WO2023240861A1 - 一种超塑成形/扩散连接模具的导气系统及其制造方法 - Google Patents
一种超塑成形/扩散连接模具的导气系统及其制造方法 Download PDFInfo
- Publication number
- WO2023240861A1 WO2023240861A1 PCT/CN2022/125596 CN2022125596W WO2023240861A1 WO 2023240861 A1 WO2023240861 A1 WO 2023240861A1 CN 2022125596 W CN2022125596 W CN 2022125596W WO 2023240861 A1 WO2023240861 A1 WO 2023240861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air guide
- mold
- mold body
- channel
- guide channel
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 claims description 25
- 238000012360 testing method Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000002173 cutting fluid Substances 0.000 claims description 6
- 230000008439 repair process Effects 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 15
- 239000011261 inert gas Substances 0.000 description 10
- 230000002787 reinforcement Effects 0.000 description 6
- 238000005553 drilling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/10—Die sets; Pillar guides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/20—Making tools by operations not covered by a single other subclass
Definitions
- the present application relates to the technical field of superplastic forming/diffusion connection, and in particular to an air guide system of a superplastic forming/diffusion connection mold and a manufacturing method thereof.
- the superplastic forming/diffusion connection combined process can produce multi-layer hollow structures with complex external curved surfaces and reinforced internal ribs. Compared with combined components fastened using traditional connection methods, this process has the advantages of light structural weight, good integrity and high quality.
- the advantage of this method is that it greatly improves the design freedom and structural efficiency of components, and has become an important processing method for multi-layer plate reinforced structures in the aerospace field.
- exhaust holes When forming parts with complex curved structures, more exhaust holes with a diameter of ⁇ 1- ⁇ 2 need to be installed at the corners or low-lying areas of the mold surface.
- the purpose of the exhaust holes is threefold: 1) Reverse loading of high-pressure inert gas through the exhaust holes , to improve the diffusion connection effect in the diffusion connection area, that is, to increase the welding rate; 2) to prevent the "gas holding" phenomenon in corners or low-lying areas during superplastic forming, which affects the mold fit of the part; 3) to provide low-pressure inert gas during superplastic forming , protect the upper and lower surfaces of parts to prevent them from absorbing hydrogen or oxidizing.
- the exhaust holes In order to facilitate the control of the exhaust holes during the forming process, the exhaust holes need to be connected in series and connected to the inert gas source through only 1 to 2 pipeline interfaces.
- the existing superplastic forming/diffusion connection mold uses an external welded pipeline gas guide system.
- the main pressurized channels for inert gas in the mold are mostly located outside the mold.
- the existing technology is mostly suitable for situations where the number of exhaust holes is small. Not suitable for situations with a large number of vent holes.
- the main purpose of this application is to provide an air guide system for a superplastic forming/diffusion connection mold and its manufacturing method, aiming to solve the problem that the external welded pipeline air guide system is not suitable for a large number of exhaust holes.
- this application provides an air guide system for a superplastic forming/diffusion connection mold, including a mold body, an air guide channel, an exhaust hole, a plug, and a pipeline interface connected to a gas source;
- a plurality of exhaust holes are provided above the mold body
- the air guide channel is provided throughout the interior of the mold body.
- the air guide channel forms several ports on the side wall of the mold body. One of the ports is connected to the pipeline interface, and the remaining ports are all provided with The plug;
- the exhaust hole is connected with the air guide channel.
- the air guide channel includes a plurality of horizontal channels, the exhaust hole is connected with the horizontal channel, and both ends of the horizontal channel penetrate the side wall of the mold body to form the port.
- Horizontal channels are interconnected.
- the air guide channel further includes a vertical channel penetrating the upper and lower surfaces of the mold body, and the exhaust hole is connected to the horizontal channel through the vertical channel.
- an adapter bushing is also included, and the adapter bushing is provided at the connection between the pipeline interface and the port.
- the present application also provides a manufacturing method, which is used to manufacture a gas guide system of a superplastic forming/diffusion connection mold, including the following steps:
- one port is reserved and the other ports are simply blocked, and the pipeline interface is welded at the reserved port;
- the manufacturing method further includes:
- a mold profile for matching with the processed parts is provided above the mold body;
- the manufacturing method further includes:
- the air guide channel only includes a horizontal channel
- the air guide channel includes a horizontal channel and a vertical channel.
- determining the position of the air guide channel on the mold body includes:
- chord height of the mold surface is less than or equal to 50mm
- determining the position of the air guide channel on the mold body includes:
- chord height of the mold surface is higher than 50mm
- determining the position of the horizontal channel on the mold body includes:
- the centers of the exhaust holes are connected by criss-crossing straight lines, and each straight line corresponds to one of the horizontal channels.
- air guide channels are provided throughout the interior of the mold body, that is, several interconnected channels are provided in the mold body, and the several channels form air guide channels.
- the air guide channels form several ports on the side wall of the mold body, one of which is connected to the tube.
- Pipe interface connection is used to connect to the air source.
- the remaining ports are provided with plugs, that is, the remaining ports are blocked.
- Several exhaust holes set above the mold body are connected to the air guide channel; when used, plugs are installed at the pipe interface. Connect the gas source, such as loading high-pressure inert gas or low-pressure inert gas, and the gas enters the exhaust hole through the gas guide channel and is discharged.
- the embodiment of the present application proposes an air guide system for a superplastic forming/diffusion connection mold and a manufacturing method thereof.
- an air guide channel throughout the interior of the mold body, it solves the problem that the external welding pipeline air guide system is not suitable for exhaust.
