WO2023240966A1 - 天线模块、天线装置及电子设备 - Google Patents

天线模块、天线装置及电子设备 Download PDF

Info

Publication number
WO2023240966A1
WO2023240966A1 PCT/CN2022/139712 CN2022139712W WO2023240966A1 WO 2023240966 A1 WO2023240966 A1 WO 2023240966A1 CN 2022139712 W CN2022139712 W CN 2022139712W WO 2023240966 A1 WO2023240966 A1 WO 2023240966A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating
layer
radiation
units
antenna
Prior art date
Application number
PCT/CN2022/139712
Other languages
English (en)
French (fr)
Inventor
钟永卫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023240966A1 publication Critical patent/WO2023240966A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna module, an antenna device and an electronic device.
  • This application provides an antenna module, an antenna device and an electronic device.
  • the antenna module can be flexibly arranged according to the internal space of the antenna device and the electronic device.
  • the antenna module is easier to assemble into the antenna device and the electronic device.
  • this application provides an antenna module, including:
  • a first radiation layer includes a plurality of first radiation units
  • a second radiating layer is stacked and spaced apart from the first radiating layer, and the second radiating layer includes a plurality of second radiating units;
  • a plurality of conductive connectors each conductive connector is located between the first radiating layer and the second radiating layer, one end of each conductive connector is electrically connected to one of the first radiating units, The other end is electrically connected to one of the second radiating units, and a plurality of the second radiating units, a plurality of the conductive connectors and a plurality of the first radiating units form a continuous current path.
  • the transmission of wireless signals is supported by the excitation signal provided by the source.
  • this application also provides an antenna device, including:
  • the antenna module includes a first radiating layer, a second radiating layer and a plurality of conductive connections; the first radiating layer includes a plurality of first radiating units, the second radiating layer is connected to the first radiating unit.
  • the layers are stacked and arranged at intervals, and the second radiating layer includes a plurality of second radiating units; each of the conductive connections is located between the first radiating layer and the second radiating layer, and each of the conductive connections One end of the component is electrically connected to one of the first radiating units, and the other end is electrically connected to one of the second radiating units.
  • a plurality of second radiating units, a plurality of conductive connectors and a plurality of first The radiating unit forms a continuous current path that supports the transmission of wireless signals under the action of an excitation signal provided by the feed source; and
  • a feed source is electrically connected to the antenna module.
  • the feed source is used to provide an excitation signal.
  • the antenna module supports the transmission of wireless signals under the action of the excitation signal.
  • the present application also provides an antenna device, which includes a plurality of antenna modules.
  • the plurality of antenna modules are spaced apart and form an antenna array; each of the antenna modules includes a first radiation layer, a second radiation layer and a plurality of antenna arrays.
  • a conductive connector ; the first radiating layer includes a plurality of first radiating units, the second radiating layer is stacked and spaced apart from the first radiating layer, and the second radiating layer includes a plurality of second radiating units. ;
  • Each conductive connector is located between the first radiating layer and the second radiating layer. One end of each conductive connector is electrically connected to one of the first radiating units, and the other end is electrically connected to one of the first radiating units.
  • the second radiating units are electrically connected, and a plurality of the second radiating units, a plurality of the conductive connectors and a plurality of the first radiating units form a continuous current path, and the current path is in the excitation signal provided by the feed source. Supports the transmission of wireless signals under the action of; wherein, each of the antenna modules has the same structure, or at least two of the antenna modules have different structures.
  • this application also provides an electronic device, including an antenna device, where the antenna device includes:
  • a first radiation layer includes a plurality of first radiation units
  • a second radiating layer is stacked and spaced apart from the first radiating layer, and the second radiating layer includes a plurality of second radiating units;
  • a plurality of conductive connectors each conductive connector is located between the first radiating layer and the second radiating layer, one end of each conductive connector is electrically connected to one of the first radiating units, The other end is electrically connected to one of the second radiating units, and a plurality of the second radiating units, a plurality of the conductive connectors and a plurality of the first radiating units form a continuous current path.
  • the transmission of wireless signals is supported by the excitation signal provided by the source.
  • Figure 1 is a first structural schematic diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 2 is a first structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • Figure 3 is a second structural schematic diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 4 is a second structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • Figure 5 is a third structural schematic diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 6 is a third structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 7 is a first connection schematic diagram of the antenna module shown in FIG. 5 .
  • FIG. 8 is a second connection schematic diagram of the antenna module shown in FIG. 5 .
  • FIG. 9 is a third connection schematic diagram of the antenna module shown in FIG. 5 .
  • FIG. 10 is a fourth connection schematic diagram of the antenna module shown in FIG. 5 .
  • FIG. 11 is a fifth connection schematic diagram of the antenna module shown in FIG. 5 .
  • FIG. 12 is a sixth connection schematic diagram of the antenna module shown in FIG. 5 .
  • FIG. 13 is a seventh connection schematic diagram of the antenna module shown in FIG. 5 .
  • Figure 14 is a fourth structural schematic diagram of an antenna device according to an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • the embodiment of the present application provides an antenna module 110, an antenna device 100, and an electronic device 10.
  • the antenna module 110 and the antenna device 100 can implement wireless communication functions, such as transmitting Wireless Fidelity (Wi-Fi) signals, Global Positioning System (GPS) signal, third-generation mobile communication technology (3rd-Generation, 3G for short), fourth-generation mobile communication technology (4th-Generation, 4G for short), fifth-generation mobile communication technology ( 5th-Generation, referred to as 5G), near field communication (Near field communication, referred to as NFC) signal, ultra-wideband communication (Ultra Wide Band, referred to as UWB) signal, etc.
  • Wi-Fi Wireless Fidelity
  • GPS Global Positioning System
  • 3rd-Generation 3rd-Generation, 3G for short
  • fourth-generation mobile communication technology (4th-Generation, 4G for short fourth-generation mobile communication technology (4th-Generation, 4G for short
  • 5G fifth-generation mobile communication technology
  • NFC
  • Figure 1 is a first structural schematic diagram of the antenna module 110 provided by an embodiment of the present application
  • Figure 2 is a first structural schematic diagram of the antenna device 100 provided by an embodiment of the present application.
  • the antenna device 100 in this embodiment of the present application includes one or more antenna modules 110 .
  • Each antenna module 110 may include a first radiation layer 111 , a second radiation layer 112 and a plurality of conductive connections 113 .
  • Antenna device 100 may include a feed 120 .
  • the second radiating layer 112 may be located on one side of the first radiating layer 111 , and the second radiating layer 112 may be stacked and spaced apart from the first radiating layer 111 .
  • the first radiation layer 111 includes a plurality of first radiation units 1111
  • the second radiation layer 112 includes a plurality of second radiation units 1121.
  • Each conductive connection member 113 is located between the first radiating layer 111 and the second radiating layer 112. One end of each conductive connection member 113 is directly or indirectly electrically connected to the first radiating unit 1111, and the other end of each conductive connection member 113 is electrically connected to the first radiating unit 1111 directly or indirectly. One end is directly or indirectly electrically connected to the second radiating unit 1121 .
  • the plurality of second radiating units 1121, the plurality of conductive connectors 113, and the plurality of first radiating units 1111 may form a continuous current path S (a conductor path formed by a plurality of conductors for current flow). Under the action of the excitation signal provided by the feed 120 of the antenna device 100, the current path S formed by the plurality of second radiating units 1121, the plurality of conductive connectors 113 and the plurality of first radiating units 1111 can jointly support the transmission of wireless signals. .
  • Each first radiating unit 1111 and each second radiating unit 1121 may be a structure formed by a conductor structure and capable of radiating electromagnetic wave signals.
  • the first radiating unit 1111 and the second radiating unit 1121 may be radiators formed by metal traces.
  • the first radiation layer 111 may be parallel to the second radiation layer 112, and the second radiation layer 112 may be disposed without contact with the first radiation layer 111.
  • the first radiating layer 111 may be a carrier layered structure capable of carrying a plurality of first radiating units 1111.
  • the plurality of first radiating units 1111 may be formed on the first radiating layer 111 through, but is not limited to, attachment, etching, bonding, etc. Radiation layer 111.
  • the first radiation layer 111 may not include a carrier layered structure and may only include a plurality of first radiation units 1111. In this case, the plurality of first radiation units 1111 may be on the same plane and jointly form the first radiation layer 111.
  • the second radiating layer 112 can also be a carrier layered structure capable of carrying multiple second radiating units 1121 , or the multiple second radiating units 1121 can be on the same plane and jointly form the second radiating layer 112 .
  • the embodiment of the present application does not limit the specific structures of the first radiation layer 111 and the second radiation layer 112.
  • multiple first radiating units 1111 can be arranged spaced apart from each other on the first radiating layer 111 . Any two adjacent first radiating units 1111 are not connected.
  • a radiation layer 111 may be arranged in an array.
  • the plurality of second radiating units 1121 can be arranged spaced apart from each other on the second radiating layer 112. Any two adjacent second radiating units 1121 are not connected.
  • the plurality of second radiating units 1121 are arranged on the second radiating layer 112. It can also be arranged in an array.
  • the plurality of first radiating units 1111 may not be arranged in an array but may be arranged at arbitrary intervals
  • the plurality of second radiating units 1121 may not be arranged in an array but may be arranged at arbitrary intervals. Comparison of the embodiments of this application will not be carried out. limited.
  • each conductive connection member 113 can be electrically connected to the tail end of the previous first radiating unit 1111 , and the other end of each conductive connection member 113 can be electrically connected to the next second radiation unit. Head end of unit 1121.
  • the projection of each second radiation unit 1121 on the first radiation layer 111 can intersect with at least one first radiation unit 1111, and the projection of each first radiation unit 1111 on the second radiation layer 112 can intersect with at least one second radiation.
  • the units 1121 intersect, so that a plurality of first radiating units 1111, a plurality of conductive connectors 113 and a plurality of second radiating units 1121 can be arranged according to one first radiating unit 1111, one conductive connector 113, one second radiating unit 1121, Another conductive connector 113, another first radiating unit 1111, yet another conductive connector 113, yet another second radiating unit 1121... are arranged in a cyclic sequence, multiple first radiating units 1111, multiple second radiating units 1121 can form a continuous current path S connected in sequence under the action of multiple conductive connectors 113. It can be understood that the current path S can be a current path S with a spiral structure.
  • the plurality of first radiating units 1111 and the plurality of second radiating units 1121 in the embodiment of the present application may not be arranged on the first radiating layer 111 and the second radiating layer 112 in the above manner.
  • Figure 3 is a second structural schematic diagram of the antenna module 110 provided by an embodiment of the present application
  • Figure 4 is a second structural schematic diagram of the antenna device 100 provided by an embodiment of the present application.
  • two or more first radiating units 1111 may also be connected to each other without being spaced apart on the first radiating layer 111
  • two or more second radiating units 1121 may be disposed on the second radiating layer 112 They can also be connected to each other without being spaced apart.
  • the two first radiating units 1111a and 1111b in Figures 3 and 4 can be connected to each other and form a whole, and the two second radiating units 1121a and 1121b can also be connected to each other and form a whole.
  • one end of one conductive connection member 113 may be electrically connected to the integrated first radiation units 1111a and 1111b, and the other end of the conductive connection member 113 may be electrically connected to the integrated second radiation units 1121a and 1121b.
  • the plurality of first radiating units 1111 and the plurality of second radiating units 1121 can also form a continuous current path S under the action of the plurality of conductive connectors 113 .
  • the conductive connector 113 when the conductive connector 113 connects the first radiating unit 1111 and the second radiating unit 1121, the conductive connector 113 often penetrates some media (such as the substrate 130 below), but it is subject to Due to limitations of the internal components of the electronic device 10, there may be certain areas that are not suitable for disposing the conductive connector 113.
  • the antenna module 110 can adjust the positions of the plurality of first radiating units 1111 and the plurality of second radiating units 1121 so that some of the first radiating units 1111 can be connected to each other and some of the second radiating units 1121 can be connected to each other. Therefore, the conductive connecting member 113 can avoid inappropriate installation space.
  • the number of the conductive connectors 113 can be at least (2N-2).
  • the number of conductive connectors 113 in the embodiment shown in FIG. 2 may be less than (2N-2). It should be noted that the number of conductive connectors 113 can be adjusted according to actual conditions, and this is not limited in the embodiments of the present application.
