WO2023240881A1 - 一种陆地用g.654.e光纤及其制作工艺 - Google Patents

一种陆地用g.654.e光纤及其制作工艺 Download PDF

Info

Publication number
WO2023240881A1
WO2023240881A1 PCT/CN2022/127654 CN2022127654W WO2023240881A1 WO 2023240881 A1 WO2023240881 A1 WO 2023240881A1 CN 2022127654 W CN2022127654 W CN 2022127654W WO 2023240881 A1 WO2023240881 A1 WO 2023240881A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core layer
fluorine
rod
layer
Prior art date
Application number
PCT/CN2022/127654
Other languages
English (en)
French (fr)
Inventor
劳雪刚
李宝东
和联科
马康库
胡景
李凯
Original Assignee
江苏亨通光导新材料有限公司
江苏亨通光电股份有限公司
江苏亨通光纤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光导新材料有限公司, 江苏亨通光电股份有限公司, 江苏亨通光纤科技有限公司 filed Critical 江苏亨通光导新材料有限公司
Priority to DE112022000100.3T priority Critical patent/DE112022000100T5/de
Publication of WO2023240881A1 publication Critical patent/WO2023240881A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/01453Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering for doping the preform with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles

Definitions

  • the present invention relates to the technical field of optical fiber communication, specifically a G.654.E optical fiber for land use and its manufacturing process.
  • the receiving end adopts coherent reception and digital signal processing technology (DSP), which can digitally compensate for the accumulated energy during the entire transmission process in the electrical domain.
  • DSP coherent reception and digital signal processing technology
  • PMD Chromatic dispersion and polarization mode dispersion
  • the signal uses polarization mode multiplexing and various high-order modulation methods to reduce the baud rate of the signal, such as PM-QPSK, PDM-16QAM, PDM-32QAM, and even PDM-64QAM and CO -0FDM.
  • the nonlinear coefficient is a parameter used to evaluate the system performance caused by nonlinear effects, and is defined as N2/Aeff.
  • N2 is the nonlinear refractive index of the transmission fiber
  • Aeff is the effective area of the transmission fiber. Increasing the effective area of the transmission fiber can reduce nonlinear effects in the fiber.
  • the effective area of ordinary single-mode optical fiber used for terrestrial transmission system lines is only about 80 ⁇ m ⁇ 2.
  • the requirements for the effective area of optical fibers are higher, and the general effective area is above 100 ⁇ m ⁇ 2.
  • the effective area of the transmission fiber is preferably above 120 ⁇ m ⁇ 2.
  • a large effective area is often obtained by increasing the diameter of the optical core layer used to transmit optical signals. There are certain design difficulties in this type of scheme.
  • the core layer of the optical fiber and the cladding close to it mainly determine the manufacturing cost of the optical fiber. Raising the price of the optical fiber will become an obstacle to the universal application of this type of optical fiber.
  • the increase in the effective area of the optical fiber will lead to the deterioration of other parameters of the optical fiber: for example, the cut-off wavelength of the optical fiber will increase. If the cut-off wavelength is too large, it will be difficult to ensure that the optical fiber is in the transmission band.
  • the single-mode state of the optical signal in addition, if the fiber refractive index profile is improperly designed, it will also lead to the deterioration of bending performance, dispersion and other parameters.
  • Another optical fiber characteristic that limits long-distance and large-capacity transmission is attenuation.
  • the attenuation of conventional G.652.D optical fiber is generally 0.20dB/km.
  • the laser energy gradually decreases after long-distance transmission, so a relay is required.
  • the signal is amplified again in the form of Compared with the cost of optical fiber cables, the equipment and maintenance costs related to relay stations account for more than 70% of the entire link system. Therefore, if a low-attenuation or ultra-low-attenuation optical fiber is involved, the transmission distance can be effectively extended and construction and maintenance costs reduced. . After relevant calculations, if the attenuation of the optical fiber is reduced from 0.20 to 0.16dB/km, the construction cost of the entire link will be reduced by about 30%.
  • the attenuation in 600-1600nm mainly comes from Rayleigh scattering.
  • the attenuation ⁇ caused by Rayleigh scattering can be calculated by the following formula:
  • is the wavelength ( ⁇ m)
  • R is the Rayleigh scattering coefficient (dB/KM/ ⁇ m ⁇ 4)
  • P is the light intensity
  • B is the corresponding constant. Therefore, as long as the Rayleigh scattering coefficient R is determined, the attenuation ⁇ caused by Rayleigh scattering can be obtained.
  • Rd and Rc represent the changes in Rayleigh scattering coefficient caused by density fluctuations and concentration fluctuations, respectively.
  • Rc is the concentration fluctuation factor, which is mainly affected by the doping concentration of the fiber glass part. Theoretically, the less Ge and F or other dopings are used, the smaller Rc is. This is why some foreign companies currently use pure silicon core designs. The reason for achieving ultra-low attenuation performance.
  • the Rayleigh scattering coefficient also includes another parameter Rd.
  • Rd is related to the imaginary temperature Tf of the glass and changes with the structural changes and temperature changes of the glass.
  • the imaginary temperature Tf of the glass is a parameter that characterizes the structure of the glass. Physical parameters are defined as the temperature corresponding to a certain equilibrium state when the glass is rapidly cooled from a certain temperature T' to room temperature and the structure of the glass no longer adjusts.
  • Tf T': when T' ⁇ Tg ⁇ Tf, the time required for the glass to tend to equilibrium It is shorter, specifically related to the composition of the glass and the cooling rate, so Tf>T' or Tf ⁇ T';
  • a relatively low refractive index F-doped inner cladding must be used for matching to ensure that there is a sufficient refractive index difference between the core layer and the inner cladding.
  • the viscosity of the core layer of the pure silicon core is relatively high, while the viscosity of the inner cladding material doped with a large amount of F is relatively low, which causes an imbalance in the viscosity matching of the optical fiber structure and causes the virtual temperature of the optical fiber with a pure silicon core structure to increase rapidly, resulting in The Rd increases, which not only offsets the advantages brought by the reduced Rc, but may also cause abnormal attenuation of the fiber in the reverse direction.
  • the present invention provides a G.654.E optical fiber for land use, which can not only solve the problem of viscosity matching imbalance in the existing optical fiber structure, but also solve the problems of complex preparation and high cost of the existing optical fiber process; for this reason , the present invention also provides a manufacturing process of the G.654.E optical fiber for terrestrial use.
