一些实施例中,将金属线141的排布周期P设置为小于或等于140nm,有利于提高偏振层14对可见光全波段的偏振度。考虑到当金属线141的排布周期P过小时,制作难度增加,在一些优选实施方式中,将金属线141的排布周期P设置在60nm~140nm之间,从而在提高偏振层14对可见光全波段的偏振度的同时便于线栅偏振层的制作。例如,排布周期 设置为60nm或80nm或100nm或120nm或140nm。
图7为金属线设置为不同高度时,偏振层的偏振度与波长的关系曲线,如图7所示,当金属线141的高度大于或等于160nm时,偏振层14对可见光全波段的偏振度均较高。而当金属线141的高度过大时,偏振层14的透过率较低,在一些优选实施方式中,将金属线141的高度H设置在160nm~300nm之间,从而在保证偏振层14透过率的同时,提高偏振层14对可见光全波段的偏振度。例如,高度H设置为160nm、或200nm或250nm或300nm。
图8为金属线采用不同的排布占空比时,偏振层的偏振度与波长的关系曲线,其中,排布占空比duty为金属线141的线宽w与排布周期P之比。如图8所示,当金属线141的排布占空比duty大于0.5时,偏振层14对可见光全波段的偏振度均较高。而考虑到当金属线141的排布占空比duty过大时,偏振层14的透过率较低,因此,在一些实施例中,将金属线141的排布占空比duty(金属线141的线宽w与排布周期P之比),设置在0.5~0.7之间,从而在保证偏振层14的透过率的同时,还能提高偏振层14对可见光全波段的偏振度。例如排布占空比duty设置为0.5,或0.6或0.7。
在本公开的一些实施例中,偏振层14的材料包括铝。其中,偏振层14的材料是指金属线141的材料。图9为偏振层采用不同材料制作时,偏振层的偏振度与波长的关系曲线,如图9所示,相较于其他材料,当偏振层14采用铝制作时,偏振层14在可见光全波段的偏振度均较高。
在本公开的一些实施例中,第一四分之一波片13可以与发光件的量子阱层121直接接触,偏振层14可以与第一四分之一波片13直接接触,从而提高光效,且可以防止偏振层14的金属线141对发光角度造成影响。其中,两个结构“直接接触”是指,两个结构之间不设置其他结构。
图10为本公开的一些实施例中提供的多个发光件的排布示意图,如图10所示,多个发光件12的发光颜色可以包括多种,例如,红色、绿色和蓝色。在反射式显示装置进行显示时,可以利用场序驱动方式驱动前置光源10发光,即,在反射式显示装置的每个显示周期中,依次驱动红色发光件12r、蓝色发光件12b 和绿色发光件12g发光,从而使反射式显示装置在一个显示周期内依次显示红色子画面、蓝色子画面和绿色子画面,由于人眼的视觉暂留效应,使得三个子画面在大脑中混合,形成具有一定色彩的图像。这种情况下,显示面板中的每个像素无需再划分为多个不同颜色的子像素,从而有利于提高产品分辨率。
如图10所示,多个发光件12可以呈阵列排布,具体地,多个发光件12在第一方向上排成多排,每排包括沿第二方向排列的多个发光件12,第一方向与第二方向交叉,例如,第一方向与第二方向垂直。其中,同一排中的多个发光件12的发光颜色包括多种,例如,同一排中的多个发光件12包括红色发光件12r、绿色发光件12g和蓝色发光件12b,分别发射红光、绿光和蓝光;且红色发光件12r、绿色发光件12g和蓝色发光件12b在第二方向上轮流设置。如图10所示,在第一方向上排列在同一排的多个发光件12的发光颜色相同,从而有利于在前置光源10的生产过程中,通过转移工艺将多个发光件12转移到衬底基板11上。
在一个示例中,多个发光件12排成多行多列,第一方向为列方向,第二方向为行方向,即同一行中的多个发光件12的发光颜色可以包括多种,同一列中的发光件12的发光颜色相同。
在一些实施例中,在第一方向上相邻的两个发光件12之间的间距d1为同一排中在第二方向上相邻两个发光件12之间间距d2的2~4倍,从而有利于不同颜色发光件12的光线能够均匀混合。例如,d1为d2的2倍,或3倍,或4倍。
在一些实施例中,可以通过分区控制的方式来控制前置光源10发光。其中,前置光源10具有多个分区,每个分区中设置有多个发光件12。图11为本公开的一些实施例中提供的其中一个分区中的发光件的电连接示意图,如图11所示,在同一个分区中,相同发光颜色的多个发光件12并联。通过将同一个分区中的相同发光颜色的发光件12并联,可以增大驱动电流,满足发光件12的电学驱动需求;另外,可以根据待显示图像来对各分区进行独立控制,从而有利于降低驱动功耗。例如,当待显示的图像的某一区域为暗态时,可以控制相应分区 中的发光件12不发光。
