WO2023240604A1 - 安全调控机构、方法、电池系统和用电装置 - Google Patents

安全调控机构、方法、电池系统和用电装置 Download PDF

Info

Publication number
WO2023240604A1
WO2023240604A1 PCT/CN2022/099488 CN2022099488W WO2023240604A1 WO 2023240604 A1 WO2023240604 A1 WO 2023240604A1 CN 2022099488 W CN2022099488 W CN 2022099488W WO 2023240604 A1 WO2023240604 A1 WO 2023240604A1
Authority
WO
WIPO (PCT)
Prior art keywords
safety
battery
battery cell
voltage difference
component
Prior art date
Application number
PCT/CN2022/099488
Other languages
English (en)
French (fr)
Inventor
陈小波
蒲玉杰
李耀
柯剑煌
杨飘飘
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/099488 priority Critical patent/WO2023240604A1/zh
Priority to CN202280070172.9A priority patent/CN118104098A/zh
Priority to CA3238320A priority patent/CA3238320A1/en
Priority to KR1020247013257A priority patent/KR20240070606A/ko
Publication of WO2023240604A1 publication Critical patent/WO2023240604A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a safety control mechanism, method, battery system and electrical device.
  • This application provides a safety control mechanism, method, battery system and electrical device, which can improve the safety performance of the battery.
  • a safety regulation mechanism for safety regulation of the battery.
  • the safety regulation mechanism includes: a voltage generation module and a safety component; the voltage generation module is used to establish a voltage difference between the safety component and the battery. When the battery occurs Under abnormal circumstances, the voltage difference allows the safety components to perform safe regulation.
  • the safety regulation mechanism can also include a voltage generation module, which can be used to actively establish a voltage difference between the safety component and the battery.
  • the actively established voltage difference can be based on actual needs. Generate, and enable the safety components to perform safety control on the battery in a timely manner to eliminate or prevent potential safety hazards in the battery, thereby performing timely and effective safety control on the battery to improve the safety performance of the battery.
  • the safety component contains a safety substance; the voltage difference enables the safety component to perform safety regulation, including: the voltage difference is used to form an arc between the safety component and the battery to breakdown the safety component, causing the safety component to release the safety substances for safety regulation.
  • a safety substance is contained in the safety component.
  • the voltage difference actively established by the voltage generation module between the safety component and the battery can actively form an arc between the safety component and the battery. .
  • the safety component can be broken down more effectively and quickly, thereby releasing the safety material contained in the safety component to regulate the safety of the battery and further improve the safety performance of the battery.
  • the battery includes a first battery cell; when an abnormality occurs in the battery, the voltage difference enables the safety component to perform safety regulation, including: when an abnormality occurs in the first battery cell, the voltage difference causes the Security components perform security control.
  • the voltage generation module can establish a voltage difference between the battery and the safety component.
  • the voltage difference can enable the safety component to safely regulate the battery.
  • This technical solution can safely regulate the battery in response to the abnormality of the first battery cell in the battery, thereby ensuring the safety performance of the battery in a more reliable and targeted manner.
  • establishing a voltage difference between the safety component and the battery includes: establishing a voltage difference between the safety component and the first battery cell; the voltage difference is used to form an arc between the safety component and the battery to Breaking down the safety component, causing the safety component to release safety substances for safety regulation, includes: the voltage difference is used to form an arc between the safety component and the first battery cell to break down the safety component, causing the safety component to release safety substances to target the third battery cell.
  • the space where one battery cell is located and/or the space near the first battery cell is safely regulated.
  • the arc actively formed by the voltage generating module between the first battery cell and the safety component can cause the safety material in the safety component to affect the space where the first battery cell is located and/or the first battery cell.
  • the space near the body plays a precise and reliable regulatory role, preventing the heat generated by the first battery cell in abnormal conditions from spreading to other parts of the battery, effectively ensuring the safety performance of the battery.
  • the voltage difference is used to form an arc between the safety member and the first battery cell to breakdown the safety member and the casing of the first battery cell, so that the safety member releases the safety substance to the first battery.
  • the internal space of the monomer is safely regulated.
  • the arc formed between the safety member and the first battery cell can not only break down and destroy the container wall of the safety member, but also can break down and destroy the casing of the first battery cell.
  • the arc destroys the shell of the first battery cell, which facilitates the safety material released from the safety component to accurately and accurately detect the inside of the first battery cell. Effective cooling prevents the heat generated by the first battery cell from spreading to other battery cells in abnormal conditions, further improving the safety performance of the battery.
  • the voltage difference is related to at least one of the following parameters: a wall thickness of the safety member, a distance between the safety member and the first battery cell, and a correspondence between the safety member and the first battery cell. area.
  • the relevant parameters of the safety component, the first battery cell and the environment in which they are located can be comprehensively considered to obtain a more appropriate voltage difference, thereby producing a more stable and controllable arc.
  • the voltage difference and the wall thickness of the safety component satisfy the following relationship: 1 ⁇ U/T ⁇ 5000, where U is the voltage difference in V, and T is the wall thickness of the safety component in mm. ; and/or, the voltage difference and the distance between the safety component and the first battery cell satisfy the following relationship: U/d ⁇ 2, where U is the voltage difference in V, d is the safety component and the first battery cell The distance between them, in mm; and/or, the voltage difference and the corresponding area between the safety component and the first battery cell satisfy the following relationship: U/S ⁇ 0.00008, where U is the voltage difference, in V , S is the corresponding area between the safety component and the first battery cell, in mm 2 .
  • the voltage difference required to generate an arc can be obtained more conveniently and accurately by utilizing the correlation between the voltage difference and at least one parameter, thereby ensuring the safety performance of the battery.
  • the voltage difference ranges from 4V to 1000V.
  • the voltage difference is controlled within a range of 4V to 1000V or a more precise voltage difference.
  • This voltage difference can form an arc between the safety component and the first battery cell, and the arc can breakdown the safety component.
  • the container wall of the component is used to release safe substances and comprehensively ensure the safety performance of the battery.
  • the first battery cell and the safety member are insulated from each other; when an abnormality occurs in the first battery cell, the insulation between the first battery cell and the safety member fails, and the first battery cell and the safety member The voltage difference between the safety components allows the safety components to perform safe regulation.
  • the mutual insulation between the first battery cell and the safety member can ensure that the safety member has less impact on the first battery cell and ensure that the first battery cell is in a normal operating state. lower safety performance.
  • an abnormality in the first battery cell can cause insulation failure between it and the safety component, thereby allowing the safety component to safely regulate the battery where the first battery cell is located.
  • the overall implementation method is highly targeted. and reliability.
  • the state of the insulation layer between the first battery cell and the safety member changes, so that the insulation between the first battery cell and the safety member fails.
  • the insulation design of the insulation layer between the first battery cell and the safety member is easy to implement in the battery and can ensure insulation performance. Further, the insulating layer can respond to abnormal conditions such as thermal runaway of the first battery cell, causing an effective insulation failure to be formed between the first battery cell and the safety component, so that the safety component can protect the battery where the first battery cell is located. Carry out safety control to prevent or eliminate the safety impact of the heat generated by the first battery cell on the battery.
  • the safety component is provided corresponding to the first battery cell.
  • the safety component is provided corresponding to the first battery cell among at least one battery cell, but not to other battery cells. This can prevent the safety component from affecting other battery cells, thereby ensuring The operating performance of other normal cells in the battery.
  • the voltage generation module is used to obtain a characteristic signal of the battery, and the characteristic signal of the battery is used to indicate an abnormality in the battery; the voltage generation module is used to establish a voltage between the safety component and the battery based on the characteristic signal of the battery. Difference.
  • the voltage generation module can obtain and establish a voltage difference between the safety component and the battery based on the characteristic signal used to indicate battery abnormality, thereby enabling the voltage generation module to timely detect the battery in an abnormal state. And more reliable safety control.
  • the voltage generation module includes: a control submodule and a voltage submodule; the control submodule is used to obtain the characteristic signal of the battery, and according to the characteristic signal of the battery, control the voltage submodule between the safety component and the battery. Establish a voltage difference.
  • a control sub-module is provided in the voltage generation module, and the control sub-module can flexibly control the voltage sub-module to establish a voltage difference between the safety component and the battery.
  • this technical solution can reduce the impact of the continuous voltage difference between the safety component and the battery on the safety performance of the battery, and further improve the safety regulation mechanism's effect on the battery. security management performance.
  • the voltage generation module further includes: a monitoring submodule; the monitoring submodule is used to monitor the characteristic signal of the battery and send the characteristic signal of the battery to the control submodule.
  • an independent monitoring sub-module is set up in the safety regulation mechanism, which can be used to actively and real-time monitor the characteristic signals of the battery, thereby enabling the safety regulation mechanism to perform more timely and effective safety management of the battery. To further improve the safety performance of the battery.
  • the voltage submodule includes: a voltage generator and an on-off structure.
  • the voltage generator is connected to the safety component through the on-off structure; the control submodule is used to control the on-off structure to communicate according to the characteristic signal of the battery.
  • the voltage generator is caused to establish a voltage difference between the safety component and the battery.
  • the voltage sub-module includes a voltage generator and an on-off structure.
  • the on-off structure can realize the connection between the safety component and the voltage generator under the control of the control sub-module.
  • the implementation of the overall solution is simple and The reliability is high and does not bring too much additional cost to the safety regulatory agency.
  • the voltage generator includes a second battery cell in the battery.
  • the second battery cell in the multiplexed battery is used as a voltage generator, and there is no need to add an additional voltage generator to the system where the battery is located, thereby saving the time occupied by the safety regulation mechanism in the system where the battery is located. space, which is beneficial to reducing the overall volume of the battery system and the cost of production.
  • the characteristic signal of the battery is used to indicate that the battery is in a thermal runaway state and/or is in a critical state within a preset time period before being in the thermal runaway state.
  • the characteristic signal of the battery can be used to indicate the thermal runaway state and/or the critical state of thermal runaway that is common in the battery and causes great damage to the battery.
  • the characteristic signal of the battery Through the characteristic signal of the battery, the battery can be effectively treated. Control the thermal runaway state and/or critical state to ensure the safety performance of the battery.
  • the characteristic signal of the battery includes at least one of the following signals: electrical parameter, temperature, pressure, characteristic gas or stress.
  • the signals such as electrical parameters, temperature, pressure, characteristic gas or stress are easy to detect and can effectively reflect the operating status of the battery.
  • the battery can be effectively judged to be in an abnormal state, thereby facilitating safety
  • the regulatory mechanism safely regulates batteries in abnormal conditions.
  • the characteristic signal of the battery includes: the characteristic signal of the first battery cell in the battery; the voltage generation module is used to generate a signal between the safety component and the first battery cell according to the characteristic signal of the first battery cell. A voltage difference is established between them.
  • the voltage generation module can relatively accurately and timely form a voltage difference between the safety component and the first battery cell according to the characteristic signal of the first battery cell, so that the safety component can quickly target
  • the first battery cell carries out precise safety control.
  • the characteristic signal of the first battery cell is used to indicate that the first battery cell is in a thermal runaway state and/or is in a critical state within a preset time period before the thermal runaway state
  • the voltage in the safety regulation mechanism is generated.
  • the modules and safety components cooperate with each other to fire the first battery cell in a thermal runaway state and/or critical state in time or even in advance, preventing the internal heat of the first battery cell from spreading in the battery and affecting the performance of other battery cells. , quickly perform safety control on the battery where the first battery cell is located, thereby greatly improving the safety performance of the battery.
  • a safety control method for safety control of the battery.
  • the safety control method includes: establishing a voltage difference between the safety component and the battery. When the battery is abnormal, the voltage difference causes the safety component to perform Security control.
  • the safety component contains a safety substance; the voltage difference enables the safety component to perform safety regulation, including: the voltage difference is used to form an arc between the safety component and the battery to breakdown the safety component, causing the safety component to release Safety substances for safety regulation.
  • the battery includes a first battery cell; in the case of an abnormality in the battery, the voltage difference enables the safety component to perform safety regulation, including: in the case of an abnormality in the first battery cell, the voltage difference Enable security components to perform security control.
  • establishing a voltage difference between the safety component and the battery includes: establishing a voltage difference between the safety component and the first battery cell; the voltage difference is used to form a voltage difference between the safety component and the battery.
  • the arc is used to breakdown the safety component, causing the safety component to release safety substances for safety regulation, including: the voltage difference is used to form an arc between the safety component and the first battery cell to breakdown the safety component, causing the safety component to release safety substances to perform safety regulation. Safely regulate the space where the first battery cell is located and/or the space near the first battery cell.
  • the voltage difference is used to form an arc between the safety component and the first battery cell to breakdown the safety component, causing the safety component to release the safety substance to secure the space where the first battery cell is located.
  • Regulation including: the voltage difference is used to form an arc between the safety member and the first battery cell to breakdown the safety member and the casing of the first battery cell, so that the safety member releases safety substances to the interior of the first battery cell Space is safely controlled.
  • the voltage difference is related to at least one of the following parameters: a wall thickness of the safety member, a distance between the safety member and the first battery cell, and a correspondence between the safety member and the first battery cell. area.
  • the voltage difference and the wall thickness of the safety component satisfy the following relationship: 1 ⁇ U/T ⁇ 5000, where U is the voltage difference in V, and T is the wall thickness of the safety component in mm. ; and/or, the voltage difference and the distance between the safety component and the first battery cell satisfy the following relationship: U/d ⁇ 2, where U is the voltage difference in V, d is the safety component and the first battery cell The distance between them, in mm; and/or, the voltage difference and the corresponding area between the safety component and the first battery cell satisfy the following relationship: U/S ⁇ 0.00008, where U is the voltage difference, in V , S is the corresponding area between the safety component and the first battery cell, in mm 2 .
  • the voltage difference ranges from 4V to 1000V.
  • the first battery cell and the safety member are insulated from each other; when an abnormality occurs in the first battery cell, the insulation between the first battery cell and the safety member fails, and the first battery cell and the safety member The voltage difference between the safety components enables safe regulation of the safety components.
  • the state of the insulation layer between the first battery cell and the safety member changes, so that the insulation between the first battery cell and the safety member fails.
  • the safety member is provided corresponding to a first battery cell in at least one battery cell.
  • establishing a voltage difference between the safety component and the battery includes: obtaining a characteristic signal of the battery, which is used to indicate an abnormality in the battery; A voltage difference is established between them.
  • the safety regulation method is applied to the voltage generation module.
  • the voltage generation module includes: a control sub-module and a voltage sub-module; wherein, the above-mentioned obtaining the characteristic signal of the battery includes: the control sub-module obtains the characteristic signal of the battery; the above-mentioned Establishing a voltage difference between the safety component and the battery according to the characteristic signal of the battery includes: the control submodule controls the voltage submodule to establish a voltage difference between the safety component and the battery according to the characteristic signal of the battery.
  • the voltage generation module further includes: a monitoring sub-module; the safety control method further includes: the monitoring sub-module monitors the characteristic signal of the battery and sends the characteristic signal of the battery to the control sub-module.
  • the voltage sub-module includes: a voltage generator and an on-off structure.
  • the voltage generator is connected to the safety component through the on-off structure; wherein, the above-mentioned control sub-module controls the voltage sub-module according to the characteristic signal of the battery.
  • Establishing a voltage difference between the safety component and the battery includes: the control submodule controls the connection of the on-off structure according to the characteristic signal of the battery, so that the voltage generator establishes a voltage difference between the safety component and the battery.
  • the voltage generator includes a second battery cell in the battery.
  • the characteristic signal of the battery is used to indicate that the battery is in a thermal runaway state and/or is in a critical state within a preset time period before being in the thermal runaway state.
  • the characteristic signal of the battery includes at least one of the following signals: electrical parameter, temperature, pressure, characteristic gas or stress.
  • the characteristic signal of the battery includes: the characteristic signal of the first battery cell in the battery; wherein, obtaining the characteristic signal of the battery includes: obtaining the characteristic signal of the first battery cell, and the above-mentioned method is based on the characteristic signal of the battery.
  • the characteristic signal to establish a voltage difference between the safety component and the battery includes: establishing a voltage difference between the safety component and the first battery cell according to the characteristic signal of the first battery cell.
  • a battery system including: a battery; and the safety control mechanism in the first aspect or any possible implementation of the first aspect, the safety control mechanism being used to safely control the battery.
  • a fourth aspect provides an electrical device, including: the battery system in the third aspect, the battery system being used to provide electrical energy to the electrical device.
  • the safety regulation mechanism can also include a voltage generation module, which can be used to actively establish a voltage difference between the safety component and the battery.
  • the actively established voltage difference can be based on actual needs. Generate, and enable the safety components to perform safety control on the battery in a timely manner to eliminate or prevent potential safety hazards in the battery, thereby performing timely and effective safety control on the battery to improve the safety performance of the battery.
  • Figure 1 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • Figure 3 is a schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 4 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 5 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 6 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 7 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 8 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 9 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 10 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 11 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 12 is another schematic structural block diagram of a safety control mechanism provided by an embodiment of the present application.
  • Figure 13 is a schematic flow chart of a security control method provided by an embodiment of the present application.