  • a G.654.E optical fiber for terrestrial use which includes a core layer and a cladding layer, characterized in that: the cladding layer includes an inner cladding layer and an outer cladding layer surrounding the periphery of the core layer from the inside to the outside; the core layer
  • the relative refractive index difference ⁇ 1 of the inner cladding layer is 0% to 0.2%, and the radius R1 of the core layer is 6 to 7 ⁇ m;
  • the relative refractive index difference ⁇ 2 of the inner cladding layer is -0.2% to -0.4%, and the radius R2 of the inner cladding layer is 15 to 25 ⁇ m.
  • the relative refractive index difference ⁇ 3 of the outer cladding is -0.18% to -0.3%.
  • the core layer is a quartz glass layer co-doped with fluorine and chlorine without germanium, wherein the relative refractive index contribution ⁇ Cl of the core layer doped with chlorine is 0.15% to 0.25%, and the relative refractive index of the core layer doped with fluorine The contribution amount ⁇ F is equal to or lower than -0.1%.
  • the chlorine element content in the core layer is 10,000 ppm to 20,000 ppm (mass ratio), and the fluorine element content is 1,000 ppm to 3,000 ppm (mass ratio).
  • the inner cladding layer is a fluorine-doped quartz glass layer
  • the ratio R2/R1 of the radius R2 of the inner cladding layer to the radius R1 of the core layer is 2 to 4
  • the relative refractive index difference ⁇ 2 of the inner cladding layer and the core layer are The relative refractive index difference ⁇ 1 of the layer ( ⁇ 1- ⁇ 2) is 0.25% to 0.4%.
  • the outer cladding is a fluorine-doped quartz glass layer, and the difference ( ⁇ 1- ⁇ 3) between the relative refractive index difference ⁇ 3 of the outer cladding and the relative refractive index difference ⁇ 1 of the core layer is 0.2% to 0.35%. .
  • the attenuation coefficient of the terrestrial G.654.E optical fiber of the present invention at a wavelength of 1310 nm is less than or equal to 0.3dB/km.
  • the attenuation coefficient of the terrestrial G.654.E optical fiber of the present invention at a wavelength of 1550nm is less than or equal to 0.17dB/km; the mode field diameter at a wavelength of 1550nm is 11.9um to 12.7 ⁇ m.
  • the G.654.E optical fiber for terrestrial use of the present invention has an optical cable cut-off wavelength less than or equal to 1520 nm.
  • the additional bending loss of the G.654.E optical fiber for terrestrial use of the present invention is less than or equal to 0.05dB for 100 turns around a bending radius of 30 mm.
  • the additional bending loss of the G.654.E optical fiber for terrestrial use of the present invention is less than or equal to 0.05dB for 100 turns around a bending radius of 30mm.
  • the manufacturing method of G.654.E optical fiber for terrestrial use of the present invention is characterized in that it includes the following steps:
  • Step 100 using the VAD process to prepare a core layer quartz rod co-doped with fluorine and chlorine;
  • Step 200 using the OVD process to prepare a fluorine-doped quartz inner cladding tube
  • Step 300 Use the RIT process to assemble the core layer quartz rod prepared in step 100 into the quartz inner cladding tube prepared in step 200, and purify the interface between the core layer quartz rod and the quartz inner cladding tube through high temperature, and then vacuum the core layer.
  • the quartz rod and quartz inner cladding tube are fused to form an optical fiber core rod;
  • Step 400 Use the OVD process to prepare the outer cladding powder part on the optical fiber core rod, and then use high-temperature fluorine infiltration and sintering to complete the optical rod preparation;
  • Step 500 Perform drawing processing on the optical rod prepared in step 400 to obtain a finished optical fiber.
  • the step 100 specifically includes using deposition equipment applying the principle of flame hydrogenation reaction, controlling the position of the flame blowtorch and adjusting the amount of each reaction gas under stable cavity gas flow conditions, and depositing on the predetermined target rod to obtain the outer diameter.
  • Uniform silica powder rod then perform high-temperature sintering treatment on the silica powder rod.
  • silicon tetrachloride and fluorine source are introduced, and then helium gas is introduced at a temperature range of 1150 to 1250°C. and chlorine gas for purification. After the purification is completed, the temperature is maintained and silicon tetrachloride and fluorine source are continued to be introduced.
  • the temperature is raised to 1500°C at a rate of 3 to 10°C/min, and the fluorine and chlorine co-doped core is completed by moving sintering. layer glass body, and then stretch the core layer glass body co-doped with fluorine and chlorine to a target size at high temperature to obtain the core layer quartz rod.
  • the step 200 specifically includes using deposition equipment applying the principle of flame hydrogenation reaction, controlling the position of the flame blowtorch and adjusting the amount of each reaction gas under stable cavity air flow conditions, and depositing on the predetermined ceramic seed rod to obtain the outer surface.
  • a silica powder rod with a uniform diameter is taken out, and then the ceramic seed rod is taken out, and the silica powder rod is placed in a sintering furnace for high-temperature fluorine infiltration and sintering to obtain the quartz inner cladding tube.
  • the fluorine-doped refractive index depth of the quartz inner cladding tube is at least -0.355% or less.
  • step 400 aluminum ions with a content of 5 ppm to 50 ppm are incorporated.
  • the beneficial effect of the present invention is that it adopts a fluorine-chlorine co-doping scheme in which the core layer is not doped with germanium elements, and optimizes the viscosity matching of the core layer by controlling the doping concentration of fluorine and chlorine in the core layer, optimizing the viscosity of each part of the optical fiber and the optical fiber.
  • the chlorine element content in the core layer is 10000ppm ⁇ 20000ppm (mass ratio), and the relative refractive index contribution ⁇ Cl of the core layer doped with chlorine reaches 0.15% ⁇ 0.25%, that is, it adopts a high chlorine doping process design, which not only reduces the stress of the fiber core layer, but also increases the refractive index value of the core layer (chlorine has a positive contribution to the refractive index), thereby reducing the cladding
  • the fluorine-doped concentration can thereby reduce the number of cladding layers, simplify the optical fiber structure, and reduce optical fiber manufacturing production costs; in addition, in order to further reduce the stress value of the optical fiber core layer, that is, further reduce the optical fiber loss, the present invention prepares the fluorine-doped cladding When the outermost edge of the cladding is doped with a certain concentration of metallic aluminum