在一些实施例中,如图11所示,在同一个分区中,多个发光件12分为多个发光组120,所述多个发光组120在第一方向并排设置,每个发光组120包括沿第二方向排列的多个发光件12,同一发光组120中的多个发光件12的发光颜色包括多种,例如,同一个发光组120中的多个发光件12包括多个红色发光件12r、多个绿色发光件12g和多个蓝色发光件12b。
在同一个分区中的同一发光组120中,多个发光件12的第一电极125与同一条第一电压引线151连接,相同颜色的发光件12的第二电极126与同一条第二电压引线152连接,不同颜色的发光件12的第二电极126连接不同的第二电压引线152。其中,每个发光件12的第一电极125可以通过第一电极引出线161与第一电压引线151连接,每个发光件12的第二电极126可以通过第二电极引出线162与第二电压引线152连接。
在同一个分区中,多个发光组120所连接的第一电压引线151通过第一连接线171连接,多个发光组120所连接的第二电压引线152中,与相同颜色的发光件12所连接的第二电压引线152通过第二连接线172连接。
例如,每个发光组120包括多个红色发光件12r、多个绿色发光件12g和多个蓝色发光件12b,每个发光组120中的多个发光件12连接一条第一电压引线151和三条第二电压引线152,该三条第二电压引线152分别记作引线152A、引线152B和引线152C。其中,在同一个发光组120中,红色发光件12r、绿色发光件12g和蓝色发光件12b的第一电极与同一条第一电压引线151连接,多个红色发光件12r的第二电极与引线152A连接,多个绿色发光件12g的第二电极与引线152B连接,多个蓝色发光件12b的第二电极与引线152C连接。在同一个分区中,多个发光组120所连接的第一电压引线151通过第一连接线171相互连接,多个发光组120所连接的引线152A通过第一条第二连接线172连接,多个发光组120所连接的引线152B通过第二条第二连接线172连接,多个发光组120连接的引线152C通过第三条第二连接线172连接。如此,可以将同一个分区中的相同颜色的发光件12并联,并且,通过向三条第二连接线172依次施 加电信号,可以依次开启分区中的红色发光件12r、绿色发光件12g和蓝色发光件12b。
图12本公开的一些实施例中提供的前置光源中的驱动线路层的截面示意图,其中,驱动线路层为前置光源10为与发光件12连接的导电线路层。如图12所示,衬底基板11上设置有第一金属层M1、第二金属层M2、第一钝化层PVX1、第二钝化层PVX2、第一凸起181、第二凸起182、第三钝化层PVX3、第一接触电极191和第二接触电极192,其中,第一金属层M1包括上述第一电压引线151和第二电压引线152,第一钝化层PVX1设置在第一金属层M1远离衬底基板11的一侧,第一凸起181和第二凸起182位于第一钝化层PVX1远离衬底基板11的一侧,第二钝化层PVX2位于第一钝化层PVX1远离衬底基板11的一侧,并覆盖第一凸起181和第二凸起182。第二金属层M2设置在第二钝化层PVX2远离衬底基板11的一侧,第二金属层M2包括上述第一电极引出线161和第二电极引出线162,还包括第一连接线171和第二连接线172;第一电极引出线161通过贯穿第一钝化层PVX1和第二钝化层PVX2的过孔与相应的第一电压引线151连接,第二电极引出线162通过贯穿第一钝化层PVX1和第二钝化层PVX2的过孔与相应的第二电压引出线连接,第一连接线171通过贯穿第一钝化层PVX1和第二钝化层PVX2的过孔与相应的第一电压引线151连接,第二连线通过贯穿第一钝化层PVX1和第二钝化层PVX2的过孔与相应的第二电压引线152连接。第一接触电极191和第二接触电极192位于第三钝化层PVX3远离衬底基板11的一侧,第一接触电极191设置在对应于第一凸起181的位置,第二接触电极192设置在对应于第二凸起182的位置,第一接触电极191通过第三钝化层PVX3上的过孔与第一电极引出线161连接,第二接触电极192通过第三钝化层PVX3上的过孔与第二电极引出线162连接。第一接触电极191用于连接发光件12的第一电极125,第二接触电极192用于连接发光件12的第二电极126。
图13A至图13D为本公开实施例中的前置光源的制作过程示意图,如图13A至图13D所示,前置光源10的制作过程包括如下步骤:
步骤S1、如图13A所示,在衬底基板11上形成驱动线路层,该驱动线路层包括上述各第一电压引线151、第二电压引线152、第一连接线171、第二连接线171、第一电极引出线161、第二电极引出线162、第一接触电极191和第二接触电极192。其中,图13A中仅示出了第一接触电极191和第二接触电极192。
步骤S2、如图13B至图13C所示,利用转移基板90将多个发光件12转移至衬底基板11上,并使发光件12的第一电极125与第一接触电极191电连接,发光件12的第二电极126与第二接触电极192电连接。之后,将转移基板90移走。
步骤S3、如图13D所示,在发光件12上依次形成第一四分之一波片13和偏振层14。
在一些实施例中,第一四分之一波片13和偏振层14在衬底基板11上的正投影均位于发光件12在衬底基板11上的正投影范围内,即,在未设置发光件12的区域,不再设置第一四分之一波片13和偏振层14。第一四分之一波片13可以通过气相沉积以及刻蚀工艺形成。偏振层14可以采用纳米压印工艺形成。
本公开实施例还提供一种显示装置,图14为本公开的一些实施例中提供的显示装置的示意图,如图14所示,显示装置包括:反射式显示面板4、偏光片80、第二四分之一波片72和上述实施例中的前置光源10,其中,前置光源10、第二四分之一波片72和偏光片80均设置在反射式显示面板4的显示侧,第二四分之一波片72设置在前置光源10与反射式显示面板4之间。偏光片80的偏振方向为所述第一偏振方向,偏光片80设置在前置光源10远离反射式显示面板4的一侧。
图15为本公开的一些实施例中提供的反射式显示面板的示意图,如图15所示,反射式显示面板4具有显示区AA和非显示区NA,显示区AA包括多个像素区。显示面板4包括:相对设置的阵列基板和对盒基板、以及位于二者之间的液晶层50。
阵列基板包括:第一衬底42、薄膜晶体管43、第一绝缘层、反射电极41、 第二绝缘层46和像素电极45。另外,阵列基板还包括设置在第一衬底42上的多条栅线和多条数据线,多条栅线和多条数据线交叉,以限定出多个像素区,在每个像素区,均设置有薄膜晶体管43、反射电极41和像素电极45。
其中,薄膜晶体管43设置在第一衬底42朝向液晶层50的一侧,薄膜晶体管43包括有源层431、栅极432、源极433和漏极434。有源层431与栅极432之间设置有栅绝缘层GI,栅极432所在层与源极433、漏极434所在层之间设置有层间介质层ILD。以薄膜晶体管43为顶栅型薄膜晶体管为例,如图15所示,有源层431位于栅极432与第一衬底42之间。有源层431可以包括例如无机半导体材料(例如,多晶硅、非晶硅等)、有机半导体材料、氧化物半导体材料。有源层431可以包括与栅极432相对的沟道区以及分别设置在沟道区的两侧的源区和漏区。源区和漏区均可以包括比沟道区的杂质浓度高的杂质。杂质可以包括N型杂质或P型杂质。
栅绝缘层GI覆盖有源层431,栅绝缘层GI可以包括氮氧化硅(SiON)、氧化硅(SiOx)、氮化硅(SiNx)、碳氧化硅(SiOxCy)、氮碳化硅(SiCxNy)、氧化铝(AlOx)、氮化铝(AlNx)、氧化钽(TaOx)、氧化铪(HfOx)、氧化锆(ZrOx)、氧化钛(TiOx)等。栅绝缘层GIGI1可以形成为单层或多层。
栅极432设置在栅绝缘层GI远离第一衬底42的一侧。例如,栅极432的材料可以包括金(Au)、金的合金、银(Ag)、银的合金、铝(Al)、铝的合金、氮化铝(AlNx)、钨(W)、氮化钨(WNx)、铜(Cu)、铜的合金、镍(Ni)、铬(Cr)、氮化铬(CrNx)、钼(Mo)、钼的合金、钛(Ti)、氮化钛(TiN x)、铂(Pt)、钽(Ta)、氮化钽(TaNx)、钕(Nd)、钪(Sc)、氧化锶钌(SRO)、氧化锌(ZnOx)、氧化锡(SnOx)、氧化铟(InOx)、氧化镓(GaOx)、氧化铟锡(ITO)、氧化铟锌(IZO)等。栅极432可以具有单层或多层。
层间介质层ILD设置有栅极432远离第一衬底42的一侧,层间介质层ILD可以包括氮氧化硅(SiON)、氧化硅(SiOx)、氮化硅(SiNx)、碳氧化硅(SiOxCy)、氮碳化硅(SiCxNy)、氧化铝(AlOx)、氮化铝(AlNx)、氧化钽(TaOx)、氧化铪(HfOx)、氧化锆(ZrOx)、氧化钛(TiOx)等。层间介质层ILD可以形成为单层或多层。