- Figure 1 is a schematic structural diagram of the air guide system of the superplastic forming/diffusion connection mold provided by the embodiment of the present application;
- Figure 2 is a schematic structural diagram of an external welded pipeline gas guide system provided by an embodiment of the present application.
- Figure 3 is a partial enlarged view of point A in Figure 2;
- Figure 4 is a schematic structural diagram of a built-in mesh air guide system for parts with small chord height provided by an embodiment of the present application;
- Figure 5 is a cross-sectional view of B-B in Figure 4.
- Figure 6 is a schematic structural diagram of a built-in mesh air guide system for parts with large chord height provided by an embodiment of the present application;
- connection can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited.
- fixing can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited.
- the first embodiment of the present application provides an air guide system for a superplastic forming/diffusion connection mold, including a mold body 1, an air guide channel 3, an exhaust hole 2, a plug 7 and a pipe connected to an air source.
- a plurality of exhaust holes 2 are provided above the mold body 1;
- the air guide channel 3 is provided throughout the interior of the mold body 1.
- the air guide channel 3 forms several ports on the side wall of the mold body 1. One of the ports is connected to the pipeline interface 6, and the other ports are connected to the pipeline interface 6. The ports are all provided with the plugs 7;
- the exhaust hole 2 is connected with the air guide channel 3 .
- the existing technology mostly uses an external welded pipe 5 gas guide system, which mainly consists of an exhaust hole 2, a gas guide channel 3, a welded pipe 5, a pipe interface 6, etc.
- the exhaust hole 2 is set as needed, and is connected to the welding pipeline 5 outside the mold through the air guide channel 3 drilled on the side of the mold.
- the system is connected to the inert gas source through a pipeline interface 6, and all exhaust holes 2 can be controlled by controlling the pipeline interface 6. It is not difficult to find that in this technical solution, the main pressurized channels of inert gas are mostly located outside the mold.
- the existing technology is mostly suitable for situations where the number of exhaust holes 2 is small. When the number of exhaust holes 2 is large, the external welding pipelines 5 often have problems such as easy damage of the pipes and many welding joints, which poses problems for the handling, use and operation of the mold. Storage causes inconvenience.
- a plurality of the exhaust holes 2 are provided above the mold body 1, that is, a plurality of exhaust holes 2 are provided on one side of the mold body 1, as shown in Figures 1 and 2.
- the upper part of the mold body 1 is as shown in Figure 1 in the upper part, the position above the mold body 1 in Figure 2; as shown in Figure 1, this application is provided with air guide channels 3 throughout the interior of the mold body 1, that is, several interconnected channels are provided in the mold body 1, and several The channel forms an air guide channel 3, and the air guide channel 3 forms several ports on the side wall of the mold body 1, one of which is connected to the pipeline interface 6 for connection with the air source, and the remaining ports are provided with plugs 7, that is, the remaining ports are connected to the air source.
- the ports are blocked, and several exhaust holes 2 provided above the mold body 1 are connected to the air guide channel 3; when in use, connect the gas source at the pipeline interface 6, such as loading high-pressure inert gas or low-pressure inert gas, and the gas passes through The air guide channel 3 enters the exhaust hole 2 for discharge.
- the existing superplastic forming/diffusion connection mold uses an external welded pipe 5 air guide system, when there are a large number of exhaust holes 2, there are problems with the external welded pipes 5 being easily damaged and having too many welded joints. It causes inconvenience to the transportation, use and storage of the mold.
- the air guide channel 3 is provided inside the mold body 1, and the welded pipeline 5 outside the mold body 1 is eliminated, thus simplifying the structure of the mold.
- the number of exhaust holes 2 is small or It is applicable to all, which solves the problem of the traditional external welded pipe 5 air guide system.
- the number of exhaust holes 2 is large, the external welded piping 5 may be easily damaged and there are many welded joints, so the exhaust holes 2 cannot be used. A larger number of questions.
- the specific structure of the air guide channel 3 can be set according to the specific processing conditions or usage conditions. It only needs to be ensured that the air guide channel 3 is set in the mold body 1 and can be connected to the exhaust hole 2 and the pipeline interface 6.
- the air guide channel 3 includes several horizontal channels 301, the exhaust holes 2 are connected with the horizontal channels 301, and both ends of the horizontal channels 301 penetrate the side wall of the mold body 1 to form the port, several horizontal channels 301 are interlaced and connected to form a network structure.
- the direction in which the horizontal channel 301 is set is parallel to the bottom surface or the upper surface of the mold body 1, which is the horizontal direction in Figure 1.
- the horizontal channel 301 shown in Figures 1 and 4 forms a built-in mesh air guide system to guide air.
- the channel 3 is configured as several horizontal channels 301, which facilitates processing and manufacturing, and at the same time minimizes the path of gas in the air guide channel 3, ensuring the gas transmission efficiency, and making the structure of the mold body 1 more stable and firm.
- the air guide channel 3 also includes a vertical channel 302 that penetrates the upper and lower surfaces of the mold body 1.
- the exhaust hole 2 communicates with the horizontal channel 301 through the vertical channel 302.
- the vertical channel 302 is perpendicular to the horizontal channel 301, and the vertical channel 302 is perpendicular to the bottom surface or upper surface of the mold body 1. As shown in Figure 6, when the distance between the upper and lower surfaces of the mold body 1 is large, by setting the vertical The straight channel 302 facilitates the connection between the exhaust hole 2 and the horizontal channel 301.
- an adapter bushing 4 which is provided at the connection between the pipeline interface 6 and the port.
- an adapter bushing 4 is provided to ensure the stability and firmness of the connection between the mold body 1 and the pipeline interface 6.