  • Figure 1 is a radial cross-sectional schematic diagram of a G.654.E optical fiber for land use according to the present invention
  • Figure 2 is a schematic diagram of the refractive index profile structure of the theoretically designed waveguide of a G.654.E optical fiber for land use according to the present invention
  • Figure 3 is a schematic diagram of the measured optical fiber refractive index profile obtained by using the IFA-100 optical fiber refractive index profile tester of a G.654.E optical fiber for land use according to the present invention
  • Figure 4 is a manufacturing process flow chart of a G.654.E optical fiber for terrestrial use according to the present invention.
  • the present invention is a G.654.E optical fiber for terrestrial use, which includes a core layer 10 and a cladding layer.
  • the cladding layer includes an inner cladding layer 20 and an outer cladding layer 30 surrounding the core layer from the inside out;
  • the relative refractive index difference ⁇ 1 of the core layer 10 is 0% to 0.2%, and the radius R1 of the core layer 10 is 6 to 7 ⁇ m;
  • the relative refractive index difference ⁇ 2 of the inner cladding layer 20 is -0.2% to -0.4%, and the radius R2 of the inner cladding layer 20 is 15 to 25 ⁇ m;
  • the relative refractive index difference ⁇ 3 of the outer cladding 30 is -0.18% to -0.3%; in Figure 2,
  • R3 is the fiber radius, and in this embodiment, R3 is 62.5 ⁇ m.
  • the core layer 10 of the optical fiber of the present invention is a quartz glass layer co-doped with fluorine and chlorine without germanium.
  • the relative refractive index contribution ⁇ Cl of the core layer doped with chlorine is 0.15% to 0.25%.
  • the relative refractive index contribution ⁇ F of fluorine doping is equal to or lower than -0.1%; the chlorine element content in the core layer is 10,000 ppm to 20,000 ppm (mass ratio), and the fluorine element content is 1,000 ppm to 3,000 ppm (mass ratio).
  • the inner cladding 20 of the optical fiber of the present invention is a fluorine-doped quartz glass layer.
  • the ratio R2/R1 of the radius R2 of the inner cladding 20 to the radius R1 of the core layer 10 is 2 to 4.
  • the relative refractive index difference ⁇ 2 of the inner cladding layer is opposite to that of the core layer.
  • the difference in refractive index difference ⁇ 1 ( ⁇ 1- ⁇ 2) is 0.25% to 0.4%.
  • the outer cladding 30 of the optical fiber of the present invention is a fluorine-doped quartz glass layer, and the difference ( ⁇ 1- ⁇ 3) between the relative refractive index difference ⁇ 3 of the outer cladding and the relative refractive index difference ⁇ 1 of the core layer is 0.2% to 0.35%.
  • the attenuation coefficient of the G.654.E optical fiber for land use using the above solution of the present invention at the wavelength of 1310nm is less than or equal to 0.3dB/km; the attenuation coefficient at the wavelength of 1550nm is less than or equal to 0.17dB/km; the mode at the wavelength of 1550nm is less than or equal to 0.17dB/km.
  • Field diameter is 11.9um to 12.7 ⁇ m.
  • the G.654.E optical fiber for terrestrial use using the above solution of the present invention has an optical cable cut-off wavelength less than or equal to 1520 nm.
  • the additional bending loss of the G.654.E fiber for terrestrial use using the above solution of the present invention is less than or equal to 0.05dB for 100 turns around a bending radius of 30mm.
  • the additional bending loss of the G.654.E fiber for terrestrial use using the above solution of the present invention is less than or equal to 0.05dB for 100 turns around a bending radius of 30mm.
  • Step 100 use VAD (axial vapor deposition) process to prepare fluorine and chlorine co-doped core layer quartz rods, use deposition equipment applying the principle of flame hydrogenation reaction, control the position of the flame blowtorch and adjust each reaction under stable cavity air flow conditions
  • the amount of gas is deposited on the predetermined target rod to obtain a silica powder rod with a uniform outer diameter; the silica powder rod is then subjected to high-temperature sintering treatment, and silicon tetrachloride and fluorine source are introduced during the high-temperature sintering treatment, and then Pour in helium and chlorine gas for purification in the temperature range of 1150 ⁇ 1250°C.
  • the purification After the purification, maintain the temperature and continue to pass in silicon tetrachloride and fluorine source, and then increase the temperature to 1500°C at a rate of 3 ⁇ 10°C/min.
  • the core layer glass body co-doped with fluorine and chlorine is completed by moving sintering, and then the core layer glass body co-doped with fluorine and chlorine is stretched to the target size at high temperature to obtain the core layer quartz rod; among them, the fluorine source is preferably CF4 or SiF4.
  • Step 200 use the OVD (external vapor deposition) process to prepare the fluorine-doped quartz inner cladding tube; use deposition equipment applying the principle of flame hydrogenation reaction, control the position of the flame blowtorch and adjust the amount of each reaction gas under stable cavity air flow conditions.
  • a silica powder rod with a uniform outer diameter is deposited on the predetermined ceramic seed rod, and then the ceramic seed rod is extracted, and the silica powder rod is placed in a sintering furnace for high-temperature fluorine infiltration and sintering to obtain a quartz inner cladding tube.
  • the fluorine-doped quartz inner cladding tube is The refractive index depth is at least -0.355%;
  • Step 300 Use the RIT process to assemble the core layer quartz rod prepared in step 100 into the quartz inner cladding tube prepared in step 200, and purify the interface between the core layer quartz rod and the quartz inner cladding tube through high temperature, and then vacuum the core layer.
  • the quartz rod and the quartz inner cladding tube are fused to form an optical fiber core rod (that is, the core layer and the inner cladding layer are formed);
  • Step 400 Use the OVD (external vapor deposition) process to prepare the outer cladding powder part on the optical fiber core rod, and then use high-temperature fluorine infiltration and sintering to complete the preparation of the optical rod. During the high-temperature fluorine infiltration and sintering process, a content of 5 ppm to 50 ppm is added.
  • Aluminum ions
  • Step 500 Perform drawing processing on the optical rod prepared in step 400 to obtain a finished optical fiber.
  • the terrestrial G.654.E optical fiber of the present invention prepared by the above method is suitable for long-distance transmission systems. Its optical fiber characteristics are shown in the following table:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)