源极433和漏极434设置在层间介质层ILD远离第一衬底42的一侧,源极433通过贯穿栅绝缘层GI和层间介质层ILD的过孔与有源层431的源区电连接,漏极434通过贯穿栅绝缘层GI和层间介质层ILD的过孔与有源层431的漏区电连接。源极433和漏极434的材料均可以采用金(Au)、金的合金、银(Ag)、银的合金、铝(Al)、铝的合金、氮化铝(AlNx)、钨(W)、氮化钨(WNx)、铜(Cu)、铜的合金、镍(Ni)、铬(Cr)、氮化铬(CrNx)、钼(Mo)、钼的合金、钛(Ti)、氮化钛(TiN x)、铂(Pt)、钽(Ta)、氮化钽(TaNx)、钕(Nd)、钪(Sc)、氧化锶钌(SRO)、氧化锌(ZnOx)、氧化锡(SnOx)、氧化铟(InOx)、氧化镓(GaOx)、氧化铟锡(ITO)、氧化铟锌(IZO)等。
第一衬底42与薄膜晶体管43的有源层431之间还可以设置缓冲层BFL,缓冲层BFL可以防止或减少金属原子和/或杂质从第一衬底42扩散到有源层431中。
第一绝缘层44设置在薄膜晶体管43远离第一衬底42的一侧,第一绝缘层44中可以设置有与漏极434对应的第一过孔。其中,第一绝缘层44可以包括第一平坦化层PLN1和凸起层BU,凸起层BU位于第一平坦化层PLN1远离第一衬底42的一侧,第一平坦化层PLN1远离第一衬底42的表面大致平坦,凸起层BU远离第一衬底42的表面形成有多个凸起结构,从而使凸起层BU远离第一衬底42的表面为凹凸面。第一过孔同时贯穿第一平坦化层PLN1和凸起层BU。其中第一平坦化层PLN1和凸起层BU的材料均可以包括有机绝缘材料,该有机绝缘材料例如包括聚酰亚胺、环氧树脂、压克力、聚酯、光致抗蚀剂、聚丙烯酸酯、聚酰胺、硅氧烷等树脂类材料等。再例如,该有机绝缘材料包括弹性材料,例如、氨基甲酸乙酯、热塑性聚氨酯(TPU)等。
反射电极41设置在第一绝缘层44远离第一衬底42的一侧,反射电极41设置在凸起层远离第一衬底42的表面上,从而使反射层124远离第一衬底42的表面也形成为凹凸面,从而可以对前置光源10所提供的光进行漫反射,从而增大反射式显示装置的视角。其中,反射电极41可以为单层或多层,在一个示例中,反射电极41可以包括氧化铟锡(ITO)、金属层、氧化铟锡(ITO)的叠层, 金属层位于两层氧化铟锡层之间,金属层例如为反射率较高的银(Ag)金属。
第二绝缘层46设置在反射电极41远离第一衬底42的一侧,第二绝缘层46上设置有对应于反射电极41的第二过孔,像素电极设置在第二绝缘层46远离第一衬底42的一侧,并通过第二过孔与反射电极41连接。在一个示例中,第二过孔与第一过孔在第一衬底42上的正投影无交叠,从而防止像素电极在第二过孔内发生断裂。
第二绝缘层46可以采用上文所述的有机绝缘材料,像素电极可以采用透明导电材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)等。
对盒基板包括:第二衬底61、以及设置在第二衬底61上的公共电极63,公共电极63可以采用上述透明导电材料,公共电极63可以为面状电极。对盒基板还包括隔垫物PS,隔垫物PS设置在公共电极63远离第二衬底61的一侧,隔垫物PS用于对反射式显示面板4进行支撑,以维持反射式显示面板4保持一定的盒厚。
另外,对盒基板还可以包括设置在第二衬底61上的黑矩阵(未示出)以及覆盖层62,覆盖层62位于黑矩阵远离第二衬底61的一侧,公共电极63位于覆盖层62远离第二衬底61的一侧。
另外,反射式显示面板4还包括公共电压线54,其可以设置在阵列基板上,并位于非显示区NA,公共电极63可以通过连接件与公共电压线54连接,连接件例如包括金球51和连接电极53。连接电极53可以与像素电极45同层设置,公共电压线54可以与薄膜晶体管43的源极433和漏极434同层设置,连接电极53通过过孔与公共电压线54连接。
另外,显示面板4还包括第一配向层PI1和第二配向层PI2,第一配向层PI1设置在阵列基板朝向液晶层50的一侧,第二配向层PI2设置在对盒基板朝向液晶层50的一侧,第一配向层PI1和第二配向层PI2用于对液晶层50中的液晶分子进行配向。第一配向层PI1和第二配向层PI2至少覆盖显示区。
在本公开实施例中,无论将偏光片80设置在前置光源10与第二四分之一波片72之间,还是设置在前置光源10背离反射式显示面板4的一侧,均可以 实现显示。考虑到当偏光片80设置在前置光源10与第二四分之一波片72之间时,前置光源10的光线中的部分在偏光片80内部的膜层之间会发生反射,从而导致显示装置的对比度降低。因此,为了提高显示装置的对比度,在本公开的一些优选实施例中,偏光片80设置在前置光源10背离反射式显示面板4的一侧,从而减少因偏光片80的反射而导致的对比度降低的情况。
