WO2023240766A1 - 一种大型异形钢构件空中快速交汇对接施工方法 - Google Patents
一种大型异形钢构件空中快速交汇对接施工方法 Download PDFInfo
- Publication number
- WO2023240766A1 WO2023240766A1 PCT/CN2022/110204 CN2022110204W WO2023240766A1 WO 2023240766 A1 WO2023240766 A1 WO 2023240766A1 CN 2022110204 W CN2022110204 W CN 2022110204W WO 2023240766 A1 WO2023240766 A1 WO 2023240766A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sand
- box
- connecting block
- steel arch
- bracket
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 133
- 239000010959 steel Substances 0.000 title claims abstract description 133
- 238000010276 construction Methods 0.000 title claims abstract description 34
- 239000004576 sand Substances 0.000 claims abstract description 35
- 230000007246 mechanism Effects 0.000 claims abstract description 19
- 238000003466 welding Methods 0.000 claims abstract description 12
- 244000035744 Hura crepitans Species 0.000 claims description 50
- 238000003032 molecular docking Methods 0.000 claims description 23
- 238000009434 installation Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 abstract description 17
- 230000008569 process Effects 0.000 abstract description 13
- 238000005728 strengthening Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000009435 building construction Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
Definitions
- the invention belongs to the field of building construction, and in particular relates to a construction method for rapid aerial intersection and docking of large special-shaped steel components.
- the existing technology adjusts the welding limiter in one direction and then adjusts the other direction, and repeatedly operates to achieve final closing.
- the docking time of traditional construction technology is difficult to determine, the amount of high-altitude operations is large, the investment in personnel and equipment is large, and the construction quality is difficult to guarantee.
- the present invention aims to propose a tightening and leveling tool, through which the two steel arch boxes are adjusted in the horizontal direction, specifically, the two steel arch boxes are fine-tuned in the X-axis direction.
- a construction method for rapid aerial intersection and docking of large special-shaped steel components including the following steps:
- the tightening and leveling tooling includes the No. 1 adjusting buckle, the No. 2 adjusting buckle, the No. 1 connecting block, the No. 2 connecting block and the adjusting bolt.
- the No. 1 adjusting buckle and the No. 2 adjusting buckle have the same U-shaped structure.
- the No. 1 connecting block is connected to the No. 1 adjusting buckle through the rotating shaft to realize the rotation of the No. 1 connecting block relative to the No. 1 adjusting buckle.
- the No. 2 connecting block is connected to the No. 2 adjusting buckle through the rotating shaft to realize the rotation of the No. 2 connecting block relative to the No.
- both ends of the adjusting bolt are provided with threads, and both the No. 1 connecting block and the No. 2 connecting block are provided with screw holes, thereby realizing the threaded connection of the two ends of the adjusting bolt with the No. 1 connecting block and the No. 2 connecting block respectively, and an adjusting jack is provided in the middle of the adjusting bolt.
- the threads at both ends of the adjusting bolt are reverse threads, and the adjusting bolt is rotated to tighten the No. 1 adjusting buckle and the No. 2 adjusting buckle.
- the No. 1 adjusting buckle of the pulling and leveling tool is fixedly installed to the first steel arch box, and the No. 2 adjusting buckle is fixedly installed to the second steel arch box;
- the box is fine-tuned in the X-axis direction;
- a jack reaction point is welded on the H-shaped steel carrying the steel arch box, and then a jack is installed.
- the fine-tuning of the steel arch in the Y-axis direction can be achieved through the thrust of the jack;
- the No. 1 rotating block and the No. 2 rotating block were designed to realize tightening through rotation.
- the present invention aims to propose an inclined surface leveling mechanism, through which the steel arch box can be fine-tuned in the Z-axis direction, which is convenient, fast and efficient.
- the tightening and leveling tool of the present invention has the following advantages:
- the tightening and leveling tooling in the present invention has a simple structure and is easy to install, which can improve the convenience of operation and improve work efficiency.
- the tightening and leveling tool in the present invention can allow the No. 1 adjusting buckle and the No. 2 adjusting buckle to swing according to the shape.
- the slope leveling mechanism includes a cross connector and a sand box.
- the sand box is fixedly installed on the top of the bracket.
- the sand outlet is equipped with a piston.
- the cross connector is sleeved into the sand box.
- the sand box There is fine sand inside. By opening the piston to release the fine sand, the sand position of the fine sand in the sand box is adjusted, thereby adjusting the height of the cross connector.
- the cross connector includes a cross plate and a jack.
- the bottom of the cross plate is fixedly installed on the top of the jack.
- the cross plate is cross-shaped when viewed from above.
- the top of the cross plate fits the slope of the steel arch box and is fixed and installed by welding.
- the jacking bracket is connected to the sand box to realize the cooperation between the steel arch box and the slope leveling mechanism.
- cross plate is designed in a cross shape in order to use fewer plates to achieve strong support.
- the cross-shaped structure meets this requirement.
- the structure of the cross plate is not limited to the cross type, but the top surface of the cross plate must fit with the bottom surface of the steel arch box in order to be accurately adjusted.
- the fine sand can be any kind of sand body with strong fluidity, which facilitates the rapid discharge of the sand body, thereby achieving the purpose of reducing the height of the steel arch box.
- the slope leveling mechanism of the present invention has the following advantages:
- the slope leveling mechanism of the present invention can realize the cooperation between the steel arch box and the bracket through simple adjustment. It has a simple structure and is easy to operate, and the leveling effect is good.