- the present application also provides a manufacturing method, which is used to manufacture a gas guide system of a superplastic forming/diffusion connection mold, including the following steps:
- the air guide channels 3 can easily enter the loose area of the casting during manufacturing, causing air tightness hazards. Therefore, after processing the air guide channels 3, air conduction must be carried out. Tightness testing. A closed air pressure loading system must be formed during air tightness inspection, so the manufacturing method of the built-in mesh air guide system has its own particularities.
- the specific processing process is as follows: the deep hole drilling process is used to process the air guide channel 3; after drilling the air guide channel 3, one port of the air guide channel 3 is retained and the remaining ports are simply blocked, and an adapter lining is welded at the retained port.
- cover 4 and pipeline interface 6 The purpose of simple sealing of cover 4 and pipeline interface 6 is to facilitate subsequent air sealing and removal; the air tightness of the air guide pipeline is tested by blowing air at pipeline interface 6, and the air pressure is 0.2-1MPa. At this time, the exhaust hole 2 is not processed, and the air guide channel 3, the connecting bushing, and the pipeline interface 6 form a closed space system. Find leaking points by spraying soapy water on the surface of the mold or placing it in the sink to observe bubbles and repair welding. If the airtightness is not up to standard, use repair welding to repair it. After the airtightness is up to standard, follow-up processing can be performed.
- a mold profile for matching with the processed parts is provided above the mold body 1; before determining the position of the air guide channel 3 on the mold body 1, the method further includes:
- the air guide channel 3 When the chord height of the mold profile is less than or equal to 50mm, the air guide channel 3 only includes a horizontal channel 301; as shown in Figure 4, that is, when the chord height of the mold profile is less than or equal to 50mm, the air guide channel 3 in the mold body 1
- the air guide channel 3 has only horizontal channels 301 and no vertical channels 302. Because the distance between the upper and lower surfaces of the mold body 1 is small at this time, the vertical channel 302 does not need to be provided.
- the air guide channel 3 When the chord height of the mold profile is higher than 50 mm, the air guide channel 3 includes a horizontal channel 301 and a vertical channel 302. As shown in Figure 6, when the chord height of the corresponding part area of the exhaust hole 2 is high, that is, the distance between the upper and lower surfaces of the mold body 1 is large, if the above solution is adopted, the depth of the exhaust hole 2 will be deeper and the processing difficulty will be sharply increased. Increase.
- the air guide channel 3 of the built-in mesh air guide system corresponding to this type of part includes not only the horizontal channel 301 connected to the side of the mold, but also the vertical channel connected to the bottom of the mold.
- the parts are divided into two types: parts with large chord height and parts with small chord height. Due to the restriction of the shape of the parts, the corresponding mesh air guides of the two types of parts are The system design methods and structures are different, but the manufacturing methods and processes of the two types of parts are the same.
- Determining the position of the air guide channel 3 on the mold body 1 includes:
- chord height of the mold surface is less than or equal to 50mm
- Determining the position of the air guide channel 3 on the mold body 1 includes:
- chord height of the mold surface is higher than 50mm
- Determining the position of the horizontal channel 301 on the mold body 1 includes:
- the centers of the exhaust holes 2 are connected by criss-crossing straight lines, and each straight line corresponds to one of the horizontal channels 301.
- the design method of the built-in mesh air guide system for small chord height parts is as follows:
- the air guide channel 3 should be set at the position of the mold reinforcement rib 9 or the back of the mold should be partially strengthened.
- the channel 3 is located at the back of the mold body 1.
- the air guide channel local reinforcement 8 is provided on the back of the mold body 1. Specifically, at the position corresponding to the air guide channel 3 on the back of the mold body 1, the mold body 1 is thickened. The back portion thus forms a local reinforcement 8 of the air guide channel, which is similar to a reinforcing rib and prevents the air guide channel 3 from drilling through the back of the mold body 1 .
- the design method of the built-in mesh air guide system for parts with large chord height is as follows:
- the air guide channels 3 of the built-in mesh air guide system of this type of part include not only the horizontal air guide channels 3 connected to the side of the mold, but also the vertical channels 302 connected to the bottom of the mold.