在一些实施例中,如图14所示,显示装置还可以包括二分之一波片(1/2波片)71,其设置在第二四分之一波片72与前置光源10之间。通过二分之一波片71的设置,可以弥补第二四分之一波片72对各波长光线的相位调制能力的差异,这样,在显示装置实现暗态显示时,各波长的光线均不会从显示装置出射。
本公开实施例对第一四分之一波片13、第二四分之一波片72和二分之一波片71的材料不做具体限定,在一些实施例中,第一四分之一波片13、第二四分之一波片72和二分之一波片71均采用各向异性的材料,例如,COP(Cyclo Olefin Polymer)材料或与PC(Polycarbonate)材料。
在一些实施例中,如图14所示,显示装置还包括粘结层73,其设置在前置光源和二分之一波片71之间,从而将前置光源与二分之一波片71粘结。
在本公开的实施例中,在该显示装置中的前置光源中,同一排中在第二方向上相邻的相同发光颜色的发光件之间的距离小于发光件与所述反射电极之间的距离。例如,发光件距离反射电极的距离为0.6mm,则同一排中在第二方向上相邻的相同发光颜色的发光件之间的距离小于0.6mm,如此设置,利于各发光件12的光线能够均匀混合,使得出光亮度一致。
下面以反射式显示面板4为常白模式为例,对图14中显示装置实现显示的原理进行介绍。其中,在常白模式的反射式显示面板4中,液晶层50在未加电的状态下,对光线的相位调制作用相当于四分之一波片的作用。另外,下文以第一偏振方向的偏振光为TM光、第二偏振方向的偏振光为TE光为例进行说明。
在实现亮态显示时,发光件12所发射的自然光经过第一四分之一波片13后仍为自然光,自然光照射至偏振层14时,TM光透过偏振层14射向二分之一 波片71,TE光被偏振层14反射,被反射的TE光经过第一四分之一波片13后变成左旋圆偏振光,左旋圆偏振光被反射层124反射后变成右旋圆偏振光,右旋圆偏振光再次经过第一四分之一波片13后,变成TM光,从而经偏振层14射向二分之一波片71。TM光经过二分之一波片71和第二四分之一波片72后,变成右旋圆偏振光,右旋圆偏振光经过液晶层50后变成TM光。TM光被反射电极41反射后,偏振方向未发生变化,反射光线经过液晶层50后,变成右旋圆偏振光,右旋圆偏振光经过第二四分之一波片72和二分之一波片71变成TM光,从而可以透过偏光片80而射出,实现亮态显示。
在实现暗态显示时,为液晶层50施加电压,以使液晶层50对光线的相位不起作用。此时,前置光源10射向二分之一波片71的TM光经过二分之一波片71和第二四分之一波片72后,变成右旋圆偏振光,右旋圆偏振光经过液晶层50后被反射电极41反射,变成左旋圆偏振光,左旋圆偏振光经过液晶层50后保持不变,之后经过第二四分之一波片72和二分之一波片71变成TE波,从而无法透过偏光片80,实现暗态。
在实现中间态显示时,为液晶层50施加电压,使其发生一定的偏转。此时,前置光源10射向二分之一波片71的TM光经过二分之一波片71和第二四分之一波片72后,变成右旋圆偏振光,右旋圆偏振光经过液晶层50后,变成右旋椭圆偏振光,之后被反射电极41反射,变成左旋椭圆偏振光,左旋椭圆偏振光经过液晶层50、第二四分之一波片72和二分之一波片71后,变成线偏振光,且偏振方向与第一偏振方向之间的夹角大于0°且小于90°,从而使得一部分光可以透过偏光片80射出,形成灰度画面。
在本公开实施例中,通过在发光件12上设置第一四分之一波片和偏振层14,可以使第一偏振方向的光线的透过率提高至80%左右,和图1中的显示装置相比,可以提升光效约2倍;另外,通过将偏光片80设置在前置光源10远离反射式显示面板4的一侧,可以将显示装置的对比度从40:1提高至200:1。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言, 在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (16)

  1. 一种前置光源,其特征在于,包括:衬底基板和设置在所述衬底基板上的多个发光件,每个所述发光件均包括发光层和反射层,所述反射层位于所述发光层与所述衬底基板之间;至少一个所述发光件远离所述衬底基板的一侧设置有第一四分之一波片和偏振层,所述偏振层位于所述第一四分之一波片远离所述发光件的一侧,用于对第一偏振方向的偏振光进行透射,并对第二偏振方向的偏振光进行反射;所述第一偏振方向与所述第二偏振方向交叉。
  2. 根据权利要求1所述的前置光源,其特征在于,所述偏振层为线栅偏振层。