  • the plurality of first radiating units 1111, the plurality of second radiating units 1121 and the plurality of conductive connectors 113 are connected to each other, as shown in Figures 1 and 2, the plurality of first radiating units 1111, the plurality of conductive connectors 113 are connected to each other.
  • the continuous current path S formed by the second radiating units 1121 and the plurality of conductive connectors 113 may be similar to the spiral structure of a spring.
  • the plurality of first radiating units 1111 and the plurality of second radiating units can also be configured.
  • the continuous current path S formed by 1121 and the plurality of conductive connectors 113 can form other spiral structures, such as, but not limited to, Archimedean spiral structures, horse racing spiral structures, isopod spiral structures, and hyperbolic spirals. Line structure, inner spiral structure, interlocking spiral structure, etc.
  • the embodiment of the present application does not limit the specific form of the spiral structure formed by the antenna device 100 . It should be noted that by setting the shapes and positions of the plurality of first radiating units 1111 , the plurality of second radiating units 1121 and the plurality of conductive connectors 113 , the plurality of first radiating units 1111 , the plurality of third radiating units 1121 and the plurality of conductive connectors 113 can also be configured.
  • the continuous current path S formed by the two radiating units 1121 and the plurality of conductive connectors 113 has other shapes such as curves and polylines.
  • the embodiment of the present application does not limit the specific shape of the current path S. Any continuous current path S can be formed.
  • the shapes are all within the protection scope of the embodiments of the present application.
  • first radiating unit 1111 and the second radiating unit 1121 can be elongated structures as shown in Figure 1 , and the first radiating unit 1111 and the second radiating unit 1121 can also be arc-shaped as shown in Figure 3 Curved structure.
  • the structure of each first radiating unit 1111 can be exactly the same.
  • the structure of one or more (two or more) first radiating units 1111 can be different; similarly, the structure of each second radiating unit 1121 can be Exactly the same, the structures of one or more (two or more) second radiating units 1121 may also be different.
  • the embodiments of the present application do not limit the specific shapes and structures of the first radiating unit 1111 and the second radiating unit 1121.
  • the antenna module 110 and the antenna device 100 of the embodiment of the present application when the plurality of first radiating units 1111, the plurality of second radiating units 1121 and the plurality of conductive connectors 113 are connected to each other to form a continuous current path S, due to the first radiation
  • the layer 111 and the second radiation layer 112 are stacked and arranged on different planes.
  • the current path S in the embodiment of the present application can be a three-dimensional structure instead of a planar structure.
  • the three-dimensional current path S can be extended and expanded in three-dimensional space. .
  • the antenna module 110 and the antenna device 100 with the continuous current path S can achieve circular polarization performance, and the antenna device 100 can have higher gain and more flexible beam scanning characteristics; on the other hand, compared with the same electrical power,
  • the three-dimensional current path S of the present application can not only ensure the electrical length requirement, but also occupy a smaller space on the plane (for example, the projected area of the three-dimensional current path S of the present application on the horizontal plane will be less than The projection of a planar structure with the same circumference on the horizontal plane), the antenna module 110 and the antenna device 100 can achieve a miniaturized design; on the other hand, the first radiating layer 111 with the first radiating unit 1111 and the second radiating unit are
  • the second radiation layer 112 of 1121 can be modular and can be flexibly arranged in the limited space of the antenna device 100, electronic equipment 10 and other components according to the installation requirements of the antenna module 110 and the antenna device 100.
  • the assembly of the antenna module 110 is more flexible.
  • a plurality of first radiating units 1111 are provided on the first radiating layer 111
  • a plurality of second radiating units 1121 are provided on the second radiating layer 112.
  • the plurality of first radiating units 1111 and the plurality of second radiating units 1121 are
  • the first radiating unit 1111 and the second radiating unit 1121 can be flexibly arranged on the first radiating layer 111 and the second radiating layer 112 according to the actual application conditions of the antenna device 100.
  • the arrangement positions of the first radiating unit 1111 and the second radiating unit 1121 are more flexible, which is more conducive to the antenna module 110 and the antenna. Assembly of device 100.
  • Figure 5 is a third structural schematic diagram of the antenna module 110 provided by the embodiment of the present application
  • Figure 6 is a schematic diagram of the antenna device 100 provided by the embodiment of the present application. Schematic diagram of the third structure.
  • the antenna module 110 in the embodiment of the present application may also be provided with one or more (two or more) conductive members 116 at the end of the current path S.
  • the current path S may include two ends, and both ends may be formed on the first radiation layer 111 or the second radiation layer 112 . One of the two ends may be formed on the first radiation layer 111 or the second radiation layer 112 . The other end is formed on the second radiation layer 112 .
  • the antenna module 110 includes one conductive member 116, the conductive member 116 may be connected to one end; when the antenna module 110 includes two or more conductive members 116, at least one conductive member 116 may be connected to one end and at least another The conductive member is connected to the other end.
  • one end of a certain first radiation unit 1111 of the first radiation layer 111 can be electrically connected to the second radiation unit 1121 through a conductive connector 113,
  • the other end of the first radiation unit 1111c may not be electrically connected to the second radiation unit 1121 through the conductive connector 113, and the other end of the first radiation unit 1111c may be a first free end; the other first radiation of the first radiation layer 111
  • the unit 1111 for example, one end of the first radiating unit 111d is electrically connected to the second radiating unit 1121 through the conductive connector 113, and the other end of the first radiating unit 1111d may not be electrically connected to the second radiating unit 1121 through the conductive connector 113.
  • the first The other end of the radiation unit 1111d may be a second free end; at this time, at least one conductive member 116 may be connected to the first free end and achieve electrical connection with the current path S, and at least another conductive member 116 may be connected to the third free end.
  • the two free ends are electrically connected to the current path S.
  • the conductive member 116 can extend the length of the current path S to optimize the radiation performance of the antenna module 110 . It can be understood that, as shown in FIGS. 5 and 6 , the antenna module 110 can also be electrically connected to the feed source 120 through a conductive member 116 so that the feed source 120 can feed an excitation signal to the antenna module 110 .
  • the feed source 120 can be electrically connected to the current path S through the conductive member 116, and the feed source 120 can also be electrically connected to the current path S through other methods, which is not limited in the embodiments of the present application.
  • the multiple conductive members 116 may be connected in series to further extend the length of the current path S.
  • the conductive member 116 may be a structure with conductive properties, and the conductive member 116 may have the same structure as the conductive connection member 113.
  • the conductive member 116 and the conductive connection member 113 may both be metal vias; of course, the conductive member 116 may have a conductive structure.
  • 116 may also have a different structure from the conductive connector 113.
  • the conductive member 116 may be a metal wire, and the conductive connector 113 may be a metal via.
  • the antenna device 100 or the antenna module 110 in the embodiment of the present application may also include a feeder layer 114 .
  • One end of the feeder layer 114 can be directly or indirectly electrically connected to the first radiating unit 1111 or the second radiating unit 1121.
  • one end of the feeder layer 114 can be electrically connected to the conductive member 116; the other end of the feeder layer 114 can be electrically connected to
  • the feed source 120 is directly or indirectly electrically connected, the feed source 120 can provide an excitation signal, and the feed line layer 114 can transmit the excitation signal provided by the feed source 120 to the electrically connected first radiating unit 1111 or second radiating unit 1121 (or current path). S) to excite the three-dimensional current path S formed by the plurality of second radiating units 1121, the plurality of conductive connectors 113 and the plurality of first radiating units 1111 to form resonance and support the transmission of wireless signals.
  • the multiple antenna modules 110 can be electrically connected to the same feed source 120 through respective feeder layers 114, and the feed source 120 can be, but is not limited to, through a power splitter or power splitter. Distribution circuits and other methods provide excitation signals to multiple antenna modules 110, and multiple antenna modules 110 can support the transmission of the same wireless signal.
  • the antenna device 100 may also include two or more feed sources 120, and two or more antenna modules 110 may be electrically connected to different feed sources 120. In this case, each antenna module 110 may be connected to its respective electrically connected feed source 120. Under the excitation of the source 120, respective resonances are formed and support respective wireless signal transmissions. Multiple antenna modules 110 can support the same wireless signal, or there can be at least two antenna modules 110 supporting different wireless signals.
  • the antenna modules 110 in this embodiment are The specific power feeding method of the device 100 is not limited.
  • the feeder layer 114 may include, but is not limited to, one or more combinations of microstrip lines, strip lines, and coplanar waveguides.
  • the feeder layer 114 may be formed by, but is not limited to, spraying, etching, or the like.
  • the feeder layer 114 may be disposed coplanarly with the first radiation layer 111 or the second radiation layer 112 .
  • the feeder layer 114 can also be formed on the side of the medium.
  • the medium can be fully utilized as a carrier, and the entire antenna
  • the device 100 can be integrated on the same medium, which is more convenient for the antenna device 100 to be arranged inside the electronic device 10 .
  • the feeder layer 114 can also be stacked with the first radiation layer 111 and the second radiation layer 112 , and the feeder layer 114 is not coplanar with the first radiation layer 111 and the second radiation layer 112 .
  • the embodiment of the present application does not limit the specific structure of the feeder layer 114.
  • FIG. 7 is a first connection schematic diagram of the antenna module 110 shown in FIG. 5 .
  • the antenna module 110 in the embodiment of the present application can be carried on the substrate 130.
  • the first radiation layer 111 and the second radiation layer 112 of the antenna module 110 may be formed on two opposite surfaces of the substrate 130 .
  • the substrate 130 may carry all or part of the antenna module 110 , and all or part of the antenna module 110 may be disposed or connected to the substrate 130 .
  • the substrate 130 may include a first surface 131 and a second surface 132 arranged oppositely, and the first surface 131 and the second surface 132 may be arranged parallel to the first radiation layer 111 and the second radiation layer 112 .
  • the first radiation layer 111 can be formed on the first surface 131
  • the second radiation layer 112 can be formed on the second surface 132
  • each conductive connection member 113 can penetrate the first surface 131 and the second surface 132, and electrically
  • a first radiating unit 1111 and a second radiating unit 1121 are connected.
  • the substrate 130 may be a component of the antenna device 100 and the electronic device 10 , and the antenna device 100 and the electronic device 10 may include the substrate 130 .
  • the substrate 130 may be a component of the antenna module 110 itself, and other components of the antenna module 110 may be carried on the substrate 130 .
  • the substrate 130 may also be a component of other devices.
  • the substrate 130 may be, but is not limited to, a circuit board, a bracket, a back cover, a small board and other structures. The embodiment of the present application does not limit the specific structure of the substrate 130.
  • the first radiation layer 111 can be formed by, but is not limited to, spraying, etching, etc. to form a plurality of first radiation units 1111 on the first surface 131; the second radiation layer 112 can also be formed by, but is not limited to, spraying, etching. A plurality of second radiation units 1121 are formed on the second surface 132 in the same manner.
  • the embodiment of the present application does not limit the specific formation methods of the first radiation layer 111 and the second radiation layer 112.
  • the conductive connector 113 may be a connector with electrical connection properties.
  • the conductive connection member 113 may be a metal via hole penetrating the substrate 130 , and the length of the metal via hole may be equivalent to the thickness of the substrate 130 .
  • Conductor material is sprayed on the wall of the metal via hole.
  • One end of the metal via hole can be electrically connected to a first radiating unit 1111, and the other end of the metal via hole can be electrically connected to a second radiating unit 1121. Therefore, the plurality of second radiating units 1121, the plurality of metal vias, and the plurality of first radiating units 1111 can form a three-dimensional continuous current path S.
  • the feeder layer 114 of each antenna module 110 can be formed on the first surface 131 or the second surface 132 of the substrate 130 like the first radiation layer 111 and the second radiation layer 112 .
  • the feeder layer 114 can also be disposed in other areas, such as but not limited to the internal space of the substrate 130 (the space between the first surface 131 and the second surface 132.
  • the substrate 130 is often made of a multilayer board.
  • the feeder layer 114 can be laid out in a certain layer of the substrate 130 during the preparation process of the substrate 130). The embodiment of the present application does not limit the specific formation method of the feeder layer 114.
  • the first radiation layer 111 is formed on the first surface 131 of the substrate 130
  • the second radiation layer 112 is formed on the second surface 132 of the substrate 130.