  • Figure 14 is a schematic flow chart of another security control method provided by an embodiment of the present application.
  • Figure 15 is a schematic flow chart of another security control method provided by an embodiment of the present application.
  • Figure 16 is a schematic structural block diagram of a battery system provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • a battery refers to a physical module that includes one or more battery cells to provide electrical energy.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell may be a chemical battery or a physical battery.
  • it may be a lithium ion secondary battery, a lithium ion primary battery, a lithium sulfur battery, a sodium lithium ion battery, a sodium ion battery or a magnesium ion battery, Fuel cells, etc., the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this. Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the separator can be polypropylene (PP) or polyethylene (Polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the battery cells are generally equipped with a pressure relief mechanism.
  • the pressure relief mechanism refers to an element or component that is activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the pressure relief mechanism may use elements or components that are pressure-sensitive or temperature-sensitive. That is, when the battery cell undergoes thermal runaway and its internal pressure or temperature reaches a predetermined threshold, the pressure relief mechanism is activated, thereby forming a supply for the internal pressure or temperature. Temperature relief channel. After the pressure relief mechanism is activated, the high-temperature and high-pressure substances inside the battery cells will be discharged from the pressure relief mechanism as emissions.
  • the emissions inside the battery cells include but are not limited to: electrolyte, dissolved or split positive and negative electrode plates, fragments of the isolation film, high-temperature and high-pressure gas generated by the reaction, flames, etc.
  • a battery cell When a battery cell is short-circuited or overcharged, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released outward through the activation of the pressure relief mechanism to prevent the battery cells from exploding or catching fire, thereby ensuring the safety performance of the battery cells.
  • the box used to accommodate the battery cells can also be equipped with fire-fighting components such as spray pipes.
  • the spray pipes can contain fire-fighting media.
  • the fire-fighting medium can be a fire-fighting liquid, a fire-fighting gas or a fire-fighting solid.
  • the spray pipe may be provided corresponding to the pressure relief mechanism in the battery cell.
  • the spray pipe when thermal runaway has occurred inside the battery cell, the spray pipe can be passively destroyed by the emissions inside the battery cell, and then the battery cell that has experienced thermal runaway can be cooled down. .
  • thermal runaway occurs inside a battery cell, the temperature of the battery cell is relatively high, and the heat generated by it may have been transferred to multiple adjacent battery cells, causing the heat to be transferred to multiple battery cells within the battery. Spread between cells.
  • the spray pipe can cool down the battery cells that have experienced thermal runaway, the cooling effect will be limited, and the safety control performance of the spray pipe for the overall battery is relatively poor.
  • the safety regulation mechanism includes: voltage generation module and safety component.
  • the voltage generation module is used to establish a voltage difference between the safety component and the battery. When an abnormality occurs in the battery, the voltage difference enables the safety component to safely regulate the battery.
  • the safety regulation mechanism in addition to the safety component, can also include a voltage generation module, which can be used to actively establish a voltage difference between the safety component and the battery. The actively established voltage difference can be based on Actual demand is generated, and the safety components are allowed to perform safety control on the battery in a timely manner to eliminate or prevent safety hazards in the battery, thereby performing timely and effective safety control on the battery to improve the safety performance of the battery.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 11 , a controller 12 and a battery 10 may be installed inside the vehicle 1 .
  • the controller 12 is used to control the battery 10 to provide power to the motor 11 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • the battery 10 may also be called a battery pack.
  • multiple battery cells may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form the battery 10 . That is to say, multiple battery cells can directly form the battery 10, or they can first form a battery module, and then the battery module can form the battery 10.
  • FIG. 2 it is a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box 100 (or cover).
  • the inside of the box 100 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 100 .
  • the box body 100 may include two parts, here respectively referred to as a first part 111 and a second part 112.
  • the first part 111 and the second part 112 are buckled together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of the plurality of battery cells 20 , and each of the first part 111 and the second part 112 may have an opening.
  • both the first part 111 and the second part 112 may be hollow rectangular parallelepipeds with only one open surface.
  • the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the second part 112 are interlocked with each other.
  • a plurality of battery cells 20 are connected in parallel or in series or in mixed combination and then placed in the box 100 formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the electrically conductive means can also be part of the busbar.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 forms a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • FIG. 3 shows a schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the safety regulation mechanism 300 is used to perform safety regulation on the battery.
  • the safety regulation mechanism 300 can perform safety regulation on the battery 10 shown in FIG. 1 and FIG. 2 .
  • the safety regulation mechanism 300 includes: a voltage generation module 310 and a safety component 320 .
  • the voltage generation module 310 is used to establish a voltage difference between the safety component 320 and the battery 10 (not shown in FIG. 3 ). When an abnormality occurs in the battery 10 , the voltage difference enables the safety component 320 to safely regulate the battery 10 .
  • the voltage generation module 310 may be a module capable of forming a target voltage.
  • the voltage generation module 310 may include a power supply, a voltage generation circuit, or other modules carrying electrical energy.
  • the voltage generation module 310 can include any battery cell 20 in the battery 10 . That is, in this example, the battery cell 20 in the battery 10 can not only provide electric energy for the electrical device outside the battery 10 , It can also be reused as the voltage generation module 310 in the embodiment of the present application.
  • the voltage generation module 310 may also be an electrical module independent of the battery 10 .
  • the embodiment of the present application does not limit the specific implementation of the voltage generation module 310 .
  • the safety component 320 is a component used to eliminate hidden dangers or prevent disasters. Specifically, the safety component 320 can be used to eliminate or prevent hidden dangers or disasters that may occur in the battery 10 .
  • the safety component 320 includes, but is not limited to, a fire-fighting component used to implement a fire-fighting function.
  • the fire-fighting component contains a fire-fighting medium, and the fire-fighting medium can prevent thermal runaway or thermal runaway in the battery 10 . Fire out runaway battery cells 20 and/or other components.
  • the safety component 320 can also be other forms of components, which are designed to realize the safety control function. The embodiments of this application do not limit its specific implementation.
  • the voltage generation module 310 is used to establish a voltage difference between the safety component 320 and the battery 10 .
  • the voltage difference can drive the safety component 320 or cause the safety component 320 to malfunction. Actuation allows the safety component 320 to safely regulate the battery 10 to eliminate or prevent potential safety hazards in the battery 10 .
  • the voltage generation module 310 can be used to establish a voltage difference between the safety component 320 and any component in the battery 10. In the event that any component in the battery 10 is abnormal, the voltage difference can ensure safety. Component 320 performs safety control on any component of the battery 10 .
  • an abnormality occurs in a battery or component should be based on the conventional understanding of those skilled in the art.
  • the battery or component has abnormality.
  • Abnormality for example, when the parameters of the battery or component do not fall within the normal range and/or do not fall within the preset range, it can be understood that the battery or component is abnormal.
  • the various operating parameters of the battery 10 are within the preset normal parameter range. .
  • At least one operating parameter of the battery 10 When the battery 10 is in an abnormal state, at least one operating parameter of the battery 10 will exceed the preset normal parameter range. Based on the at least one abnormal operating parameter, it can be determined that the battery 10 is abnormal. As an example, when the battery 10 is in a thermal runaway state or is in a temporary state that is about to undergo a thermal runaway state, at least one operating parameter such as temperature, electrical parameters, and stress of the battery 10 will exceed the normal parameter range. At this time, the battery 10 can be It is determined that the battery 10 is in an abnormal state.
  • the voltage generation module 310 establishes a voltage difference between the safety component 320 and the battery 10 without affecting the battery 10. However, when the battery 10 is abnormal, the voltage The generation module 310 will drive the safety component 320 only when a voltage difference is established between the safety component 320 and the battery 10 or the voltage difference causes the safety component 320 to actuate, so that the safety component 320 can safely regulate the battery 10 to eliminate or prevent Safety Hazards in Batteries 10.
  • the safety regulation mechanism can also include a voltage generation module 310, which can be used to actively establish a voltage difference between the safety component 320 and the battery 10.
  • This active establishment The voltage difference can be generated according to actual needs, and allows the safety component 320 to perform safety control on the battery 10 in a timely manner to eliminate or prevent potential safety hazards in the battery 10, thereby performing timely and effective safety control on the battery 10 to improve the safety of the battery 10 performance.
  • FIG. 4 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the safety component 320 contains a safety substance, and the voltage difference established between the safety component 320 and the battery 10 by the voltage generation module 310 is used to generate a voltage between the safety component 320 and the battery 10 .
  • An electric arc is formed to breakdown the safety member 320, causing the safety member 320 to release safety substances for safety regulation.
  • the safety substance contained in the safety component 320 may be a substance used to implement safe regulation of the battery 10 .
  • the safety substance can be a fluid with a certain fluidity, which can transfer and exchange the heat generated in the battery 10 to achieve safe regulation of the battery 10 .
  • the safety substance may be a liquid fluid or a gaseous fluid.
  • the fluid includes but is not limited to water, a mixture of water and ethylene glycol, or air.
  • the safety substance can also achieve safety control of the battery 10 through chemical reactions or other methods, which is not specifically limited in the embodiments of the present application.
  • the safety member 320 containing the safety substance may be a tubular container, a plate container, or any other container of any shape.
  • the safety component 320 may also be called a fire pipe, a cooling plate, or other components used to perform thermal management on at least one battery cell 20 .
  • the safety component 320 may also be a component dedicated to safety regulation of the battery 10.
  • the voltage difference established by the voltage generation module 310 between the safety member 320 and the battery 10 can be used to generate an arc effect between the two to form an arc.
  • the voltage difference can be used to form a certain current between the safety member 320 and the battery 10 , and the current can breakdown the safety member 320
  • Some insulating medium such as air, etc.
  • the arc carries a large energy and can penetrate the container wall of the safety member 320 . After the container wall is penetrated, the safety substance in the container wall is released so that the safety substance can safely regulate the battery 10 .
  • the safety component 320 contains safety substances.
  • the voltage difference actively established by the voltage generation module 310 between the safety component 320 and the battery 10 can actively generate a voltage difference between the safety component 320 and the battery 10 .
  • An arc is formed between 320 and battery 10 .
  • the safety component 320 can be broken down more effectively and quickly, thereby releasing the safety material contained in the safety component 320 to regulate the safety of the battery 10 and further improve the safety performance of the battery 10 .
  • FIG. 5 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the battery 10 includes a first battery cell 210, and the voltage generation module 310 is used to establish a voltage difference U between the safety component 320 and the battery 10; in the first battery cell 210 In the event of an abnormality, the voltage difference U enables the safety component 320 to perform safety regulation.
  • the battery 10 may include at least one battery cell 20 , which is connected in series, parallel or mixed connection through the bus part 201 to output electric energy to the outside.
  • the first battery cell 210 may be any one of the at least one battery cell 20 .
  • the voltage generation module 310 When an abnormality occurs in the first battery cell 210 , for example, when the operating parameters of the first battery cell 210 exceed the preset parameter range, the voltage generation module 310 generates a signal in the battery where the first battery cell 210 is located. Establishing a voltage difference U between 10 and the safety component 320 allows the safety component 320 to safely regulate the battery 10 .
  • the safety regulation mechanism 300 can be disposed inside the box 100 of the battery 10 to safely regulate the internal space in the battery 10 .
  • the safety regulation mechanism 300 can regulate the safety of the battery 10 . At least part of the battery cells 20 and/or the space between the battery cells 20 are safely regulated, thereby ensuring the safety performance of the battery 10 .
  • the voltage generation module 310 can establish a voltage difference between the battery 10 and the safety component 320.
  • the voltage difference U can cause the safety component 320 to protect the battery. 10 Carry out safety control.
  • This technical solution can safely regulate the battery 10 according to the abnormality of the first battery cell 210 in the battery 10, thereby ensuring the safety performance of the battery 10 in a more reliable and targeted manner.
  • FIG. 6 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the voltage generation module 310 is used to establish a voltage difference U between the safety component 320 and the first battery cell 210; the voltage difference U is used to create a voltage difference between the safety component 320 and the first battery cell 210.
  • An arc is formed between 210 to breakdown the safety member 320 , causing the safety member 320 to release the safety substance to safely regulate the space where the first battery cell 210 is located and/or the space near the first battery cell 210 .
  • the above-mentioned safety member 320 can contain a safety substance (such as fluid).
  • a safety substance such as fluid
  • the above-mentioned voltage difference is used to activate the first battery cell 210.
  • An arc is formed between the body 210 and the safety member 320 to breakdown the safety member 320, so that the safety member 320 releases safety substances to safely regulate the battery 10.
  • the safe substance as a fluid as an example to illustrate its safety regulation function.
  • the safety member 320 can achieve a temperature control function for at least one battery cell 20 in the battery 10 through the fluid contained therein.
  • the fluid inside the safety member 320 is a lower-temperature fluid, it can be used to control at least one battery.
  • the cell 20 cools down to prevent the battery cell 20 from being overheated and causing safety hazards; when the fluid inside it is a relatively high-temperature fluid, it can be used to heat up the battery cell 20 to prevent the battery cell 20 from being damaged in a low-temperature environment. Operation affects its electrical performance.
  • the voltage difference U established by the voltage generation module 310 between the safety member 320 and the first battery cell 210 can be used to generate an arc effect between the two to form an arc.
  • the voltage difference U can be used to form a certain voltage between the safety component 320 and the first battery cell 210 .
  • the current can break down certain insulating media (such as air, etc.) between the safety member 320 and the first battery cell 210 to generate instantaneous sparks to form an arc.
  • the arc carries large energy and can penetrate the container wall of the safety component 320. After the container wall is penetrated, the fluid flows out to regulate the temperature and other related conditions of the battery 10.
  • the safety member 320 contains fluid.
  • the safety member 320 itself can control the temperature of at least one battery cell 20 to a certain extent through the fluid. effect.
  • the voltage difference U actively established between the safety component 320 and the first battery cell 210 by the voltage generation module 310 can actively form an arc between the safety component 320 and the first battery cell 210 .
  • the safety member 320 can be broken down more effectively and quickly, so that the fluid contained in the safety member 320 flows out to further regulate at least one battery cell 20 to further improve the battery 10 safety performance.
  • the voltage difference U is used to form an arc between the safety member 320 and the first battery cell 210 to breakdown the safety member 320, so that the fluid in the safety member 320 flows out to the first battery cell 210.
  • the space where a battery cell 210 is located and/or the space near the first battery cell 210 is safely regulated.
  • the arc formed between the safety member 320 and the first battery cell 210 may breakdown and destroy the area of the safety member 320 facing the first battery cell 210. At this time, from the safety member 320 The fluid flowing out of 320 can better regulate the space where the first battery cell 210 is located.
  • the voltage generating module 310 actively forms an arc between the first battery cell 210 and the safety member 320 .
  • the fluid in the safety member 320 can accurately and reliably cool down the first battery cell 210 , preventing the heat generated by the first battery cell 210 from spreading to other battery cells in the battery 10 , effectively ensuring that the battery 10 safety performance.
  • the fluid plays a role in safely regulating the space where the first battery cell 210 is located, the fluid can also flow to the space near the first battery cell 210 to control the space near the first battery cell 210 .
  • the space is safely regulated, where the space near the first battery cell 210 refers to a preset range space centered on the first battery cell 210 .
  • the space near the first battery cell 210 includes the space of the battery cells 20 adjacent to the first battery cell 210 and the space between the adjacent battery cells 20.
  • the space adjacent to the first battery cell 210 is "Adjacent" does not specifically mean directly adjacent to the first battery cell 210 , but may also refer to indirectly adjacent to the first battery cell 210 .
  • the fluid flowing out from the safety member 320 can not only safely regulate the space where the first battery cell 210 is located, but the fluid can also control the battery cells near the first battery cell 210 .
  • the body 20 is safely regulated, and/or the space between the first battery cell 210 and the nearby battery cell 20 is safely regulated.
  • the arc formed between the safety member 320 and the first battery cell 210 may also break down and destroy the battery cells in the safety member 320 that are close to the first battery cell 210 . area of body 20. At this time, the fluid flowing out from the safety member 320 can play a better safety control role for the battery cells 20 adjacent to the first battery cell 210 .
  • the arc formed between the safety member 320 and the first battery cell 210 may simultaneously break down and destroy the area of the safety member 320 facing the first battery cell 210, and A region close to the battery cell 20 adjacent to the first battery cell 210 . At this time, the fluid flowing out from the safety member 320 can play a better safety control role for both the first battery cell 210 and the battery cells adjacent to the first battery cell 210 .
  • the arc actively formed by the voltage generating module 310 between the first battery cell 210 and the safety member 320 can cause the fluid in the safety member 320 to affect the space and/or the space where the first battery cell 210 is located.
  • the space near the first battery cell 210 plays a precise and reliable regulating role, preventing the heat generated by the first battery cell 210 in an abnormal state from spreading to other parts of the battery 10, effectively ensuring the safety performance of the battery 10.
  • the voltage difference U mentioned above is used to form an arc between the safety member 320 and the first battery cell 210 to breakdown the safety member 320 and the casing of the first battery cell 210, so that The fluid outflow in the safety member 320 regulates the interior space of the first battery cell 210 .