  3. 根据权利要求2所述的前置光源,其特征在于,所述线栅偏振层包括并排设置的多条金属线,所述金属线的排布周期在60nm~140nm之间,各所述金属线的高度在160nm~300nm之间,所述金属线的线宽与所述金属线的排布周期之比在0.5~0.7之间。
  4. 根据权利要求1所述的前置光源,其特征在于,所述发光层包括n型半导体层、p型半导体层和量子阱层,所述n型半导体层和所述p型半导体层均位于所述量子阱层与所述反射层之间,且所述n型半导体层和所述p型半导体层均与所述量子阱层接触;
    所述第一四分之一波片与所述量子阱层直接接触,所述偏振层与所述第一四分之一波片直接接触。
  5. 根据权利要求1至4中任一项所述的前置光源,其特征在于,所述多个发光件在第一方向上排成多排,每排包括沿第二方向排列的多个发光件,同一排中的多个发光件的发光颜色包括多种,在第一方向上排列的多个发光件的发光颜色相同;
    所述第一方向与所述第二方向交叉。
  6. 根据权利要求5所述的前置光源,其特征在于,在所述第一方向上相邻的两个所述发光件之间的间距为同一排中相邻的两个所述发光件之间间距的2~4倍。
  7. 根据权利要求1至4中任一项所述的前置光源,其特征在于,所述前置光源具有多个分区,每个所述分区中设置有多个所述发光件,同一个分区中的发光颜色相同的多个发光件并联。
  8. 根据权利要求7所述的前置光源,其特征在于,同一个分区中,多个发光件分为多个发光组,所述多个发光组在第一方向并排设置,每个所述发光组包括沿第二方向排列的多个发光件,同一发光组中的多个发光件的发光颜色包括多种;
    在同一个分区中的同一发光组中,多个发光件的第一极与同一条第一电压引线连接,相同颜色的发光件的第二极与同一条第二电压引线连接,不同颜色的发光件的第二极连接不同的第二电压引线;
    在同一个分区中,所述多个发光组所连接的各第一电压引线通过第一连接线连接,所述多个发光组所连接的各第二电压引线中,与相同颜色的发光件连接的各第二电压引线通过第二连接线连接。
  9. 根据权利要求1至4中任一项所述的前置光源,其特征在于,所述第一四分之一波片和所述偏振层在所述衬底基板上的正投影均位于所述发光件在所述衬底基板上的正投影范围内。
  10. 根据权利要求1或2所述的前置光源,其特征在于,所述偏振层的材料包括铝。
  11. 一种显示装置,其特征在于,包括:反射式显示面板、偏光片、第二四分之一波片以及权利要求1至10中任一项所述的前置光源,所述前置光源、所述第二四分之一波片和所述偏光片均设置在所述反射式显示面板的显示侧,所述第二四分之一波片设置在所述前置光源与所述反射式显示面板之间,所述偏光片设置在所述第二四分之一波片远离所述反射式显示面板的一侧,所述偏光片的偏振方向为所述第一偏振方向。
  12. 根据权利要求11所述的显示装置,其特征在于,所述偏光片设置在所述前置光源背离所述反射式显示面板的一侧。
  13. 根据权利要求11所述的显示装置,其特征在于,所述显示装置还包括二分之一波片,所述二分之一波片设置在所述前置光源与所述第二四分之一波片之间。
  14. 根据权利要求11所述的反射式显示装置,其特征在于,所述反射式显示面板包括:相对设置的阵列基板和对盒基板、以及位于二者之间的液晶层;
    所述阵列基板包括:
    第一衬底;
    薄膜晶体管,设置在所述第一衬底朝向所述液晶层的一侧;
    第一绝缘层,设置在所述薄膜晶体管远离所述第一衬底的一侧,所述第一绝缘层中设置有与所述薄膜晶体管的漏极对应的第一过孔;
    反射电极,设置在所述第一绝缘层远离所述第一衬底的一侧,并通过所述第一过孔与所述薄膜晶体管的漏极连接;
    第二绝缘层,设置在所述反射电极远离所述第一衬底的一侧,所述第二绝缘层上设置有与所述反射电极对应的第二过孔;
    像素电极,设置在所述第二绝缘层远离所述第一衬底的一侧,并通过所述 第二过孔与所述反射电极连接。
  15. 根据权利要求14所述的显示装置,其特征在于,所述反射电极远离所述第一衬底的表面为凹凸面。
  16. 根据权利要求14所述的显示装置,其特征在于,所述多个发光件在第一方向上排成多排,每排包括沿第二方向排列的多个发光件,同一排中的多个发光件的发光颜色包括多种,在第一方向上排列的多个发光件的发光颜色相同;所述第一方向与所述第二方向交叉;
    在所述第二方向上相邻的两个相同发光颜色的所述发光件之间的间距小于所述发光件到所述反射电极之间的距离。
PCT/CN2023/092979 2022-06-15 2023-05-09 前置光源和显示装置 WO2023241268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210680967.3 2022-06-15