Abstract

一种陆地用G.654.E光纤及其制造方法,不仅能解决现有光纤结构粘度匹配失衡的问题,还能解决现有光纤工艺制备复杂、成本高的问题。陆地用G.654.E光纤包括芯层(10)和包层,包层包括自内而外围绕在芯层(10)外周的内包层(20)和外包层(30);芯层(10)的相对折射率差Δ1为0%~0.2%,芯层(10)的半径R1为6~7μm;内包层(20)相对折射率差Δ2为-0.2%~-0.4%,内包层(20)的半径R2为15~25μm;外包层(30)相对折射率差Δ3为-0.18%~-0.3%。

Description

一种陆地用G.654.E光纤及其制作工艺 技术领域
本发明涉及光纤通信技术领域,具体为一种陆地用G.654.E光纤及其制作工艺。
背景技术
随着有线和无线接入带宽的不断提升,移动互联网、云计算、大数据等技术的飞速发展,全球带宽需求呈爆炸式增长,同时2022年国家提出了“东数西算”新的国家信息战略,400G已经作为骨干网升级的重要实施手段。如何在400G传输信号的基础上进一步增加传输容量,是各系统设备商和运营商关注的焦点。
在100G以及超100G时代,非线性效应和光纤衰减成为制约系统传输性能提升的主要因素,接收端采用相干接收及数字信号处理技术(DSP),能够在电域中数字补偿整个传输过程中累积的色散和偏振模色散(PMD);信号通过采用偏振模复用和各种高阶调制方式来降低信号的波特率,例如PM-QPSK、PDM-16QAM、PDM-32QAM,甚至PDM-64QAM和CO-0FDM。然而高阶调制方式对非线性效应非常敏感,因此对光信噪比(OSNR)提出了更高的要求。引入低损耗大有效面积光纤,能为系统带来提高OSNR和降低非线性效应的效果。当采用高功率密度系统时,非线性系数是用于评估非线性效应造成的系统性能优劣的参数,其定义为N2/Aeff。其中,N2是传输光纤的非线性折射指数,Aeff是传输光纤的有效面积。增加传输光纤的有效面积,能够降低光纤中的非线性效应。
目前,用于陆地传输系统线路的普通单模光纤,其有效面积仅约80μm^2左右。而在陆地长距离传输系统中,对光纤的有效面积要求更高,一般的有效面积在100μm^2以上。为了降低铺设成本,尽可能的减少中继器的使用,在无中继传输系统,如海底传输系统,传输光纤的有效面积最好在120μm^2以上。然而,目前大有效面积光纤的折射率剖面的设计中,往往通过增大用于传输光信号的光学芯层的直径获得大的有效面积。该类方案存在着一定的设计难点。一方面,光纤的芯层和靠近它的包层主要决定光纤的制造成本,抬高光纤价格,将成为此类光纤普遍应用的障碍。另一方面,相比普通单模光纤,光纤有效面积的增大,会带来光纤其它一些参数的恶化:比如,光纤截止波长会增大,如果截止波长过大则难以保证光纤在传输波段中光信号的单模状态;此外,光纤折射率剖面如果设计不当,还会导致弯曲性能、色散等参数的恶化。
另一种限制长距离大容量传输的光纤特性就是衰减,目前常规的G.652.D光纤的衰减一般在0.20dB/km,激光能量在经过长距离传输后逐渐减小,所以需要采用中继的形式对信号再次放大。而相对于光纤光缆的成本,中继站相关设备和维护成本在整个链路系统的70%以上, 所以如果涉及一种低衰减或者超低衰减光纤,就可以有效的延长传输距离,减少建设和维护成本。经过相关计算,如果将光纤的衰减从0.20降低到0.16dB/km,整个链路的建设成本将总体降低30%左右。
综上所述,开发一种超低衰减大有效面积光纤成为光纤制造领域的一个重要课题。
对于石英光纤在600-1600nm的衰减主要来自于瑞利散射,由瑞利散射所引起的衰减α可由下式计算:
Figure PCTCN2022127654-appb-000001
式中,λ为波长(μm),R为瑞利散射系数(dB/KM/μm^4);P为光强;当瑞利散射系数确认时,B为相对应的常数。因而只要确定了瑞利散射系数R就可以得到因瑞利散射所引起的衰减α。瑞利散射一方面是由于密度波动引起的,另一方面是由于浓度波动引起的。因而瑞利散射系数R可表示为:R=Rd+Rc
上式中,Rd和Rc分别表示由于密度波动和浓度波动所引起的瑞利散射系数变化。其中Rc为浓度波动因子,其主要受到光纤玻璃部分掺杂浓度的影响,理论上采用越少的Ge和F或者其他掺杂,Rc越小,这也是目前国外某些企业采用纯硅芯设计,实现超低衰减性能的原因。
但是我们需要注意到,瑞利散射系数中还包括另外一个参数Rd,Rd与玻璃的假想温度Tf相关,且伴随着玻璃的结构变化和温度变化而变化,玻璃的假想温度Tf是表征玻璃结构一个物理参数,定义为从某温度T’将玻璃迅速冷却到室温玻璃的结构不再调整而达到某平衡状态对应的温度。当T’>Tf,由于玻璃的粘度较小,玻璃结构易于调整,因而每一瞬间玻璃均处于平衡状态,故Tf=T’:当T’<Tg<Tf,玻璃趋向于平衡所需要的时间较短一些,具体与玻璃的组分和冷却速度相关,故Tf>T’或Tf<T’;
在使用纯硅芯设计时,为了保证光纤的全反射,必须使用相对较低折射率的F掺杂内包层进行匹配,以保证芯层和内包层之间保持足够的折射率差异。这样纯硅芯的芯层部分粘度相对较高,而同时大量F掺杂的内包材部分粘度较低,从而造成光纤结构粘度匹配失衡,并使纯硅芯结构的光纤虚拟温度迅速增加,造成光纤的Rd增加,这样不仅抵消掉Rc降低带来的优越性,更可能造成光纤衰减反向异常。