  • the antenna module 110 can make full use of the substrate. 130 surface space, the antenna module 110 is integrated on the substrate 130 without occupying additional space, which is not only beneficial to the antenna module 110 being built into the antenna device 100 or the electronic device 10, but also enabling the miniaturization of the antenna module 110 and the antenna device 100. design.
  • Figure 8 is a second connection schematic diagram of the antenna module 110 shown in Figure 5 .
  • the first radiation layer 111 or the second radiation layer 112 of the antenna module 110 can be produced in a modular manner.
  • the first radiation layer 111 may be a plate-like structure with a certain thickness.
  • the first radiation layer 111 may include a third surface 1112 and a fourth surface 1113 that are oppositely arranged.
  • the fourth surface 1113 may be connected to the first surface of the substrate 130 .
  • 131 are connected directly or indirectly, and the third surface 1112 can be disposed away from the substrate 130, such as the first surface 131 of the substrate 130, so that the third surface 1112 and the fourth surface 1113 of the first radiation layer 111, the first surface 131,
  • the second surfaces 132 may be stacked in sequence.
  • the plurality of first radiation units 1111 of the first radiation layer 111 may be formed on the third surface 1112 of the first radiation layer 111; the second radiation layer 112 and the plurality of second radiation units on the second radiation layer 112 1121 may be formed on the second side 132 of the substrate 130; each conductive connection member 113 may penetrate the first radiation layer 111 and the substrate 130, and each conductive connection member 113 may penetrate the third side 1112 to the second side 132, so that One end of the conductive connector 113 can be electrically connected to the first radiating unit 1111 on the third surface 1112 , and the other end can be electrically connected to the second radiating unit 1121 on the second surface 132 .
  • the conductive connector 113 may include multiple media.
  • the sub-components penetrate the first radiation layer 111 and the substrate 130 respectively.
  • a first metal via 1131 can be provided in the first radiation layer 111
  • a second metal via 1132 can be provided in the substrate 130
  • the two metal vias can be placed facing each other.
  • a connection structure 1133 such as a soldering pad can be provided where the two are connected, so that the two metal vias can be better electrically connected.
  • FIG. 9 is a third connection schematic diagram of the antenna module 110 shown in FIG. 5 .
  • the plurality of first radiating units 1111 of the first radiating layer 111 are formed on the third surface 1112 of the first radiating layer 111, the second radiating layer 112 and the plurality of second radiating units 1121 on the second radiating layer 112 are also A region of the substrate 130 may be formed between the first surface 131 and the second surface 132 of the substrate 130, and a plurality of second radiation units 1121 may be located inside the substrate 130.
  • each conductive connector 113 can penetrate the first radiation layer 111 and part of the substrate 130 , one end of the first conductive connector 113 can be electrically connected to the first radiating unit 1111 on the third surface 1112 , and the other end can be electrically connected to the first radiation unit 1111 on the third surface 1112 .
  • the second radiating unit 1121 is electrically connected between one side 131 and the second side 132 .
  • the conductive connection member 113 may also include a first metal via 1131 formed inside the first radiation layer 111 and a second metal via 1132 formed inside the substrate 130, both of which may be, but are not limited to, through Pad connection. Detailed description may refer to the foregoing embodiments and will not be described again here.
  • the first radiation layer 111 is a plate-like structure with a certain thickness.
  • the first radiation layer 111 does not need to be etched or sprayed on the surface of the substrate 130.
  • the first radiation layer 111 can be produced and processed independently of the substrate 130, the first radiating layer 111 can be produced in a modular manner, and the production of the first radiating layer 111 is simpler and more efficient.
  • the modular first radiation layer 111 has a certain thickness, so that the conductive connector 113 in the embodiment of FIGS. 8 and 9 has a longer length than the conductive connector 113 in the embodiment of FIG.
  • the formed three-dimensional current path S has a longer electrical length, which not only facilitates the antenna module 110 to radiate low-frequency signals, but also improves the circular polarization performance of the antenna module 110 .
  • the distance between the second radiation layer 112 and the circuit device provided on the second surface 132 of the substrate 130 is relatively long. The second radiation layer 112 is less affected by the circuit devices on the second surface 132 .
  • FIG. 10 is a fourth connection schematic diagram of the antenna module 110 shown in FIG. 5 .
  • the antenna device 100 in the embodiment of the present application can also deploy antenna modules 110 on both sides of the substrate 130 .
  • the first radiating layer 111 may be a plate-like structure with a certain thickness
  • the second radiating layer 112 may also be a plate-like structure having a certain thickness. Both the first radiating layer 111 and the second radiating layer 112 may be To achieve modular production, the first radiating layer 111 and the second radiating layer 112 can be located on both sides of the substrate 130 respectively.
  • the second radiation layer 112 may include a fifth surface 1122 and a sixth surface 1123 arranged oppositely.
  • the surface 1122 may be connected to the second surface 132 of the substrate 130.
  • the third surface 1112 and the fourth surface 1113 of the first radiation layer 111, the first surface 131 and the second surface 132 of the substrate 130, and the second radiation layer 112 The fifth surface 1122 and the sixth surface 1123 can be stacked in sequence.
  • a plurality of first radiation units 1111 may be formed on the third surface 1112 of the first radiation layer 111, a plurality of second radiation units 1121 may be formed on the sixth surface 1123 of the second radiation layer 112, and each conductive connection member 113 may penetrate The third surface 1112 to the sixth surface 1123 such that one end of the conductive connector 113 can be electrically connected to the first radiating unit 1111 of the third surface 1112 and the other end can be electrically connected to the second radiating unit 1121 of the sixth surface 1123 .
  • the plurality of first radiation units 1111 may be metal traces formed on the third surface 1112 of the first radiation layer 111, and the metal traces may not be provided on the fourth surface 1113 of the first radiation layer 111.
  • the first radiation unit 1111 is not formed;
  • the plurality of second radiation units 1121 may be metal traces formed on the sixth surface 1123 of the second radiation layer 112 , and no metal may be provided on the fifth surface 1122 of the second radiation layer 112 The trace does not form the second radiating element 1121.
  • the conductive connection 113 may include a first metal via 1131 formed inside the first radiation layer 111 , a second metal via 1132 formed inside the substrate 130 , and a third metal via 1132 formed inside the second radiation layer 112 .
  • Three metal vias 1134, the three can be connected through, but are not limited to, solder pads. Detailed description may refer to the foregoing embodiments and will not be described again here.
  • the first radiating layer 111 and the second radiating layer 112 are plate-like structures with a certain thickness.
  • the first radiating layer 111 and the second radiating layer 112 can achieve modular production.
  • the production of the second radiation layer 112 is simpler and more efficient.
  • the modular first radiation layer 111 and the second radiation layer 112 have a certain thickness, and the three-dimensional current path S formed by the antenna device 100 has a longer electrical length, which is more conducive to the antenna device 100 radiating low-frequency signals and is also more conducive to improving the antenna. Circular polarization performance of device 100.
  • the above is only an exemplary connection method between the antenna module 110 and the substrate 130 in the embodiment of the present application, and it is not limited thereto.
  • the first radiation layer 111 and the second radiation layer 112 can also be separated by multiple Substrate 130.
  • the embodiment of the present application does not limit the specific connection method between the antenna device 100 and the substrate 130 .
  • the antenna module 110 in the embodiment of the present application can also be configured in a separate modular manner. That is, the antenna module 110 can be a plate-like structure with a certain thickness.
  • the first radiation layer 111 and the The two radiation layers 112 can be respectively located on both sides of the plate-like structure, and the conductive connector 113 can penetrate the plate-like structure.
  • the antenna device 100 may be independently installed inside the electronic device 10 without being attached to the substrate 130 .
  • Each antenna module 110 of the embodiment of the present application may also include a ground plane layer 115.
  • a ground area 1151 may be formed on the ground plane layer 115.
  • the projection of the ground area 1151 on the first radiation layer 111 is located outside the plurality of first radiation units 1111.
  • the projection of the ground area 1151 on the second radiation layer 112 is located outside the plurality of first radiation units 1111. outside the second radiating unit 1121.
  • the area on the ground plane layer 115 except the ground area 1151 may be the clearance area 1152.
  • the projection of the clearance area 1152 on the first radiation layer 111 may cover the plurality of first radiation units 1111 and the projection on the second radiation layer 112.
  • a plurality of second radiating units 1121 may be covered.
  • the clearance area 1152 can be placed directly opposite the plurality of first radiating units 1111 and the plurality of second radiating units 1121 , and the ground area 1151 can be placed staggered away from the plurality of first radiating units 1111 and the plurality of second radiating units 1121 .
  • first radiating unit 1111 and the second radiating unit 1121 may not be electrically connected to the ground region 1151, and the first radiating unit 1111 and the second radiating unit 1121 may be spaced apart from the ground region 1151.
  • the ground area 1151 will not affect the radiation of signals from the first radiating unit 1111 and the second radiating unit 1121.
  • the ground area 1151 can also serve as a reflecting plate to reflect the electromagnetic waves radiated by the first radiating unit 1111 and the second radiating unit 1121. This allows electromagnetic waves to be radiated in a desired direction, and the antenna device 100 can have better directional radiation performance.
  • the first radiating unit 1111 and the second radiating unit 1121 can also be directly or indirectly electrically connected to the ground area 1151.
  • the ground area 1151 can make the impedance of the first radiating unit 1111 and the second radiating unit 1121 smaller. The radiation performance of the antenna device 100 can be guaranteed.
  • the ground plane layer 115 in the embodiment of the present application may be a one-layer structure or a multi-layer structure.
  • the multi-layer ground plane layers 115 can be spaced apart from each other.
  • the antenna module 110 can also include a ground connector (not shown), and the ground connector can connect the multi-layer ground plane layer 115
  • the grounding areas 1151 are electrically connected to each other as a whole.
  • the grounding connector can be, but is not limited to, one or more metal via structures (including pads, electrical connection terminals, electrical connection points and other structures that connect multiple metal via structures) .
  • the areas of the ground areas 1151 of the multi-layer ground plane layer 115 in the embodiment of the present application can be accumulated with each other.
  • the ground plane layer 115 of the multi-layer structure can occupy a smaller space on a certain layer.
  • the multi-layer structure The ground plane layer 115 can be flexibly arranged inside the antenna device 100 or the electronic device 10 . Therefore, the multi-layer structure of the ground plane layer 115 is conducive to the miniaturization design of the antenna device 100 or the electronic device 10 .
  • ground region 1151 in order to further improve the directivity of the antenna device 100, the shape of the ground region 1151 can be designed.
  • FIG. 11 is a fifth connection schematic diagram of the antenna module 110 shown in FIG. 5 .
  • Ground region 1151 may form a trench structure 1153.
  • the ground area 1151 can extend from the edge of the ground plane layer 115 toward the main body of the ground plane layer 115 .
  • the ground area 1151 can form a slot structure 1153 in the area corresponding to the first radiation layer 111 and the second radiation layer 112 .
  • the structure 1153 may not be provided with conductive material.
  • the trough structure 1153 may form the clearance area 1152 in the aforementioned embodiment.
  • the projection of the trough structure 1153 on the first radiation layer 111 may cover multiple first radiating units 1111 and the second radiating unit 1111 .
  • the projection on the radiation layer 112 can cover a plurality of second radiation units 1121, and the opening of the slot structure 1153 can face the main radiation direction when the antenna module 110 supports wireless signal transmission.
  • the direction of the radiation main lobe of the three-dimensional spiral structure formed by multiple first radiating units 1111, multiple second radiating units 1121 and multiple conductive connectors 113 during wireless signal transmission is toward the left area and the ground area.
  • the opening of the groove structure 1153 of 1151 can also be directed toward the left area.
  • the diameter of the opening of the first end 1154 of the groove structure 1153 can be equal or approximately equal to the diameter of the opening of the second end 1155.
  • the groove structure 1153 can be a rectangular groove structure.
  • the rectangular groove Structure is easier to form during production and processing.
  • the groove structure 1153 can also be other structures, which will be described in detail below and will not be described again here.
  • the ground area 1151 is provided with a slot structure 1153 with an opening facing the main radiation direction of the antenna device 100.
  • the ground area 1151 can make the radiation beam of the antenna device 100 more concentrated in the main radiation direction, which can improve the efficiency of the antenna device. 100% directionality.
  • FIG. 12 is a sixth connection schematic diagram of the antenna module 110 shown in FIG. 5 .