CN202210680967.3A CN114994982B (zh) 2022-06-15 2022-06-15 前置光源和显示装置

Publications (2)

Publication Number Publication Date
WO2023241268A1 true WO2023241268A1 (zh) 2023-12-21
WO2023241268A9 WO2023241268A9 (zh) 2024-02-08

Family

ID=83034335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092979 WO2023241268A1 (zh) 2022-06-15 2023-05-09 前置光源和显示装置

Country Status (2)

Country Link
CN (1) CN114994982B (zh)
WO (1) WO2023241268A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994982B (zh) * 2022-06-15 2023-10-13 京东方科技集团股份有限公司 前置光源和显示装置
CN115755465A (zh) * 2022-11-14 2023-03-07 京东方科技集团股份有限公司 偏振发光单元、发光基板、背光模组、显示装置和设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294801A (ja) * 2003-03-27 2004-10-21 Casio Comput Co Ltd 液晶表示装置
CN104730768A (zh) * 2015-04-09 2015-06-24 京东方科技集团股份有限公司 反射式显示装置及其显示方法
CN105700233A (zh) * 2016-04-05 2016-06-22 深圳市华星光电技术有限公司 背光模组及液晶显示装置
CN107154420A (zh) * 2017-05-08 2017-09-12 京东方科技集团股份有限公司 一种显示面板及其制造方法、显示装置
CN107925011A (zh) * 2015-08-19 2018-04-17 三星电子株式会社 自发光显示面板和包括该自发光显示面板的显示设备
CN107991811A (zh) * 2018-01-29 2018-05-04 广东小天才科技有限公司 前光源液晶显示器及其制造方法
CN108983485A (zh) * 2018-08-17 2018-12-11 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
WO2021189271A1 (zh) * 2020-03-24 2021-09-30 京东方科技集团股份有限公司 显示器件及显示装置
CN114994982A (zh) * 2022-06-15 2022-09-02 京东方科技集团股份有限公司 前置光源和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203552623U (zh) * 2013-11-06 2014-04-16 郑州中原显示技术有限公司 一种反射型偏振模的led显示屏
JP2016038537A (ja) * 2014-08-11 2016-03-22 旭硝子株式会社 ワイヤグリッド型偏光子、光源モジュールおよび投射型表示装置
CN105717688B (zh) * 2016-04-22 2019-06-07 京东方科技集团股份有限公司 对盒基板、反射式显示面板、显示装置及其驱动方法
CN105954917A (zh) * 2016-06-29 2016-09-21 京东方科技集团股份有限公司 一种显示装置
CN214704288U (zh) * 2021-05-31 2021-11-12 朗明纳斯光电(厦门)有限公司 偏振光源

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294801A (ja) * 2003-03-27 2004-10-21 Casio Comput Co Ltd 液晶表示装置
CN104730768A (zh) * 2015-04-09 2015-06-24 京东方科技集团股份有限公司 反射式显示装置及其显示方法