- the slope leveling mechanism of the present invention supports the cross connector by placing a sand body in the sand box, and utilizes the fluidity of the sand body to control the amount of sand in the sand box simply and quickly, achieving The purpose of fine-tuning the vertical direction of the steel arch box.
- the position and elevation of the slope of the component are measured during use, customized and processed by the steel factory, and welded to the component before hoisting, thereby reducing the operating process of high-altitude operations.
- This device facilitates slope leveling and provides a reference for similar projects.
- the slope leveling mechanism in the present invention is used for vertical adjustment. During the actual setting-out, the original top elevation will be increased by 2cm. The height of the component is adjusted through the sand box to improve the vertical accuracy of the component. At the same time, the sand box adjustment process is simple and reduces the cost. The number of jacks used improves the efficiency of limited space operations.
- the present invention aims to propose a construction method for rapid aerial intersection and docking of large special-shaped steel components, to solve the technical problem of precise aerial positioning of large steel components, so as to achieve short aerial intersection and docking time, less investment in personnel and equipment, reduce the difficulty of high-altitude operations, and improve the construction process. Linear control requirements are required to ensure the quality of welding construction.
- a construction method for rapid aerial intersection and docking of large special-shaped steel components including the following steps:
- Bridge deck installation bracket corresponds to the installation position of the steel arch box; after the bracket is installed, mark the central axis of the bracket; the bracket is used to support the steel arch box, and the bracket is installed according to the design plan ;
- S4 install the sand box on the top of the bracket; in S3, install at least two sand boxes on the top of the bracket according to the central axis of the bracket.
- the sand boxes and the cross connectors correspond one to one, which facilitates the assembly of the sand boxes and the cross connectors.
- the invention's construction method for rapid aerial intersection and docking of large special-shaped steel components has the following advantages:
- the present invention is a construction method for rapid aerial intersection and docking of large special-shaped steel components.
- the tightening and leveling tooling and the slope leveling structure By cooperating with the tightening and leveling tooling and the slope leveling structure, the in-air docking and fine-tuning of two sections of steel arch boxes can be quickly and efficiently realized, reducing errors and ensuring project quality.
- the present invention is a construction method for rapid aerial intersection and docking of large special-shaped steel components, which reduces the aerial operation process, reduces the construction difficulty, improves the construction quality, and ensures the safety factor.
- Figure 1 is a side view of the tightening and leveling tool according to the embodiment of the present invention.
- Figure 2 is a top view of the tightening and leveling tool according to the embodiment of the present invention.
- Figure 3 is a schematic diagram of the slope leveling assembly according to the embodiment of the present invention.
- Figure 4 is a schematic diagram of the steel arch box installed on the bracket according to the embodiment of the present invention.
- Figure 5 is a partial schematic diagram of the steel arch box section according to the embodiment of the present invention.
- connection should be understood in a broad sense.
- connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
- the tightening and leveling tool 1 includes the No. 1 adjusting buckle 11, the No. 2 adjusting buckle 12, the No. 1 connecting block 13, the No. 2 connecting block 14 and the adjusting bolt 15.
- the No. 1 adjusting buckle 12 has the same U-shaped structure.
- the No. 1 connecting block 13 is connected to the No. 1 adjusting buckle 11 through a rotating shaft to realize the No. 1 connecting block 13.
- a No. 2 connecting block 14 is provided between the two ends of the No. 2 adjusting buckle 12.
- the No. 2 connecting block 14 is connected to the No. 2 adjusting buckle 12 through the rotating shaft, so that the No. 2 connecting block 14 rotates relative to the No. 2 adjusting buckle 11.
- the tightening and leveling tool 1 can allow the No. 1 adjusting buckle 11 and the No. 2 adjusting buckle 12 to swing according to the shape; both ends of the adjusting bolt 15 are provided with threads.
- the connecting block 13 and the second connecting block 14 are both provided with screw holes, so that the two ends of the adjusting bolt 15 are threadedly connected to the first connecting block 13 and the second connecting block 14 respectively.
- the adjusting bolt 15 is provided with an adjusting jack 16 in the middle. .
- the threads at both ends of the adjusting bolt 15 are reverse threads. Turn the adjusting bolt 15 to tighten the No. 1 adjusting buckle 11 and the No. 2 adjusting buckle 12, which is simple, labor-saving and easy to operate, and achieves a good tightening effect.
- the No. 1 adjusting buckle 11 of the tightening and leveling tool 1 is fixedly installed to the first steel arch box 4, and the No. 2 adjusting buckle 12 is fixedly installed to the second steel arch box 4; the preferred No. 1
- the adjusting buckle 11 can be installed to the side of the steel arch box 4 or to the bottom surface of the steel arch box 4. It is not limited to the installation position. As long as the steel arch boxes 4 of the two box sections are connected by the tightening and leveling tool 1, and It is sufficient that the two steel arch boxes 4 can be fine-tuned in the plane direction.
- an adjusting rod is inserted into the adjusting socket 16 of the adjusting bolt 15, and the adjusting bolt 15 is rotated to tighten the No. 1 adjusting buckle 11 and the No. 2 adjusting buckle 12, thereby achieving the two
- the adjacent steel arch box 4 is fine-tuned in the X-axis direction;
- fine-tuning in the Y-axis direction is performed by welding a jack reaction point on the H-shaped steel carrying the steel arch box 4, and then installing a jack.
- the fine-tuning of the steel arch in the Y-axis direction can be achieved through the pushing force of the jack.
- fine adjustments can also be made by tightening and leveling the tooling.
- the No. 1 rotating block and the No. 2 rotating block are designed to rotate.