  • the diameter of the slot structure 1153 of the ground area 1151 in the embodiment of the present application can be linearly gradually smaller or non-linearly gradually smaller from the first end 1154 close to the edge of the ground plane layer 115 to the second end 1155 away from the edge of the ground plane layer 115 become smaller.
  • the slot structure 1153 may include a first end 1154 and a second end 1155.
  • the first end 1154 may be an end close to the edge of the ground plane, and the second end 1155 may be an end far away from the edge of the ground plane.
  • the first end 1154 and the second end 1155 may be an end close to the edge of the ground plane. Both ends 1155 are virtual opening structures.
  • the opening diameter of the first end 1154 can be larger than the opening diameter of the second end 1155
  • the groove structure 1153 can form a horn-shaped structure
  • the groove structure 1153 of the horn structure can integrate more
  • the radiation energy of the first radiating unit 1111 and the second radiating unit 1121 is reflected to the main radiation direction of the antenna device 100, and the directivity of the antenna device 100 is better.
  • edge of the grounding region 1151 at the slot structure 1153 can gradually decrease linearly as shown in Figure 12; of course, the edge of the grounding region 1151 at the slot structure 1153 can also gradually decrease nonlinearly.
  • Figure 13 is a seventh connection schematic diagram of the antenna module 110 shown in Figure 5.
  • the edge of the ground area 1151 at the slot structure 1153 gradually becomes smaller in a wavy manner.
  • the body edge can increase the number of reflections of radiated energy on the slot structure 1153 to further improve the directivity of the antenna device 100 .
  • the specific shape of the groove structure 1153 is not limited to the above examples.
  • the edge of the ground area 1151 at the groove structure 1153 can also be a dressing loading structure, a tooth structure, etc.
  • the embodiment of the present application does not limit the specific structures of the tank structure 1153 and the grounding area 1151.
  • the slot structure 1153 of the ground area 1151 is a horn-shaped structure.
  • the ground area 1151 can further concentrate the radiation beam of the antenna device 100 in the main radiation direction, which can improve the directivity of the antenna device 100.
  • the above embodiment only illustrates that the antenna device 100 includes one antenna module 110, but it should be noted that the antenna device 100 in the above embodiment may also include multiple antenna modules 110.
  • FIG. 14 is a fourth structural schematic diagram of the antenna device 100 according to the embodiment of the present application.
  • the antenna device 100 may include a plurality of antenna modules 110 .
  • the plurality of antenna modules 110 may be arranged spaced apart from each other, and the plurality of antenna modules 110 may be arranged in an array.
  • the antenna device 100 may be provided with a feed source 120, which may be directly or indirectly electrically connected to each antenna module 110.
  • the feed source 120 may be electrically connected to the feeder layer 114 of each antenna module 110.
  • the feed source 120 can provide an excitation signal for each antenna module 110, multiple antenna modules 110 can support the transmission of the same wireless signal, and the multiple antenna modules 110 can form an antenna array.
  • the main radiation directions of the multiple antenna modules 110 can be oriented in the same direction, so that the directivity of the antenna array is stronger.
  • each antenna module 110 may have its own ground plane layer 115.
  • the ground plane layers 115 of two or more antenna modules 110 can also be connected to form the same ground plane layer 115. In actual use, multiple antenna modules 110 can often share the same ground plane layer 115.
  • the antenna device 100 can include a Larger ground plane layer 115.
  • the ground plane layer 115 of two or more antenna modules 110 can be a two-layer or multi-layer ground plane layer 115 .
  • the two-layer or multi-layer ground plane layer 115 can be, but is not limited to, through metal vias, etc.
  • the ground connection piece is electrically connected as a whole.
  • the structures of the multiple antenna modules 110 in the antenna array may be the same, and the structures of at least two antenna modules 110 in the multiple antenna modules 110 may also be different.
  • the multiple antenna modules 110 may adopt the solution of any of the foregoing embodiments. For example, they may cooperate with the substrate 130 according to the solution of any of the embodiments in FIG. 3 to FIG. 6 .
  • multiple antenna modules 110 can also use at least two different connection schemes to cooperate with the substrate 130 .
  • one or several antenna modules 110 can be matched with the base plate 130 in the manner shown in FIG. 4
  • another or several antenna modules 110 can be matched with the base plate 130 in the manner shown in FIG.
  • antenna module 110 can be matched with the base plate 130 in the manner shown in FIG. 4 .
  • the antenna module 110 can be matched with the substrate 130 in the manner shown in Figure 5 or Figure 6 .
  • the embodiments of the present application do not limit this.
  • multiple antenna modules 110 can be combined with the substrate 130 in the same or different ways, making the arrangement of the multiple antenna modules 110 more flexible; at the same time, the multiple antenna modules 110 form an antenna array, and the antenna device The directional performance of 100 is better.
  • the structures of at least two antenna modules 110 are different.
  • the structures of at least two antenna modules 110 may be different due to different connection methods between the at least two antenna modules 110 and the substrate 130.
  • the two antenna modules 110 may also be different due to other characteristics.
  • the structures of the ground plane layers 115 of at least two antenna modules 110 are different.
  • the embodiment of the present application does not limit the specific structures of at least two antenna modules 110 with different structures.
  • multiple antenna modules 110 form an antenna array is not limited to the 1 ⁇ N matrix arrangement shown in FIG. 14 , but may also be, but is not limited to, M ⁇ N, M ⁇ M matrix arrangement, Circular arrangement, etc.
  • the embodiment of the present application does not limit the specific arrangement of the plurality of antenna modules 110.
  • two or more antenna modules 110 may also be connected to each other, and two or more antenna modules 110 may also be connected to different feed sources 120.
  • the embodiments of the present application do not limit the specific arrangement and feeding methods of the plurality of antenna modules 110 .
  • an embodiment of the present application further provides an electronic device 10 .
  • the electronic device 10 may be a smartphone, a tablet, or other devices, or may be a game device, an augmented reality (Augmented Reality, AR) device, a car device, a data storage device, an audio playback device, a video playback device, a notebook computer, or a desktop computing device.
  • Equipment etc. Please refer to FIG. 15 , which is a schematic structural diagram of the electronic device 10 provided by an embodiment of the present application.
  • the electronic device 10 may also include a display screen 200 , a middle frame 300 , a circuit board 400 , a battery 500 and a back case 600 .
  • the display screen 200 is disposed on the middle frame 300 to form a display surface of the electronic device 10 for displaying images, text and other information.
  • the display screen 200 may include a liquid crystal display (Liquid Crystal Display, LCD) or an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display.
  • a cover can also be provided on the display screen 200 to protect the display screen 200 from being scratched or damaged by water.
  • the cover may be a transparent glass cover, so that the user can observe the content displayed on the display screen 200 through the cover.
  • the cover plate can be a glass cover plate made of sapphire.
  • the middle frame 300 may be a thin plate or sheet-like structure, or may be a hollow frame structure.
  • the middle frame 300 is used to provide support for electronic devices or functional components in the electronic device 10 so as to install the electronic devices and functional components of the electronic device 10 together.
  • structures such as grooves, protrusions, and through holes may be provided on the middle frame 300 to facilitate the installation of electronic devices or functional components of the electronic device 10 .
  • the material of the middle frame 300 may include metal or plastic.
  • the circuit board 400 is disposed on the middle frame 300 for fixation, and is sealed inside the electronic device 10 through the rear case 600 .
  • the circuit board 400 may be the main board of the electronic device 10 .
  • the circuit board 400 can be integrated with a processor, and can also be integrated with one or more functional components such as a headphone jack, an acceleration sensor, a gyroscope, and a motor.
  • the display screen 200 can be electrically connected to the circuit board 400 to control the display of the display screen 200 through the processor on the circuit board 400 .
  • the substrate 130 in the foregoing embodiment may be the circuit board 400 of the electronic device 10
  • the antenna module 110 in the embodiment of the present application may be disposed on the circuit board 400.
  • the antenna module 110 in the embodiment of the present application can also be formed on other carriers, such as but not limited to an antenna bracket or a small board of the electronic device 10 , which is not limited in the embodiment of the present application.
  • the battery 500 is disposed on the middle frame 300 , and is sealed inside the electronic device 10 through the rear case 600 . At the same time, the battery 500 is electrically connected to the circuit board 400 so that the battery 500 can power the electronic device 10 .
  • the circuit board 400 may be provided with a power management circuit. The power management circuit is used to distribute the voltage provided by the battery 500 to the various electronic devices in the electronic device 10.
  • the rear case 600 is connected to the middle frame 300 .
  • the rear case 600 can be attached to the middle frame 300 through an adhesive such as double-sided tape to achieve connection with the middle frame 300 .
  • the back case 600 is used to seal the electronic devices and functional components of the electronic device 10 inside the electronic device 10 together with the middle frame 300 and the display screen 200 to protect the electronic devices and functional components of the electronic device 10 .
  • the filling patterns in the first radiating unit 1111, the second radiating unit 1121, the conductive connector 113, the feeder layer 114, the ground area 1151, and the conductive member 116 are only used for distinction. different components and are not used to limit the structure of the above components.