  • the arc formed between the safety member 320 and the first battery cell 210 can not only break down and destroy the container wall of the safety member 320, but also can break down and destroy the shell of the first battery cell 210. body.
  • the arc destroys the shell of the first battery cell 210 , which can facilitate the fluid flowing out from the safety member 320 to damage the first battery cell.
  • the interior of the battery cell 210 is cooled accurately and effectively to prevent the heat generated by the first battery cell 210 in an abnormal state from spreading to other battery cells, further improving the safety performance of the battery 10 .
  • the voltage difference U established between the safety component 320 and the first battery cell 210 by the voltage generation module 310 can be adjusted to adjust the voltage difference between the safety component 320 and the first battery cell 210 .
  • the energy of the formed arc causes the arc to penetrate only the container wall of the safety member 320 or simultaneously penetrate the container wall of the safety member 320 and the casing of the first battery cell 210 .
  • the voltage difference U is related to at least one of the following parameters: the wall thickness of the safety member 320, the distance between the safety member 320 and the first battery cell 210, and the distance between the safety member 320 and the first battery cell 210. the corresponding area between them.
  • the voltage difference U used to form the arc may be determined by at least one of the above parameters.
  • the voltage difference U and the wall thickness T of the safety member 320 can satisfy the following relationship: 1 ⁇ U/T ⁇ 5000, where the unit of the voltage difference U is V and the unit of the wall thickness T of the safety member 320 is mm.
  • the above voltage difference U and the distance d between the safety member 320 and the first battery cell 210 satisfy the following relationship: U/d ⁇ 2, where the unit of the voltage difference U is V, and the safety member 320 and The unit of the distance d between the first battery cells 210 is mm.
  • the above voltage difference and the corresponding area between the safety component 320 and the first battery cell 210 satisfy the following relationship: U/S ⁇ 0.00008, where the unit of the voltage difference U is V, and the safety component 320 and the first battery cell 210 The unit of the corresponding area S between one battery cell 210 is mm 2 .
  • the safety component 320 when designing the voltage difference U between the safety component 320 and the first battery cell 210, the safety component 320, the first battery cell 210, and the correlation between the safety component 320 and the first battery cell 210 and the environment in which they are located can be comprehensively considered. parameters to obtain a more appropriate voltage difference, thereby producing a more stable and controllable arc.
  • the voltage difference U may range from 4V to 1000V. Furthermore, the voltage difference U may range from 10V to 500V. Furthermore, the voltage difference U may range from 20V to 200V. Furthermore, the voltage difference U may range from 20V to 100V. Or, further, the voltage difference U may range from 30V to 60V.
  • the voltage difference U is controlled within a range of 4V to 1000V or a more accurate voltage difference.
  • the voltage difference U can form an arc between the safety component 320 and the first battery cell 210.
  • the arc The container wall of the safety component 320 can be penetrated and destroyed to release the safety substance, thereby comprehensively ensuring the safety performance of the battery 10 .
  • the voltage difference U between the safety member 320 and the battery 10 drives the safety member 320 or causes the safety member 320 to actuate when an abnormality occurs in the first battery cell 210 .
  • the voltage difference U can be established before the abnormality occurs in the first battery cell 210 , but has no impact on the first battery cell 210 that does not have abnormality.
  • the voltage difference U can be established before the abnormality occurs in the first battery cell 210 .
  • the time synchronization is established so that the voltage difference U does not affect the first battery cell 210 when it is operating normally, thus ensuring the operating performance of the battery 10 .
  • the safety component 320 may not establish a voltage difference with other battery cells 20 in the battery 10 , or, when other battery cells 20 are operating normally, the voltage difference between the safety component 320 and other battery cells 20 will not. This affects other battery cells 20 to ensure the normal operation of the battery 10 .
  • the first battery cell 210 and the safety member 320 may be insulated from each other.
  • the first battery cell 210 and the safety member 320 may be insulated from each other.
  • the insulation between battery cells 320 fails, and the voltage difference U between the first battery cell 210 and the safety component 320 enables the safety component 320 to perform safety regulation.
  • FIG. 7 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • each of the at least one battery cell 20 is insulated from the safety member 320; when an abnormality occurs in the first battery cell 210 , the insulation between the first battery cell 210 and the safety member 320 fails, and the voltage difference U between the first battery cell 210 and the safety member 320 enables the safety member 320 to safely regulate the battery 10 .
  • an insulation design may be provided between the safety member 320 and at least one battery cell 20 .
  • the insulation design enables an insulation equivalent resistance R 0 to be formed between the safety member 320 and each battery cell 20 .
  • the equivalent resistance R 0 has a large resistance value.
  • the insulation equivalent resistance R 0 can be designed according to relevant standards or actual needs. The embodiment of the present application does not limit the specific resistance value of the insulation equivalent resistance R 0 .
  • the insulation design between the first battery cell 210 and the safety member 320 in at least one battery cell 20 is affected by the first battery cell 210 or other components, the insulation design between the first battery cell 210 and the safety member 320 The insulation equivalent resistance R 0 between the first battery cell 210 and the safety member 320 is greatly reduced. At this time, the insulation performance between the first battery cell 210 and the safety member 320 is reduced, or in other words, insulation is generated between the first battery cell 210 and the safety member 320 Invalid.
  • the equivalent resistance between the first battery cell 210 and the safety member 320 is determined by the insulation equivalent resistance R 0 is reduced to the insulation failure equivalent resistance R 1 .
  • the voltage generation module 310 establishes a voltage difference U between the safety component 320 and the first battery cell 210, when the insulation performance between the first battery cell 210 and the safety component 320 is good, the first battery cell There is a large insulation equivalent resistance R 0 between the first battery cell 210 and the safety member 320 . Therefore, the current between the first battery cell 210 and the safety member 320 is very small or even almost zero.
  • the resistance between the first battery cell 210 and the safety member 320 will be greatly reduced to form an insulation failure equivalent resistance R 1 , so the first A certain current will be formed between a battery cell 210 and the safety component 320 under the action of the voltage difference U, thereby driving the safety component 320 or causing the safety component 320 to be actuated to safely regulate the battery 10 .
  • the mutual insulation between the first battery cell 210 and the safety member 320 can ensure that the safety member 320 has a small impact on the first battery cell 210 and ensure that the first battery cell 210 is The safety performance of the battery cell 210 under normal operating conditions.
  • an abnormality in the first battery cell 210 may cause insulation failure between the first battery cell 210 and the safety component 320, thereby causing the safety component 320 to safely regulate the battery 10 where the first battery cell 210 is located.
  • the overall implementation method is: Higher pertinence and reliability.
  • an insulating layer is provided between the first battery cell 210 and the safety member 320 to achieve mutual insulation between the first battery cell 210 and the safety member 320 .
  • the state of the insulation layer between the first battery cell 210 and the safety member 320 changes, so that the state of the insulation layer between the first battery cell 210 and the safety member 320 changes. insulation failure.
  • the temperature of the first battery cell 210 is relatively high. Affected by the higher temperature, the insulation layer between the first battery cell 210 and the safety member 320 is melted by heat, so that the equivalent insulation resistance R 0 between the first battery cell 210 and the safety member 320 becomes smaller. Cause insulation failure.
  • the melting point of the insulating layer may be lower than 800°C.
  • the insulation layer between the first battery cell 210 and the safety member 320 may be controlled or affected by other factors, causing its state to change.
  • the insulation layer between the first battery cell 210 and the safety member 320 may be subject to external effects, causing damage or other types of physical state changes, causing the first battery cell 210 to be in contact with the safety member 320 .
  • the equivalent insulation resistance R 0 between the components 320 becomes smaller, causing insulation failure.
  • the insulation design of the insulating layer between the first battery cell 210 and the safety member 320 is easy to implement in the battery 10 and can ensure the insulation performance. Further, the insulating layer can respond to an abnormal state such as thermal runaway of the first battery cell 210, causing an effective insulation failure to be formed between the first battery cell 210 and the safety member 320, so that the safety member 320 has a negative impact on the first battery cell.
  • the battery 10 where the body 210 is located is safely regulated to prevent or eliminate the safety impact of the heat generated by the first battery cell 210 on the battery 10 .
  • equivalent resistances of other values may also be formed between the safety member 320 and at least one battery cell 20 .
  • the resistance value of the equivalent resistor may not reach the order of magnitude of the insulation resistance value, and may be another resistor with a larger resistance value.
  • the equivalent resistance between the safety member 320 and at least one battery cell 20 can also be designed to be small or even zero.
  • the voltage generator 3121 can be When an abnormality occurs in the first battery cell 210 , a voltage difference U is established between the first battery cell 210 and the safety component 320 .
  • the safety member 320 is provided corresponding to the first battery cell 210 of at least one battery cell 20 and does not correspond to the other battery cells 20 settings, thereby ensuring the operating performance of other normal battery cells 20 in the battery 10 .
  • the safety member 320 may also correspond to the first battery.
  • the cell 210 is provided and does not correspond to other battery cells 20 .
  • the voltage generation module 310 can be directly connected to the safety component 320 so that a voltage difference is formed between the safety component 320 and the battery 10 .
  • the voltage difference may be established before an abnormality occurs in the battery 10 .
  • the voltage generation module 310 can also be used to obtain the characteristic signal of the battery 10 .
  • the characteristic signal of the battery 10 is used to indicate that the battery 10 is abnormal.
  • the voltage generation module 310 is used to obtain the characteristic signal of the battery 10 according to the characteristic signal of the battery 10 .
  • a voltage difference is established between the safety member 320 and the battery 10 .
  • the voltage difference can be established simultaneously when an abnormality occurs in the battery 10 .
  • the characteristic signal of the battery 10 may include: a status signal reflecting the abnormal status of the battery 10 .
  • the characteristic signal of the battery 10 may include: a characteristic signal of at least one battery cell 20 in the battery 10 , and/or characteristic signals of other components in the battery 10 .
  • the characteristic signal includes but is not limited to electrical parameters (such as current or voltage, etc.), temperature, pressure, characteristic gas or stress, etc.
  • the signal value of the characteristic signal of the battery 10 is different from the signal value of the battery 10 in the normal state. Based on the signal value of the characteristic signal of the battery 10, it can be determined that the battery 10 is in an abnormal state.
  • the characteristic signal of the battery 10 may be used to indicate that the battery 10 is in a thermal runaway state and/or is in a critical state within a preset time period before being in a thermal runaway state. Specifically, when any battery cell 20 in the battery 10 undergoes thermal runaway or is about to undergo thermal runaway, the electrical parameters of the battery 10, the temperature, pressure, characteristic gas inside the battery 10, and the box of the battery 10 The local stress and other characteristic signals may change compared with the normal state.
  • the voltage generation module 310 can obtain the characteristic signal of the battery 10 to determine that the battery cell 20 inside the battery 10 has thermal runaway or is about to undergo thermal runaway, thereby A voltage difference is established between the safety component 320 and the battery 10 , thereby allowing the safety component 320 to safely regulate the battery 10 .
  • the voltage generation module 310 can obtain and establish a voltage difference between the safety component 320 and the battery 10 based on the characteristic signal indicating the abnormality of the battery 10 , thereby enabling the voltage generation module 310 to respond to abnormal conditions.
  • the battery 10 in the state performs timely and relatively reliable safety control.
  • the characteristic signal of the battery 10 may include: a characteristic signal of the first battery cell 210 in the battery 10, and the characteristic signal of the first battery cell 210 is used to indicate that the first battery cell 210 is in an abnormal state.
  • FIG. 8 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the voltage generation module 310 may be connected to at least one battery cell 20 in the battery 10 through the communication component 202, thereby acquiring the signal of the at least one battery cell 20.
  • the communication component 202 includes, but is not limited to, a signal collection wire harness or other communication devices used for signal transmission.
  • the voltage generation module 310 can also be connected to other components in the battery 10 through the communication component 202 to obtain signals from other components.
  • the voltage generation module 310 can be used to obtain the characteristic signal of the first battery cell 210 in the battery 10, and establish a voltage between the safety component 320 and the first battery cell 210 according to the characteristic signal of the first battery cell 210. Voltage difference U.
  • the characteristic signal of the first battery cell 210 is used to indicate that an abnormality occurs in the first battery cell 210 .
  • the characteristic signal of the first battery cell 210 may include at least one of the following parameters of the first battery cell 210: electrical parameter, temperature, pressure, characteristic gas or stress.
  • the first battery cell 210 When an abnormality occurs in the first battery cell 210 , the first battery cell 210 is in an abnormal state.
  • the abnormal state may be another state that is different from the normal operating state.
  • the abnormal state of the first battery cell 210 may be It is a critical state within a preset time period before the thermal runaway state and/or the thermal runaway state.
  • the abnormal state of the first battery cell 210 may also be other monitorable abnormal states.
  • the embodiment of the present application does not specify the type of abnormal state. Specific limitations.
  • the voltage generation module 310 can relatively accurately and timely form a voltage difference between the safety component 320 and the first battery cell 210 according to the characteristic signal of the first battery cell 210, so that The safety component 320 can quickly and accurately perform safety control on the first battery cell 210 .
  • the safety control mechanism 300 when the characteristic signal of the first battery cell 210 is used to indicate that the first battery cell 210 is in a thermal runaway state and/or is in a critical state within a preset time period before the thermal runaway state, the safety control mechanism 300 The voltage generation module 310 and the safety component 320 cooperate with each other to fire the first battery cell 210 in a thermal runaway state and/or critical state in a timely manner or even in advance to prevent the internal heat of the first battery cell 210 from being lost in the battery 10 Diffusion affects the performance of other battery cells, and the safety of the battery 10 where the first battery cell 210 is located can be quickly controlled, thereby greatly improving the safety performance of the battery 10.
  • the voltage generating module 310 can also acquire the characteristic signal of the first battery cell 210 in the battery 10 in other alternative embodiments.
  • the characteristic signal of the adjacent battery cell and based on the characteristic signal of the first battery cell 210 and/or the characteristic signal of the battery cell adjacent to the first battery cell 210, between the safety component 320 and the first battery cell A voltage difference U is established between 210.
  • a voltage difference may also be established between the safety member 320 and an adjacent battery cell (adjacent to the first battery cell 210 ).
  • FIG. 9 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the voltage generation module 310 includes: a control sub-module 311 and a voltage sub-module 312.
  • the control sub-module 311 is used to obtain the characteristic signal of the battery 10 (not shown in Figure 9) , and controls the voltage sub-module 312 to establish a voltage difference between the safety component 320 and the battery 10 according to the characteristic signal of the battery 10 .
  • the control sub-module 311 can send a first control signal to the voltage sub-module 312 according to the characteristic signal of the battery 10, and the voltage sub-module 312 can, under the control of the first control signal, A voltage difference is established between the safety member 320 and the battery 10 .
  • the control sub-module 311 also sends a second control signal to the voltage sub-module 312 according to other signals of the battery 10.
  • the voltage sub-module 312 can also cancel the connection between the safety component 320 and the battery 10 under the control of the second control signal.
  • the voltage difference established between the two components reduces the impact of the safety component 320 on the safety performance of the battery 10 and further improves the safety control performance of the safety regulation mechanism 300 on the battery 10 .
  • the control submodule 311 can be connected to at least one battery cell 20 in the battery 10 through the communication component 202 to obtain the signal of the at least one battery cell 20 .
  • the control sub-module 311 is used to obtain and control the voltage sub-module 312 according to the characteristic signal of the first battery cell 210 between the safety component 320 and the first battery cell 210 .
  • a voltage difference U is established between the battery cells 210 .
  • control sub-module 311 may be a battery management system (Battery Management System, BMS) used to manage the battery 10, or, in other implementations, the control sub-module 311 may also It is other types of control devices, and the embodiment of this application does not limit the specific implementation of the control sub-module 311.
  • BMS Battery Management System
  • a control sub-module 311 is provided in the voltage generation module 310.
  • the control sub-module 311 can flexibly control the voltage sub-module 312 to establish a voltage difference between the safety component 320 and the battery 10.
  • this technical solution can reduce the impact of the continuous voltage difference between the safety component 320 and the battery 10 on the safety performance of the battery 10 , and further The safety management performance of the battery 10 by the safety control mechanism 300 is improved.
  • FIG. 10 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the voltage generation module 310 also includes: a monitoring sub-module 313, used to monitor the characteristic signal of the battery 10 and send the characteristic signal of the battery 10 (not shown in Figure 10) to Control sub-module 311.
  • the control sub-module 311 is used to receive the characteristic signal of the battery 10 sent by the monitoring sub-module 313, and control the voltage sub-module 312 to establish a voltage difference between the safety component 320 and the battery 10 according to the characteristic signal.
  • the embodiment of the present application provides an independent monitoring sub-module 313 for real-time monitoring of the operating status of the battery 10.
  • the monitoring sub-module 313 is used for real-time monitoring of the signal and/or signal of each battery cell 20 in the battery 10. Signals from other components in battery 10 are monitored.
  • the monitoring sub-module 313 includes but is not limited to a battery monitoring circuit (Cell Supervision Circuit, CSC) or other modules for monitoring the operating status of the battery 10 .
  • CSC Battery Supervision Circuit
  • the monitoring sub-module 313 can be used to monitor at least one battery cell 20 in the battery 10 in real time.