- the tightening and leveling tool 1 in the present invention has a simple structure and is easy to install, which can improve the convenience of operation and improve work efficiency.
- the slope leveling mechanism 2 includes a cross connector 21 and a sand box 22.
- the sand box 22 is fixedly installed on the top of the bracket 3.
- a sand outlet 23 is provided on one side of the sand box 22.
- the sand outlet 23 is provided with a piston, and the cross connector 21 is sleeved into the sand box.
- By opening the piston to release the fine sand the sand position of the fine sand in the sand box 22 is adjusted, and then the cross connector 21 is adjusted.
- the height of the steel arch box 4 and the bracket 3 can be matched with a simple adjustment method. The structure is simple and easy to operate, and the leveling effect is good.
- the cross connector 21 includes a cross plate 211 and a jack 212.
- the bottom of the cross plate 211 is fixedly mounted to the top of the jack 212.
- the cross plate 211 is cross-shaped when viewed from above.
- the top of the cross plate 211 is in contact with the steel arch box 4.
- the slopes match each other and are fixedly installed to the steel arch box 4 through welding.
- the jack 212 is sleeved into the sand box 22 to realize the cooperation between the steel arch box 4 and the slope leveling mechanism 2 .
- the cross plate 211 is designed in a cross shape in order to use fewer plates to achieve strong support.
- the cross-shaped structure meets this requirement.
- the structure of the cross plate 211 is not limited to the cross type, but the top surface of the cross plate 211 must fit with the bottom surface of the steel arch box 4 in order to be accurately adjusted.
- the fine sand can be any sand body with strong fluidity, which facilitates the rapid discharge of the sand body, thereby achieving the purpose of reducing the height of the steel arch box 4 .
- the amount of sand in the sand box 22 can be controlled simply and quickly to achieve the desired stability of the steel arch box 4 The purpose of vertical fine-tuning.
- the position and elevation of the slope of the component are measured during use, customized and processed by the steel factory, and welded to the component before hoisting to reduce the operating process of high-altitude operations.
- This device facilitates slope leveling and provides a reference for similar projects.
- the slope leveling mechanism 2 is used for vertical adjustment.
- the original top elevation will be increased by 2cm.
- the height of the component is adjusted through the sand box 22 to improve the vertical accuracy of the component.
- the operation process of adjusting the sand box 22 is simple and reduces The number of jacks used improves the efficiency of limited space operations.
- the present invention aims to propose a construction method for rapid aerial intersection and docking of large special-shaped steel components, to solve the technical problem of precise aerial positioning of large steel components, so as to achieve short aerial intersection and docking time, less investment in personnel and equipment, reduce the difficulty of high-altitude operations, and improve the construction process. Linear control requirements are required to ensure the quality of welding construction.
- a construction method for rapid aerial intersection and docking of large special-shaped steel components As shown in Figure 5, at the interface positions of each segment of the steel arch, the ports of the roof, web, and bottom plates are staggered, forming a "Z" shape as a whole.
- the steel arch is first lifted to the corresponding position by a crane, and then the local position is fine-tuned.
- fine-tuning adjust the plane position first.
- weld the stress-receiving point near the steel arch bottom plate interface weld the stress-receiving point near the steel arch bottom plate interface, and use the displacement device "Tightening and Leveling Tool 1" to adjust; when adjusting in the cross-bridge direction, weld the jack fulcrum on the bracket 3.
- Bridge deck installation bracket 3 the bridge deck installation bracket 3 corresponds to the installation position of the steel arch box 4; after the bracket 3 is installed, mark the central axis of the bracket 3; the bracket 3 is used to support the steel arch box 4. Install bracket 3 according to the design plan;
- S4 install the sandbox 22 on the top of the bracket 3; in S3, install at least two sandboxes 22 on the top of the bracket 3 according to the central axis of the bracket 3.
- the sandbox 22 corresponds to the cross connector 21 one by one, which facilitates the connection between the sandbox 22 and the cross connector. 21 for assembly.
- Adjustment of the front point position Weld two stress points each on the inner surface floor of the box and the H-shaped steel of the steel beam to be adjusted. A 10t tightening and leveling tool 1 is also installed between the stress points to complete the front point position. Adjustment.
- Adjustment of the left and right positions (cross-bridge direction); weld a jack reaction point on the H-shaped steel carrying the steel beam segments, and then install a 20t jack.
- the adjustment of the left and right positions of the steel beam is completed through the pushing force of the jack.
- the adjustment is adjusted through 2 sand boxes or adjusting pipes.
- a piston is set under the sand box 22, and dry river sand is used to fill it.
- the steel box girder After being in place, the design elevation is obtained by putting the river sand in the sand box 22 out; the adjustment pipe has the same function as the sand box 22, and its advantage is that it is convenient to obtain materials, but the disadvantage is that the adjustment elevation must be fine-tuned with a jack; variable cross-section steel box beam bracket 3
- the saddlebag support uses steel pipes for height adjustment to ensure the height of the sandbox:
- the jack should be placed directly above the bracket 3.
- the jack should not directly contact the beam plate.
- a 20x20x2cm steel plate should be placed on the hydraulic rod. Precision measurements should be made during adjustment. When the requirements are met, steel spacers and steel wedges should be added. It is required to add steel spacers and steel wedges to each hydraulic rod. Gaskets are provided at the webs.
- the leveler corresponds to the position of the adjusting tube, and a cross type is selected, with a base plate of 500mm*500mm. , the thickness is 20. If it overlaps with the rib position of the decorative plate, it needs to be cut and spot welded on the accessory bottom plate during factory production, and installed after the removal of bracket 3 is completed. After the position of the steel beam is adjusted, limit plates must be welded on the platforms on both sides and ends of the beam to fix the beam.