  • the structures of the above components that can meet any of the requirements in the previous embodiments of the present application are within the protection scope of the embodiments of the present application, and are not specifically limited by the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

一种天线模块、天线装置及电子设备,第一辐射层设置多个第一辐射单元,第二辐射层与第一辐射层层叠设置,第二辐射层设置多个第二辐射单元,每一导电连接件分别连接一个第一辐射单元和第二辐射单元,多个第二辐射单元、多个导电连接件和多个第一辐射单元形成连续的电流路径,电流路径在激励信号的作用下支持无线信号传输。

Description

天线模块、天线装置及电子设备
本申请要求于2022年06月13日提交中国专利局、申请号为202210667162.5、发明名称为“天线模块、天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种天线模块、天线装置及电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备能够实现的功能越来越多,电子设备的通信模式也更加多样化,电子设备的每一种通信模式都需要相应的天线来支持。
发明内容
本申请提供一种天线模块、天线装置及电子设备,天线模块可以根据天线装置、电子设备内部空间灵活设置,天线模块更容易组装到天线装置、电子设备内。
第一方面,本申请提供了一种天线模块,包括:
第一辐射层,所述第一辐射层包括多个第一辐射单元;
第二辐射层,与所述第一辐射层层叠且间隔设置,所述第二辐射层包括多个第二辐射单元;及
多个导电连接件,每一所述导电连接件位于所述第一辐射层和所述第二辐射层之间,每一所述导电连接件的一端与一个所述第一辐射单元电连接、另一端与一个所述第二辐射单元电连接,多个所述第二辐射单元、多个所述导电连接件和多个所述第一辐射单元形成连续的电流路径,所述电流路径在馈源提供的激励信号的作用下支持无线信号的传输。
第二方面,本申请还提供一种天线装置,包括:
天线模块,所述天线模块包括第一辐射层、第二辐射层和多个导电连接件;所述第一辐射层包括多个第一辐射单元,所述第二辐射层与所述第一辐射层层叠且间隔设置,所述第二辐射层包括多个第二辐射单元;每一所述导电连接件位于所述第一辐射层和所述第二辐射层之间,每一所述导电连接件的一端与一个所述第一辐射单元电连接、另一端与一个所述第二辐射单元电连接,多个所述第二辐射单元、多个所述导电连接件和多个所述第一辐射单元形成连续的电流路径,所述电流路径在馈源提供的激励信号的作用下支持无线信号的传输;及
馈源,与所述天线模块电连接,所述馈源用于提供激励信号,所述天线模块在所述激励信号的作用下支持无线信号的传输。
第三方面,本申请还提供一种天线装置,包括多个天线模块,多个所述天线模块间隔设置并形成天线阵列;每一所述天线模块包括第一辐射层、第二辐射层和多个导电连接件; 所述第一辐射层包括多个第一辐射单元,所述第二辐射层与所述第一辐射层层叠且间隔设置,所述第二辐射层包括多个第二辐射单元;每一所述导电连接件位于所述第一辐射层和所述第二辐射层之间,每一所述导电连接件的一端与一个所述第一辐射单元电连接、另一端与一个所述第二辐射单元电连接,多个所述第二辐射单元、多个所述导电连接件和多个所述第一辐射单元形成连续的电流路径,所述电流路径在馈源提供的激励信号的作用下支持无线信号的传输;其中,每一所述天线模块的结构相同,或者至少两个所述天线模块的结构不同。
第四方面,本申请还提供了一种电子设备,包括天线装置,所述天线装置包括:
第一辐射层,所述第一辐射层包括多个第一辐射单元;
第二辐射层,与所述第一辐射层层叠且间隔设置,所述第二辐射层包括多个第二辐射单元;及
多个导电连接件,每一所述导电连接件位于所述第一辐射层和所述第二辐射层之间,每一所述导电连接件的一端与一个所述第一辐射单元电连接、另一端与一个所述第二辐射单元电连接,多个所述第二辐射单元、多个所述导电连接件和多个所述第一辐射单元形成连续的电流路径,所述电流路径在馈源提供的激励信号的作用下支持无线信号的传输。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的天线模块的第一种结构示意图。
图2为本申请实施例提供的天线装置的第一种结构示意图。
图3为本申请实施例提供的天线模块的第二种结构示意图。
图4为本申请实施例提供的天线装置的第二种结构示意图。
图5为本申请实施例提供的天线模块的第三种结构示意图。
图6为本申请实施例提供的天线装置的第三种结构示意图。
图7为图5所示的天线模块的第一种连接示意图。
图8为图5所示的天线模块的第二种连接示意图。
图9为图5所示的天线模块的第三种连接示意图。
图10为图5所示的天线模块的第四种连接示意图。
图11为图5所示的天线模块的第五种连接示意图。
图12为图5所示的天线模块的第六种连接示意图。
图13为图5所示的天线模块的第七种连接示意图。
图14为本申请实施例的天线装置的第四种结构示意图。
图15为本申请实施例提供的电子设备的一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图1至附图15,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例提供一种天线模块110、天线装置100和电子设备10,天线模块110、天线装置100可以实现的无线通信功能,例如可以传输无线保真(Wireless Fidelity,简称Wi-Fi)信号、全球定位系统(Global Positioning System,简称GPS)信号、第三代移动通信技术(3rd-Generation,简称3G)、第四代移动通信技术(4th-Generation,简称4G)、第五代移动通信技术(5th-Generation,简称5G)、近场通信(Near field communication,简称NFC)信号、超宽带通信(Ultra Wide Band,简称UWB)信号等。
请参考图1和图2,图1为本申请实施例提供的天线模块110的第一种结构示意图,图2为本申请实施例提供的天线装置100的第一种结构示意图。本申请实施例的天线装置100包括一个或多个天线模块110。每一天线模块110可以包括第一辐射层111、第二辐射层112以及多个导电连接件113。天线装置100可以包括馈源120。
第二辐射层112可位于第一辐射层111的一侧,第二辐射层112可与第一辐射层111层叠且间隔设置。第一辐射层111包括多个第一辐射单元1111,第二辐射层112包括多个第二辐射单元1121。每一导电连接件113均位于第一辐射层111和第二辐射层112之间,每一导电连接件113的一端与第一辐射单元1111直接或间接电连接、每一导电连接件113的另一端与第二辐射单元1121直接或间接电连接。多个第二辐射单元1121、多个导电连接件113和多个第一辐射单元1111可以形成连续的电流路径S(由多个导体形成的可供电流流动的导体路径)。在天线装置100的馈源120提供的激励信号的作用下,多个第二辐射单元1121、多个导电连接件113和多个第一辐射单元1111形成的电流路径S可以共同支持无线信号的传输。
其中,每一第一辐射单元1111、每一第二辐射单元1121可以是由导体结构形成的可以辐射电磁波信号的结构。例如但不限于第一辐射单元1111、第二辐射单元1121可以是由金属迹线形成的辐射体。
其中,第一辐射层111可与第二辐射层112平行,第二辐射层112可与第一辐射层111不接触设置。第一辐射层111可以为能承载多个第一辐射单元1111的承载体层状结构,此时多个第一辐射单元1111可以但不限于通过贴附、蚀刻、粘接等方式形成于第一辐射层 111。当然,第一辐射层111也可以不包括承载体层状结构而仅包括多个第一辐射单元1111,此时,多个第一辐射单元1111可以处于同一平面并共同形成第一辐射层111。基于同样的理由,第二辐射层112也可以为能承载多个第二辐射单元1121的承载体层状结构,或者,多个第二辐射单元1121可以处于同一平面并共同形成第二辐射层112。本申请实施例对第一辐射层111、第二辐射层112的具体结构不进行限定。
其中,如图1所示,多个第一辐射单元1111在第一辐射层111上可以相互间隔设置,任意相邻的两个第一辐射单元1111不连接,多个第一辐射单元1111在第一辐射层111上可以呈阵列排列。同理,多个第二辐射单元1121在第二辐射层112上可以相互间隔设置,任意相邻的两个第二辐射单元1121不连接,多个第二辐射单元1121在第二辐射层112上也可以呈阵列排列。当然,需要说明的是,多个第一辐射单元1111也可以不呈阵列排列而任意间隔设置,多个第二辐射单元1121也可以不呈阵列排列而任意间隔设置,本申请实施例对比不进行限定。
可以理解的是,如图1所示,每一导电连接件113的一端可以电连接前一个第一辐射单元1111的尾端、每一导电连接件113的另一端可以电连接下一个第二辐射单元1121的首端。每一第二辐射单元1121在第一辐射层111上的投影至少可以与一个第一辐射单元1111相交,每一第一辐射单元1111在第二辐射层112上的投影至少可以与一个第二辐射单元1121相交,从而,多个第一辐射单元1111、多个导电连接件113和多个第二辐射单元1121可以按照一个第一辐射单元1111、一个导电连接件113、一个第二辐射单元1121、另一个导电连接件113、另一个第一辐射单元1111、又一个导电连接件113、又一个第二辐射单元1121……的顺序循环排列,多个第一辐射单元1111、多个第二辐射单元1121在多个导电连接件113的作用下可以形成依次连接的连续的电流路径S,可以理解的是,该电流路径S可以是螺旋结构的电流路径S。
其中,本申请实施例的多个第一辐射单元1111、多个第二辐射单元1121也可以不按照上述方式设置于第一辐射层111、第二辐射层112。示例性的,请参考图3和图4,图3为本申请实施例提供的天线模块110的第二种结构示意图,图4为本申请实施例提供的天线装置100的第二种结构示意图。本申请实施例的两个或多个第一辐射单元1111在第一辐射层111上也可以不间隔设置而是相互连接在一起,两个或多个第二辐射单元1121在第二辐射层112上也可以不间隔设置而是相互连接在一起。例如图3和图4中两个第一辐射单元1111a和1111b可以相互连接在一起并形成整体,两个第二辐射单元1121a和1121b也可以相互连接在一起并形成整体。此时,一个导电连接件113的一端可与形成整体的第一辐射单元1111a和1111b电连接,导电连接件113的另一端可以与形成整体的第二辐射单元1121a和1121b电连接。此时,多个第一辐射单元1111、多个第二辐射单元1121在多个导电连接件113的作用下也可以形成连续的电流路径S。
可以理解的是,实际应用中,导电连接件113连接第一辐射单元1111和第二辐射单元 1121的过程中,导电连接件113往往会贯穿某些介质(例如后文中的基板130),但是受限于电子设备10内部器件的限制,可能存在某些区域不适合设置导电连接件113。此时,天线模块110可以通过调整多个第一辐射单元1111的位置、多个第二辐射单元1121的位置,使得部分第一辐射单元1111可相互连接、部分第二辐射单元1121可以相互连接,从而导电连接件113可以避开不适宜的设置空间。
需要说明的是,以上仅为多个第一辐射单元1111、多个导电连接件113、多个第二辐射单元1121形成连续的电流路径S的示例性举例,其他可以形成连续电流路径S的方式均在本申请实施例的保护范围内,本申请实施例对此不进行限定。
可以理解的是,在图1和图2所示的实施例中,实现一个第一辐射单元1111与两个第二辐射单元1121往往需要两个导电连接件113(可不考虑第一个辐射单元和最后一个辐射单元),当第一辐射单元1111和第二辐射单元1121的数量均为N时,导电连接件113的数量至少可为(2N-2)。而在图3和图4所示的实施例中,由于部分第一辐射单元1111与相邻的第一辐射单元1111相连接、部分第二辐射单元1121与相邻的第二辐射单元1121相连接,因此,图2所示的实施例中导电连接件113的数量可少于(2N-2)。需要说明的是,导电连接件113的数量可以根据实际情况进行调节,本申请实施例对此不进行限定。
可以理解的是,当多个第一辐射单元1111、多个第二辐射单元1121和多个导电连接件113相互连接时,如图1和图2所示,多个第一辐射单元1111、多个第二辐射单元1121和多个导电连接件113形成的连续的电流路径S可以类似弹簧的螺旋结构。当然,通过对多个第一辐射单元1111、多个第二辐射单元1121和多个导电连接件113的形状、位置进行设置,也可以使得多个第一辐射单元1111、多个第二辐射单元1121和多个导电连接件113形成的连续的电流路径S可以形成其他结构的螺旋结构,例如但不限于形成阿基米德螺旋线结构、赛马螺旋线结构、等脚螺旋线结构、双曲螺旋线结构、圆内螺旋线结构、连锁螺旋线结构等。本申请实施例对天线装置100形成的螺旋结构的具体形式不进行限定。需要说明的是,通过对多个第一辐射单元1111、多个第二辐射单元1121和多个导电连接件113的形状、位置进行设置,也可以使得多个第一辐射单元1111、多个第二辐射单元1121和多个导电连接件113形成的连续的电流路径S为其他的曲线、折线等形状,本申请实施例对电流路径S的具体形状不进行限定,凡是能形成连续的电流路径S的形状,均在本申请实施例的保护范围内。
可以理解的是,第一辐射单元1111、第二辐射单元1121可以如图1所示为长条形的结构,第一辐射单元1111、第二辐射单元1121也可以如图3所示为弧形曲线结构。每一第一辐射单元1111的结构可以完全相同,当然,一个或多个(两个及两个以上)第一辐射单元1111的结构可以不同;同理,每一第二辐射单元1121的结构可以完全相同,一个或多个(两个及两个以上)第二辐射单元1121的结构也可以不同。本申请实施例对第一辐射单元1111、第二辐射单元1121的具体形状、具体结构不进行限定。