为了保证纯硅芯光纤的芯层粘度与外包粘度匹配,我们可以利用芯层中进行碱金属掺杂的方法对芯层粘度进行优化;例如专利US20100195966A1中采用在芯层中添加碱金属的方法,在保持光纤芯层纯硅芯的情况下,通过改变光纤芯层部分的粘度以及芯层结构驰豫的时间,来解决粘度失配造成的Rd增加,从而整体降低光纤的瑞利散射系数。但是该种方法虽然可 以有效的降低光纤衰减,但相对工艺制备复杂,需要分多批次对芯棒进行处理,光纤制造成本高,且碱金属掺杂会增加玻璃结构缺陷,造成应用波长(C+L波段)氢老化问题。中国专利CN109683233A,芯层采用锗/氟/碱金属设计,碱金属带来的问题在专利US20100195966A1已描述,此专利中重新引入锗,其低衰减性能很难达到海纤应用的要求;中国专利CN104898201A,为优化芯层和包层的粘度,采用多包层(6层包层结构)波导结构设计,波导结构非常复杂,不利用批量化生产,在陆地场景应用成本是巨大挑战。
发明内容
针对上述问题,本发明提供了一种陆地用G.654.E光纤,其不仅能解决现有光纤结构粘度匹配失衡的问题,还能解决现有光纤工艺制备复杂、成本高的问题;为此,本发明还提供了该陆地用G.654.E光纤的制作工艺。
一种陆地用G.654.E光纤,其包括芯层和包层,其特征在于:所述包层包括自内而外围绕在所述芯层外周的内包层和外包层;所述芯层的相对折射率差Δ1为0%~0.2%,芯层的半径R1为6~7μm;所述内包层相对折射率差Δ2为-0.2%~-0.4%,内包层的半径R2为15~25μm;所述外包层相对折射率差Δ3为-0.18%~-0.3%。
进一步的,所述芯层为不掺锗的氟氯共掺的石英玻璃层,其中所述芯层掺氯的相对折射率贡献量ΔCl为0.15%~0.25%,芯层掺氟的相对折射率贡献量ΔF等于或低于-0.1%。
进一步的,所述芯层中氯元素含量为10000ppm~20000ppm(质量比),氟元素含量为1000ppm~3000ppm(质量比)。
进一步的,所述内包层为掺氟的石英玻璃层,所述内包层的半径R2与所述芯层的半径R1的比值R2/R1为2~4,内包层相对折射率差△2与芯层相对折射率差△1的差值(△1-△2)为0.25%~0.4%。
进一步的,所述外包层为掺氟的石英玻璃层,所述外包层相对折射率差△3与芯层相对折射率差△1的差值(△1-△3)为0.2%~0.35%。
进一步的,本发明的陆地用G.654.E光纤在1310nm波长处的衰减系数小于或等于0.3dB/km。
进一步的,本发明的陆地用G.654.E光纤在1550nm波长处的衰减系数小于或等于0.17dB/km;在1550nm波长处的模场直径为11.9um至12.7μm。
进一步的,本发明的陆地用G.654.E光纤具有小于或等于1520nm的光缆截止波长。
进一步的,本发明的陆地用G.654.E光纤在1550nm波长处,对于围绕30mm弯曲半径饶100圈弯曲附加损耗小于或等于0.05dB。
进一步的,本发明的陆地用G.654.E光纤在1625nm波长处,对于围绕30mm弯曲半径 饶100圈弯曲附加损耗小于或等于0.05dB。
本发明的一种陆地用G.654.E光纤的制造方法,其特征在于:其包括以下步骤,
步骤100,采用VAD工艺制备氟氯共掺的芯层石英棒;
步骤200,采用OVD工艺制备掺氟的石英内包管;
步骤300,采用RIT工艺将步骤100制备的芯层石英棒组装入步骤200制备的石英内包管内,并通过高温对芯层石英棒与石英内包管的界面进行纯化处理,再通过抽真空将芯层石英棒与石英内包管融合形成光纤芯棒;
步骤400,采用OVD工艺在所述光纤芯棒上制备外包层粉体部分,再采用高温渗氟烧结完成光棒制备;
步骤500,将步骤400制备的光棒进行拉丝处理,得到成品光纤。
进一步的,所述步骤100具体为,采用应用火焰氢化反应原理的沉积设备,在稳定的腔体气流条件下控制火焰喷灯的位置并调整各反应气体用量,在预定的靶棒上沉积得到外径均匀的二氧化硅粉棒;再对二氧化硅粉棒进行高温烧结处理,在所述高温烧结处理过程中引入四氯化硅和氟源,然后在温度范围1150~1250℃下通入氦气和氯气进行纯化,纯化结束后维持温度并继续通入四氯化硅和氟源,随后以3~10℃/min的速率将温度升至1500℃,通过移动烧结方式完成氟氯共掺的芯层玻璃体,再将氟氯共掺的芯层玻璃体高温拉伸至目标尺寸得到所述芯层石英棒。
进一步的,所述步骤200具体为,采用应用火焰氢化反应原理的沉积设备,在稳定的腔体气流条件下控制火焰喷灯的位置并调整各反应气体用量,在预定的陶瓷种棒上沉积得到外径均匀的二氧化硅粉棒,然后抽出陶瓷种棒,将二氧化硅粉棒放置入烧结炉进行高温渗氟烧结得到所述石英内包管,所述石英内包管的掺氟折射率深度至少达到-0.355%以下。
进一步的,所述步骤400的高温渗氟烧结过程中掺入含量为5ppm~50ppm的铝离子。