  • the monitoring sub-module 313 sends the characteristic signal of the first battery cell 210 to the control sub-module 311.
  • the control sub-module 311 is used to control the voltage sub-module 312 on the safety component 320 according to the characteristic signal of the first battery cell 210.
  • a voltage difference U is established between the battery cell 210 and the first battery cell 210 .
  • the number of the monitoring sub-modules 313 may be one or more. In the case where the number of the monitoring sub-modules 313 is multiple, they may be distributed in the box of the battery 10 to facilitate monitoring through the multiple monitoring sub-modules 313 .
  • the sub-module 313 comprehensively monitors the characteristic signals of at least one battery cell 20 and other components inside the battery 10 .
  • an independent monitoring sub-module 313 is set up in the safety regulation mechanism 300, which can be used to actively and real-time monitor the characteristic signals of the battery 10, so that the safety regulation mechanism 300 can play a more timely role in the battery 10. and effective safety management to further improve the safety performance of the battery 10.
  • FIG 11 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the voltage sub-module 312 (not shown in the figure) includes: a voltage generator 3121 and an on-off structure 3122.
  • the voltage generator 3121 is connected to the safety component through the on-off structure 3122.
  • the control sub-module 311 is used to control the connection of the on-off structure 3122 according to the characteristic signal of the battery 10 (not shown in the figure), so that the voltage generator 3121 establishes a voltage difference between the safety component 320 and the battery 10 .
  • the voltage generator 3121 can be a power supply, a voltage generating circuit or other module carrying electrical energy, which can charge the safety component 320 to establish a voltage between the safety component 320 and the battery 10 Difference.
  • the voltage generator 3121 can be a power supply device inside the battery 10, such as the battery cell 20 inside the battery 10, or the voltage generator 3121 can also be a power supply device outside the battery 10.
  • the embodiment of the present application is suitable for The specific location of the voltage generator 3121 is not limited.
  • the on-off structure 3122 includes but is not limited to an electrical switch.
  • the voltage generator 3121 can be connected to the safety component 320 through the electrical switch, and the electrical switch can be closed or opened under the control of the control sub-module 311 .
  • the on-off structure 3122 can also be other types of electrical devices or mechanical structures.
  • the on-off structure 3122 is designed to realize the connection between the safety component 320 and the voltage generator 3121 under the control of the control sub-module 311. It suffices to connect and disconnect between them, and the embodiment of the present application does not limit the specific implementation method of the on-off structure 3122.
  • control sub-module 311 in addition to being connected to at least one battery cell 20 through the communication component 202, can also establish a connection with the on-off structure 3122 through the communication component 202.
  • the on-off structure 3122 can The control signal of the control sub-module 311 is received to realize the connection and disconnection between the safety component 320 and the voltage generator 3121.
  • control sub-module 311 can obtain the characteristic signal of at least one battery cell 20 and/or other components in the battery 10, and the control sub-module 311 can determine based on the characteristic signal that the battery 10 is in an abnormal state that is different from the normal state.
  • the control sub-module 311 controls the on-off structure 3122 to connect, thereby connecting the safety component 320 and the voltage generator 3121, so that the voltage generator 3121 establishes a voltage difference between the safety component 320 and the battery 10.
  • the control submodule 311 when an abnormality occurs in the first battery cell 210 of at least one battery cell 20 , the control submodule 311 is configured to obtain and use the characteristics of the first battery cell 210 according to the characteristics of the first battery cell 210 .
  • the signal controls the on-off structure 3122 to be connected, so that the voltage generator 3121 establishes a voltage difference U between the safety component 320 and the first battery cell 210 .
  • control sub-module 311 can also be connected to at least one battery cell 20 through the monitoring sub-module 313.
  • the control sub-module 311 is configured to receive the characteristic signal of at least one battery cell 20 sent by the monitoring sub-module 313 .
  • the voltage sub-module 312 includes a voltage generator 3121 and an on-off structure 3122.
  • the on-off structure 3122 can realize the connection between the safety component 320 and the voltage generator 3121 under the control of the control sub-module 311. Connected, the overall solution is simple to implement and highly reliable, and does not bring too much additional cost to the safety control mechanism 300 .
  • Figure 12 shows another schematic structural block diagram of the safety control mechanism 300 provided by an embodiment of the present application.
  • the voltage generator 3121 includes: the second battery cell 220 in the battery 10 .
  • the second battery cell 220 in the battery 10 can be reused as the voltage generator 3121.
  • the second battery cell 220 can be any other battery cell in the battery 10 except the first battery cell 210.
  • the second battery cell 220 can provide electric energy to the outside.
  • an on-off structure 3122 is connected between the second battery cell 220 and the safety member 320 , so that the second battery cell 220 can be connected through the on-off structure 3122 .
  • a voltage difference U is established between the safety member 320 and the first battery cell 210 .
  • the second battery cell 220 in the reuse battery 10 is used as the voltage generator 3121, so there is no need to add an additional voltage generator to the system where the battery 10 is located, thereby saving the time of the safety control mechanism 300.
  • the space occupied by the battery 10 in the system is conducive to reducing the overall volume of the system where the battery 10 is located and the cost required for production.
  • FIG 13 shows a schematic flow chart of a security control method 400 provided by an embodiment of the present application.
  • the safety control method 400 can be used to safely control a battery, such as the above-mentioned battery 10 .
  • the security control method 400 may include the following steps.
  • S410 A voltage difference is established between the safety component and the battery. When an abnormality occurs in the battery, the voltage difference enables the safety component to perform safety regulation.
  • the execution subject of step S410 may be the voltage generation module 310 in the above device embodiment
  • the safety component in step S410 may be the safety component 320 in the above device embodiment. That is, in the embodiment of the present application, the voltage generation module 310 establishes a voltage difference between the safety component 320 and the battery 10 .
  • the voltage generation module 310 establishes a voltage difference between the safety component 320 and the battery 10 .
  • the safety component contains a safety substance; the above-mentioned voltage difference enables the safety component to perform safety regulation, including: the voltage difference is used to form an arc between the safety component and the battery to breakdown the safety component, making it safe The component releases safety substances for safety regulation.
  • the battery includes a first battery cell, and in the event of an abnormality in the battery, the voltage difference enables the safety component to perform safety regulation, including: in the event of an abnormality in the first battery cell, The voltage difference enables safe regulation of the safety components.
  • Figure 14 shows a schematic flow chart of another security control method 500 provided by an embodiment of the present application.
  • the security control method 500 may include the following steps.
  • S510 Establish a voltage difference between the safety component and the first battery cell among the at least one battery cell.
  • the voltage difference is used to establish a voltage difference between the safety component and the first battery cell.
  • An arc is formed to break down the safety component, so that the safety component releases the safety substance to safely regulate the space where the first battery cell is located and/or the space near the first battery cell.
  • the voltage difference is used to form an arc between the safety member and the first battery cell to breakdown the safety member and the casing of the first battery cell, so that the safety member releases the safety substance to the first battery.
  • the internal space of the monomer is safely regulated.
  • the voltage difference is related to at least one of the following parameters: the wall thickness of the safety member, the distance between the safety member and the first battery cell, and the distance between the safety member and the first battery cell. corresponding area.