本申请实施例的天线模块110和天线装置100,当多个第一辐射单元1111、多个第二辐射单元1121和多个导电连接件113相互连接形成连续的电流路径S时,由于第一辐射层111、第二辐射层112层叠设置而处于不同的平面,本申请实施例的电流路径S可以为立体结构而不为平面结构,该立体式的电流路径S可以在三维空间上进行延伸和扩展。一方面,具有连续的电流路径S的天线模块110和天线装置100可以实现圆极化性能,天线装置100可以具有较高的增益和较灵活的波束扫描特性;另一方面,相较于同等电长度的平面结构而言,本申请的立体式的电流路径S既可以保证电长度需求,还可以在平面上占据较小的空间(例如本申请立体的电流路径S在水平面上的投影面积会小于同周长的平面结构在水平面上的投影),天线模块110和天线装置100可以实现小型化设计;又一方面,设有第一辐射单元1111的第一辐射层111、设有第二辐射单元1121的第二辐射层112可以模块化,并可以根据天线模块110、天线装置100的安装需求而灵活设置于天线装置100、电子设备10等部件的有限的空间内,天线模块110的组装更灵活;还一方面,第一辐射层111上设置多个第一辐射单元1111、第二辐射层112上设置多个第二辐射单元1121,多个第一辐射单元1111、多个第二辐射单元1121可以根据天线装置100的实际应用情况而灵活排列在第一辐射层111、第二辐射层112上,第一辐射单元1111、第二辐射单元1121的设置位置更灵活,更利于天线模块110、天线装置100的组装。
其中,请结合图1和图2并请参考图5和图6,图5为本申请实施例提供的天线模块110的第三种结构示意图,图6为本申请实施例提供的天线装置100的第三种结构示意图。本申请实施例天线模块110还可以在电流路径S的端部设置一个或多个(两个及两个以上)导电件116。
电流路径S可以包括两个端部,该两个端部可以全部形成在第一辐射层111或者第二辐射层112上,该两个端部也可以其中一个形成在第一辐射层111上、另一个端部形成在第二辐射层112上。当天线模块110包括一个导电件116时,该导电件116可以连接于一个端部;当天线模块包括两个多个导电件116时,至少一个导电件116可以连接于一个端部,至少另一个导电件连接于另一个端部。
示例性的,如图5和图6所示,第一辐射层111的某一第一辐射单元1111例如第一辐射单元1111c的一端可以通过一个导电连接件113与第二辐射单元1121电连接,第一辐射单元1111c的另一端可不通过导电连接件113与第二辐射单元1121电连接,该第一辐射单元1111c的另一端可为第一自由端;第一辐射层111的另一第一辐射单元1111例如第一辐射单元111d的一端通过导电连接件113与第二辐射单元1121电连接,第一辐射单元1111d的另一端可不通过导电连接件113与第二辐射单元1121电连接,该第一辐射单元1111d的另一端可为第二自由端;此时,至少一个导电件116可以连接于该第一自由端并实现与电流路径S的电连接,至少另一个导电件116可以连接于该第二自由端并实现与电流路径S的电连接。
可以理解的是,导电件116可以延长电流路径S的长度,以优化天线模块110的辐射性能。可以理解的是,如图5和图6所示,天线模块110也可以通过一个导电件116与馈源120电连接以使得馈源120可向天线模块110馈入激励信号。
需要说明的是,馈源120可以通过导电件116实现与电流路径S的电连接,馈源120也可以通过其他的方式实现与电流路径S的电连接,本申请实施例对此不进行限定。
可以理解的是,当多个导电件116连接于电流路径S的同一端部时,该多个导电件116可以相互串联,以进一步延长电流路径S的长度。
可以理解的是,导电件116可以是具有导电性能的结构,导电件116可以与导电连接件113的结构相同,例如,导电件116和导电连接件113均可以为金属过孔;当然,导电件116也可以与导电连接件113的结构不同,例如,导电件116可以金属导线、导电连接件113可为金属过孔。需要说明的是,本申请实施例的导电件116与导电连接件113的具体结构不限于上述说明,本申请实施例对导电件116、导电连接件113的具体结构不进行限定。
其中,请再次参考图5和图6,本申请实施例的天线装置100或者天线模块110还可以包括馈线层114。
该馈线层114的一端可与第一辐射单元1111或第二辐射单元1121直接或间接电连接,例如但不限于馈线层114的一端可与导电件116电连接;馈线层114的另一端可与馈源120直接或间接电连接,馈源120可以提供激励信号,馈线层114可以将馈源120提供的激励信号传输至所电连接的第一辐射单元1111或第二辐射单元1121(或电流路径S),以激励多个第二辐射单元1121、多个导电连接件113和多个第一辐射单元1111形成的立体式的电流路径S形成谐振并支持无线信号的传输。
可以理解的是,当天线装置100包括多个天线模块110时,多个天线模块110可以通过各自的馈线层114电连接于同一馈源120,馈源120可以但不限于通过功分器或者功率分配电路等方式向多个天线模块110提供激励信号,多个天线模块110可以支持同一无线信号的传输。当然,天线装置100也可以包括两个或多个馈源120,两个或多个天线模块110可以电连接于不同的馈源120,此时,每一天线模块110可以在各自电连接的馈源120的激励下形成各自的谐振并支持各自的无线信号传输,多个天线模块110可以支持相同的无线信号,也可以存在至少两个天线模块110支持不同的无线信号,本申请实施例对天线装置100的具体馈电方式不进行限定。
可以理解的是,馈线层114可以但不限包括微带线、带状线、共面波导中的一种或多种组合,该馈线层114可以但不限于通过喷涂、蚀刻等方式形成。
可以理解的是,馈线层114可以与第一辐射层111或第二辐射层112共面设置。例如,当第一辐射层111或第二辐射层112形成于某一介质的某一面时,馈线层114也可以形成于该介质的该面上,此时,可以充分利用介质作为载体,整个天线装置100可以集成在同 一介质上,更利于天线装置100布置于电子设备10内部。当然,馈线层114也可以与第一辐射层111、第二辐射层112层叠设置,馈线层114不与第一辐射层111、第二辐射层112共面。本申请实施例对馈线层114的具体结构不进行限定。
其中,请结合图1至图6并请参考图7,图7为图5所示的天线模块110的第一种连接示意图。本申请实施例的天线模块110可以承载于基板130上。
天线模块110的第一辐射层111、第二辐射层112可以形成于基板130的相对两个面上。基板130可以承载全部或部分天线模块110,全部或部分的天线模块110可以设置或连接于基板130上。基板130可以包括相对设置的第一面131和第二面132,该第一面131、第二面132可以与第一辐射层111、第二辐射层112平行设置。第一辐射层111可以形成于该第一面131上,第二辐射层112可以形成于该第二面132上,每一导电连接件113可以贯穿第一面131和第二面132,并电连接一个第一辐射单元1111和一个第二辐射单元1121。
可以理解的是,基板130可以是天线装置100、电子设备10的部件,天线装置100、电子设备10可以包括该基板130。或者,基板130也可以是天线模块110本身的部件,天线模块110的其他部件可以承载于基板130。又或者,基板130还可以是其他装置的部件。其中,基板130可以但不限于是电路板、支架、后盖、小板等结构。本申请实施例对基板130的具体结构不进行限定。
可以理解的是,第一辐射层111可以但不限于通过喷涂、蚀刻等方式将多个第一辐射单元1111形成在第一面131上;第二辐射层112也可以但不限于通过喷涂、蚀刻等方式将多个第二辐射单元1121形成在第二面132上。本申请实施例对第一辐射层111、第二辐射层112的具体形成方式不进行限定。
可以理解的是,导电连接件113可以是具有电连接性能的连接件。例如,如图7所示,导电连接件113可以是贯穿基板130的金属过孔,金属过孔的长度可以与基板130的厚度相当。该金属过孔的孔壁上喷涂有导体材料,金属过孔的一端端部可与一个第一辐射单元1111电连接,金属过孔的另一端端部可与一个第二辐射单元1121电连接,从而,多个第二辐射单元1121、多个金属过孔和多个第一辐射单元1111可以形成立体式的连续的电流路径S。
可以理解的是,每一天线模块110的馈线层114,可以同第一辐射层111、第二辐射层112一样,形成于基板130的第一面131或者第二面132。当然,馈线层114也可以设置于其他的区域,例如但不限于设置于基板130的内部空间(第一面131和第二面132之间的空间,实际产品中基板130往往是由多层板状结构压合而成,可以在基板130的制备过程中,将馈线层114布局于基板130的某一层中),本申请实施例对馈线层114的具体形成方式不进行限定。
本申请实施例的天线模块110及天线装置100,第一辐射层111形成于基板130的第 一面131,第二辐射层112形成于基板130的第二面132,天线模块110可以充分利用基板130的表面空间进行布局,天线模块110集成在基板130上不会额外占据空间,既有利于天线模块110内置于天线装置100或者电子设备10,也可以实现天线模块110、天线装置100的小型化设计。
其中,请结合图1至图6并请参考图8,图8为图5所示的天线模块110的第二种连接示意图。天线模块110的第一辐射层111或第二辐射层112可以模块化生产。
例如,第一辐射层111可以为具有一定厚度的板状结构,第一辐射层111可以包括相对设置的第三面1112和第四面1113,该第四面1113可以与基板130的第一面131直接或间接连接,第三面1112可以远离基板130例如基板130的第一面131设置,从而,第一辐射层111的第三面1112、第四面1113、基板130的第一面131、第二面132可以依次层叠设置。
此时,第一辐射层111的多个第一辐射单元1111可以形成于第一辐射层111的第三面1112上;第二辐射层112以及第二辐射层112上的多个第二辐射单元1121可以形成于基板130的第二面132上;每一导电连接件113可以贯穿第一辐射层111和基板130,每一导电连接件113可以贯穿第三面1112至第二面132,以使得导电连接件113的一端可与第三面1112的第一辐射单元1111电连接、另一端可与第二面132的第二辐射单元1121电连接。
可以理解的是,考虑到导电连接件113在贯穿第三面1112至第二面132的过程中贯穿了第一辐射层111和基板130两种介质,实际使用中,导电连接件113可以包括多个子部件并分别贯穿第一辐射层111和基板130。例如,当导电连接件113为金属过孔时,第一辐射层111内可以设置第一金属过孔1131,基板130内可以设置第二金属过孔1132,两个金属过孔可以正对设置,在二者连接的地方可以设置焊盘等连接结构1133,以便于两个金属过孔可以更好地电连接。需要说明的是,以上仅为导电连接件113贯穿第三面1112至第二面132的示例性说明,其他可以实现上述目的的方案均在本申请实施例的保护范围内。
其中,请参考图9,图9为图5所示的天线模块110的第三种连接示意图。当第一辐射层111的多个第一辐射单元1111形成于第一辐射层111的第三面1112上时,第二辐射层112以及第二辐射层112上的多个第二辐射单元1121还可以形成在基板130的第一面131和第二面132之间的基板130区域,多个第二辐射单元1121可以位于基板130内部。此时,每一导电连接件113可以贯穿第一辐射层111和部分基板130,第一导电连接件113的一端可与第三面1112的第一辐射单元1111电连接、另一端可与位于第一面131、第二面132之间第二辐射单元1121电连接。
可以理解的是,此时导电连接件113也可以包括形成于第一辐射层111内部的第一金属过孔1131和形成于基板130内的第二金属过孔1132,二者可以但不限于通过焊盘连接。详细说明可以参见前述实施例,在此不再赘述。
本申请实施例的天线模块110及天线装置100,第一辐射层111为具有一定厚度的板状结构,第一辐射层111不需要在基板130的表面进行蚀刻或喷涂等工艺,第一辐射层111可以独立于基板130进行生产加工,第一辐射层111可以实现模块化生产,第一辐射层111的生产更简单、更有效率。并且,模块化的第一辐射层111具有一定厚度,从而图8和图9实施例中的导电连接件113相较于图7实施例中的导电连接件113具有更长的长度,天线模块110形成的立体式电流路径S的电长度更长,既方便天线模块110辐射低频信号,也可以提升天线模块110的圆极化性能。而且,当第二辐射层112形成在基板130的第一面131和第二面132之间时,第二辐射层112与基板130的第二面132上设置的电路器件的距离较远,第二辐射层112受到第二面132上的电路器件的影响较小。
其中,请结合图1至图6并请参考图10,图10为图5所示的天线模块110的第四种连接示意图。本申请实施例的天线装置100还可以在基板130的两侧部部署天线模块110。
如图10所示,第一辐射层111可以为具有一定厚度的板状结构,第二辐射层112也可以为具有一定厚度的板状结构,第一辐射层111和第二辐射层112均可以实现模块化生产,第一辐射层111、第二辐射层112可以分别位于基板130的两侧。
可以理解的是,当第一辐射层111的第四面1113与基板130的第一面131连接时,第二辐射层112可以包括相对设置的第五面1122和第六面1123,该第五面1122可以与基板130的第二面132连接,此时,第一辐射层111的第三面1112、第四面1113、基板130的第一面131、第二面132、第二辐射层112的第五面1122、第六面1123可以依次层叠设置。多个第一辐射单元1111可以形成于第一辐射层111的第三面1112,多个第二辐射单元1121可以形成于第二辐射层112的第六面1123,每一导电连接件113可以贯穿第三面1112至第六面1123,以使得导电连接件113的一端可以与第三面1112的第一辐射单元1111电连接、另一端可与第六面1123的第二辐射单元1121电连接。
可以理解的是,多个第一辐射单元1111可以是形成在第一辐射层111的第三面1112上的金属迹线,第一辐射层111的第四面1113上可以不设置金属迹线而不形成第一辐射单元1111;多个第二辐射单元1121可以是形成在第二辐射层112的第六面1123上的金属迹线,第二辐射层112的第五面1122上可以不设置金属迹线而不形成第二辐射单元1121。