本发明的有益效果在于:其采用了芯层不掺锗元素的氟氯共掺方案,并通过控制芯层中氟、氯的掺杂浓度来优化芯层粘度匹配,优化光纤各个部分粘度和光纤应力,结合无锗掺杂特性,实现单模光纤的超低衰减性能;另外,其芯层中氯元素含量为10000ppm~20000ppm(质量比),芯层掺氯的相对折射率贡献量ΔCl达到了0.15%~0.25%,即其采用了高氯掺杂工艺设计,在降低光纤芯层应力的同时也提高了芯层的折射率值(氯对折射率具有正贡献),从而能减少包层的掺氟浓度,并由此能减少包层的层数,简化光纤结构,降低光纤制造生产成本;此外,为进一步降低光纤芯层的应力值即进一步降低光纤损耗,本发明在制备掺氟包层时,在包层最外沿掺杂了一定浓度的金属铝离子以提升玻璃粘度,从而在最后的光纤拉丝环节能承担更多的拉应力,降低了芯层的应力值;本发明光纤的截止波长、模场直径、损耗 系数、色散等综合性能参数在应用波段良好,满足G.654.E光纤标准,同时采用低模量的光纤涂覆树脂涂层,优化光纤涂覆厚度,使得上述光纤具有非常小的微弯损耗,以保证该类光纤在成缆、敷设等条件下引起的附加损耗足够小。
附图说明
图1为本发明一种陆地用G.654.E光纤的径向截面示意图;
图2为本发明一种陆地用G.654.E光纤的波导理论设计的折射率剖面结构示意图;
图3为本发明一种陆地用G.654.E光纤的采用IFA-100光纤折射率剖面测试仪得到的实测光纤折射率剖面示意图;
图4为本发明一种陆地用G.654.E光纤的制造工艺流程图。
具体实施方式
见图1~图3,本发明一种陆地用G.654.E光纤,其包括芯层10和包层,包层包括自内而外围绕在芯层外周的内包层20和外包层30;芯层10的相对折射率差Δ1为0%~0.2%,芯层10的半径R1为6~7μm;内包层20相对折射率差Δ2为-0.2%~-0.4%,内包层20的半径R2为15~25μm;外包层30相对折射率差Δ3为-0.18%~-0.3%;图2中,R3为光纤半径,本实施例中R3为62.5μm。
本发明光纤的芯层10为不掺锗的氟氯共掺的石英玻璃层氟氯共掺的石英玻璃层,其中芯层掺氯的相对折射率贡献量ΔCl为0.15%~0.25%,芯层掺氟的相对折射率贡献量ΔF等于或低于-0.1%;芯层中氯元素含量为10000ppm~20000ppm(质量比),氟元素含量为1000ppm~3000ppm(质量比)。
本发明光纤的内包层20为掺氟的石英玻璃层,内包层20的半径R2与芯层10的半径R1的比值R2/R1为2~4,内包层相对折射率差△2与芯层相对折射率差△1的差值(△1-△2)为0.25%~0.4%。
本发明光纤的外包层30为掺氟的石英玻璃层,外包层相对折射率差△3与芯层相对折射率差△1的差值(△1-△3)为0.2%~0.35%。
采用本发明上述方案的陆地用G.654.E光纤在1310nm波长处的衰减系数小于或等于0.3dB/km;在1550nm波长处的衰减系数小于或等于0.17dB/km;在1550nm波长处的模场直径为11.9um至12.7μm。
采用本发明上述方案的陆地用G.654.E光纤具有小于或等于1520nm的光缆截止波长。
采用本发明上述方案的的陆地用G.654.E光纤在1550nm波长处,对于围绕30mm弯曲半径饶100圈弯曲附加损耗小于或等于0.05dB。
采用本发明上述方案的陆地用G.654.E光纤在1625nm波长处,对于围绕30mm弯曲半 径饶100圈弯曲附加损耗小于或等于0.05dB。
本发明的上述一种陆地用G.654.E光纤的制造方法,见图4,其包括以下步骤,
步骤100,采用VAD(轴向气相沉积)工艺制备氟氯共掺的芯层石英棒,采用应用火焰氢化反应原理的沉积设备,在稳定的腔体气流条件下控制火焰喷灯的位置并调整各反应气体用量,在预定的靶棒上沉积得到外径均匀的二氧化硅粉棒;再对二氧化硅粉棒进行高温烧结处理,在高温烧结处理过程中引入四氯化硅和氟源,然后在温度范围1150~1250℃下通入氦气和氯气进行纯化,纯化结束后维持温度并继续通入四氯化硅和氟源,随后以3~10℃/min的速率将温度升至1500℃,通过移动烧结方式完成氟氯共掺的芯层玻璃体,再将氟氯共掺的芯层玻璃体高温拉伸至目标尺寸得到芯层石英棒;其中,氟源优选采用CF4或SiF4。
步骤200,采用OVD(外部气相沉积)工艺制备掺氟的石英内包管;采用应用火焰氢化反应原理的沉积设备,在稳定的腔体气流条件下控制火焰喷灯的位置并调整各反应气体用量,在预定的陶瓷种棒上沉积得到外径均匀的二氧化硅粉棒,然后抽出陶瓷种棒,将二氧化硅粉棒放置入烧结炉进行高温渗氟烧结得到石英内包管,石英内包管的掺氟折射率深度至少达到-0.355%以下;
步骤300,采用RIT工艺将步骤100制备的芯层石英棒组装入步骤200制备的石英内包管内,并通过高温对芯层石英棒与石英内包管的界面进行纯化处理,再通过抽真空将芯层石英棒与石英内包管融合形成光纤芯棒(即形成芯层与内包层);
步骤400,采用OVD(外部气相沉积)工艺在所述光纤芯棒上制备外包层粉体部分,再采用高温渗氟烧结完成光棒制备,高温渗氟烧结过程中掺入含量为5ppm~50ppm的铝离子;
步骤500,将步骤400制备的光棒进行拉丝处理,得到成品光纤。
采用上述方法制备的本发明的陆地用G.654.E光纤适合长距离传输系统,其光纤特性见下表:
Figure PCTCN2022127654-appb-000002
Figure PCTCN2022127654-appb-000003
以上对本发明的具体实施进行了详细说明,但内容仅为本发明创造的较佳实施方案,不能被认为用于限定本发明创造的实施范围。凡依本发明创造申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (14)