  • the above-mentioned voltage difference and the wall thickness of the safety component satisfy the following relationship: 1 ⁇ U/T ⁇ 5000, where U is the voltage difference, in V, and T is the wall thickness of the safety component, in unit mm; and/or, the voltage difference and the distance between the safety component and the first battery cell satisfy the following relationship: U/d ⁇ 2, where U is the voltage difference in V, d is the safety component and the first battery The distance between cells, in mm; and/or, the voltage difference and the corresponding area between the safety component and the first battery cell satisfy the following relationship: U/S ⁇ 0.00008, where U is the voltage difference, in unit V, S is the corresponding area between the safety component and the first battery cell, in mm 2 .
  • the voltage difference ranges from 4V to 1000V.
  • the first battery cell and the safety member are insulated from each other; when an abnormality occurs in the first battery cell, the insulation between the first battery cell and the safety member fails, and the first battery cell and the safety member The voltage difference between the safety components allows the safety components to perform safe regulation.
  • the insulation layer between the first battery cell and the safety component is melted by heat, so that the insulation between the first battery cell and the safety component fails.
  • the safety member is provided corresponding to a first battery cell in at least one battery cell.
  • FIG. 15 shows a schematic flow diagram of another security control method 600 provided by an embodiment of the present application.
  • the safety control method 600 can be used to safely control the battery 10 including at least one battery cell 20 .
  • the security control method 600 may include the following steps.
  • S610 Obtain the characteristic signal of the battery.
  • the characteristic signal of the battery is used to indicate abnormality of the battery.
  • S620 According to the characteristic signal of the battery, a voltage difference is established between the safety component and the battery. When an abnormality occurs in the battery, the voltage difference enables the safety component to perform safety regulation.
  • the above-mentioned safety control method 600 is applied to the voltage generation module 310 in the above device embodiment.
  • the voltage generation module 310 includes: a control sub-module 311 and a voltage sub-module 312.
  • the above-mentioned step S610 may include: controlling the sub-module 311 to obtain the characteristic signal of the battery.
  • the above step S620 may include: the control sub-module 311 controls the voltage sub-module 312 to establish a voltage difference between the safety component and the battery according to the characteristic signal of the battery.
  • the voltage generation module 310 also includes: a monitoring sub-module 313; in this case, the above-mentioned safety control method 600 may also include: the monitoring sub-module 313 monitors the characteristic signal of the battery, and converts the characteristic signal of the battery Sent to control sub-module 311.
  • the voltage sub-module 312 includes: a voltage generator 3121 and an on-off structure 3122.
  • the voltage generator 3121 is connected to the safety component through the on-off structure 3122.
  • the above-mentioned step S620 may include: the control sub-module 311 controls the connection of the on-off structure 3122 according to the characteristic signal of the battery, so that the voltage generator 3121 establishes a voltage difference between the safety component and the battery.
  • the voltage generator 3121 includes: a second battery cell in at least one battery cell.
  • the characteristic signal of the battery is used to indicate that the battery is in a thermal runaway state and/or is in a critical state within a preset time period before it is in a thermal runaway state.
  • the characteristic signal of the battery includes at least one of the following signals: electrical parameters, temperature, pressure, characteristic gas or stress.
  • the characteristic signal of the battery includes: the characteristic signal of the first battery cell in the battery.
  • the above step S610 may include: obtaining the characteristic signal of the first battery cell.
  • the above step S620 may include: establishing a voltage difference between the safety component and the first battery cell according to the characteristic signal of the first battery cell.
  • Figure 16 shows a schematic structural block diagram of a battery system 101 provided by an embodiment of the present application.
  • the battery system 101 may include the battery 10 in the aforementioned application embodiment and the safety control mechanism 300 .
  • the safety control mechanism 300 is used to perform safety control on the battery 10 .
  • An embodiment of the present application also provides an electric device.
  • the electric device may include the battery system 101 in the previous embodiment.
  • the battery system 101 is used to provide electric energy to the electric device.
  • the electrical device may be a vehicle 1, a ship or a spacecraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种安全调控机构、方法、电池系统和用电装置,能够提升电池的安全性能。该安全调控机构用于对电池进行安全调控,该安全调控机构包括:电压产生模块和安全构件;电压产生模块用于在安全构件与电池之间建立电压差,在电池发生异常的情况下,电压差使得安全构件进行安全调控。通过该技术方案,安全调控机构除了包括安全构件以外,还可包括电压产生模块,其可用于在安全构件与电池之间主动建立电压差,该主动建立的电压差能够根据实际需求生成,并使得安全构件及时对电池进行安全调控,以消除或预防电池中的安全隐患,从而对电池进行及时且有效的安全调控以提升电池的安全性能。

Description

安全调控机构、方法、电池系统和用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种安全调控机构、方法、电池系统和用电装置。
背景技术
随着电池技术的不断进步,各种以电池作为储能设备的新能源产业得到了迅速发展。在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何提升电池的安全性能,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供一种安全调控机构、方法、电池系统和用电装置,能够提升电池的安全性能。
第一方面,提供一种安全调控机构,用于对电池进行安全调控,安全调控机构包括:电压产生模块和安全构件;电压产生模块用于在安全构件与电池之间建立电压差,在电池发生异常的情况下,电压差使得安全构件进行安全调控。
通过本申请实施例的技术方案,安全调控机构除了包括安全构件以外,还可包括电压产生模块,其可用于在安全构件与电池之间主动建立电压差,该主动建立的电压差能够根据实际需求生成,并使得安全构件及时对电池进行安全调控,以消除或预防电池中的安全隐患,从而对电池进行及时且有效的安全调控以提升电池的安全性能。
在一些可能的实施方式中,安全构件容纳有安全物质;电压差使得安全构件进行安全调控,包括:电压差用于在安全构件与电池之间形成电弧以击穿安全构件,使得安全构件释放安全物质以进行安全调控。
通过该实施方式的技术方案,安全构件中容纳有安全物质,在电池产生异常的情况下,电压产生模块在安全构件与电池之间主动建立的电压差能够主动在安全构件与电池之间形成电弧。通过该具有较大能量的电弧,可以较为有效且快速的击穿破坏安全构件,从而释放安全构件中容纳的安全物质以对电池起到安全调控作用,以进一步提升电池的安全性能。
在一些可能的实施方式中,电池包括第一电池单体;在电池发生异常的情况下,电压差使得安全构件进行安全调控,包括:在第一电池单体发生异常的情况下,电压差使得安全构件进行安全调控。
通过该实施方式的技术方案,电压产生模块可在电池与安全构件之间建立电压 差,在第一电池单体异常时,通过该电压差,可使得安全构件对电池进行安全调控。该技术方案能够针对电池中第一电池单体的异常,对电池进行安全调控,从而能够较为可靠且有针对性的保障电池的安全性能。
在一些可能的实施方式中,在安全构件与电池之间建立电压差,包括:在安全构件与第一电池单体之间建立电压差;电压差用于在安全构件与电池之间形成电弧以击穿安全构件,使得安全构件释放安全物质以进行安全调控,包括:电压差用于在安全构件与第一电池单体之间形成电弧以击穿安全构件,使得安全构件释放安全物质以对第一电池单体的所在空间和/或第一电池单体的附近空间进行安全调控。
通过该实施方式的技术方案,电压产生模块在第一电池单体与安全构件之间主动形成的电弧可使得安全构件中的安全物质对第一电池单体的所在空间和/或第一电池单体的附近空间起到精准且可靠的调控作用,防止该第一电池单体在异常状态下产生的热量蔓延传递电池中的其它部位,有效保证电池的安全性能。
在一些可能的实施方式中,电压差用于在安全构件与第一电池单体之间形成电弧以击穿安全构件以及第一电池单体的壳体,使得安全构件释放安全物质对第一电池单体的内部空间进行安全调控。
通过该实施方式的技术方案,在安全构件以及第一电池单体之间形成的电弧不仅可以击穿破坏安全构件的容器壁,还可以击穿破坏第一电池单体的壳体。当第一电池单体发生异常,其内部的温度较高时,电弧破坏了第一电池单体的壳体,可以便于从安全构件中释放的安全物质对第一电池单体的内部进行精准且有效的降温,防止该第一电池单体在异常状态下产生的热量蔓延至其它电池单体,进一步提升电池的安全性能。
在一些可能的实施方式中,电压差与如下至少一种参数相关:安全构件的壁厚、安全构件与第一电池单体之间的距离、以及安全构件与第一电池单体之间的对应面积。
通过本申请实施例的技术方案,在设计安全构件和第一电池单体之间的电压差时,可以综合考虑安全构件、第一电池单体以及二者所在环境中的相关参数,得到较为合适的电压差,从而产生较为稳定且可控的电弧。
在一些可能的实施方式中,电压差与安全构件的壁厚满足如下关系:1≤U/T≤5000,其中,U为电压差,单位为V,T为安全构件的壁厚,单位为mm;和/或,电压差与安全构件和第一电池单体之间的距离满足如下关系:U/d≥2,其中,U为电压差,单位为V,d为安全构件和第一电池单体之间的距离,单位为mm;和/或,电压差与安全构件和第一电池单体之间的对应面积满足如下关系:U/S≥0.00008,其中,U为电压差,单位为V,S为安全构件和第一电池单体之间的对应面积,单位为mm 2
通过本申请实施例的技术方案,利用电压差与至少一种参数的相关关系,可以较为便捷且较为准确的得到产生电弧所需的电压差,保证电池的安全性能。
在一些可能的实施方式中,电压差的范围为4V至1000V之间。
通过该实施方式的技术方案,将电压差控制在4V至1000V或者更为精准的压差范围内,该电压差可以在安全构件与第一电池单体之间形成电弧,该电弧可击穿安全构件的容器壁以释放安全物质,综合保证电池的安全性能。
在一些可能的实施方式中,第一电池单体与安全构件相互绝缘;在第一电池单体发生异常的情况下,第一电池单体与安全构件之间绝缘失效,第一电池单体与安全构件之间的电压差使得安全构件进行安全调控。
通过该实施方式的技术方案,在电池中,第一电池单体与安全构件之间的相互绝缘可保障安全构件对第一电池单体的影响较小且保障第一电池单体在正常运行状态下的安全性能。在此基础上,第一电池单体发生异常可引发其与安全构件之间的绝缘失效,进而使得安全构件对第一电池单体所在的电池进行安全调控,整体实现方式具有较高的针对性以及可靠性。
在一些可能的实施方式中,在第一电池单体发生异常的情况下,第一电池单体与安全构件之间的绝缘层状态改变,以使得第一电池单体与安全构件之间绝缘失效。
在该实施方式的技术方案中,第一电池单体与安全构件之间绝缘层的绝缘设计易于在电池中实现且能够保证绝缘性能。进一步地,该绝缘层能够响应于第一电池单体发生热失控等异常状态,使得第一电池单体与安全构件之间形成有效的绝缘失效以使得安全构件对第一电池单体所在的电池进行安全调控,防止或消除第一电池单体产生的热量对电池造成的安全影响。
在一些可能的实施方式中,安全构件对应于第一电池单体设置。
通过该实施方式的技术方案,安全构件对应于至少一个电池单体中的第一电池单体设置,而不对应于其它电池单体设置,可以防止安全构件对其它电池单体造成影响,从而保障电池中其它正常的电池单体的运行性能。
在一些可能的实施方式中,电压产生模块用于获取电池的特征信号,电池的特征信号用于指示电池发生异常;电压产生模块用于根据电池的特征信号,在安全构件与电池之间建立电压差。
通过该实施方式的技术方案,电压产生模块能够获取并根据用于指示电池异常的特征信号,在安全构件与电池之间建立电压差,进而使得电压产生模块能够对处于异常状态下的电池进行及时且较为可靠的安全调控。
在一些可能的实施方式中,电压产生模块包括:控制子模块和电压子模块;控制子模块用于获取电池的特征信号,并根据电池的特征信号,控制电压子模块在安全构件与电池之间建立电压差。
通过该实施方式的技术方案,在电压产生模块中设置有控制子模块,该控制子模块能够灵活控制电压子模块在安全构件与电池之间建立电压差。相比于电压产生模块持续在安全构件与电池之间建立电压差的技术方案,该技术方案可以降低安全构件与电池持续存在的电压差对于电池的安全性能的影响,进一步提升安全调控机构对电池的安全管理性能。
在一些可能的实施方式中,电压产生模块还包括:监测子模块;监测子模块用于监测电池的特征信号,并将电池的特征信号发送至控制子模块。
通过该实施方式的技术方案,在安全调控机构中设置独立的监测子模块,可用于主动且实时的监测电池的特征信号,从而使得安全调控机构对电池起到更为及时且有效的安全管理,以进一步提升电池的安全性能。
在一些可能的实施方式中,电压子模块包括:电压产生器和通断结构,电压产生器通过通断结构连接于安全构件;控制子模块用于根据电池的特征信号控制通断结构连通,以使得电压产生器在安全构件与电池之间建立电压差。
通过该实施方式的技术方案,电压子模块包括电压产生器和通断结构,该通断结构能够在控制子模块的控制下实现安全构件与电压产生器之间的连通,整体方案实现方式简单且可靠性较高,且不会为安全调控机构带来过多额外的成本。
在一些可能的实施方式中,电压产生器包括:电池中的第二电池单体。
通过该实施方式的技术方案,复用电池中的第二电池单体作为电压产生器,则不需要在电池所在的系统增加额外的电压产生器,从而节省安全调控机构在电池所在系统中占用的空间,有利于降低电池所在系统整体的体积以及生产所需成本。
在一些可能的实施方式中,电池的特征信号用于指示电池处于热失控状态和/或处于热失控状态前预设时间段内的临界状态。
通过该实施方式的技术方案,电池的特征信号能够用于指示电池中常见且对电池损伤程度较大的热失控状态和/或热失控的临界状态,通过该电池的特征信号,能够有效对电池的热失控状态和/或临界状态进行调控,保障电池的安全性能。
在一些可能的实施方式中,电池的特征信号包括以下信号中的至少一项:电气参数、温度、压强、特征气体或应力。
通过该实施方式的技术方案,该电气参数、温度、压强、特征气体或应力等信号便于检测且能够有效反映电池的运行状态,根据该至少一种信号能够有效判断电池处于异常状态,从而便于安全调控机构对异常状态的电池进行安全调控。
在一些可能的实施方式中,电池的特征信号包括:电池中第一电池单体的特征信号;电压产生模块用于根据第一电池单体的特征信号,在安全构件与第一电池单体之间建立电压差。
通过该实施方式的技术方案,电压产生模块能够根据该第一电池单体的特征信号,较为准确且及时的在安全构件与第一电池单体之间形成电压差,从而使得安全构件能够迅速针对第一电池单体进行精准的安全调控。进一步地,在第一电池单体的特征信号用于指示第一电池单体处于热失控状态和/或在热失控状态前预设时间段内的临界状态时,该安全调控机构中的电压产生模块以及安全构件相互配合,可以及时乃至提前对处于热失控状态和/或临界状态的第一电池单体进行消防,防止第一电池单体的内部热量在电池中扩散影响其它电池单体的性能,快速对该第一电池单体所在的电池进行安全调控,从而能够大幅提升电池的安全性能。