- the specific design method is as follows:
- a vertical channel 302 is set up from the bottom of the mold, and the top of the channel is connected to the exhaust hole. 2. In the example, 8 ⁇ 12 vertical channels 302 are set up.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
一种超塑成形/扩散连接模具的导气系统及其制造方法,导气系统包括模具体(1)、导气通道(3)、排气孔(2)、堵头(7)和管路接口(6);模具体(1)上设置若干排气孔(2);模具体(1)内部贯穿设置导气通道(3),导气通道(3)在模具体(1)侧壁上形成若干端口,其中一个端口与管路接口(6)连接,其余端口均设置堵头(7);排气孔(2)与导气通道(3)连通。
Description
本申请涉及超塑成形/扩散连接技术领域,尤其涉及一种超塑成形/扩散连接模具的导气系统及其制造方法。
采用超塑成形/扩散连接组合工艺可以制造复杂外形曲面、加强内筋的多层空心结构,与采用传统连接方法进行紧固的组合构件相比该工艺具有结构重量轻、整体性好、质量高的优点,大大提高了构件的设计自由度及结构效率,已经成为航空航天领域多层板加强结构的一种重要的加工方法。
复杂曲面结构零件成形时,模具型面内转角或低洼处需设置较多直径为φ1-φ2的排气孔,排气孔用途有三个方面:1)通过排气孔进行反向加载高压惰性气体,提高扩散连接区域的扩散连接效果,即提高焊合率;2)防止超塑成形时转角或低洼处发生“憋气”现象影响零件贴模度;3)用于超塑成形时提供低压惰性气体,对零件上下表面进行保护,防止零件吸氢或氧化。为便于在成形过程中对排气孔进行控制,需要将排气孔串联起来仅通过1~2个管路接口与惰性气体气源相接。
现有技术的超塑成形/扩散连接模具采用外置式焊接管路导气系统,该模具的惰性气体主要加压通道多处于模具外侧,现有技术多适用于排气孔数量较少的情况,不适用于排气孔数量多的情况。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的在于提供一种超塑成形/扩散连接模具的导气系统及其制造方法,旨在解决外置式焊接管路导气系统不适用于排气孔数量多的问题。
为实现上述目的,本申请提供一种超塑成形/扩散连接模具的导气系统,包括模具体、导气通道、排气孔、堵头和与气源连接的管路接口;
所述模具体的上方设置若干所述排气孔;
所述模具体内部贯穿设置所述导气通道,所述导气通道在所述模具体侧壁上形成若干个端口,其中一个所述端口与所述管路接口连接,其余所述端口均设置所述堵头;
所述排气孔与所述导气通道连通。
可选地,所述导气通道包括若干个水平通道,所述排气孔与所述水平通道连通,所述水平通道的两端贯穿所述模具体侧壁形成所述端口,若干个所述水平通道交错连通。
可选地,所述导气通道还包括贯穿所述模具体上下表面的竖直通道,所述排气孔通过所述竖直通道与所述水平通道连通。
可选地,还包括转接衬套,所述管路接口与所述端口的连接处设置所述转接衬套。
此外,为实现上述目的,本申请还提供一种制造方法,所述制造方法用于制造一种超塑成形/扩散连接模具的导气系统,包括以下步骤:
确定导气通道在模具体上的位置;
采用孔钻在所述模具体上加工所述导气通道,获得具有导气通道的模具体;
在具有导气通道的模具体上,保留一处端口并将其余端口简易封堵,并在所保留端口处焊接管路接口;
通过所述管路接口,对所述模具体进行气密性检测;
所述气密性检测合格后,钻排气孔;
打开所述端口的简易封堵;
清除所述导气通道中切削液及铁屑,再对所述导气通道端口采用堵头进行牢固焊接;
牢固焊接管路接口。
可选地,所述通过所述管路接口,对所述模具体进行气密性检测之后,所述制造方法还包括:
若气密性检测不合格,采用补焊方式进行修补,直至合格。
可选地,所述模具体上方设置有用于与加工零件配合的模具型面;
在所述确定导气通道在模具体上的位置之前,所述制造方法还包括:
当所述模具型面的弦高小于或等于50mm,所述导气通道仅包括水平通 道;
当所述模具型面的弦高高于50mm,所述导气通道包括水平通道和竖直通道。
可选地,所述确定导气通道在模具体上的位置,包括:
当所述模具型面的弦高小于或等于50mm时,
确定水平通道在所述模具体上的位置。
可选地,所述确定导气通道在模具体上的位置,包括:
当所述模具型面的弦高高于50mm时,
确定水平通道和竖直通道在所述模具体上的位置。
可选地,所述确定水平通道在所述模具体上的位置,包括:
确定所述排气孔的位置;
确定所述水平通道的中心线平面;
将所述排气孔的中心向所述中心线平面投影,获得所述排气孔在所述中心线平面上的中心投影点;
将排气孔中心通过纵横交错的直线连接起来,每条直线对应一个所述水平通道。
本申请所能实现的有益效果:
本申请在模具体内部贯穿设置导气通道,即模具体内设置若干个相互连通的通道,若干个通道形成导气通道,导气通道在模具体侧壁上形成若干个端口,其中一个端口与管路接口连接,用于与气源连接,其余端口均设置堵头,即将其余的端口堵塞住,模具体的上方设置的若干排气孔均与导气通道连通;使用时,在管路接口处连通气源,比如加载高压惰性气体或低压惰性气体,气体通过导气通道进入到排气孔进行排出。由于现有的超塑成形/扩散连接模具采用外置式焊接管路导气系统,当排气孔数量较多时,外置焊接管路多存在管路易碰损、焊接接头多的问题,给模具搬运、使用及存放造成了不便,本申请通过在模具体内部设置导气通道,取消了模具体外侧的焊接管路,简化了模具的结构,排气孔数量少或者多均适用,解决了传统的外置式焊接管路导气系统,当排气孔数量较多时,外置焊接管路多存在管路易碰损、焊接接头多,无法适用排气孔数量较多的问题。
本申请实施例提出的一种超塑成形/扩散连接模具的导气系统及其制造方 法,通过在模具体内部贯穿设置导气通道,解决了外置式焊接管路导气系统不适用于排气孔数量多的问题,实现了,超塑成形/扩散连接模具的排气孔数量少或者多均适用的导气系统。
图1为本申请的实施例提供的超塑成形/扩散连接模具的导气系统的结构示意图;
图2为本申请的实施例提供的外置式焊接管路导气系统的结构示意图;
图3为图2中A处的局部放大图;