CN107925011A (zh) * 2015-08-19 2018-04-17 三星电子株式会社 自发光显示面板和包括该自发光显示面板的显示设备
CN105700233A (zh) * 2016-04-05 2016-06-22 深圳市华星光电技术有限公司 背光模组及液晶显示装置
CN107154420A (zh) * 2017-05-08 2017-09-12 京东方科技集团股份有限公司 一种显示面板及其制造方法、显示装置
CN107991811A (zh) * 2018-01-29 2018-05-04 广东小天才科技有限公司 前光源液晶显示器及其制造方法
CN108983485A (zh) * 2018-08-17 2018-12-11 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
WO2021189271A1 (zh) * 2020-03-24 2021-09-30 京东方科技集团股份有限公司 显示器件及显示装置
CN114994982A (zh) * 2022-06-15 2022-09-02 京东方科技集团股份有限公司 前置光源和显示装置

Also Published As

Publication number Publication date
CN114994982A (zh) 2022-09-02
CN114994982B (zh) 2023-10-13
WO2023241268A9 (zh) 2024-02-08

Similar Documents

Publication Publication Date Title
TWI646520B (zh) 透明顯示裝置
WO2023241268A1 (zh) 前置光源和显示装置
US8064015B2 (en) Transflective display panel
JP3898012B2 (ja) 表示装置
JP3653510B2 (ja) 陽光下で表示できるディスプレイの画素構造
TWI425280B (zh) 顯示裝置
US11327361B2 (en) Display panel, and display device and drive method thereof
JP3993221B2 (ja) 表示装置
TWI408456B (zh) 液晶顯示裝置
US7687988B2 (en) Display device
US8415688B2 (en) Organic light emitting diode display
TWI437322B (zh) 顯示裝置
US9223065B2 (en) Optical film and organic light-emitting display device including the same
US10670931B2 (en) Display device and method of manufacturing the same
US10598837B2 (en) Polarizing plate having specified ratio of triiodide ions to iodine to pentaiodide ions and organic light-emitting display device having the same
KR20090079779A (ko) 듀얼 액정표시장치
US7808579B2 (en) Display using light guide and refractive index control
CN114265226A (zh) 显示模组及显示装置
US20200209661A1 (en) Display device
KR20080000762A (ko) 양방향 표시 장치
CN219958034U (zh) 显示装置
JP4861793B2 (ja) テレビ
CN113299715A (zh) 一种显示面板及其制备方法、显示装置
CN117031834A (zh) 一种显示面板及其制备方法、控制方法和显示装置
KR20190056043A (ko) 유기발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822838

Country of ref document: EP

Kind code of ref document: A1