可以理解的是,导电连接件113可以包括形成于第一辐射层111内部的第一金属过孔1131、形成于基板130内的第二金属过孔1132和形成于第二辐射层112内的第三金属过孔1134,三者可以但不限于通过焊盘连接。详细说明可以参见前述实施例,在此不再赘述。
本申请实施例的天线装置100,第一辐射层111、第二辐射层112为具有一定厚度的板状结构,第一辐射层111、第二辐射层112可以实现模块化生产,第一辐射层111、第二辐射层112的生产更简单、更有效率。并且,模块化的第一辐射层111、第二辐射层112具有一定厚度,天线装置100形成的立体式电流路径S的电长度更长,更利于天线装置100辐射低频信号,也更利于提升天线装置100的圆极化性能。
需要说明的是,以上仅为本申请实施例的天线模块110与基板130的示例性连接方式,其不限于此,例如,第一辐射层111、第二辐射层112之间还可以间隔多个基板130。本申请实施例对天线装置100与基板130的具体连接方式不进行限定。
需要说明的是,本申请实施例的天线模块110除了承载于基板130外,还可以单独模块化设置,也即,天线模块110可以是具有一定厚度的板状结构,第一辐射层111、第二辐射层112可以分别位于板状结构的两侧、导电连接件113可以贯穿该板状结构。天线装置100可以不依附基板130而独立地安装于电子设备10内部。
基于上述实施例的天线模块110,请再次参考图7,本申请实施例的每一天线模块110还可以包括接地平面层115。
接地平面层115上可以形成有接地区域1151,该接地区域1151在第一辐射层111上的投影位于多个第一辐射单元1111之外、接地区域1151在第二辐射层112上的投影位于多个第二辐射单元1121之外。接地平面层115上除接地区域1151之外的区域可以是净空区域1152,净空区域1152在第一辐射层111上的投影可以覆盖多个第一辐射单元1111、在第二辐射层112上的投影可以覆盖多个第二辐射单元1121。换言之,净空区域1152可以正对多个第一辐射单元1111、多个第二辐射单元1121设置,接地区域1151可以错开多个第一辐射单元1111、多个第二辐射单元1121设置。
可以理解的是,第一辐射单元1111、第二辐射单元1121可以与接地区域1151不进行电连接设置,第一辐射单元1111、第二辐射单元1121可以与接地区域1151间隔设置。此时,接地区域1151既不会影响第一辐射单元1111、第二辐射单元1121信号的辐射,接地区域1151也可以作为反射板而反射第一辐射单元1111、第二辐射单元1121辐射的电磁波,使得电磁波可以按照所需的方向进行辐射,天线装置100可以具有较好的定向辐射性能。
当然,第一辐射单元1111、第二辐射单元1121也可以与接地区域1151直接或间接电连接设置,此时,接地区域1151可以使得第一辐射单元1111、第二辐射单元1121的阻抗较小,可以保证天线装置100的辐射性能。
可以理解的是,本申请实施例的接地平面层115可以是一层结构,也可以是多层结构。当接地平面层115为多层结构时,多层的接地平面层115可以相互间隔,此时天线模块110还可以包括接地连接件(图未示),接地连接件可以将多层接地平面层115的接地区域1151相互电连接成整体,该接地连接件可以但不限于是一个或多个金属过孔结构(包括连接多个金属过孔结构的焊盘、电连接端、电连接点等结构)。本申请实施例多层接地平面层115的接地区域1151的面积可以相互累加,一方面,多层结构的接地平面层115可以在某一层上占据的空间较小,另一方面,多层结构的接地平面层115可以灵活地设置在天线装置100或电子设备10内部,从而,多层结构的接地平面层115有利于天线装置100或电子设备10实现小型化设计。
其中,为了进一步提高天线装置100的方向性,可以对接地区域1151的形状进行设计。 示例性的,请参考图11,图11为图5所示的天线模块110的第五种连接示意图。接地区域1151可以形成槽体结构1153。
接地区域1151可从接地平面层115的边缘朝向接地平面层115的主体延伸,接地区域1151在对应第一辐射层111、所述第二辐射层112的区域可以形成槽体结构1153,该槽体结构1153可以不设置导体材料,该槽体结构1153可以形成前述实施例中的净空区域1152,槽体结构1153在第一辐射层111上的投影可以覆盖多个第一辐射单元1111、在第二辐射层112上的投影可以覆盖多个第二辐射单元1121,槽体结构1153的开口可以朝向天线模块110支持无线信号传输时的主辐射方向。例如,图11中,多个第一辐射单元1111、多个第二辐射单元1121和多个导电连接件113形成的立体螺旋式结构无线信号传输时的辐射主瓣方向朝向左部区域,接地区域1151的槽体结构1153的开口也可以朝向左部区域。
可以理解的是,如图11所示,槽体结构1153的第一端1154的开口直径可以与第二端1155的开口之间相等或近似相等,槽体结构1153可为矩形槽结构,矩形槽结构在生产加工过程中更容易形成。当然,槽体结构1153也可以为其他结构,下文中会进行详述此处不再赘述。
本申请实施例的天线模块110,接地区域1151上设置开口朝向天线装置100主辐射方向的槽体结构1153,接地区域1151可以使得天线装置100的辐射波束更集中于主辐射方向,可以提高天线装置100的定向性。
其中,请参考图12,图12为图5所示的天线模块110的第六种连接示意图。本申请实施例的接地区域1151的槽体结构1153的直径,可以从靠近接地平面层115边缘的第一端1154至远离接地平面层115边缘的第二端1155,线性逐渐变小或者非线性逐渐变小。
槽体结构1153可以包括第一端1154和第二端1155,该第一端1154可以是靠近接地平面边缘的一端,第二端1155可以是远离接地平面边缘的一端,该第一端1154和第二端1155均为虚体的开口结构。
可以理解的是,如图12所示,第一端1154的开口直径可以大于第二端1155的开口直径,槽体结构1153可以形成喇叭状结构,喇叭结构的槽体结构1153可以将更多的第一辐射单元1111、第二辐射单元1121的辐射能量反射至天线装置100的主辐射方向,天线装置100的定向性更优。
可以理解的是,接地区域1151在槽体结构1153处的边缘可以如图12所示为线性逐渐变小;当然,接地区域1151在槽体结构1153处的边缘也可以为非线性逐渐变小,示例性的,请参考图13,图13为图5所示的天线模块110的第七种连接示意图,接地区域1151在槽体结构1153处的边缘的波浪式的逐渐变小,波浪式的槽体边缘可以增加辐射能量在槽体结构1153的反射次数以进一步提高天线装置100的定向性。
需要说明的是,槽体结构1153的具体形状并不限于上述举例,例如接地区域1151在槽体结构1153处的边缘还可以为梳妆加载结构、啮齿结构等。本申请实施例对槽体结构 1153以及接地区域1151的具体结构不进行限定。
本申请实施例的天线装置100,接地区域1151的槽体结构1153为喇叭状结构,接地区域1151可以进一步使得天线装置100的辐射波束更集中于主辐射方向,可以提高天线装置100的定向性。
需要说明的是,上述实施例中仅示意出天线装置100包括一个天线模块110,但需要注意的是,上述实施例中的天线装置100也可以包括多个天线模块110。
示例性的,请参考图14,图14为本申请实施例的天线装置100的第四种结构示意图。天线装置100可以包括多个天线模块110。
多个天线模块110可以相互间隔设置,多个天线模块110可以呈阵列排列。天线装置100可以设置一个馈源120,该一个馈源120可以与每一天线模块110直接或间接电连接,例如,馈源120可以与每一天线模块110的馈线层114电连接。馈源120可以为每一天线模块110提供激励信号,多个天线模块110可以支持同一无线信号的传输,多个天线模块110可以形成天线阵列。
可以理解的是,多个天线模块110的主辐射方向可以朝向同一方向,以使得天线阵列的方向性更强。
可以理解的是,当天线装置100包括多个天线模块110时,每一天线模块110可以具有各自的接地平面层115。当然,两个或多个天线模块110的接地平面层115也可以相连而合成同一接地平面层115,实际使用中,多个天线模块110往往可以共用同一接地平面层115,天线装置100可以包括一较大的接地平面层115。示例性的,两个或多个天线模块110的接地平面层115可以为两层或多层结构的接地平面层115,两层或多层的接地平面层115可以但不限于通过金属过孔等接地连接件电连接成一整体。
可以理解的是,天线阵列中的多个天线模块110的结构可以相同,多个天线模块110中的至少两个天线模块110的结构也可以不同。多个天线模块110可以采用前述任一实施例的方案,例如可以按照图3至图6中任一实施例的方案与基板130进行配合。当然,多个天线模块110也可以采用至少两种不同的连接方案与基板130配合。例如,一个或几个天线模块110可以采用图4所示的方式与基板130相配合,另一个或几个天线模块110可以采用图4所示的方式与基板130相配合,又一个或几个天线模块110可以采用图5或图6所示的方式与基板130相配合。本申请实施例对此不进行限定。
本申请实施例的天线装置100,多个天线模块110可以采用相同或不同的方式以基板130配合,多个天线模块110的设置方式更灵活;同时,多个天线模块110形成天线阵列,天线装置100的定向性能更优。
需要说明的是,至少两个天线模块110的结构不同,既可以是至少两个天线模块110与基板130的连接方式不同而使其结构不同,该两个天线模块110也可以因为其他特征的不同而使其结构不同,例如但不限于至少两个天线模块110的接地平面层115的结构不同。 本申请实施例对结构不同的至少两个天线模块110的具体结构不进行限定。
需要说明的是,多个天线模块110形成天线阵列的方式不局限于图14中所示的1×N的矩阵式排列方式,还可以但不限于M×N、M×M的矩阵式排列、圆环形排列方式等。本申请实施例对多个天线模块110的具体排列方式不进行限定。
需要说明的是,天线装置100包括的多个天线模块110中,两个或多个天线模块110也可以相互连接,两个或多个天线模块110也可以连接于不同的馈源120。本申请实施例对多个天线模块110的具体排列方式、馈电方式不进行限定。
基于上述天线装置100的结构,本申请实施例还提供一种电子设备10。电子设备10可以是智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。请参考图15,图15为本申请实施例提供的电子设备10的一种结构示意图。电子设备10除了包括天线装置100外,还可以包括显示屏200、中框300、电路板400、电池500和后壳600。
其中,显示屏200设置在中框300上,以形成电子设备10的显示面,用于显示图像、文本等信息。其中,显示屏200可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏等类型的显示屏。可以理解的,显示屏200上还可以设置盖板,以对显示屏200进行保护,防止显示屏200被刮伤或者被水损坏。其中,盖板可以为透明玻璃盖板,从而用户可以透过盖板观察到显示屏200显示的内容。可以理解的,盖板可以为蓝宝石材质的玻璃盖板。
中框300可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框300用于为电子设备10中的电子器件或功能组件提供支撑作用,以将电子设备10的电子器件、功能组件安装到一起。例如,中框300上可以设置凹槽、凸起、通孔等结构,以便于安装电子设备10的电子器件或功能组件。可以理解的,中框300的材质可以包括金属或塑胶等。
电路板400设置在中框300上以进行固定,并通过后壳600将电路板400密封在电子设备10的内部。其中,电路板400可以为电子设备10的主板。电路板400上可以集成有处理器,此外还可以集成耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。同时,显示屏200可以电连接至电路板400,以通过电路板400上的处理器对显示屏200的显示进行控制。可以理解的是,前述实施例中的基板130可以是电子设备10的电路板400,本申请实施例的天线模块110可以设置于电路板400上。需要说明的是,本申请实施例的天线模块110也可以形成在其他的载体上,例如但不限于形成在电子设备10的天线支架、小板上,本申请实施例对此不进行限定。
电池500设置在中框300上,并通过后壳600将电池500密封在电子设备10的内部。同时,电池500电连接至电路板400,以实现电池500为电子设备10供电。其中,电路板400上可以设置有电源管理电路。电源管理电路用于将电池500提供的电压分配到电子设 备10中的各个电子器件。
后壳600与中框300连接。例如,后壳600可以通过诸如双面胶等粘接剂贴合到中框300上以实现与中框300的连接。其中,后壳600用于与中框300、显示屏200共同将电子设备10的电子器件和功能组件密封在电子设备10内部,以对电子设备10的电子器件和功能组件形成保护作用。
需要理解的是,在本申请的描述中,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
需要说明的是,在本申请的附图中,诸如第一辐射单元1111、第二辐射单元1121、导电连接件113、馈线层114、接地区域1151、导电件116中的填充图案仅用于区分不同部件,而不用于对上述部件结构上的限定。上述部件中能符合本申请前述实施例中的任一需求的结构均在本申请实施例的保护范围内,本申请实施例对此不进行具体的限定。
以上对本申请实施例所提供的天线模块、天线装置及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种天线模块,包括:
    第一辐射层,所述第一辐射层包括多个第一辐射单元;
    第二辐射层,与所述第一辐射层层叠且间隔设置,所述第二辐射层包括多个第二辐射单元;及
    多个导电连接件,每一所述导电连接件位于所述第一辐射层和所述第二辐射层之间,每一所述导电连接件的一端与一个所述第一辐射单元电连接、另一端与一个所述第二辐射单元电连接,多个所述第二辐射单元、多个所述导电连接件和多个所述第一辐射单元形成连续的电流路径,所述电流路径在馈源提供的激励信号的作用下支持无线信号的传输。
  2. 根据权利要求1所述的天线模块,其中,多个所述第一辐射单元相互间隔设置;和/或,多个所述第二辐射单元相互间隔设置。