图4为本申请的实施例提供的小弦高零件内置式网状导气系统的结构示意图;
图5为图4中B-B剖视图;
图6为本申请的实施例提供的大弦高零件内置式网状导气系统的结构示意图;
附图标记:1-模具体,2-排气孔,3-导气通道,301-水平通道,302-竖直通道,4-转接衬套,5-焊接管路,6-管路接口,7-堵头,8-导气通道局部加强部,9-模具加强筋。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
参照图1,本申请第一实施例提供一种超塑成形/扩散连接模具的导气系统,包括模具体1、导气通道3、排气孔2、堵头7和与气源连接的管路接口6;
所述模具体1的上方设置若干所述排气孔2;
所述模具体1内部贯穿设置所述导气通道3,所述导气通道3在所述模具体1侧壁上形成若干个端口,其中一个所述端口与所述管路接口6连接,其余所述端口均设置所述堵头7;
所述排气孔2与所述导气通道3连通。
如图2~图3所示,现有技术多采用外置式焊接管路5导气系统,该系统主要由排气孔2、导气通道3、焊接管路5、管路接口6等构成。排气孔2按需设置,通过模具侧面所钻导气通道3与模具外侧焊接管路5连通。最后,将众多外接管子串联起来,形成外置式焊接管路5排气系统。该系统通过管路接口6与惰性气体气源相接,通过控制管路接口6即可实现对所有排气孔2的控制。不难发现,该技术方案惰性气体主要加压通道多处于模具外侧。现有技术多适用于排气孔2数量较少的情况,当排气孔2数量较多时,外置焊接管路5多存在管路易碰损、焊接接头多的问题,给模具搬运、使用及存放造成了不便。
为了便于描述,模具体1的上方设置若干所述排气孔2,即模具体1的一面设置有若干排气孔2,如图1和图2所示,模具体1的上方即为图1中的上方,图2中模具体1的上方的位置;如图1所示,本申请在模具体1内部贯穿设置导气通道3,即模具体1内设置若干个相互连通的通道,若干个通道形 成导气通道3,导气通道3在模具体1侧壁上形成若干个端口,其中一个端口与管路接口6连接,用于与气源连接,其余端口均设置堵头7,即将其余的端口堵塞住,模具体1的上方设置的若干排气孔2均与导气通道3连通;使用时,在管路接口6处连通气源,比如加载高压惰性气体或低压惰性气体,气体通过导气通道3进入到排气孔2进行排出。由于现有的超塑成形/扩散连接模具采用外置式焊接管路5导气系统,当排气孔2数量较多时,外置焊接管路5多存在管路易碰损、焊接接头多的问题,给模具搬运、使用及存放造成了不便,本申请通过在模具体1内部设置导气通道3,取消了模具体1外侧的焊接管路5,简化了模具的结构,排气孔2数量少或者多均适用,解决了传统的外置式焊接管路5导气系统,当排气孔2数量较多时,外置焊接管路5多存在管路易碰损、焊接接头多,无法适用排气孔2数量较多的问题。
导气通道3的具体结构可根据具体加工情况或使用情况设定,只需保证导气通道3设置在模具体1内,且能够与排气孔2和管路接口6连通即可,在本实施例中,所述导气通道3包括若干个水平通道301,所述排气孔2与所述水平通道301连通,所述水平通道301的两端贯穿所述模具体1侧壁形成所述端口,若干个所述水平通道301交错连通,形成网状结构。水平通道301设置的方向即与模具体1的底面或者上表面平行,为图1的水平方向,图1和图4内均展示的水平通道301,即形成内置式网状导气系统,导气通道3设置为若干个水平通道301,便于加工生产制造,同时使得气体在导气通道3内的路径最小化,保证了气体的传递效率,同时使得模具体1的结构更加稳定牢固。
所述导气通道3还包括贯穿所述模具体1上下表面的竖直通道302,所述排气孔2通过所述竖直通道302与所述水平通道301连通。竖直通道302即与水平通道301垂直,竖直通道302与模具体1的底面或者上表面垂直,如图6所示,当模具体1的上下表面之间的距离较大时,通过设置竖直通道302,便于排气孔2与水平通道301连接。
还包括转接衬套4,所述管路接口6与所述端口的连接处设置所述转接衬套4。为防止模具体1与管路接口6焊接处经常损坏,设置转接衬套4,保证模具体1与管路接口6连接的稳定和牢固。
此外,本申请还提供一种制造方法,所述制造方法用于制造一种超塑成 形/扩散连接模具的导气系统,包括以下步骤:
确定导气通道3在模具体1上的位置;
采用孔钻在所述模具体1上加工所述导气通道3,获得具有导气通道3的模具体1;
在具有导气通道3的模具体1上,保留一处端口并将其余端口简易封堵,并在所保留端口处焊接管路5接口;
通过所述管路接口6,对所述模具体1进行气密性检测;
所述气密性检测合格后,钻排气孔2;
打开所述端口的简易封堵;
清除所述导气通道3中切削液及铁屑,再对所述导气通道3端口采用堵头7进行牢固焊接;
牢固焊接管路5接口。
由于该技术方案要在模具内部钻制纵横交错、相互贯通的导气通道3,制造时导气通道3极易进入铸件疏松区域,出现气密隐患,因此在加工导气通道3后要进行气密性检测。气密检查时要形成封闭的气压加载系统,因此导致该内置式网状导气系统制造方法有其特殊性。具体加工过程如下:采用深孔钻工艺加工导气通道3;在钻导气通道3后,保留一处导气通道3端口并将其余端口简易封堵,并在所保留端口处焊接转接衬套4及管路接口6,简易封堵的目的是为后续做气密后方便拆除;采用在管路接口6处吹气方式检测导气管路气密性,所通气压0.2-1MPa。此时排气孔2未加工,导气通道3、连接衬套、管路接口6组成封闭的空间系统。通过在模具表面喷涂肥皂水或放置于水槽内观察气泡查找漏点补焊,若气密不合格,采用补焊方式进行修补,气密合格后再进行后续加工;钻排气孔2;去除简易焊接的堵头7、转接衬套4等;清除导气通道3中切削液及铁屑,再对导气通道3端口采用堵头7进行牢固焊接;牢固焊接转接衬套4及管路接口6。
所述对所述模具体1进行气密性检测之后,包括:
若气密性检测不合格,采用补焊方式进行修补,直至合格。
所述模具体1上方设置有用于与加工零件配合的模具型面;在所述确定所述导气通道3在所述模具体1上的位置之前,所述方法还包括:
当所述模具型面的弦高小于或等于50mm,所述导气通道3仅包括水平通 道301;如图4所示,即当模具型面的弦高小于或等于50mm时,模具体1内的导气通道3只有水平通道301,没有竖直通道302,因为此时模具体1上下表面之间的距离小,可以不设置竖直通道302。