第二方面,提供一种安全调控方法,用于对电池进行安全调控,该安全调控方法包括:在安全构件与电池之间建立电压差,在电池发生异常的情况下,电压差使得安全构件进行安全调控。
在一些可能的实施方式中,安全构件容纳有安全物质;上述电压差使得安全构件进行安全调控,包括:电压差用于在安全构件与电池之间形成电弧以击穿安全构件,使得安全构件释放安全物质以进行安全调控。
在一些可能的实施方式中,电池包括第一电池单体;上述在电池发生异常的情 况下,电压差使得安全构件进行安全调控,包括:在第一电池单体发生异常的情况下,电压差使得安全构件进行安全调控。
在一些可能的实施方式中,上述在安全构件与电池之间建立电压差,包括:在安全构件与第一电池单体之间建立电压差;上述电压差用于在安全构件与电池之间形成电弧以击穿安全构件,使得安全构件释放安全物质以进行安全调控,包括:电压差用于在安全构件与第一电池单体之间形成电弧以击穿安全构件,使得安全构件释放安全物质以对第一电池单体的所在空间和/或第一电池单体的附近空间进行安全调控。
在一些可能的实施方式中,上述电压差用于在安全构件与第一电池单体之间形成电弧以击穿安全构件,使得安全构件释放安全物质以对第一电池单体的所在空间进行安全调控,包括:电压差用于在安全构件与第一电池单体之间形成电弧以击穿安全构件以及第一电池单体的壳体,使得安全构件释放安全物质对第一电池单体的内部空间进行安全调控。
在一些可能的实施方式中,电压差与如下至少一种参数相关:安全构件的壁厚、安全构件与第一电池单体之间的距离、以及安全构件与第一电池单体之间的对应面积。
在一些可能的实施方式中,电压差与安全构件的壁厚满足如下关系:1≤U/T≤5000,其中,U为电压差,单位为V,T为安全构件的壁厚,单位为mm;和/或,电压差与安全构件和第一电池单体之间的距离满足如下关系:U/d≥2,其中,U为电压差,单位为V,d为安全构件和第一电池单体之间的距离,单位为mm;和/或,电压差与安全构件和第一电池单体之间的对应面积满足如下关系:U/S≥0.00008,其中,U为电压差,单位为V,S为安全构件和第一电池单体之间的对应面积,单位为mm 2
在一些可能的实施方式中,电压差的范围为4V至1000V之间。
在一些可能的实施方式中,第一电池单体与安全构件相互绝缘;在第一电池单体发生异常的情况下,第一电池单体与安全构件之间绝缘失效,第一电池单体与安全构件之间的电压差使得安全构件安全调控。
在一些可能的实施方式中,在第一电池单体发生异常的情况下,第一电池单体与安全构件之间的绝缘层状态改变,以使得第一电池单体与安全构件之间绝缘失效。
在一些可能的实施方式中,安全构件对应于至少一个电池单体中的第一电池单体设置。
在一些可能的实施方式中,上述在安全构件与电池之间建立电压差,包括:获取电池的特征信号,电池的特征信号用于指示电池发生异常;根据电池的特征信号,在安全构件与电池之间建立电压差。
在一些可能的实施方式中,安全调控方法应用于电压产生模块,电压产生模块包括:控制子模块和电压子模块;其中,上述获取电池的特征信号包括:控制子模块获取电池的特征信号;上述根据电池的特征信号,在安全构件与电池之间建立电压差,包括:控制子模块根据电池的特征信号,控制电压子模块在安全构件与电池之间建立电压差。
在一些可能的实施方式中,电压产生模块还包括:监测子模块;安全调控方法还包括:监测子模块监测电池的特征信号,并将电池的特征信号发送至控制子模块。
在一些可能的实施方式中,电压子模块包括:电压产生器和通断结构,电压产生器通过通断结构连接于安全构件;其中,上述控制子模块根据电池的特征信号,控制电压子模块在安全构件与电池之间建立电压差,包括:控制子模块根据电池的特征信号控制通断结构连通,以使得电压产生器在安全构件与电池之间建立电压差。
在一些可能的实施方式中,电压产生器包括:电池中的第二电池单体。
在一些可能的实施方式中,电池的特征信号用于指示电池处于热失控状态和/或处于热失控状态前预设时间段内的临界状态。
在一些可能的实施方式中,电池的特征信号包括以下信号中的至少一项:电气参数、温度、压强、特征气体或应力。
在一些可能的实施方式中,电池的特征信号包括:电池中第一电池单体的特征信号;其中,上述获取电池的特征信号,包括:获取第一电池单体的特征信号,上述根据电池的特征信号,在安全构件与电池之间建立电压差,包括:根据第一电池单体的特征信号,在安全构件与第一电池单体之间建立电压差。
第三方面,提供一种电池系统,包括:电池,以及,第一方面或第一方面中任一可能的实施方式中的安全调控机构,该安全调控机构用于对电池进行安全调控。
第四方面,提供一种用电装置,包括:第三方面中的电池系统,该电池系统用于为用电装置提供电能。
通过本申请实施例的技术方案,安全调控机构除了包括安全构件以外,还可包括电压产生模块,其可用于在安全构件与电池之间主动建立电压差,该主动建立的电压差能够根据实际需求生成,并使得安全构件及时对电池进行安全调控,以消除或预防电池中的安全隐患,从而对电池进行及时且有效的安全调控以提升电池的安全性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例提供的一种车辆的结构示意图;
图2是本申请一实施例提供的一种电池的结构示意图;
图3是本申请一实施例提供的安全调控机构的一种示意性结构框图;
图4是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图5是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图6是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图7是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图8是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图9是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图10是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图11是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图12是本申请一实施例提供的安全调控机构的另一示意性结构框图;
图13是本申请一实施例提供的一种安全调控方法的示意性流程框图;
图14是本申请一实施例提供的另一安全调控方法的示意性流程框图;
图15是本申请一实施例提供的另一安全调控方法的示意性流程框图;
图16是本申请一实施例提供的一种电池系统的示意性结构框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中,电池是指包括一个或多个电池单体以提供电能的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
可选地,电池单体可以是化学类电池或物理类电池,作为示例,可以是锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池,燃料电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。可选地,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(Polypropylene,PP)或聚乙烯(Polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
在一些相关技术中,为了保证电池的安全性,电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体发生热失控,其内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。泄压机构在致动后,电池单体内部的高温高压物质作为排放物会从泄压机构向外排出。其中,电池单体内部的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
当电池单体发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火,从而保证电池单体的安全性能。
除了在电池单体上设置泄压机构以保障电池的安全性以外,用于容纳电池单体的箱体中还可设置有喷淋管道等消防部件,该喷淋管道中可容纳有消防介质,该消防介质可为消防液体、消防气体或者还可以为消防固体。可选地,在一些实施方式中,喷淋管道可与电池单体中的泄压机构对应设置。当该泄压机构致动时,从电池单体内泄放的排放物会破坏喷淋管道的壁,使得消防介质从喷淋管道中流出,消防介质可以对电池单体的高温排放物进行降温,降低排放物的危险性,从而提升电池单体以及电池整体的安全性能。
在该技术方案中,在电池单体的内部已发生热失控的情况下,喷淋管道才能被动的被电池单体内部的排放物破坏,进而才能实现对已发生热失控的电池单体进行降 温。在电池单体的内部已发生热失控时,该电池单体的温度较高,其产生的热量可能已经传递至与其相邻的多个电池单体,使得热量已经在电池内的多个电池单体之间发生蔓延,此时,即使喷淋管道能够对已发生热失控的电池单体进行降温,该降温效果也会较为有限,喷淋管道对于电池整体的安全调控性能也相对较差。另外,在不同容量或不同能量密度的电池失控时,从其泄压机构排放出的排放物温度有显著差异,进而对喷淋管道的破坏程度不同,从该喷淋管道中液体流出的效果也有差异,因而,该喷淋管道被动破坏产生的消防效果不稳定。
鉴于此,本申请提供一种安全调控机构,用于对电池进行安全调控。该安全调控机构包括:电压产生模块和安全构件。其中,该电压产生模块用于在安全构件与电池之间建立电压差,在电池发生异常的情况下,该电压差使得安全构件对电池进行安全调控。在本申请实施例提供的技术方案中,安全调控机构除了包括安全构件以外,还可包括电压产生模块,其可用于在安全构件与电池之间主动建立电压差,该主动建立的电压差能够根据实际需求生成,并使得安全构件及时对电池进行安全调控,以消除或预防电池中的安全隐患,从而对电池进行及时且有效的安全调控以提升电池的安全性能。
本申请实施例描述的技术方案适用于各种使用电池的装置,例如,便携式用电设备、电瓶车、电动玩具、电动工具、电动车辆、船舶、航天器、和储能系统等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的装置,还可以适用于所有使用电池的装置,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达11,控制器12以及电池10,控制器12用来控制电池10为马达11的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称为电池包(battery pack)。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池10。也就是说,多个电池单体可以直接组成电池10,也可以先组成电池模块,电池模块再组成电池10。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体100(或称罩体),箱体100内部为中空结构,多个电池单体20容纳于箱体100内。如图2所示,箱体100可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣 合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体100。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体100内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。
图3示出了本申请一实施例提供的安全调控机构300的一种示意性结构框图。具体地,该安全调控机构300用于对电池进行安全调控,例如,该安全调控机构300可对上述图1和图2所示的电池10进行安全调控。
如图3所示,该安全调控机构300包括:电压产生模块310和安全构件320。电压产生模块310用于在安全构件320与电池10(图3中未示出)之间建立电压差,在电池10发生异常的情况下,该电压差使得安全构件320对电池10进行安全调控。
具体地,在本申请实施例中,电压产生模块310可以为能够形成目标电压的模块,例如,该电压产生模块310可以包括电源、电压产生电路或者其它携带有电能的模块。作为一种示例,该电压产生模块310可以包括电池10中任意一个电池单体20,即在该示例中,电池10中的电池单体20除了可为电池10外部的用电装置提供电能以外,还可复用为本申请实施例中的电压产生模块310。作为另一种示例,该电压产生模块310也可以为独立于电池10以外的其它电学模块,本申请实施例对该电压产生模块310的具体实现方式不做限定。
安全构件320为一种用于消除隐患或预防灾患的构件,具体地,该安全构件320可用于消除或预防电池10中可能发生的隐患或灾患。作为一种示例,该安全构件320包括但不限于是一种用于实现消防功能的消防构件,该消防构件中容纳有消防介质,该消防介质能够对电池10中即将发生热失控或者已经发生热失控的电池单体20和/或其它部件进行消防。当然,在其它示例中,该安全构件320还可以为其它形式的部件,旨在能够实现安全调控功能即可,本申请实施例对其具体实现不做限定。
具体地,电压产生模块310用于在该安全构件320与电池10之间建立电压差,在该电池10发生异常的情况下,该电压差可驱动安全构件320或者该电压差使得安全 构件320发生致动,从而可使得安全构件320对电池10进行安全调控,以消除或预防电池10中的安全隐患。
可选地,该电压产生模块310可用于在该安全构件320与电池10中任一部件之间建立电压差,在该电池10中的任一部件发生异常的情况下,该电压差可使得安全构件320对该电池10中的任一部件进行安全调控。
需要说明的是,对于电池或部件是否发生异常应采用本领域技术人员的常规理解,例如当电池或者部件的运行状态不属于常规状态和/或不属于预设状态即可理解为电池或者部件发生异常,还例如当电池或者部件的参数不属于正常范围和/或不属于预设范围即可理解为电池或者部件发生异常。作为示例,在电池10的运行状态异于正常状态时,即可理解为电池10发生了异常,其中,电池10处于正常状态时,该电池10的各种运行参数处于预设的正常参数范围内。当电池10处于异常状态时,该电池10的至少一种运行参数会超出预设的正常参数范围之外,根据该至少一种异常的运行参数,可以判断电池10发生了异常。作为一种示例,该电池10处于热失控状态或者处于即将发生热失控状态的临时状态时,该电池10的温度、电学参数、应力等至少一种运行参数会超出正常参数范围,此时,可判断电池10处于异常状态。
还需要说明的是,在电池10处于正常运行状态下,电压产生模块310在安全构件320与电池10之间建立电压差不会对电池10造成影响,而当电池10发生异常的情况下,电压产生模块310在安全构件320与电池10之间建立电压差才会驱动安全构件320或者该电压差使得安全构件320发生致动,从而可使得安全构件320对电池10进行安全调控,以消除或预防电池10中的安全隐患。
综上,通过本申请实施例的技术方案,安全调控机构除了包括安全构件320以外,还可包括电压产生模块310,其可用于在安全构件320与电池10之间主动建立电压差,该主动建立的电压差能够根据实际需求生成,并使得安全构件320及时对电池10进行安全调控,以消除或预防电池10中的安全隐患,从而对电池10进行及时且有效的安全调控以提升电池10的安全性能。
图4示出了本申请一实施例提供的安全调控机构300的另一种示意性结构框图。
如图4所示,在本申请实施例中,安全构件320容纳有安全物质,上述电压产生模块310在安全构件320与电池10之间建立的电压差用于在安全构件320与电池10之间形成电弧以击穿安全构件320,使得安全构件320释放安全物质以进行安全调控。
具体地,该安全构件320容纳的安全物质可为用于实现对电池10进行安全调控的物质。作为一种示例,该安全物质可以为流体,具有一定的流动性,其可以对电池10中产生的热量进行传递和交换,实现对电池10的安全调控。该安全物质可以为液态流体或者气态流体,例如该流体包括但不限于是水、水和乙二醇的混合液或者空气等等。或者,作为另一种示例,该安全物质也可以通过化学反应或者其它方式实现对电池10的安全调控,本申请实施例对此不做具体限定。
可选地,容纳有安全物质的安全构件320可以为管状容器、板状容器或者其它任意形状的容器。该安全构件320在一些相关实施例中也可以称之为消防管道、冷却板等用于对至少一个电池单体20执行热管理的部件。或者,在另一些实施例中,该安全 构件320也可以为专用于对电池10进行安全调控的部件。
在电池10发生异常的情况下,电压产生模块310在安全构件320与电池10之间建立的电压差可用于在二者之间产生电弧效应从而形成电弧。具体地,在电压产生模块310在安全构件320与电池10之间建立电压差后,该电压差可以用于在安全构件320与电池10之间形成一定的电流,该电流可击穿安全构件320与电池10之间某些绝缘介质(例如空气等)产生瞬间火花从而形成电弧。该电弧携带有较大的能量,能够击穿安全构件320的容器壁,该容器壁被击穿后,其中的安全物质被释放以使得该安全物质对电池10进行安全调控。
通过本申请实施例的技术方案,安全构件320中容纳有安全物质,在电池10产生异常的情况下,电压产生模块310在安全构件320与电池10之间主动建立的电压差能够主动在安全构件320与电池10之间形成电弧。通过该具有较大能量的电弧,可以较为有效且快速的击穿破坏安全构件320,从而释放安全构件320中容纳的安全物质以对电池10起到安全调控作用,以进一步提升电池10的安全性能。
图5示出了本申请一实施例提供的安全调控机构300的另一种示意性结构框图。
如图5所示,在本申请实施例中,电池10包括第一电池单体210,电压产生模块310用于在安全构件320与电池10之间建立电压差U;在第一电池单体210发生异常的情况下,该电压差U使得安全构件320进行安全调控。
可选地,如图5所示,电池10可包括至少一个电池单体20,该至少一个电池单体20通过汇流部件201相互串联、并联或混联,以向外部输出电能。第一电池单体210可以为至少一个电池单体20中的任意一个电池单体。在该第一电池单体210发生异常的情况下,例如该第一电池单体210的运行参数超出预设的参数范围的情况下,电压产生模块310在该第一电池单体210所在的电池10与安全构件320之间建立电压差U可使得安全构件320对电池10进行安全调控。
可选地,在本申请实施例中,安全调控机构300可设置于电池10的箱体100的内部,以对该电池10中的内部空间进行安全调控,例如,安全调控机构300可对电池10中至少部分电池单体20和/或电池单体20之间的空间进行安全调控,从而保障该电池10的安全性能。
通过本申请实施例的技术方案,电压产生模块310可在电池10与安全构件320之间建立电压差,在第一电池单体210异常时,通过该电压差U,可使得安全构件320对电池10进行安全调控。该技术方案能够针对电池10中第一电池单体210的异常,对电池10进行安全调控,从而能够较为可靠且有针对性的保障电池10的安全性能。
图6示出了本申请一实施例提供的安全调控机构300的另一示意性结构框图。
可选地,如图6所示,电压产生模块310用于在安全构件320与第一电池单体210之间建立电压差U;上述电压差U用于在安全构件320与第一电池单体210之间形成电弧以击穿安全构件320,使得安全构件320释放安全物质以对第一电池单体210的所在空间和/或第一电池单体210的附近空间进行安全调控。
如图6所示,在本申请实施例中,上述安全构件320可容纳有安全物质(例如流体),在第一电池单体210发生异常的情况下,上述电压差用于在第一电池单体210 与安全构件320之间形成电弧以击穿该安全构件320,使得该安全构件320释放安全物质以对电池10进行安全调控。为了方便描述,下文中以安全物质为流体作为示例对其安全调控功能进行了说明。
可选地,该安全构件320可以通过其内部容纳的流体对电池10中至少一个电池单体20实现温度调控功能,在其内部的流体为温度较低的流体时,其可用于对至少一个电池单体20进行降温防止电池单体20的温度过高引发安全隐患;在其内部的流体为温度较高的流体时,其可用于对电池单体20进行升温防止电池单体20在低温环境下运行影响其电学性能。
在第一电池单体210发生异常的情况下,电压产生模块310在安全构件320与第一电池单体210之间建立的电压差U可用于在二者之间产生电弧效应从而形成电弧。具体地,在电压产生模块310在安全构件320与第一电池单体210之间建立电压差U后,该电压差U可以用于在安全构件320与第一电池单体210之间形成一定的电流,该电流可击穿安全构件320与第一电池单体210之间某些绝缘介质(例如空气等)产生瞬间火花从而形成电弧。该电弧携带有较大的能量,能够击穿安全构件320的容器壁,该容器壁被击穿后,其中的流体流出对电池10进行温度等相关状态调控。
通过本申请实施例的技术方案,安全构件320中容纳有流体,在安全构件320没有被击穿的情况下,该安全构件320本身能够通过流体对至少一个电池单体20起到一定的温度调控作用。在此基础上,电压产生模块310在安全构件320与第一电池单体210之间主动建立的电压差U能够主动在安全构件320与第一电池单体210之间形成电弧。通过该具有较大能量的电弧,可以较为有效且快速的击穿破坏安全构件320,从而使得安全构件320中容纳的流体流出进一步对至少一个电池单体20起到调控作用,以进一步提升电池10的安全性能。
在本申请实施例的一些实施方式中,上述电压差U用于在安全构件320与第一电池单体210之间形成电弧以击穿安全构件320,使得该安全构件320中的流体流出对第一电池单体210的所在空间和/或该第一电池单体210的附近空间进行安全调控。
可选地,在该实施方式中,在安全构件320以及第一电池单体210之间形成的电弧可击穿破坏安全构件320中正对于第一电池单体210的区域,此时,从安全构件320中流出的流体可对第一电池单体210的所在空间起到较好的调控作用。
例如,在第一电池单体210即将发生热失控或者已经发生热失控时,其内部温度较高,此时电压产生模块310在该第一电池单体210与安全构件320之间主动形成的电弧可使得安全构件320中的流体对第一电池单体210起到精准且可靠的降温作用,防止该第一电池单体210产生的热量蔓延传递电池10中的其它电池单体,有效保证电池10的安全性能。