  3. 根据权利要求1所述的天线模块,其中,所述天线模块承载于基板,所述基板包括相对设置的第一面和第二面,所述第一辐射层形成于所述第一面,所述第二辐射层形成于所述第二面,每一所述导电连接件贯穿所述第一面和所述第二面。
  4. 根据权利要求1所述的天线模块,其中,所述天线模块承载于基板,所述基板包括相对设置的第一面和第二面,所述第一辐射层包括相对设置的第三面和第四面,所述第三面、所述第四面、所述第一面和所述第二面层叠设置;多个所述第一辐射单元形成于所述第三面;
    所述第二辐射层形成于所述第二面,每一所述导电连接件贯穿所述第三面至所述第二面;或者,所述第二辐射层形成于所述第一面和所述第二面之间的基板区域,每一所述导电连接件贯穿所述第一辐射层和至少部分所述基板。
  5. 根据权利要求1所述的天线模块,其中,所述天线模块承载于基板,所述基板包括相对设置的第一面和第二面,所述第一辐射层包括相对设置的第三面和第四面,所述第二辐射层包括相对设置的第五面和第六面,所述第三面、所述第四面、所述第一面、所述第二面、所述第五面和所述第六面层叠设置;其中,
    多个所述第一辐射单元形成于所述第三面,多个所述第二辐射单元形成于所述第六面,每一所述导电连接件贯穿所述第三面至所述第六面。
  6. 根据权利要求1所述的天线模块,其中,还包括:
    接地平面层,所述接地平面层上形成有接地区域,所述接地区域在所述第一辐射层上的投影位于多个所述第一辐射单元之外、在所述第二辐射层上的投影位于多个所述第二辐射单元之外。
  7. 根据权利要求6所述的天线模块,其中,所述接地区域从所述接地平面层的边缘朝向所述接地平面层的主体延伸,所述接地区域在对应所述第一辐射层、所述第二辐射层的区域形成槽体结构,所述槽体结构的开口朝向所述天线模块支持无线信号时的主辐射方向。
  8. 根据权利要求7所述的天线模块,其中,所述槽体结构的直径从靠近所述接地平面层边缘的第一端至远离所述接地平面层边缘的第二端,线性逐渐变小或者非线性逐渐变小。
  9. 根据权利要求1所述的天线模块,其中,还包括:
    馈线层,所述馈线层的一端与所述第一辐射单元或所述第二辐射单元电连接,所述馈线层的另一端与所述馈源电连接,所述馈线层用于将所述馈源提供的激励信号传输至所述第一辐射单元或所述第二辐射单元;其中,
    所述馈线层与所述第一辐射层或所述第二辐射层共面;或者,所述馈线层与所述第一辐射层或所述第二辐射层层叠设置。
  10. 根据权利要求1所述的天线模块,其中,所述电流路径包括两个端部;所述天线模块还包括一个导电件,所述导电件连接于一个端部;或者,所述天线模块包括两个导电件,一个所述导电件连接于一个端部,另一个所述导电件连接于另一个端部。
  11. 一种天线装置,包括:
    天线模块,所述天线模块包括第一辐射层、第二辐射层和多个导电连接件;所述第一辐射层包括多个第一辐射单元,所述第二辐射层与所述第一辐射层层叠且间隔设置,所述第二辐射层包括多个第二辐射单元;每一所述导电连接件位于所述第一辐射层和所述第二辐射层之间,每一所述导电连接件的一端与一个所述第一辐射单元电连接、另一端与一个所述第二辐射单元电连接,多个所述第二辐射单元、多个所述导电连接件和多个所述第一辐射单元形成连续的电流路径,所述电流路径在馈源提供的激励信号的作用下支持无线信号的传输;及
    馈源,与所述天线模块电连接,所述馈源用于提供激励信号,所述天线模块在所述激励信号的作用下支持无线信号的传输。
  12. 根据权利要求11所述的天线装置,其中,还包括基板,所述基板承载所述天线模块。
  13. 一种天线装置,包括多个天线模块,多个所述天线模块间隔设置并形成天线阵列,每一所述天线模块包括第一辐射层、第二辐射层和多个导电连接件;所述第一辐射层包括多个第一辐射单元,所述第二辐射层与所述第一辐射层层叠且间隔设置,所述第二辐射层包括多个第二辐射单元;每一所述导电连接件位于所述第一辐射层和所述第二辐射层之间,每一所述导电连接件的一端与一个所述第一辐射单元电连接、另一端与一个所述第二辐射单元电连接,多个所述第二辐射单元、多个所述导电连接件和多个所述第一辐射单元形成连续的电流路径,所述电流路径在馈源提供的激励信号的作用下支持无线信号的传输;其中,每一所述天线模块的结构相同,或者至少两个所述天线模块的结构不同。
  14. 根据权利要求13所述的天线装置,其中,还包括:
    馈源,与每一所述天线模块电连接,所述馈源为每一所述天线模块提供激励信号,多个所述天线模块在所述激励信号的作用下支持无线信号的传输。
  15. 根据权利要求13所述的天线装置,其中,所述天线模块承载于基板,所述基板包括相对设置的第一面和第二面,所述第一辐射层形成于所述第一面,所述第二辐射层形成于所述第二面,每一所述导电连接件贯穿所述第一面和所述第二面。
  16. 根据权利要求13所述的天线装置,其中,所述天线模块承载于基板,所述基板包括相对设置的第一面和第二面,所述第一辐射层包括相对设置的第三面和第四面,所述第三面、所述第四面、所述第一面和所述第二面层叠设置;多个所述第一辐射单元形成于所述第三面;
    所述第二辐射层形成于所述第二面,每一所述导电连接件贯穿所述第三面至所述第二面;或者,所述第二辐射层形成于所述第一面和所述第二面之间的基板区域,每一所述导电连接件贯穿所述第一辐射层和至少部分所述基板。
  17. 根据权利要求13所述的天线装置,其中,所述天线模块承载于基板,所述基板包括相对设置的第一面和第二面,所述第一辐射层包括相对设置的第三面和第四面,所述第二辐射层包括相对设置的第五面和第六面,所述第三面、所述第四面、所述第一面、所述第二面、所述第五面和所述第六面层叠设置;其中,
    多个所述第一辐射单元形成于所述第三面,多个所述第二辐射单元形成于所述第六面,每一所述导电连接件贯穿所述第三面至所述第六面。
  18. 一种电子设备,包括天线装置,所述天线装置包括:
    第一辐射层,所述第一辐射层包括多个第一辐射单元;
    第二辐射层,与所述第一辐射层层叠且间隔设置,所述第二辐射层包括多个第二辐射单元;及
    多个导电连接件,每一所述导电连接件位于所述第一辐射层和所述第二辐射层之间,每一所述导电连接件的一端与一个所述第一辐射单元电连接、另一端与一个所述第二辐射单元电连接,多个所述第二辐射单元、多个所述导电连接件和多个所述第一辐射单元形成连续的电流路径,所述电流路径在馈源提供的激励信号的作用下支持无线信号的传输。
  19. 根据权利要求18所述的电子设备,其中,所述天线模块承载于基板,所述基板包括相对设置的第一面和第二面,所述第一辐射层形成于所述第一面,所述第二辐射层形成于所述第二面,每一所述导电连接件贯穿所述第一面和所述第二面。
  20. 根据权利要求18所述的电子设备,其中,所述天线模块承载于基板,所述基板包括相对设置的第一面和第二面,所述第一辐射层包括相对设置的第三面和第四面,所述第三面、所述第四面、所述第一面和所述第二面层叠设置;多个所述第一辐射单元形成于所述第三面;
    所述第二辐射层形成于所述第二面,每一所述导电连接件贯穿所述第三面至所述第二面;或者,所述第二辐射层形成于所述第一面和所述第二面之间的基板区域,每一所述导电连接件贯穿所述第一辐射层和至少部分所述基板。
PCT/CN2022/139712 2022-06-13 2022-12-16 天线模块、天线装置及电子设备 WO2023240966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210667162.5A CN117276857A (zh) 2022-06-13 2022-06-13 天线模块、天线装置及电子设备
CN202210667162.5 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023240966A1 true WO2023240966A1 (zh) 2023-12-21

Family

ID=89193033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139712 WO2023240966A1 (zh) 2022-06-13 2022-12-16 天线模块、天线装置及电子设备

Country Status (2)

Country Link
CN (1) CN117276857A (zh)
WO (1) WO2023240966A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755737A (zh) * 2019-03-08 2019-05-14 电连技术股份有限公司 一种毫米波天线
US20200076055A1 (en) * 2017-05-30 2020-03-05 Samsung Electronics Co., Ltd. Antenna array and electronic device including antenna arrray
EP3700009A1 (en) * 2019-02-20 2020-08-26 Samsung Electronics Co., Ltd. Antenna module including flexible printed circuit board and electronic device including the antenna module
US20210203071A1 (en) * 2019-12-31 2021-07-01 Samsung Electronics Co., Ltd. Dual-band antenna using coupled feeding and electronic device comprising the same
CN114122718A (zh) * 2020-08-25 2022-03-01 广东博纬通信科技有限公司 一种低频振子单元及混合阵列天线
CN216133971U (zh) * 2021-08-19 2022-03-25 佛山市盛信科技有限公司 一种超宽频双极化吸顶天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200076055A1 (en) * 2017-05-30 2020-03-05 Samsung Electronics Co., Ltd. Antenna array and electronic device including antenna arrray
EP3700009A1 (en) * 2019-02-20 2020-08-26 Samsung Electronics Co., Ltd. Antenna module including flexible printed circuit board and electronic device including the antenna module
CN109755737A (zh) * 2019-03-08 2019-05-14 电连技术股份有限公司 一种毫米波天线
US20210203071A1 (en) * 2019-12-31 2021-07-01 Samsung Electronics Co., Ltd. Dual-band antenna using coupled feeding and electronic device comprising the same
CN114122718A (zh) * 2020-08-25 2022-03-01 广东博纬通信科技有限公司 一种低频振子单元及混合阵列天线
CN216133971U (zh) * 2021-08-19 2022-03-25 佛山市盛信科技有限公司 一种超宽频双极化吸顶天线

Also Published As

Publication number Publication date
CN117276857A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
JP6854326B2 (ja) 通信及び測距機能を有する電子デバイス
CN111193110B (zh) 天线装置及电子设备
KR20200078458A (ko) 유전체 층에 대해 장착된 전자 디바이스 안테나 어레이들
US11700035B2 (en) Dielectric resonator antenna modules
CN112821042B (zh) 电子设备
EP4277027A1 (en) Millimeter wave antenna, apparatus and electronic device
CN112736448B (zh) 电子设备
US20220352620A1 (en) Antenna device
WO2023186033A1 (zh) 超带宽天线阵列及电子设备
WO2023221499A1 (zh) 天线装置及电子设备
US11664601B2 (en) Electronic devices with coexisting antennas
WO2020020013A1 (zh) 毫米波无线终端设备
WO2023186032A1 (zh) 超带宽天线阵列及电子设备
US20080246665A1 (en) Antenna device
TWI779577B (zh) 天線模組及電子設備
CN112467353B (zh) 天线装置及电子设备
CN209981457U (zh) 组合天线及终端设备
WO2023240966A1 (zh) 天线模块、天线装置及电子设备
CN112153833B (zh) 壳体组件、天线装置及电子设备
WO2020001186A1 (zh) 电子设备
WO2022268059A1 (zh) 多层天线结构及电子设备
CN111864343A (zh) 电子设备
KR20240024209A (ko) 안테나 구조, 안테나 모듈, 칩 및 전자 디바이스
US11973278B2 (en) Antenna structure and electronic device
JP2000201014A (ja) マイクロストリップアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946632

Country of ref document: EP

Kind code of ref document: A1