当所述模具型面的弦高高于50mm,所述导气通道3包括水平通道301和竖直通道302。如图6所示,当排气孔2对应零件区域弦高较高时,即模具体1上下表面之间的距离大,若采用上述方案,会导致排气孔2深度较深,加工难度急剧加大。该类零件对应的内置式网状导气系统导气通道3不仅包括连接于模具侧面的水平通道301,还包括连接于模具底部的垂直通道。
按照设置排气孔2对应模具型面,即零件区域弦高是否高于50mm将零件分为大弦高零件和小弦高零件两类,由于零件形状制约,两类零件所对应网状导气系统设计方法及结构有所差异,但两类零件制造方法及流程相同。
所述确定所述导气通道3在所述模具体1上的位置,包括:
当所述模具型面的弦高小于或等于50mm时,
确定水平通道301在所述模具体1上的位置。
所述确定所述导气通道3在所述模具体1上的位置,包括:
当所述模具型面的弦高高于50mm时,
确定水平通道301和竖直通道302在所述模具体1上的位置。
所述确定水平通道301在所述模具体1上的位置,包括:
确定所述排气孔2的位置;
确定所述水平通道301的中心线平面;
将所述排气孔2的中心向所述中心线平面投影,获得所述排气孔2在所述中心线平面上的中心投影点;
将排气孔2中心通过纵横交错的直线连接起来,每条直线对应一个所述水平通道301。
具体的,小弦高零件内置式网状导气系统设计方法如下:
如图4和图5所示,该类零件内置式网状导气系统具体设计方法如下:
a)通过仿真确定需设置排气孔2的位置。示例中,在模具凹型侧壁根部设置了处排气孔2。
b)确定导气通道3中心线平面。所有导气通道3中心线处于同一平面上,且平面位于零件最低点约15mm。此时导气通道3均为水平通道301。
c)排气孔2中心向上述平面投影,获得排气孔2中心投影点。
d)将排气孔2中心通过纵横交错的直线连接起来,每条直线对应一条导气通道3。连接时,保证所需直线尽量少。另外,为便于清除导气通道3内残留切削液及废屑,导气通道3需贯通模具。示例中设置了5条φ12导气通道3。
e)由于模具型面壁厚制约,导气通道3存在钻穿模具背部的风险,因此导气通道3尽量设置于模具加强筋9位置或者将模具背部局部加强,如图5所示,在导气通道3位于模具体1的背部处,在模具体1的背部处设置导气通道局部加强部8,具体的在模具体1的背部与导气通道3相对应的位置处,加厚模具体1的背部从而形成导气通道局部加强部8,类似于加强筋,防止导气通道3钻穿模具体1的背部。
具体的,大弦高零件内置式网状导气系统设计方法如下:
如图6所示,当排气孔2对应零件区域弦高较高时,若采用上述方案,会导致排气孔2深度较深,加工难度急剧加大。该类零件内置式网状导气系统导气通道3不仅包括连接于模具侧面的水平导气通道3,还包括连接于模具底部的竖直通道302。具体设计方法如下:
a)通过仿真确定需设置排气孔2的位置。示例中设置了8处排气孔2。
b)确定水平通道301中心线平面。水平导气通道3中心线处于同一平面上,且平面位于零件最低点约15mm。
c)排气孔2中心向上述平面投影,获得排气孔2中心投影点。
d)将排气孔2中心通过纵横交错的直线连接起来,每条直线对应一条水平通道301。连接时,保证所需直线尽量少。另外,为便于清除导气通道3内残留切削液及废屑,导气通道3需贯通模具。示例中设置了4条φ12水平导气通道3。
e)由于型面上部分排气孔2设置点距水平导气通道3距离远,排气孔2深度较深,加工难度大,因此从模具底部设置竖直通道302,通道顶部接排气孔2。示例中设置了8条φ12竖直通道302。
f)水平通道301、竖直通道302均需设置于模具加强筋9上。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (7)
- 一种超塑成形/扩散连接模具的导气系统的制造方法,其特征在于,所述制造方法用于制造超塑成形/扩散连接模具的导气系统;所述超塑成形/扩散连接模具的导气系统包括模具体、导气通道、排气孔、堵头和与气源连接的管路接口;所述模具体的上方设置若干所述排气孔;所述模具体内部贯穿设置所述导气通道,所述导气通道在所述模具体侧壁上形成若干个端口,其中一个所述端口与所述管路接口连接,其余所述端口均设置所述堵头;所述排气孔与所述导气通道连通;所述导气通道包括若干个水平通道,所述排气孔与所述水平通道连通,所述水平通道的两端贯穿所述模具体侧壁形成所述端口,若干个所述水平通道交错连通;所述导气通道还包括贯穿所述模具体上下表面的竖直通道,所述排气孔通过所述竖直通道与所述水平通道连通;所述制造方法包括以下步骤:确定导气通道在模具体上的位置;采用孔钻在所述模具体上加工所述导气通道,获得具有导气通道的模具体;在具有导气通道的模具体上,保留一处端口并将其余端口简易封堵,并在所保留端口处焊接管路接口;通过所述管路接口,对所述模具体进行气密性检测;所述气密性检测合格后,钻排气孔;打开所述端口的简易封堵;清除所述导气通道中切削液及铁屑,再对所述导气通道端口采用堵头进行牢固焊接;牢固焊接管路接口。
- 如权利要求1所述的一种超塑成形/扩散连接模具的导气系统的制造方法,其特征在于,所述超塑成形/扩散连接模具的导气系统还包括转接衬套, 所述管路接口与所述端口的连接处设置所述转接衬套。
- 如权利要求1所述的一种超塑成形/扩散连接模具的导气系统的制造方法,其特征在于,所述通过所述管路接口,对所述模具体进行气密性检测之后,所述制造方法还包括:若气密性检测不合格,采用补焊方式进行修补,直至合格。
- 如权利要求1所述的一种超塑成形/扩散连接模具的导气系统的制造方法,其特征在于,所述模具体上方设置有用于与加工零件配合的模具型面;在所述确定导气通道在模具体上的位置之前,所述制造方法还包括:当所述模具型面的弦高小于或等于50mm,所述导气通道仅包括水平通道;当所述模具型面的弦高高于50mm,所述导气通道包括水平通道和竖直通道。
- 如权利要求4所述的一种超塑成形/扩散连接模具的导气系统的制造方法,其特征在于,所述确定导气通道在模具体上的位置,包括:当所述模具型面的弦高小于或等于50mm时,确定水平通道在所述模具体上的位置。
- 如权利要求4所述的一种超塑成形/扩散连接模具的导气系统的制造方法,其特征在于,所述确定导气通道在模具体上的位置,包括:当所述模具型面的弦高高于50mm时,确定水平通道和竖直通道在所述模具体上的位置。