- the two-section steel arch box 4 can be quickly and efficiently connected and fine-tuned in the air, reducing errors and ensuring project quality; reducing aerial work processes, reducing construction difficulty, improving construction quality, and ensuring Safety factor.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
一种大型异形钢构件空中快速交汇对接施工方法,包括以下步骤:S1、钢拱箱(4)标记中轴线;S2、桥面安装支架(3);S3、钢拱箱(4)焊接十字连接件(21);S4、支架(3)顶部安装砂箱(22);S5、钢拱箱(4)吊装;通过吊车将钢拱箱(4)上的十字连接件(21)与支架(3)上的砂箱(22)进行装配;S6、钢拱箱(4)微调;使用拉固找平工装(1)和千斤顶在平面方向进行微调,再通过斜面找平机构(2)在垂直方向进行微调。该施工方法解决大型钢构件空中精准定位技术问题,以达到空中交汇对接时间短,人员设备投入量少,降低高空作业难度,提高施工过程中线性控制要求,保证焊接施工质量的目的。
Description
本发明属于建筑施工领域,尤其是涉及一种大型异形钢构件空中快速交汇对接施工方法。
异形钢结构进行空中对接时由于构件自身重量大,空中操作空间有限,对接过程中钢构件易存在变性等因素,使得施工过程持续时间久,中轴线控制难度大,焊缝预留尺寸不均匀,焊接质量难以保证以及构件在夹持固定时容易产生不同程度变形;目前大型钢构件空中对接,主要通过履带吊及汽车吊配合吊装。先在拱段箱体中标记出中轴线,利用全站仪将支架中轴线标记在分配梁上来控制定位。在相邻构件接口处焊接两块限位板,当构件基本吻合后利用千斤顶微调,在施工过程中容易对钢构件产生不同程度变形,并且在对接过程中由于三维立体方向需要同时调整来保证精准对接,现有技术通过调整一个方向焊接限位器在调节其他方向,反复操作达到最终合拢,传统施工工艺对接时间难以确定,高空作业量大,人员设备投入较多,施工质量难以保证。
发明内容
有鉴于此,本发明旨在提出一种拉固找平工装,通过拉固找平工装对两个钢拱箱在水平方向进行调节,具体的说在X轴方向对两个钢拱箱进行微调。
为达到上述目的,本发明的技术方案是这样实现的:
一种大型异形钢构件空中快速交汇对接施工方法,包括以下步骤:
拉固找平工装,包括一号调节扣、二号调节扣、一号连接块、二号连接块和调节螺栓,一号调节扣和二号调节扣结构相同均呈U型结构,一号调节扣的两端之间设有一号连接块,一号连接块通过转轴连接至一号调节扣,实现一号连接块相对一号调节扣的转动;二号调节扣的两端之间设有二号连接块,二号连接块通过转轴连接至二号调节扣,实现二号连接块相对二号调节扣的转动;调节螺栓两端均设有螺纹,一号连接块和二号连接块均设有螺孔,进而实现调节螺栓的两端分别与一号连接块和二号连接块得螺纹连接,调节螺栓中部设有调节插孔。
进一步的,调节螺栓两端的螺纹为反螺纹,转动调节螺栓实现一号调节扣和二号调节扣之间的收紧。
进一步的,在使用时将拉固找平工装的一号调节扣固定安装至第一个钢拱箱,将二号调节扣固定安装至第二个钢拱箱;
进一步的,固定之后,使用一根调节杆插入调节螺栓的调节插孔中,转动调节螺栓,实现一号调节扣和二号调节扣之间的收紧,进而达到将两个相邻的钢拱箱在X轴方向进行微调;
进一步的,在Y轴方向进行微调,通过在承载钢拱箱的H型钢上焊接一个千斤顶反力点,然后安装一个千斤顶,通过千斤顶的顶推力即可实现钢拱两在Y轴方向上的微调;
进一步的,因为还需要在Y轴向进行相邻钢拱箱的微调,所以在对拉固找平工装进行设计时,设计了能够转动的一号转动块和二号转动块,通过转动实现拉固找平工装与两个钢拱侧面的契合。
本发明旨在提出一种斜面找平机构,通过斜面找平机构将钢拱箱在Z轴方向上进行微调,方便快捷高效。
相对于现有技术,本发明拉固找平工装具有以下优势:
(1)本发明中的拉固找平工装结构简单,安装方便,可以提高作业的便捷性,提高工作效率。
(2)本发明中的拉固找平工装通过一号转动块和二号转动块的设计,可以让一号调节扣和二号调节扣随型摆动。
为达到上述目的,本发明的技术方案是这样实现的:
斜面找平机构,包括十字连接件和砂箱,砂箱固定安装至支架的顶部,砂箱一侧设有出砂口,出砂口设有活塞,十字连接件套接至沙箱内,砂箱内设有细砂,通过打开活塞放出细砂,调节细砂在砂箱内的砂位,进而调节十字连接件的高低。
进一步的,十字连接件包括十字板和顶托,十字板底部固定安装至顶托的顶部,其中十字板为俯视呈十字型,十字板的顶部与钢拱箱的斜面相契合,通过焊接固定安装至钢拱箱,顶托套接至砂箱内,实现钢拱箱和斜面找平机构之间的配合。
进一步的,十字板设计为了十字型,是为了使用较少的板材达到强支撑的目的,十字型结构满足这个要求。
进一步的,十字板的结构也不限于十字型,但是十字板的顶面要与钢拱箱的底面契合,才能精确进行调整。
进一步的,细砂可以是任意一种流动性较强的砂体,便于砂体的快速排出,进而达到降低钢拱箱高度的目的。
相对于现有技术,本发明斜面找平机构具有以下优势:
(1)本发明中斜面找平机构,通过简单的调节方式即可实现钢拱箱和支架之间的配合,结构简单操作方便,并且找平效果良好。