  1. 一种陆地用G.654.E光纤,其包括芯层和包层,其特征在于:所述包层包括自内而外围绕在所述芯层外周的内包层和外包层;所述芯层的相对折射率差Δ1为0%~0.2%,芯层的半径R1为6~7μm;所述内包层相对折射率差Δ2为-0.2%~-0.4%,内包层的半径R2为15~25μm;所述外包层相对折射率差Δ3为-0.18%~-0.3%。
  2. 根据权利要求1所述的一种陆地用G.654.E光纤,其特征在于:所述芯层为不掺锗的氟氯共掺的石英玻璃层,其中所述芯层掺氯的相对折射率贡献量ΔCl为0.15%~0.25%,芯层掺氟的相对折射率贡献量ΔF等于或低于-0.1%。
  3. 根据权利要求2所述的一种陆地用G.654.E光纤,其特征在于:所述芯层中氯元素含量为10000ppm~20000ppm(质量比),氟元素含量为1000ppm~3000ppm(质量比)。
  4. 根据权利要求1所述的一种陆地用G.654.E光纤,其特征在于:所述内包层为掺氟的石英玻璃层,所述内包层的半径R2与所述芯层的半径R1的比值R2/R1为2~4,内包层相对折射率差△2与芯层相对折射率差△1的差值(△1-△2)为0.25%~0.4%。
  5. 根据权利要求1所述的一种陆地用G.654.E光纤,其特征在于:所述外包层为掺氟的石英玻璃层,所述外包层相对折射率差△3与芯层相对折射率差△1的差值(△1-△3)为0.2%~0.35%。
  6. 根据权利要求1所述的一种陆地用G.654.E光纤,其特征在于:光纤在1310nm波长处的衰减系数小于或等于0.3dB/km。
  7. 根据权利要求1所述的一种陆地用G.654.E光纤,其特征在于:光纤在1550nm波长处的衰减系数小于或等于0.17dB/km;在1550nm波长处的模场直径为11.9um至12.7μm。
  8. 根据权利要求1所述的一种陆地用G.654.E光纤,其特征在于:光纤具有小于或等于1520nm的光缆截止波长。
  9. 根据权利要求1所述的一种陆地用G.654.E光纤,其特征在于:光纤在1550nm波长处,对于围绕30mm弯曲半径饶100圈弯曲附加损耗小于或等于0.05dB。
  10. 根据权利要求1所述的一种陆地用G.654.E光纤,其特征在于:光纤在1625nm波长处,对于围绕30mm弯曲半径饶100圈弯曲附加损耗小于或等于0.05dB。
  11. 权利要求1~10中任一所述的一种陆地用G.654.E光纤的制造方法,其特征在于:其包括以下步骤,
    步骤100,采用VAD工艺制备氟氯共掺的芯层石英棒;
    步骤200,采用OVD工艺制备掺氟的石英内包管;
    步骤300,采用RIT工艺将步骤100制备的芯层石英棒组装入步骤200制备的石英内包管内,并通过高温对芯层石英棒与石英内包管的界面进行纯化处理,再通过抽真空将芯层石 英棒与石英内包管融合形成光纤芯棒;
    步骤400,采用OVD工艺在所述光纤芯棒上制备外包层粉体部分,再采用高温渗氟烧结完成光棒制备;
    步骤500,将步骤400制备的光棒进行拉丝处理,得到成品光纤。
  12. 根据权利要求11所述的一种陆地用G.654.E光纤的制造方法,其特征在于:所述步骤100具体为,采用应用火焰氢化反应原理的沉积设备,在稳定的腔体气流条件下控制火焰喷灯的位置并调整各反应气体用量,在预定的靶棒上沉积得到外径均匀的二氧化硅粉棒;再对二氧化硅粉棒进行高温烧结处理,在所述高温烧结处理过程中引入四氯化硅和氟源,然后在温度范围1150~1250℃下通入氦气和氯气进行纯化,纯化结束后维持温度并继续通入四氯化硅和氟源,随后以3~10℃/min的速率将温度升至1500℃,通过移动烧结方式完成氟氯共掺的芯层玻璃体,再将氟氯共掺的芯层玻璃体高温拉伸至目标尺寸得到所述芯层石英棒。
  13. 根据权利要求11所述的一种陆地用G.654.E光纤的制造方法,其特征在于:所述步骤200具体为,采用应用火焰氢化反应原理的沉积设备,在稳定的腔体气流条件下控制火焰喷灯的位置并调整各反应气体用量,在预定的陶瓷种棒上沉积得到外径均匀的二氧化硅粉棒,然后抽出陶瓷种棒,将二氧化硅粉棒放置入烧结炉进行高温渗氟烧结得到所述石英内包管,所述石英内包管的掺氟折射率深度至少达到-0.355%以下。
  14. 根据权利要求11所述的一种陆地用G.654.E光纤的制造方法,其特征在于:所述步骤400的高温渗氟烧结过程中掺入含量为5ppm~50ppm的铝离子。
PCT/CN2022/127654 2022-06-14 2022-10-26 一种陆地用g.654.e光纤及其制作工艺 WO2023240881A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022000100.3T DE112022000100T5 (de) 2022-06-14 2022-10-26 G.654.E-Lichtleitfaser zur Landnutzung und Verfahren zu deren Herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210666099.3A CN115201961A (zh) 2022-06-14 2022-06-14 一种陆地用g.654.e光纤及其制作工艺
CN202210666099.3 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023240881A1 true WO2023240881A1 (zh) 2023-12-21