- 如权利要求5或6所述的一种超塑成形/扩散连接模具的导气系统的制造方法,其特征在于,所述确定水平通道在所述模具体上的位置,包括:确定所述排气孔的位置;确定所述水平通道的中心线平面;将所述排气孔的中心向所述中心线平面投影,获得所述排气孔在所述中心线平面上的中心投影点;将排气孔中心通过纵横交错的直线连接起来,每条直线对应一个所述水平通道。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210665888.5 | 2022-06-14 | ||
CN202210665888.5A CN114749562B (zh) | 2022-06-14 | 2022-06-14 | 一种超塑成形/扩散连接模具的导气系统及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023240861A1 true WO2023240861A1 (zh) | 2023-12-21 |
Family
ID=82336930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/125596 WO2023240861A1 (zh) | 2022-06-14 | 2022-10-17 | 一种超塑成形/扩散连接模具的导气系统及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114749562B (zh) |
WO (1) | WO2023240861A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114749562B (zh) * | 2022-06-14 | 2022-10-25 | 成都飞机工业(集团)有限责任公司 | 一种超塑成形/扩散连接模具的导气系统及其制造方法 |
CN117548998B (zh) * | 2023-11-21 | 2024-05-07 | 华钛空天(北京)技术有限责任公司 | 一种薄壁空腔舵体制备方法、装置、设备及介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060260373A1 (en) * | 2005-05-18 | 2006-11-23 | Richard Allor | Superplastic forming tool |
CN203371689U (zh) * | 2013-07-29 | 2014-01-01 | 北京超塑新技术有限公司 | 一种用于超塑成型的模具 |
CN203381072U (zh) * | 2013-07-29 | 2014-01-08 | 北京超塑新技术有限公司 | 一种超塑成型的模具 |
CN203508711U (zh) * | 2013-09-29 | 2014-04-02 | 哈尔滨理工大学 | 镁合金超塑成形扩散连接用的外加热式模具 |
CN106271439A (zh) * | 2016-08-30 | 2017-01-04 | 北京普惠三航科技有限公司 | 钛合金耐热蒙皮的超塑成形/扩散连接成形方法 |
CN113926905A (zh) * | 2021-10-22 | 2022-01-14 | 中国航发贵州黎阳航空动力有限公司 | 一种变截面钛合金壳体零件超塑成形模具及成形方法 |
CN114749562A (zh) * | 2022-06-14 | 2022-07-15 | 成都飞机工业(集团)有限责任公司 | 一种超塑成形/扩散连接模具的导气系统及其制造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3338080A (en) * | 1964-09-21 | 1967-08-29 | Gen Dynamics Corp | Forming apparatus |
DE2442801A1 (de) * | 1974-09-06 | 1976-03-25 | Tokyu Car Corp | Hydraulische schlagpresse, insbesondere zum verformen duennwandiger gegenstaende |
US4331284A (en) * | 1980-03-14 | 1982-05-25 | Rockwell International Corporation | Method of making diffusion bonded and superplastically formed structures |
US4984348A (en) * | 1989-01-17 | 1991-01-15 | Rohr Industries, Inc. | Superplastic drape forming |
FR2661864B1 (fr) * | 1990-05-14 | 1994-10-07 | Jagenberg Ag | Dispositif et procede de formage d'articles creux en matiere thermoplastique. |
US7614270B2 (en) * | 2008-02-14 | 2009-11-10 | Ford Global Technologies, Llc | Method and apparatus for superplastic forming |
CN101791651A (zh) * | 2010-02-09 | 2010-08-04 | 成都飞机工业(集团)有限责任公司 | 一种板料超塑成形加工方法及其超塑成形气压加载装置 |
CN101786128B (zh) * | 2010-02-25 | 2012-08-22 | 机械科学研究总院先进制造技术研究中心 | 热冲压与超塑气胀复合成形工艺 |
TWI419748B (zh) * | 2010-04-27 | 2013-12-21 | Ichia Tech Inc | 成型模之細微紋路的形成方法 |
CN103949523B (zh) * | 2014-04-16 | 2016-03-16 | 宁波钜智自动化装备有限公司 | 一种用于复杂管件内高压成形的设备及其使用方法 |
CN104786477A (zh) * | 2015-03-31 | 2015-07-22 | 玮锋电子材料(昆山)有限公司 | 反吹成型方法 |