(2)本发明中斜面找平机构,通过在砂箱内放置砂体,达到对十字连接件的支撑,并且利用砂体的流动性,可以简单快捷的对砂箱内的砂量进行控制,达到钢拱箱垂直方向微调的目的。
(3)本发明中斜面找平机构,使用过程中测出构件斜面位置及标高,钢厂定制加工,在吊装前焊接于构件上,减少高空作业操作工艺。本装置方便了斜面找平,同时为类似项目提供参考。
(4)本发明中斜面找平机构,用于垂直方向调整,实际放线中将会调高原顶高程2cm,通过砂箱来调整构件高程提高构件竖向精度,同时调节砂箱操作过程简便,减少千斤顶使用数量,提高有限空间操作效率。
本发明旨在提出一种大型异形钢构件空中快速交汇对接施工方法,解决大型钢构件空中精准定位技术问题,以达到空中交汇对接时间短,人员设备投入量少,降低高空作业难度,提高施工过程中线性控制要求,保证焊接施工质量的目的。
为达到上述目的,本发明的技术方案是这样实现的:
一种大型异形钢构件空中快速交汇对接施工方法,包括以下步骤:
S1、钢拱箱标记中轴线;在出厂之前就对钢拱箱的中轴线标记完毕;
S2、桥面安装支架;桥面安装的支架与钢拱箱的安装位置相对应;支架安装完毕后,标记出支架的中轴线;支架用于承托钢拱箱,根据设计方案对支架进行安装;
S3、钢拱箱焊接十字连接件;根据钢拱箱的中轴线在钢拱箱底部安装十字连接件,十字连接件至少为两个。
S4、支架顶部安装砂箱;S3中根据支架的中轴线在支架顶部安装至少两个砂箱,砂箱与十字连接件一一对应,便于砂箱与十字连接件进行装配。
S5、钢拱箱吊装;通过吊车将钢拱箱上的十字连接件与支架上的砂箱进行装配;
S6、钢拱箱微调;使用拉固找平工装和千斤顶在平面方向进行微调,再通过斜面找平机构在垂直方向进行微调,在两个相邻的钢拱箱上分别焊接一个挂钩,将拉固找平工装的一号调节扣和二号调节扣分别套接到两个挂钩上,通过转动调节螺栓,实现拉固找平工装在两个挂钩上不脱落,这样的挂接方式,也可以让拉固找平工装在垂直方向微调以及水平方向时,能够跟随改变性,提高了拉固找平工装的适应性。
相对于现有技术,本发明一种大型异形钢构件空中快速交汇对接施工方法具有以下优势:
(1)本发明一种大型异形钢构件空中快速交汇对接施工方法,通过配合拉固找平工装和斜面找平结构,快捷高效的实现两段钢拱箱在空中对接微调,减小误差,保证工程质量
(2)本发明一种大型异形钢构件空中快速交汇对接施工方法,减少空中作业工艺,降低施工难度,提高施工质量,保证了安全系数。
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例拉固找平工装侧视图;
图2为本发明实施例拉固找平工装俯视图;
图3为本发明实施例斜面找平组件示意图;
图4为本发明实施例钢拱箱安装至支架的示意图;
图5为本发明实施例钢拱箱段部分示意图。
附图标记说明:
1、拉固找平工装;11、一号调节扣;12、二号调节扣;13、一号连接块;14、二号连接块;15、调节螺栓;16、调节插孔;2、斜面找平机构;21、十字连接件;211、十字板;212、顶托;22、砂箱;23、出砂口;3、支架;4、钢拱箱。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应 做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
下面将参考附图并结合实施例来详细说明本发明。
一种大型异形钢构件空中快速交汇对接施工方法,使用了拉固找平工装1和斜面找平结构:
拉固找平工装1,如图1图2所示,包括一号调节扣11、二号调节扣12、一号连接块13、二号连接块14和调节螺栓15,一号调节扣11和二号调节扣12结构相同均呈U型结构,一号调节扣11的两端之间设有一号连接块13,一号连接块13通过转轴连接至一号调节扣11,实现一号连接块13相对一号调节扣11的转动;二号调节扣12的两端之间设有二号连接块14,二号连接块14通过转轴连接至二号调节扣12,实现二号连接块14相对二号调节扣12的转动;
优选的,拉固找平工装1通过一号转动块和二号转动块的设计,可以让一号调节扣11和二号调节扣12随型摆动;调节螺栓15两端均设有螺纹,一号连接块13和二号连接块14均设有螺孔,进而实现调节螺栓15的两端分别与一号连接块13和二号连接块14得螺纹连接,调节螺栓15中部设有调节插孔16。
优选的,调节螺栓15两端的螺纹为反螺纹,转动调节螺栓15实现一号调节扣11和二号调节扣12之间的收紧,简单省力易操作,起到良好的收紧效果。
优选的,在使用时将拉固找平工装1的一号调节扣11固定安装至第一个钢拱箱4,将二号调节扣12固定安装至第二个钢拱箱4;优选的一号调节扣11可以安装至钢拱箱4的侧面,也可以安装至钢拱箱4的底面,不限于安装位置,只要通过拉固找平工装1将两个箱段的钢拱箱4进行连接,并且能够对两个钢拱箱4进行平面方向的微调即可。
优选的,固定之后,使用一根调节杆插入调节螺栓15的调节插孔16中,转动调节螺栓15,实现一号调节扣11和二号调节扣12之间的收紧,进而达到将两个相邻的钢拱箱4在X轴方向进行微调;
优选的,在Y轴方向进行微调,通过在承载钢拱箱4的H型钢上焊接一个千斤顶反力点,然后安装一个千斤顶,通过千斤顶的顶推力即可实现钢拱两在Y轴方向上的微调;在Y轴方向也可以通过拉固找平工装进行微调。