Family

ID=83576891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127654 WO2023240881A1 (zh) 2022-06-14 2022-10-26 一种陆地用g.654.e光纤及其制作工艺

Country Status (3)

Country Link
CN (1) CN115201961A (zh)
DE (1) DE112022000100T5 (zh)
WO (1) WO2023240881A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201961A (zh) * 2022-06-14 2022-10-18 江苏亨通光导新材料有限公司 一种陆地用g.654.e光纤及其制作工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585658A (zh) * 2009-06-23 2009-11-25 长飞光纤光缆有限公司 一种光纤预制棒及其制造方法
CN106154410A (zh) * 2016-08-30 2016-11-23 烽火通信科技股份有限公司 一种单模光纤及其制造方法
US20170285257A1 (en) * 2015-05-27 2017-10-05 Fujikura Ltd. Optical fiber
CN111781673A (zh) * 2020-07-08 2020-10-16 普天线缆集团有限公司 新型超低损耗g.654e光纤及其制作方法
CN114325928A (zh) * 2021-12-31 2022-04-12 长飞光纤光缆股份有限公司 一种低损耗抗弯曲单模光纤
CN114397727A (zh) * 2021-07-21 2022-04-26 国家电网有限公司信息通信分公司 一种超低衰减大有效面积单模光纤
CN115201961A (zh) * 2022-06-14 2022-10-18 江苏亨通光导新材料有限公司 一种陆地用g.654.e光纤及其制作工艺

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315495B2 (en) 2009-01-30 2012-11-20 Corning Incorporated Large effective area fiber with Ge-free core
CN101634728B (zh) * 2009-08-18 2011-10-19 长飞光纤光缆有限公司 一种抗弯曲多模光纤及其制造方法
JP5974455B2 (ja) * 2011-11-21 2016-08-23 住友電気工業株式会社 光ファイバ母材、光ファイバ製造方法および光ファイバ
CN103257393B (zh) * 2012-10-30 2015-03-04 长飞光纤光缆股份有限公司 一种大有效面积光纤
US9658395B2 (en) * 2014-10-21 2017-05-23 Ofs Fitel, Llc Low loss optical fiber and method of making the same
CN104898201B (zh) 2015-06-25 2017-12-08 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
JP6951852B2 (ja) * 2017-03-27 2021-10-20 古河電気工業株式会社 光ファイバ及び光ファイバの製造方法
CN107357004B (zh) * 2017-07-04 2020-04-21 长飞光纤光缆股份有限公司 一种低衰减单模光纤及其制备方法
CN109683233A (zh) 2019-02-26 2019-04-26 长飞光纤光缆股份有限公司 一种具有超低衰减大有效面积的单模光纤
CN111694088B (zh) * 2019-09-29 2022-06-14 法尔胜泓昇集团有限公司 一种单模光纤及其制备方法
CN112051640B (zh) * 2020-07-08 2022-11-04 普天线缆集团有限公司 超低损耗g.654e光纤及其制作方法
CN112230331A (zh) * 2020-11-11 2021-01-15 江苏亨通光导新材料有限公司 一种全合成低损耗单模光纤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585658A (zh) * 2009-06-23 2009-11-25 长飞光纤光缆有限公司 一种光纤预制棒及其制造方法
US20170285257A1 (en) * 2015-05-27 2017-10-05 Fujikura Ltd. Optical fiber
CN106154410A (zh) * 2016-08-30 2016-11-23 烽火通信科技股份有限公司 一种单模光纤及其制造方法
CN111781673A (zh) * 2020-07-08 2020-10-16 普天线缆集团有限公司 新型超低损耗g.654e光纤及其制作方法
CN114397727A (zh) * 2021-07-21 2022-04-26 国家电网有限公司信息通信分公司 一种超低衰减大有效面积单模光纤
CN114325928A (zh) * 2021-12-31 2022-04-12 长飞光纤光缆股份有限公司 一种低损耗抗弯曲单模光纤
CN115201961A (zh) * 2022-06-14 2022-10-18 江苏亨通光导新材料有限公司 一种陆地用g.654.e光纤及其制作工艺

Also Published As

Publication number Publication date
CN115201961A (zh) 2022-10-18
DE112022000100T5 (de) 2024-04-11

Similar Documents

Publication Publication Date Title
CN106772788B (zh) 一种截止波长位移单模光纤
JP6564074B2 (ja) 極低損失でベンド不敏感の単一モード光ファイバ
CN111372899B (zh) 纤芯共掺杂了两种或更多种卤素的低损耗光纤
EP3715923B1 (en) Single-mode optical fiber with ultralow loss and large effective area and manufacturing method therefor
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
JP6529666B2 (ja) 極低減衰で大有効面積の単一モード光ファイバ
KR102034362B1 (ko) 도핑 최적화된 최저 감쇠 단일모드 광섬유
CN107422415B (zh) 一种超低衰减大有效面积的单模光纤
US10018779B2 (en) Bending-insensitive single-mode fiber with ultra low attenuation
CN109298482B (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
KR20130116009A (ko) 광섬유
CN107608023B (zh) 一种阶跃型超低衰减少模光纤
KR20130041566A (ko) 구부림 손실 강화 광섬유
CN107357004B (zh) 一种低衰减单模光纤及其制备方法
CN110045456B (zh) 一种超低损耗大有效面积的单模光纤及其制备方法
CN107490819B (zh) 具有超低衰减大有效面积的单模光纤
CN111308609B (zh) 一种大有效面积低损耗单模光纤
WO2023240881A1 (zh) 一种陆地用g.654.e光纤及其制作工艺
CN114195379A (zh) 一种低损耗截止波长位移单模光纤的拉丝方法
CN110954985B (zh) 一种超低衰减大有效面积单模光纤
CN110244402B (zh) 一种超低损耗大有效面积单模光纤设计及其制造方法
CN116908957A (zh) 一种g.654.e光纤及其制备方法
CN115321808B (zh) 一种氢不敏感超低损耗光纤及制作方法
CN220650930U (zh) 一种低衰减大模场直径弯曲不敏感单模光纤
CN116974003A (zh) 一种低衰减大模场直径弯曲不敏感单模光纤及制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112022000100

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946551

Country of ref document: EP

Kind code of ref document: A1