CN204657234U (zh) * | 2015-06-09 | 2015-09-23 | 哈尔滨理工大学 | 一种脉冲电流加热的气化剂加压胀形装置 |
CN106270095B (zh) * | 2016-08-16 | 2018-07-10 | 北京航星机器制造有限公司 | 一种带加强筋零件超塑成形扩散连接一体化成形模具及方法 |
CN109434380B (zh) * | 2018-11-05 | 2020-11-13 | 北京星航机电装备有限公司 | 一种变厚度轻量化弹翼蒙皮成形方法 |
CN209240416U (zh) * | 2018-12-24 | 2019-08-13 | 富甲电子(昆山)有限公司 | 模具大排气优化结构 |
CN110538915A (zh) * | 2019-01-29 | 2019-12-06 | 中车长春轨道客车股份有限公司 | 高速动车大曲面板材棱线快超塑成形模具及成形方法 |
CN111531031B (zh) * | 2020-06-04 | 2021-04-09 | 南京航空航天大学 | 基于磁流变弹性体的复杂曲面构件成形装置及方法 |
CN112051381B (zh) * | 2020-08-26 | 2022-11-29 | 中国航空制造技术研究院 | 一种材料性能的测试方法及测试工装 |
CN213104001U (zh) * | 2020-09-04 | 2021-05-04 | 深圳市民乐管业有限公司 | 一种凸环管件水涨模具 |
CN114505573B (zh) * | 2022-04-20 | 2022-07-15 | 成都飞机工业(集团)有限责任公司 | 一种超塑成形、扩散连接模具及薄壁大倾角零件制备方法 |
-
2022
- 2022-06-14 CN CN202210665888.5A patent/CN114749562B/zh active Active
- 2022-10-17 WO PCT/CN2022/125596 patent/WO2023240861A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060260373A1 (en) * | 2005-05-18 | 2006-11-23 | Richard Allor | Superplastic forming tool |
CN203371689U (zh) * | 2013-07-29 | 2014-01-01 | 北京超塑新技术有限公司 | 一种用于超塑成型的模具 |
CN203381072U (zh) * | 2013-07-29 | 2014-01-08 | 北京超塑新技术有限公司 | 一种超塑成型的模具 |
CN203508711U (zh) * | 2013-09-29 | 2014-04-02 | 哈尔滨理工大学 | 镁合金超塑成形扩散连接用的外加热式模具 |
CN106271439A (zh) * | 2016-08-30 | 2017-01-04 | 北京普惠三航科技有限公司 | 钛合金耐热蒙皮的超塑成形/扩散连接成形方法 |
CN113926905A (zh) * | 2021-10-22 | 2022-01-14 | 中国航发贵州黎阳航空动力有限公司 | 一种变截面钛合金壳体零件超塑成形模具及成形方法 |
CN114749562A (zh) * | 2022-06-14 | 2022-07-15 | 成都飞机工业(集团)有限责任公司 | 一种超塑成形/扩散连接模具的导气系统及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114749562A (zh) | 2022-07-15 |
CN114749562B (zh) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023240861A1 (zh) | 一种超塑成形/扩散连接模具的导气系统及其制造方法 | |
CN112082035B (zh) | 一种管道应急管堵气囊装置及管道不停产维修方法 | |
CN212362960U (zh) | 一种壳程管程串通式换热器的气密性试验结构 | |
CN111261819A (zh) | 水冷箱体结构及其生产工艺 | |
CN214466853U (zh) | 一种超高真空法兰密封连接装置 | |
CN211447632U (zh) | 一种金属风管预制封口装置 | |
CN220953682U (zh) | 一种清扫口预制件 | |
CN219654647U (zh) | 油套管对接密封结构 | |
CN108612945B (zh) | 一种多通路汇流分流装置 | |
CN207280703U (zh) | 表面冷凝器换热管与管板接头的检漏装置 | |
CN218341297U (zh) | 一种焊接气室 | |
CN111473680A (zh) | 一种壳程管程串通式换热器的气密性试验结构 | |
KR200331551Y1 (ko) | 발전소 복수기의 파이프 결합구조 | |
CN218935678U (zh) | 一种压力管道的新型带压焊补堵漏装置 | |
CN107215584B (zh) | 双侧出料罐箱 | |
CN208206398U (zh) | 一种冷却水路测试治具 | |
CN206554102U (zh) | 管幕钢管 | |
CN220379160U (zh) | 一种多通管路的焊接结构 | |
KR200429819Y1 (ko) | 파이프 연결구 | |
CN211318031U (zh) | 一种管线试压工具 | |
CN215573598U (zh) | 一种汽车零部件气密性检测装置 | |
CN221897360U (zh) | 一种嵌入式法兰支管座 | |
CN219391005U (zh) | 一种径距取压标准喷嘴 | |
CN216344588U (zh) | 一种耐高温多孔管件 | |
CN218098177U (zh) | 一种用于液压阀的密封性检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22946533 Country of ref document: EP Kind code of ref document: A1 |