另外,在流体对第一电池单体210的所在空间起到安全调控作用的同时,该流体还可以流动至该第一电池单体210附近的空间,以对该第一电池单体210的附近空间进行安全调控,其中,该第一电池单体210附近的空间是指:以第一电池单体210为中心的预设范围空间。该第一电池单体210附近的空间包括与第一电池单体210相邻的电池单体20的所在空间以及相邻电池单体20之间的空间,该“与第一电池单体210相 邻”并不特指与第一电池单体210直接相邻,也可指与第一电池单体210间接相邻。
具体地,在本申请实施例中,从安全构件320中流出的流体除了可对第一电池单体210的所在空间进行安全调控以外,该流体还可以对第一电池单体210附近的电池单体20进行安全调控,和/或,对第一电池单体210与附近电池单体20之间的空间进行安全调控。
或者,作为一种可能的替代实施方式,在安全构件320以及第一电池单体210之间形成的电弧也可击穿破坏安全构件320中靠近于与第一电池单体210相邻的电池单体20的区域。此时,从安全构件320中流出的流体可对与第一电池单体210相邻的电池单体20起到较好的安全调控作用。
又或者,作为另一种可能的替代实施方式,在安全构件320以及第一电池单体210之间形成的电弧也可同时击穿破坏安全构件320中正对于第一电池单体210的区域,以及靠近于与第一电池单体210相邻的电池单体20的区域。此时,从安全构件320中流出的流体可对第一电池单体210以及与第一电池单体210相邻的电池单体均起到较好的安全调控作用。
通过该实施方式的技术方案,电压产生模块310在第一电池单体210与安全构件320之间主动形成的电弧可使得安全构件320中的流体对第一电池单体210的所在空间和/或第一电池单体210的附近空间起到精准且可靠的调控作用,防止该第一电池单体210在异常状态下产生的热量蔓延传递电池10中的其它部位,有效保证电池10的安全性能。
在本申请实施例的一些实施方式中,上述电压差U用于在安全构件320与第一电池单体210之间形成电弧以击穿安全构件320以及第一电池单体210的壳体,使得安全构件320中的流体流出对第一电池单体210的内部空间进行调控。
具体地,在该实施方式中,在安全构件320以及第一电池单体210之间形成的电弧不仅可以击穿破坏安全构件320的容器壁,还可以击穿破坏第一电池单体210的壳体。作为示例,当第一电池单体210发生异常,且其内部的温度较高时,电弧破坏了第一电池单体210的壳体,可以便于从安全构件320中流出的流体对第一电池单体210的内部进行精准且有效的降温,防止该第一电池单体210在异常状态下产生的热量蔓延至其它电池单体,进一步提升电池10的安全性能。
具体地,在本申请实施例中,可通过调整电压产生模块310在安全构件320与第一电池单体210之间建立的电压差U,从而调整安全构件320与第一电池单体210之间形成的电弧的能量,使得该电弧仅击穿安全构件320的容器壁或者同时击穿安全构件320的容器壁以及第一电池单体210的壳体。
可选地,上述电压差U与如下至少一种参数相关:安全构件320的壁厚、安全构件320与第一电池单体210之间的距离、以及安全构件320与第一电池单体210之间的对应面积。
在一些实施方式中,可通过上述至少一种参数确定用于形成电弧的电压差U。
作为一种示例,上述电压差U与安全构件320的壁厚T可满足如下关系:1≤U/T≤5000,其中,电压差U的单位为V,安全构件320的壁厚T的单位为mm。
作为另一种示例,上述电压差U与安全构件320和第一电池单体210之间的距离d满足如下关系:U/d≥2,其中,电压差U的单位为V,安全构件320和第一电池单体210之间的距离d的单位为mm。
作为第三种示例,上述电压差与安全构件320和第一电池单体210之间的对应面积满足如下关系:U/S≥0.00008,其中,电压差U的单位为V,安全构件320和第一电池单体210之间的对应面积S的单位为mm 2
通过本申请实施例的技术方案,在设计安全构件320和第一电池单体210之间的电压差U时,可以综合考虑安全构件320、第一电池单体210以及二者所在环境中的相关参数,得到较为合适的电压差,从而产生较为稳定且可控的电弧。
可选地,在一些实施方式中,上述电压差U的范围可为4V至1000V之间。进一步地,上述电压差U的范围可为10V至500V之间。更进一步地,上述电压差U的范围可为20V至200V之间。再进一步地,上述电压差U的范围可为20V至100V之间。或者,再更进一步地,上述电压差U的范围可为30V至60V之间。
通过该实施方式的技术方案,将电压差U控制在4V至1000V或者更为精准的压差范围内,该电压差U可以在安全构件320与第一电池单体210之间形成电弧,该电弧可击穿破坏安全构件320的容器壁以释放安全物质,综合保证电池10的安全性能。
具体地,在上述申请实施例中,安全构件320与电池10之间的电压差U在第一电池单体210发生异常时驱动安全构件320或者使得安全构件320致动。该电压差U可在第一电池单体210发生异常之前建立,但对该未发生异常的第一电池单体210不构成影响,或者,该电压差U可在第一电池单体210发生异常时同步建立,以使得第一电池单体210在正常运行时,电压差U对其不造成影响,从而保障电池10的运行性能。
另外,安全构件320可不与电池10中其它电池单体20之间建立电压差,或者,在其它电池单体20正常运行时,该安全构件320与其它电池单体20之间的电压差不会对该其它电池单体20造成影响,以保障电池10的正常运行。
可选地,在上述图6所示实施例中,第一电池单体210可与安全构件320相互绝缘,在第一电池单体210发生异常的情况下,第一电池单体210与安全构件320之间绝缘失效,该第一电池单体210与安全构件320之间的电压差U使得安全构件320进行安全调控。
在该情况下,图7示出了本申请一实施例提供的安全调控机构300的另一示意性结构框图。
如图7所示,在本申请实施例中,在电池10中,至少一个电池单体20中每个电池单体20均与安全构件320相互绝缘;在第一电池单体210发生异常的情况下,第一电池单体210与安全构件320之间绝缘失效,第一电池单体210与安全构件320之间的电压差U使得安全构件320对电池10进行安全调控。
如图7所示,安全构件320与至少一个电池单体20之间可具有绝缘设计,该绝缘设计使得该安全构件320与每个电池单体20之间形成绝缘等效电阻R 0,该绝缘等效电阻R 0具有较大的阻值,在人体对至少一个电池单体20所在的电池10误触时,该绝缘等效电阻R 0可以防止电池10对人体造成伤害,从而保证人体安全。可选地,该绝缘 等效电阻R 0可根据相关标准或者是实际需求进行设计,本申请实施例对该绝缘等效电阻R 0的具体电阻值不做限定。
在至少一个电池单体20中的第一电池单体210与安全构件320之间的绝缘设计受到第一电池单体210或者其它部件的影响时,该第一电池单体210与安全构件320之间的绝缘等效电阻R 0大幅降低,此时该第一电池单体210与安全构件320之间的绝缘性能降低,或者说,该第一电池单体210与安全构件320之间产生了绝缘失效。
如图7所示,在该第一电池单体210与安全构件320之间产生绝缘失效的情况下,该第一电池单体210与安全构件320之间的等效电阻由绝缘等效电阻R 0降低为绝缘失效等效电阻R 1
当电压产生模块310在安全构件320与第一电池单体210之间建立电压差U的情况下,当第一电池单体210与安全构件320之间绝缘性能良好时,该第一电池单体210与安全构件320之间具有较大的绝缘等效电阻R 0,因此,该第一电池单体210与安全构件320之间的电流十分微小乃至几乎为零。而在第一电池单体210与安全构件320之间产生绝缘失效的情况下,该第一电池单体210与安全构件320之间的电阻会大幅降低形成绝缘失效等效电阻R 1,因而第一电池单体210与安全构件320之间会在电压差U的作用下形成一定的电流,从而驱动安全构件320或者该使得安全构件320发生致动,以对电池10进行安全调控。
通过本申请实施例的技术方案,在电池10中,第一电池单体210与安全构件320之间的相互绝缘可保障安全构件320对第一电池单体210的影响较小且保障该第一电池单体210在正常运行状态下的安全性能。在此基础上,第一电池单体210发生异常可引发其与安全构件320之间的绝缘失效,进而使得安全构件320对第一电池单体210所在的电池10进行安全调控,整体实现方式具有较高的针对性以及可靠性。
可选地,在一些实施方式中,第一电池单体210与安全构件320之间设置有绝缘层以实现第一电池单体210与安全构件320之间的相互绝缘。在该实施方式中,在第一电池单体210发生异常的情况下,第一电池单体210与安全构件320之间的绝缘层状态改变,以使得第一电池单体210与安全构件320之间绝缘失效。
可选地,在第一电池单体210发生热失控或者即将发生热失控的情况下,该第一电池单体210的温度较高。受到该较高温度的影响,该第一电池单体210与安全构件320之间的绝缘层受热熔化,以使得第一电池单体210与安全构件320之间绝缘等效电阻R 0变小,形成绝缘失效。
可选地,为了保障绝缘层能够响应于第一电池单体210的异常状态,在第一电池单体210温度较高的时候受热熔化,该绝缘层的熔点可低于800℃。
或者,在其它实施方式中,该第一电池单体210与安全构件320之间的绝缘层可受其它因素的控制或影响,使得其状态改变。例如,在第一电池单体210发生异常的情况下,其与安全构件320之间的绝缘层可受到外部作用,使得发生破损或者其它类型的物理状态改变,造成第一电池单体210与安全构件320之间绝缘等效电阻R 0变小,形成绝缘失效。
因此,在该实施方式的技术方案中,第一电池单体210与安全构件320之间绝 缘层的绝缘设计易于在电池10中实现且能够保证绝缘性能。进一步地,该绝缘层能够响应于第一电池单体210发生热失控等异常状态,使得第一电池单体210与安全构件320之间形成有效的绝缘失效以使得安全构件320对第一电池单体210所在的电池10进行安全调控,防止或消除第一电池单体210产生的热量对电池10造成的安全影响。
需要说明的是,在上文图7所示实施例中,安全构件320与至少一个电池单体20之间除了可形成绝缘等效电阻R 0以外,还可以形成其它数值的等效电阻,该等效电阻的电阻值可能未到达绝缘电阻值的数量级,其可以为其它阻值较大的电阻,当电压产生器3121在第一电池单体210发生异常之前即在第一电池单体210与安全构件320之间建立电压差U时,该安全构件320与第一电池单体210之间的等效电阻可使得该电压差U对安全构件320以及第一电池单体210的影响较小。
或者,在上文图7所示实施例中,安全构件320与至少一个电池单体20之间的等效电阻也可设计的较小乃至为零,在该情况下,电压产生器3121可在第一电池单体210发生异常时,在第一电池单体210与安全构件320之间建立电压差U。
在该情况下,为了防止安全构件320对其它电池单体20造成影响,该安全构件320对应于至少一个电池单体20中的第一电池单体210设置,而不对应于其它电池单体20设置,从而保障电池10中其它正常的电池单体20的运行性能。
或者,在安全构件320与至少一个电池单体20之间的等效电阻为绝缘等效电阻R 0或者其它具有较大阻值的电阻的情况下,该安全构件320也可对应于第一电池单体210设置,而不对应于其它电池单体20设置。
对于上文各申请实施例,在一些实施方式中,电压产生模块310可直接连接于安全构件320,使得该安全构件320与电池10之间形成电压差。在该实施方式中,电压差可在电池10发生异常之前建立。
或者,在另一些实施方式中,电压产生模块310也可用于获取电池10的特征信号,该电池10的特征信号用于指示电池10发生异常,电压产生模块310用于根据该电池10的特征信号,在安全构件320与电池10之间建立电压差。在该实施方式中,电压差可在电池10发生异常时同步建立。
具体地,在该实施方式的技术方案中,电池10的特征信号可以包括:反映电池10异常状态的状态信号。例如,该电池10的特征信号可以包括:电池10中至少一个电池单体20的特征信号,和/或,电池10中其它部件的特征信号。该特征信号包括但不限于是电气参数(例如:电流或电压等)、温度、压强、特征气体或应力等等。当电池10处于异常状态时,该电池10的特征信号的信号值区别于电池10在正常状态下的信号值。通过该电池10的特征信号的信号值,可以判定电池10处于异常状态。
作为示例而非限定,该电池10的特征信号可用于指示电池10处于热失控状态和/或处于热失控状态前预设时间段内的临界状态。具体的,当电池10中的任意一个电池单体20发生热失控或即将发生热失控时,该电池10的电气参数、该电池10内部的温度、压强、特征气体以及该电池10的箱体上的局部应力等特征信号相比于正常状态均可能会发生变化,电压产生模块310可通过获取电池10的特征信号,确定该电池10内部的电池单体20发生热失控或即将发生热失控,从而在安全构件320与电池10之间 建立电压差,进而使得安全构件320对电池10进行安全调控。
通过本申请实施例的技术方案,电压产生模块310能够获取并根据用于指示电池10异常的特征信号,在安全构件320与电池10之间建立电压差,进而使得电压产生模块310能够对处于异常状态下的电池10进行及时且较为可靠的安全调控。
可选地,上述电池10的特征信号可以包括:电池10中第一电池单体210的特征信号,该第一电池单体210的特征信号用于指示该第一电池单体210处于异常状态。
在该实施方式下,图8示出了本申请一实施例提供的安全调控机构300的另一示意性结构框图。
可选地,如图8所示,电压产生模块310可以通过通信部件202连接于电池10中的至少一个电池单体20,从而获取该至少一个电池单体20的信号。其中,该通信部件202包括但不限于是信号采集线束或者是其它用于信号传输的通信器件。另外,该电压产生模块310除了可通过通信部件202连接于至少一个电池单体20以外,还可以通过该通信部件202连接于电池10中的其它部件,从而获取其它部件的信号。
具体地,电压产生模块310可用于获取电池10中第一电池单体210的特征信号,且根据该第一电池单体210的特征信号,在安全构件320与第一电池单体210之间建立电压差U。其中,第一电池单体210的特征信号用于指示第一电池单体210发生异常。
在该实施方式中,第一电池单体210的特征信号可以包括以下第一电池单体210的至少一项参数:电气参数、温度、压强、特征气体或应力。
在该第一电池单体210发生异常时,该第一电池单体210处于异常状态,该异常状态可以为区别于正常运行状态的其它状态,例如,该第一电池单体210的异常状态可以为热失控状态和/或热失控状态前预设时间段内的临界状态。或者,第一电池单体210的异常状态除了可以为热失控状态和/或热失控状态的临界状态以外,还可以为其它可监测的异常状态,本申请实施例对该异常状态的类型不做具体限定。
通过本申请实施例的技术方案,电压产生模块310能够根据该第一电池单体210的特征信号,较为准确且及时的在安全构件320与第一电池单体210之间形成电压差,从而使得安全构件320能够迅速针对第一电池单体210进行精准的安全调控。
进一步地,在第一电池单体210的特征信号用于指示第一电池单体210处于热失控状态和/或在热失控状态前预设时间段内的临界状态时,该安全调控机构300中的电压产生模块310以及安全构件320相互配合,可以及时乃至提前对处于热失控状态和/或临界状态的第一电池单体210进行消防,防止第一电池单体210的内部热量在电池10中扩散影响其它电池单体的性能,快速对该第一电池单体210所在的电池10进行安全调控,从而能够大幅提升电池10的安全性能。
可选地,电压产生模块310除了可获取电池10中第一电池单体210的特征信号以外,在其它替代实施方式中,该电压产生模块310还可以获取电池10中与第一电池单体210相邻电池单体的特征信号,且根据第一电池单体210的特征信号和/或与该第一电池单体210相邻电池单体的特征信号,在安全构件320与第一电池单体210之间建立电压差U。
可选地,电压产生模块310获取电池10中第一电池单体210和/或与该第一电池单体210相邻电池单体的特征信号后,除了可在安全构件320与第一电池单体210之间建立电压差U以外,还可以在安全构件320和相邻电池单体(与第一电池单体210相邻)之间建立电压差。
图9示出了本申请一实施例提供的安全调控机构300的另一示意性结构框图。
如图9所示,在本申请实施例中,电压产生模块310包括:控制子模块311和电压子模块312,该控制子模块311用于获取电池10(图9中未示出)的特征信号,并根据电池10的特征信号控制电压子模块312在安全构件320与电池10之间建立电压差。
具体地,在本申请实施例中,控制子模块311可根据电池10的特征信号可向电压子模块312发送第一控制信号,该电压子模块312可在该第一控制信号的控制下,在安全构件320与电池10之间建立电压差。另外,控制子模块311也根据电池10的其它信号向电压子模块312发送第二控制信号,该电压子模块312也可在该第二控制信号的控制下,撤销在安全构件320与电池10之间建立的电压差,降低安全构件320对于电池10的安全性能的影响,进一步提升安全调控机构300对电池10的安全调控性能。
可选地,在图9所示实施例中,控制子模块311可以通过通信部件202连接于电池10中的至少一个电池单体20,从而获取该至少一个电池单体20的信号。在至少一个电池单体20中第一电池单体210发生异常时,该控制子模块311用于获取并根据该第一电池单体210的特征信号控制电压子模块312在安全构件320与第一电池单体210之间建立电压差U。
可选地,在一些实施方式中,该控制子模块311可以是用于管理电池10的电池管理系统(Battery Management System,BMS),或者,在另一些实施方式中,该控制子模块311还可以是其它类型的控制器件,本申请实施例对该控制子模块311的具体实现方式不做限定。
通过本申请实施例的技术方案,在电压产生模块310中设置有控制子模块311,该控制子模块311能够灵活控制电压子模块312在安全构件320与电池10之间建立电压差。相比于电压产生模块310持续在安全构件320与电池10之间建立电压差的技术方案,该技术方案可以降低安全构件320与电池10持续存在的电压差对于电池10的安全性能的影响,进一步提升安全调控机构300对电池10的安全管理性能。
图10示出了本申请一实施例提供的安全调控机构300的另一示意性结构框图。
如图10所示,在本申请实施例中,电压产生模块310还包括:监测子模块313,用于监测电池10的特征信号且将电池10(图10中未示出)的特征信号发送至控制子模块311。该控制子模块311用于接收监测子模块313发送的电池10的特征信号,并根据该特征信号控制电压子模块312在安全构件320与电池10之间建立电压差。
具体地,本申请实施例提供独立的监测子模块313,用于实时监测电池10的运行状态,例如,该监测子模块313用于实时监测电池10中每个电池单体20的信号和/或监测电池10中其它部件的信号。可选地,该监测子模块313包括但不限于是电池监控电路(Cell Supervision Circuit,CSC)或者其它用于监测电池10运行状态的模块。
可选地,在图10所示实施例中,监测子模块313可用于实时监测电池10中至少一个电池单体20,在至少一个电池单体20中的第一电池单体210发生异常时,该监测子模块313将该第一电池单体210的特征信号发送至控制子模块311,该控制子模块311用于根据该第一电池单体210的特征信号控制电压子模块312在安全构件320与第一电池单体210之间建立电压差U。
可选地,该监测子模块313的数量可以为一个或多个,在监测子模块313的数量为多个的情况下,其可分布设置于电池10的箱体内,以便于通过该多个监测子模块313全面监测电池10内部至少一个电池单体20以及其它部件的特征信号。
通过本申请实施例的技术方案,在安全调控机构300中设置独立的监测子模块313,可用于主动且实时的监测电池10的特征信号,从而使得安全调控机构300对电池10起到更为及时且有效的安全管理,以进一步提升电池10的安全性能。
图11示出了本申请一实施例提供的安全调控机构300的另一示意性结构框图。
如图11所示,在本申请实施例中,电压子模块312(图中未示出)包括:电压产生器3121和通断结构3122,该电压产生器3121通过通断结构3122连接于安全构件320。控制子模块311用于根据电池10(图中未示出)的特征信号控制通断结构3122连通,以使得电压产生器3121在安全构件320与电池10之间建立电压差。
具体地,在本申请实施例中,该电压产生器3121可以为电源、电压产生电路或者其它携带有电能的模块,其能够使得安全构件320带电,从而在安全构件320与电池10之间建立电压差。可选地,该电压产生器3121可以为电池10内部的供电装置,例如电池10内部的电池单体20,或者,该电压产生器3121也可以为电池10外部的供电装置,本申请实施例对该电压产生器3121的具体位置不做限定。
通断结构3122包括但不限于是电气开关,电压产生器3121可通过该电气开关连接于安全构件320,且该电气开关能够受控制子模块311的控制闭合或者断开。当然,除了电气开关以外,该通断结构3122还可以为其它类型的电学器件或者机械结构,该通断结构3122旨在能够在控制子模块311的控制下实现安全构件320与电压产生器3121之间的连通和断开即可,本申请实施例对该通断结构3122的具体实现方式也不做限定。
可选地,如图11所示,控制子模块311除了可通过通信部件202连接于至少一个电池单体20以外,还可以通过通信部件202与通断结构3122建立连接,该通断结构3122可接收控制子模块311的控制信号,以实现安全构件320与电压产生器3121之间的连通和断开。
具体地,控制子模块311可获取至少一个电池单体20和/或电池10中其它部件的特征信号,且控制子模块311可根据该特征信号判断电池10处于区别于正常状态的异常状态,在该情况下,控制子模块311控制通断结构3122连通,从而连通安全构件320与电压产生器3121,以使得电压产生器3121在安全构件320与电池10之间建立电压差。
可选地,在图11所示实施例中,在至少一个电池单体20中第一电池单体210发生异常时,该控制子模块311用于获取并根据该第一电池单体210的特征信号控制通 断结构3122连通,以使得电压产生器3121在安全构件320与第一电池单体210之间建立电压差U。
需要说明的是,控制子模块311除了可如图11所示,直接通过通信部件202连接于至少一个电池单体20以外,还可以通过监测子模块313连接于至少一个电池单体20,该控制子模块311用于接收监测子模块313发送的至少一个电池单体20的特征信号。
通过本申请实施例的技术方案,电压子模块312包括电压产生器3121和通断结构3122,该通断结构3122能够在控制子模块311的控制下实现安全构件320与电压产生器3121之间的连通,整体方案实现方式简单且可靠性较高,且不会为安全调控机构300带来过多额外的成本。