优选的,因为还需要在Y轴向进行相邻钢拱箱4的微调,所以在对拉固找平工装1进行设计时,设计了能够转动的一号转动块和二号转动块,通过转动实现拉固找平工装1与两个钢拱侧面的契合。
本发明中的拉固找平工装1结构简单,安装方便,可以提高作业的便捷性,提高工作效率。
斜面找平机构2,如图3、图4所示,包括十字连接件21和砂箱22,砂箱22固定安装至支架3的顶部,砂箱22一侧设有出砂口23,出砂口23设有活塞,十字连接件21套接至沙箱内,砂箱22内设有细砂,通过打开活塞放出细砂,调节细砂在砂箱22内的砂位,进而调节十字连接件21的高低,过简单的调节方式即可实现钢拱箱4和支架3之间的配合,结构简单操作方便,并且找平效果良好。
优选的,十字连接件21包括十字板211和顶托212,十字板211底部固定安装至顶托212的顶部,其中十字板211为俯视呈十字型,十字板211的顶部与钢拱箱4的斜面相契合,通过焊接固定安装至钢拱箱4,顶托212套接至砂箱22内,实现钢拱箱4和斜面找平机构2之间的配合。
优选的,十字板211设计为了十字型,是为了使用较少的板材达到强支撑的目的,十字型结构满足这个要求。
优选的,十字板211的结构也不限于十字型,但是十字板211的顶面要与钢拱箱4的底面契合,才能精确进行调整。
优选的,细砂可以是任意一种流动性较强的砂体,便于砂体的快速排出,进而达到降低钢拱箱4高度的目的。
优选的,通过在砂箱22内放置砂体,达到对十字连接件21的支撑,并且利用砂体的流动性,可以简单快捷的对砂箱22内的砂量进行控制,达到钢拱箱4垂直方向微调的目的。
优选的,使用过程中测出构件斜面位置及标高,钢厂定制加工,在吊装前焊接于构件上,减少高空作业操作工艺。本装置方便了斜面找平,同时为类似项目提供参考。
优选的,斜面找平机构2,用于垂直方向调整,实际放线中将会调高原顶高程2cm,通过砂箱22来调整构件高程提高构件竖向精度,同时调节砂箱22操作过程简便,减少千斤顶使用数量,提高有限空间操作效率。
本发明旨在提出一种大型异形钢构件空中快速交汇对接施工方法,解决大型钢构件空中精准定位技术问题,以达到空中交汇对接时间短,人员设备投入量少,降低高空作业难度,提高施工过程中线性控制要求,保证焊接施工质量的目的。
为达到上述目的,本发明的技术方案是这样实现的:
一种大型异形钢构件空中快速交汇对接施工方法,如图5所示,钢拱各分段接口位置处,顶板、腹板、底板各自端口错开,整体呈“Z”字型。安装时,先由吊车将钢拱吊至相应位置,再进行局部位置微调。微调时,先进行平面位置调整,顺桥向调整时,在钢拱底板接口附近焊接受力点,使用位移装置“拉固找平工装1”调整;横桥向调整,在支架3上焊接千斤顶支点钢板,使用千斤顶搭配手拉葫芦进行调整。垂 直位置调整时,使用“十字型”斜面找平构件搭配砂箱22进行调整。施工中因为其他因素影响水平方向的调整,则采取在H型钢上方加垫四氟滑板,减少摩擦力,便于钢梁水平方向上的调整。
S1、钢拱箱4标记中轴线;在出厂之前就对钢拱箱4的中轴线标记完毕;
S2、桥面安装支架3;桥面安装的支架3与钢拱箱4的安装位置相对应;支架3安装完毕后,标记出支架3的中轴线;支架3用于承托钢拱箱4,根据设计方案对支架3进行安装;
S3、钢拱箱4焊接十字连接件21;根据钢拱箱4的中轴线在钢拱箱4底部安装十字连接件21,十字连接件21至少为两个。
S4、支架3顶部安装砂箱22;S3中根据支架3的中轴线在支架3顶部安装至少两个砂箱22,砂箱22与十字连接件21一一对应,便于砂箱22与十字连接件21进行装配。
S5、钢拱箱4吊装;通过吊车将钢拱箱4上的十字连接件21与支架3上的砂箱22进行装配;
S6、钢拱箱4微调;使用拉固找平工装1和千斤顶在平面方向进行微调,再通过斜面找平机构2在垂直方向进行微调,
前后位置的调整(顺桥向);后点位置的调整:在安装完毕的钢梁与待进行调整位置的钢梁的箱室内两侧腹板上各焊接两个受力点,然后在两个受力点间安装10t的拉固找平工装1,通过调节拉固找平工装1上的调节螺栓15来完成钢梁后点位置的调节;
前点位置的调整:在待调整位置钢梁的箱室内表面底板和H型字钢上各焊接两个受力点,受力点间同样安装10t的拉固找平工装1来完成前点位置的调整。
在两个相邻的钢拱箱4上分别焊接一个挂钩,将拉固找平工装1的一号调节扣11和二号调节扣12分别套接到两个挂钩上,通过转动调节螺栓15,实现拉固找平工装1在两个挂钩上不脱落,这样的挂接方式,也可以让拉固找平工装1在垂直方向微调以及水平方向时,能够跟随改变性,提高了拉固找平工装1的适应性。
左右位置的调整(横桥向);在承载钢梁分段的H型钢上焊接一个千斤顶反力点,然后安装20t千斤顶,通过千斤顶的顶推力来完成钢梁左右位置的调整。
在钢梁分段经过水平方向上的调整以后,进行垂直方向的调整,调整通过2台沙箱或调节圆管来调节,砂箱22下设置活塞,里面使用干燥的河砂填充,钢箱梁就位后通过往外放砂箱22里面的河砂来得到设计标高;调节管作用与砂箱22相同,其优点在于取材方便,缺点是调节标高得配合千斤顶进行微调;变截面钢箱梁支架3的边箱支撑采用钢管进行高度调节,确保沙箱高度:
千斤顶要放置在支架3正上方,千斤顶不能直接接触梁板,要在液压杆上放置1块20x20x2cm钢板块,调整时要进行精密测量,达到要求后加入钢垫片及钢楔,要求在每个腹板处均设置垫片。
因钢拱角度较大,为提高安装精度及就位后方便加固,保证整体质量及安全,在钢拱出厂前两端焊接找平措施,找平器对应调节管位置,选用十字型,底板500mm*500mm,厚度为20,若与装饰板肋位置发生重叠,工厂制作时需切割下来点焊在附件底板上,待支架3拆除完成后进行安装。钢梁位置调整完毕后,要在梁体两侧及两端的平台上焊接限位板,用以固定梁体。
通过配合拉固找平工装1和斜面找平结构,快捷高效的实现两段钢拱箱4在空中对接微调,减小误差,保证工程质量;减少空中作业工艺,降低施工难度,提高施工质量,保证了安全系数。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (8)
- 一种大型异形钢构件空中快速交汇对接施工方法,包括以下步骤:S1、钢拱箱标记中轴线;S2、桥面安装支架;S3、钢拱箱焊接十字连接件;S4、支架顶部安装砂箱;S5、钢拱箱吊装;通过吊车将钢拱箱上的十字连接件与支架上的砂箱进行装配;S6、钢拱箱微调;使用拉固找平工装和千斤顶在平面方向进行微调,再通过斜面找平机构在垂直方向进行微调。
- 配合权利要求1所述的一种大型异形钢构件空中快速交汇对接施工方法使用的拉固找平工装,其特征在于:包括一号调节扣、二号调节扣、一号连接块、二号连接块和调节螺栓,一号调节扣和二号调节扣结构相同均呈U型结构,一号调节扣的两端之间设有一号连接块,一号连接块通过转轴连接至一号调节扣,实现一号连接块相对一号调节扣的转动;二号调节扣的两端之间设有二号连接块,二号连接块通过转轴连接至二号调节扣,实现二号连接块相对二号调节扣的转动;调节螺栓两端均设有螺纹,一号连接块和二号连接块均设有螺孔,进而实现调节螺栓的两端分别与一号连接块和二号连接块得螺纹连接,调节螺栓中部设有调节插孔。
- 根据权利要求2所述的拉固找平工装,其特征在于:调节螺栓两端的螺纹为反螺纹,转动调节螺栓实现一号调节扣和二号调节扣之间的收紧。
- 配合权利要求1所述的一种大型异形钢构件空中快速交汇对接施工方法使用的斜面找平机构,其特征在于:包括十字连接件和砂箱,砂箱固定安装至支架的顶部,砂箱一侧设有出砂口,出砂口设有活塞,十字连接件套接至沙箱内,砂箱内设有细砂,通过打开活塞放出细砂,调节细砂在砂箱内的砂位,进而调节十字连接件的高低。
- 根据权利要求4所述的斜面找平机构,其特征在于:十字连接件包括十字板和顶托,十字板底部固定安装至顶托的顶部,其中十字板为俯视呈十字型,十字板的顶部与钢拱箱的斜面相契合,通过焊接固定安装至钢拱箱,顶托套接至砂箱内,实现钢拱箱和斜面找平机构之间的配合。
- 根据权利要求1所述的一种大型异形钢构件空中快速交汇对接施工方法,其特征在于:S2中桥面安装的支架与钢拱箱的安装位置相对应;支架安装完毕后,标记出支架的中轴线。
- 根据权利要求1所述的一种大型异形钢构件空中快速交汇对接施工方法,其特征在于:S3中根据 钢拱箱的中轴线在钢拱箱底部安装十字连接件,十字连接件至少为两个。
- 根据权利要求7所述的一种大型异形钢构件空中快速交汇对接施工方法,其特征在于:S4中根据支架的中轴线在支架顶部安装至少两个砂箱,砂箱与十字连接件一一对应。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210674291.7A CN114875805B (zh) | 2022-06-15 | 2022-06-15 | 一种大型异形钢构件空中快速交汇对接施工方法 |
CN202210674291.7 | 2022-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023240766A1 true WO2023240766A1 (zh) | 2023-12-21 |
Family
ID=82682274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/110204 WO2023240766A1 (zh) | 2022-06-15 | 2022-08-04 | 一种大型异形钢构件空中快速交汇对接施工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114875805B (zh) |
WO (1) | WO2023240766A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206319256U (zh) * | 2016-12-14 | 2017-07-11 | 中国水利水电第十四工程局有限公司 | 一种贝雷梁支架支承卸落砂箱 |
CN206828965U (zh) * | 2017-03-27 | 2018-01-02 | 中铁二院工程集团有限责任公司 | 拱桥水平转体施工用双悬臂合拢口临时调节锁定构造 |
CN110747747A (zh) * | 2019-10-29 | 2020-02-04 | 中铁大桥局第七工程有限公司 | 基于钢拱支架的钢拱节段安装调整装置、支架系统及方法 |
WO2021254528A1 (zh) * | 2020-07-14 | 2021-12-23 | 中铁上海工程局集团有限公司 | 一种钢轨道梁安装胎具 |
CN114250689A (zh) * | 2021-12-21 | 2022-03-29 | 中交三公局第三工程有限公司 | 钢拱桥倾斜式钢箱叠拱拱肋施工工法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101525865B (zh) * | 2008-12-30 | 2011-03-16 | 中铁二局股份有限公司 | 外倾式钢箱拱肋节段姿态调整方法 |
CN104652281B (zh) * | 2014-12-29 | 2016-06-15 | 中铁二局工程有限公司 | 一种外倾式钢箱拱安装方法 |
CN111636306B (zh) * | 2020-06-03 | 2022-06-03 | 中铁上海工程局集团有限公司 | 一种大跨度钢箱拱肋分段拼装整体提升施工方法 |
JP3232365U (ja) * | 2021-03-29 | 2021-06-10 | 中鉄建大橋工程局集団南方工程有限公司 | 枢接バックルタワーの綴合臨時施錠・垂直度微調整設備 |
CN113914189A (zh) * | 2021-04-16 | 2022-01-11 | 重庆祝桥建筑工程有限公司 | 可调节万能型钢拱架 |
-
2022
- 2022-06-15 CN CN202210674291.7A patent/CN114875805B/zh active Active
- 2022-08-04 WO PCT/CN2022/110204 patent/WO2023240766A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206319256U (zh) * | 2016-12-14 | 2017-07-11 | 中国水利水电第十四工程局有限公司 | 一种贝雷梁支架支承卸落砂箱 |
CN206828965U (zh) * | 2017-03-27 | 2018-01-02 | 中铁二院工程集团有限责任公司 | 拱桥水平转体施工用双悬臂合拢口临时调节锁定构造 |
CN110747747A (zh) * | 2019-10-29 | 2020-02-04 | 中铁大桥局第七工程有限公司 | 基于钢拱支架的钢拱节段安装调整装置、支架系统及方法 |
WO2021254528A1 (zh) * | 2020-07-14 | 2021-12-23 | 中铁上海工程局集团有限公司 | 一种钢轨道梁安装胎具 |
CN114250689A (zh) * | 2021-12-21 | 2022-03-29 | 中交三公局第三工程有限公司 | 钢拱桥倾斜式钢箱叠拱拱肋施工工法 |
Also Published As
Publication number | Publication date |
---|---|
CN114875805A (zh) | 2022-08-09 |
CN114875805B (zh) | 2024-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101537564B (zh) | 特大型吊车梁h型钢组对方法 | |
CN101804501B (zh) | 汽化冷却烟道地面组对焊接整体安装施工工艺 | |
CN201746778U (zh) | 用于外倾式钢管拱桥拱肋架设的安装调节装置 | |
CN103410322A (zh) | 大跨度平行桁架钢连廊施工方法 | |
CN108775081A (zh) | 一种液压顶升倒装结构及其使用方法 | |
CN115075398A (zh) | 一种y型钢柱安装的倒序承插式施工方法 | |
CN113320659B (zh) | 一种船舶双角度舵桨法兰与筒体的组装方法 | |
CN111910923A (zh) | 一种整体吊升式吊装平台 | |
CN116100182A (zh) | 一种c型船用lng储罐止移块的装焊方法 | |
WO2023240766A1 (zh) | 一种大型异形钢构件空中快速交汇对接施工方法 | |
CN116005557B (zh) | 大跨度飞燕式提篮钢箱拱桥空间异型拱肋结构的安装方法 | |
CN110549109B (zh) | 一种艉轴架定位装置及定位方法 | |
CN108678395A (zh) | 吊装式建筑支撑装置的固定装置 | |
CN116005555A (zh) | 大吨位曲面钢箱梁斜交制作及其安装施工工艺 | |
CN212053903U (zh) | 一种大型场馆钢结构支撑卸载装置 | |
CN210147354U (zh) | 用于斗式提升机筒体的组焊工装 | |
CN108678396A (zh) | 吊装式建筑支撑装置的基座结构 | |
CN114439242A (zh) | 装配式悬挑复杂构件优化及吊装加固施工工法 | |
CN208685808U (zh) | 一种液压顶升倒装结构 | |
CN108705250B (zh) | 一种多功能端墙组焊工装及焊接工艺 | |
CN113106867A (zh) | 一种拱节段空中姿态精确调整对位连接施工方法 | |
CN111085848B (zh) | 一种h型钢梁安装对接组合工具及对接安装方法 | |
CN219261795U (zh) | 一种装配式雨棚垂轨梁的微调工装 | |
CN217106227U (zh) | 一种杯口承插式钢架柱调平结构 | |
CN115627806B (zh) | 一种桩腿加长工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22946439 Country of ref document: EP Kind code of ref document: A1 |