图12示出了本申请一实施例提供的安全调控机构300的另一示意性结构框图。
如图12所示,在本申请实施例中,上述电压产生器3121包括:电池10中的第二电池单体220。
即在本申请实施例中,可以复用电池10中的第二电池单体220作为电压产生器3121,该第二电池单体220可以为电池10中除第一电池单体210以外的其它任意电池单体,该第二电池单体220能够向外部提供电能。
可选地,如图12所示,在本申请实施例中,在第二电池单体220与安全构件320之间连接通断结构3122,以实现第二电池单体220通过通断结构3122在安全构件320与第一电池单体210之间建立电压差U。
通过本申请实施例的技术方案,复用电池10中的第二电池单体220作为电压产生器3121,则不需要在电池10所在的系统增加额外的电压产生器,从而节省安全调控机构300在电池10所在系统中占用的空间,有利于降低电池10所在系统整体的体积以及生产所需成本。
上文结合图3至图12描述了本申请实施例的安全调控机构300。下面将结合图13至图15描述本申请实施例的安全调控方法,其中未详细描述的部分可参见前述各实施例。
图13示出了本申请一实施例提供的一种安全调控方法400的示意性流程框图。该安全调控方法400可用于对电池,例如上述电池10进行安全调控。
如图13所示,在本申请实施例中,该安全调控方法400可包括以下步骤。
S410:在安全构件与电池之间建立电压差,在电池发生异常的情况下,电压差使得安全构件进行安全调控。
具体地,在本申请实施例中,上述步骤S410的执行主体可以为上文装置实施例中电压产生模块310,且该步骤S410中的安全构件可以为上文装置实施例中的安全构件320。即,在本申请实施例中,电压产生模块310在安全构件320与电池10之间建立电压差。其中,该电压产生模块310、安全构件320以及电压差的相关技术方案可以参见上文装置实施例的相关描述,此处不做过多赘述。
可选地,在一些实施方式中,安全构件容纳有安全物质;上述电压差使得安全构件进行安全调控,包括:电压差用于在安全构件与电池之间形成电弧以击穿安全构 件,使得安全构件释放安全物质以进行安全调控。
可选地,在一些实施方式中,电池包括第一电池单体,上述在电池发生异常的情况下,电压差使得安全构件进行安全调控,包括:在第一电池单体发生异常的情况下,电压差使得安全构件进行安全调控。
图14示出了本申请一实施例提供的另一安全调控方法500的示意性流程框图。
如图14所示,在本申请实施例中,该安全调控方法500可包括以下步骤。
S510:在安全构件与至少一个电池单体中的第一电池单体之间建立电压差,在第一电池单体发生异常的情况下,电压差用于在安全构件与第一电池单体之间形成电弧以击穿安全构件,使得安全构件释放安全物质以对第一电池单体的所在空间和/或第一电池单体的附近空间进行安全调控。
在一些可能的实施方式中,电压差用于在安全构件与第一电池单体之间形成电弧以击穿安全构件以及第一电池单体的壳体,使得安全构件释放安全物质对第一电池单体的内部空间进行安全调控。
在一些可能的实施方式中,上述电压差与如下至少一种参数相关:安全构件的壁厚、安全构件与第一电池单体之间的距离、以及安全构件与第一电池单体之间的对应面积。
在一些可能的实施方式中,上述电压差与安全构件的壁厚满足如下关系:1≤U/T≤5000,其中,U为电压差,单位为V,T为安全构件的壁厚,单位为mm;和/或,电压差与安全构件和第一电池单体之间的距离满足如下关系:U/d≥2,其中,U为电压差,单位为V,d为安全构件和第一电池单体之间的距离,单位为mm;和/或,电压差与安全构件和第一电池单体之间的对应面积满足如下关系:U/S≥0.00008,其中,U为电压差,单位为V,S为安全构件和第一电池单体之间的对应面积,单位为mm 2
在一些可能的实施方式中,上述电压差的范围为4V至1000V之间。
在一些可能的实施方式中,第一电池单体与安全构件相互绝缘;在第一电池单体发生异常的情况下,第一电池单体与安全构件之间绝缘失效,第一电池单体与安全构件之间的电压差使得安全构件进行安全调控。
在一些可能的实施方式中,在第一电池单体发生异常的情况下,第一电池单体与安全构件之间的绝缘层受热熔化,以使得第一电池单体与安全构件之间绝缘失效。
在一些可能的实施方式中,安全构件对应于至少一个电池单体中的第一电池单体设置。
图15示出了本申请一实施例提供的另一安全调控方法600的示意性流程框图。该安全调控方法600可用于对包括至少一个电池单体20的电池10进行安全调控。
如图15所示,在本申请实施例中,该安全调控方法600可包括以下步骤。
S610:获取电池的特征信号,电池的特征信号用于指示电池发生异常。
S620:根据电池的特征信号,在安全构件与电池之间建立电压差,在电池发生异常的情况下,该电压差使得安全构件进行安全调控。
在一些可能的实施方式中,上述安全调控方法600应用于上文装置实施例中的电压产生模块310,该电压产生模块310包括:控制子模块311和电压子模块312。
在该情况下,上述步骤S610可以包括:控制子模块311获取电池的特征信号。上述步骤S620可以包括:控制子模块311根据电池的特征信号,控制电压子模块312在安全构件与电池之间建立电压差。
在一些可能的实施方式中,电压产生模块310还包括:监测子模块313;在该情况下,上述安全调控方法600还可以包括:监测子模块313监测电池的特征信号,并将电池的特征信号发送至控制子模块311。
在一些可能的实施方式中,上述电压子模块312包括:电压产生器3121和通断结构3122,电压产生器3121通过通断结构3122连接于安全构件。在该情况下,上述步骤S620可以包括:控制子模块311根据电池的特征信号控制通断结构3122连通,以使得电压产生器3121在安全构件与电池之间建立电压差。
在一些可能的实施方式中,上述电压产生器3121包括:至少一个电池单体中的第二电池单体。
在一些可能的实施方式中,上述电池的特征信号用于指示电池处于热失控状态和/或处于热失控状态前预设时间段内的临界状态。
在一些可能的实施方式中,上述电池的特征信号包括以下信号中的至少一项:电气参数、温度、压强、特征气体或应力。
在一些可能的实施方式中,上述电池的特征信号包括:电池中第一电池单体的特征信号。在该情况下,上述步骤S610可以包括:获取第一电池单体的特征信号。上述步骤S620可以包括:根据第一电池单体的特征信号,在安全构件与第一电池单体之间建立电压差。
图16示出了本申请实施例提供的一种电池系统101的示意性结构框图。
如图16所示,该电池系统101可以包括前述申请实施例中电池10以及安全调控机构300,该安全调控机构300用于对电池10进行安全调控。
本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述实施例中的电池系统101,该电池系统101用于向该用电装置提供电能。
在一些实施例中,用电装置可以为车辆1、船舶或航天器。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (40)

  1. 一种安全调控机构,其特征在于,用于对电池进行安全调控,所述安全调控机构包括:电压产生模块和安全构件;
    所述电压产生模块用于在所述安全构件与所述电池之间建立电压差,在所述电池发生异常的情况下,所述电压差使得所述安全构件进行安全调控。
  2. 根据权利要求1所述的安全调控机构,其特征在于,所述安全构件容纳有安全物质;
    所述电压差使得所述安全构件进行安全调控,包括:
    所述电压差用于在所述安全构件与所述电池之间形成电弧以击穿所述安全构件,使得所述安全构件释放所述安全物质以进行安全调控。
  3. 根据权利要求2所述的安全调控机构,其特征在于,所述电池包括第一电池单体;
    所述在所述电池发生异常的情况下,所述电压差使得所述安全构件进行安全调控,包括:
    在所述第一电池单体发生异常的情况下,所述电压差使得所述安全构件进行安全调控。
  4. 根据权利要求3所述的安全调控机构,其特征在于,所述电压产生模块用于在所述安全构件与所述电池之间建立电压差,包括:
    所述电压产生模块用于在所述安全构件与所述第一电池单体之间建立所述电压差;
    所述电压差用于在所述安全构件与所述电池之间形成电弧以击穿所述安全构件,使得所述安全构件释放所述安全物质以进行安全调控,包括:
    所述电压差用于在所述安全构件与所述第一电池单体之间形成电弧以击穿所述安全构件,使得所述安全构件释放所述安全物质以对所述第一电池单体的所在空间和/或所述第一电池单体的附近空间进行安全调控。
  5. 根据权利要求4所述的安全调控机构,其特征在于,所述电压差用于在所述安全构件与所述第一电池单体之间形成电弧以击穿所述安全构件,使得所述安全构件释放所述安全物质以对所述第一电池单体的所在空间进行安全调控,包括:
    所述电压差用于在所述安全构件与所述第一电池单体之间形成所述电弧以击穿所述安全构件以及所述第一电池单体的壳体,使得所述安全构件释放所述安全物质以对所述第一电池单体的内部空间进行安全调控。
  6. 根据权利要求4或5所述的安全调控机构,其特征在于,所述电压差与如下至少一种参数相关:
    所述安全构件的壁厚、所述安全构件与所述第一电池单体之间的距离、以及所述安全构件与所述第一电池单体之间的对应面积。
  7. 根据权利要求6所述的安全调控机构,其特征在于,所述电压差与所述安全构件的壁厚满足如下关系:1≤U/T≤5000,其中,U为电压差,单位为V,T为所述安全 构件的壁厚,单位为mm;和/或,
    所述电压差与所述安全构件和所述第一电池单体之间的距离满足如下关系:U/d≥2,其中,U为电压差,单位为V,d为所述安全构件和所述第一电池单体之间的距离,单位为mm;和/或,
    所述电压差与所述安全构件和所述第一电池单体之间的对应面积满足如下关系:U/S≥0.00008,其中,U为电压差,单位为V,S为所述安全构件和所述第一电池单体之间的对应面积,单位为mm 2
  8. 根据权利要求1至7中任一项所述的安全调控机构,其特征在于,所述电压差的范围为4V至1000V之间。
  9. 根据权利要求3至8中任一项所述的安全调控机构,其特征在于,所述第一电池单体与所述安全构件相互绝缘;
    所述在所述第一电池单体发生异常的情况下,所述电压差使得所述安全构件进行安全调控,包括:
    在所述第一电池单体发生异常的情况下,所述第一电池单体与所述安全构件之间绝缘失效,所述第一电池单体与所述安全构件之间的所述电压差使得所述安全构件进行安全调控。
  10. 根据权利要求9所述的安全调控机构,其特征在于,在所述第一电池单体发生异常的情况下,所述第一电池单体与所述安全构件之间的绝缘层状态改变,以使得所述第一电池单体与所述安全构件之间绝缘失效。
  11. 根据权利要求3至10中任一项所述的安全调控机构,其特征在于,所述安全构件对应于所述第一电池单体设置。
  12. 根据权利要求1至11中任一项所述的安全调控机构,其特征在于,所述电压产生模块用于在所述安全构件与所述电池之间建立电压差,包括:
    所述电压产生模块用于获取所述电池的特征信号,所述电池的特征信号用于指示所述电池发生异常;
    所述电压产生模块用于根据所述电池的特征信号,在所述安全构件与所述电池之间建立所述电压差。
  13. 根据权利要求12所述的安全调控机构,其特征在于,所述电压产生模块包括:控制子模块和电压子模块;
    所述控制子模块用于获取所述电池的特征信号,并根据所述电池的特征信号,控制所述电压子模块在所述安全构件与所述电池之间建立所述电压差。
  14. 根据权利要求13所述的安全调控机构,其特征在于,所述电压产生模块还包括:监测子模块;
    所述监测子模块用于监测所述电池的特征信号,并将所述电池的特征信号发送至所述控制子模块。
  15. 根据权利要求13或14所述的安全调控机构,其特征在于,所述电压子模块包括:电压产生器和通断结构,所述电压产生器通过所述通断结构连接于所述安全构件;
    所述控制子模块用于根据所述电池的特征信号控制所述通断结构连通,以使得所 述电压产生器在所述安全构件与所述电池之间建立所述电压差。
  16. 根据权利要求15所述的安全调控机构,其特征在于,所述电压产生器包括:所述电池中的第二电池单体。
  17. 根据权利要求12至16中任一项所述的安全调控机构,其特征在于,所述电池的特征信号用于指示所述电池处于热失控状态和/或处于热失控状态前预设时间段内的临界状态。
  18. 根据权利要求12至17中任一项所述的安全调控机构,其特征在于,所述电池的特征信号包括以下信号中的至少一项:电气参数、温度、压强、特征气体或应力。
  19. 根据权利要求12至18中任一项所述的安全调控机构,其特征在于,所述电池的特征信号包括:所述电池中第一电池单体的特征信号;
    所述电压产生模块用于根据所述第一电池单体的特征信号,在所述安全构件与所述第一电池单体之间建立所述电压差。
  20. 一种安全调控方法,其特征在于,用于对电池进行安全调控,所述安全调控方法包括:
    在安全构件与所述电池之间建立电压差,在所述电池发生异常的情况下,所述电压差使得所述安全构件进行安全调控。
  21. 根据权利要求20所述的安全调控方法,其特征在于,所述安全构件容纳有安全物质;
    所述电压差使得所述安全构件进行安全调控,包括:
    所述电压差用于在所述安全构件与所述电池之间形成电弧以击穿所述安全构件,使得所述安全构件释放所述安全物质以进行安全调控。
  22. 根据权利要求21所述的安全调控方法,其特征在于,所述电池包括第一电池单体;
    所述在所述电池发生异常的情况下,所述电压差使得所述安全构件进行安全调控,包括:
    在所述第一电池单体发生异常的情况下,所述电压差使得所述安全构件进行安全调控。
  23. 根据权利要求22所述的安全调控方法,其特征在于,所述在所述安全构件与所述电池之间建立电压差,包括:
    在所述安全构件与所述第一电池单体之间建立所述电压差;
    所述电压差用于在所述安全构件与所述电池之间形成电弧以击穿所述安全构件,使得所述安全构件释放所述安全物质以进行安全调控,包括:
    所述电压差用于在所述安全构件与所述第一电池单体之间形成电弧以击穿所述安全构件,使得所述安全构件释放所述安全物质以对所述第一电池单体的所在空间和/或所述第一电池单体的附近空间进行安全调控。
  24. 根据权利要求23所述的安全调控方法,其特征在于,所述电压差用于在所述安全构件与所述第一电池单体之间形成电弧以击穿所述安全构件,使得所述安全构件释放所述安全物质以对所述第一电池单体的所在空间进行安全调控,包括:
    所述电压差用于在所述安全构件与所述第一电池单体之间形成所述电弧以击穿所述安全构件以及所述第一电池单体的壳体,使得所述安全构件释放所述安全物质对所述第一电池单体的内部空间进行安全调控。
  25. 根据权利要求23或24所述的安全调控方法,其特征在于,所述电压差与如下至少一种参数相关:
    所述安全构件的壁厚、所述安全构件与所述第一电池单体之间的距离、以及所述安全构件与所述第一电池单体之间的对应面积。
  26. 根据权利要求25所述的安全调控方法,其特征在于,所述电压差与所述安全构件的壁厚满足如下关系:1≤U/T≤5000,其中,U为电压差,单位为V,T为所述安全构件的壁厚,单位为mm;和/或,
    所述电压差与所述安全构件和所述第一电池单体之间的距离满足如下关系:U/d≥2,其中,U为电压差,单位为V,d为所述安全构件和所述第一电池单体之间的距离,单位为mm;和/或,
    所述电压差与所述安全构件和所述第一电池单体之间的对应面积满足如下关系:U/S≥0.00008,其中,U为电压差,单位为V,S为所述安全构件和所述第一电池单体之间的对应面积,单位为mm 2
  27. 根据权利要求20至26中任一项所述的安全调控方法,其特征在于,所述电压差的范围为4V至1000V之间。
  28. 根据权利要求22至27中任一项所述的安全调控方法,其特征在于,所述第一电池单体与所述安全构件相互绝缘;
    所述在所述第一电池单体发生异常的情况下,所述电压差使得所述安全构件进行安全调控,包括:
    在所述第一电池单体发生异常的情况下,所述第一电池单体与所述安全构件之间绝缘失效,所述第一电池单体与所述安全构件之间的所述电压差使得所述安全构件进行安全调控。
  29. 根据权利要求28所述的安全调控方法,其特征在于,在所述第一电池单体发生异常的情况下,所述第一电池单体与所述安全构件之间的绝缘层状态改变,以使得所述第一电池单体与所述安全构件之间绝缘失效。
  30. 根据权利要求22至29中任一项所述的安全调控方法,其特征在于,所述安全构件对应于所述第一电池单体设置。
  31. 根据权利要求20至30中任一项所述的安全调控方法,其特征在于,所述在安全构件与所述电池之间建立电压差,包括:
    获取所述电池的特征信号,所述电池的特征信号用于指示所述电池发生异常;
    根据所述电池的特征信号,在所述安全构件与所述电池之间建立所述电压差。
  32. 根据权利要求31所述的安全调控方法,其特征在于,所述安全调控方法应用于电压产生模块,所述电压产生模块包括:控制子模块和电压子模块;
    其中,所述获取所述电池的特征信号包括:
    所述控制子模块获取所述电池的特征信号;
    所述根据所述电池的特征信号,在所述安全构件与所述电池之间建立所述电压差,包括:
    所述控制子模块根据所述电池的特征信号,控制所述电压子模块在所述安全构件与所述电池之间建立所述电压差。
  33. 根据权利要求32所述的安全调控方法,其特征在于,所述电压产生模块还包括:监测子模块;所述安全调控方法还包括:
    所述监测子模块监测所述电池的特征信号,并将所述电池的特征信号发送至所述控制子模块。
  34. 根据权利要求32或33所述的安全调控方法,其特征在于,所述电压子模块包括:电压产生器和通断结构,所述电压产生器通过所述通断结构连接于所述安全构件;
    其中,所述控制子模块根据所述电池的特征信号,控制所述电压子模块在所述安全构件与所述电池之间建立所述电压差,包括:
    所述控制子模块根据所述电池的特征信号控制所述通断结构连通,以使得所述电压产生器在所述安全构件与所述电池之间建立所述电压差。
  35. 根据权利要求34所述的安全调控方法,其特征在于,所述电压产生器包括:所述电池中的第二电池单体。
  36. 根据权利要求31至35中任一项所述的安全调控方法,其特征在于,所述电池的特征信号用于指示所述电池处于热失控状态和/或处于热失控状态前预设时间段内的临界状态。
  37. 根据权利要求31至36中任一项所述的安全调控方法,其特征在于,所述电池的特征信号包括以下信号中的至少一项:电气参数、温度、压强、特征气体或应力。
  38. 根据权利要求31至37中任一项所述的安全调控方法,其特征在于,所述电池的特征信号包括:所述电池中第一电池单体的特征信号;
    其中,所述获取所述电池的特征信号,包括:
    获取所述第一电池单体的特征信号,
    所述根据所述电池的特征信号,在所述安全构件与所述电池之间建立所述电压差,包括:
    根据所述第一电池单体的特征信号,在所述安全构件与所述第一电池单体之间建立所述电压差。
  39. 一种电池系统,其特征在于,包括:
    电池,以及,
    如权利要求1至19中任一项所述的安全调控机构,所述安全调控机构用于对所述电池进行安全调控。
  40. 一种用电装置,其特征在于,包括:
    如权利要求39所述的电池系统,所述电池系统用于为所述用电装置提供电能。
PCT/CN2022/099488 2022-06-17 2022-06-17 安全调控机构、方法、电池系统和用电装置 WO2023240604A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/099488 WO2023240604A1 (zh) 2022-06-17 2022-06-17 安全调控机构、方法、电池系统和用电装置
CN202280070172.9A CN118104098A (zh) 2022-06-17 2022-06-17 安全调控机构、方法、电池系统和用电装置
CA3238320A CA3238320A1 (en) 2022-06-17 2022-06-17 Safety control mechanism and method, battery system, and electrical apparatus
KR1020247013257A KR20240070606A (ko) 2022-06-17 2022-06-17 안전 조절 및 제어 기구, 방법, 배터리 시스템 및 전기 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099488 WO2023240604A1 (zh) 2022-06-17 2022-06-17 安全调控机构、方法、电池系统和用电装置

Publications (1)

Publication Number Publication Date
WO2023240604A1 true WO2023240604A1 (zh) 2023-12-21

Family

ID=89192974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099488 WO2023240604A1 (zh) 2022-06-17 2022-06-17 安全调控机构、方法、电池系统和用电装置

Country Status (4)

Country Link
KR (1) KR20240070606A (zh)
CN (1) CN118104098A (zh)
CA (1) CA3238320A1 (zh)
WO (1) WO2023240604A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117767509A (zh) * 2024-02-21 2024-03-26 宁德时代新能源科技股份有限公司 电池系统、控制方法、控制装置、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681758A (zh) * 2013-11-27 2015-06-03 波音公司 惰化含锂电池和相关容器的方法
US20150280204A1 (en) * 2014-03-31 2015-10-01 Samsung Sdi Co., Ltd. Rechargeable battery having fuse unit
CN109997274A (zh) * 2016-11-29 2019-07-09 三星Sdi株式会社 电池单元、电池子模块、电池模块或电池系统的壁结构
CN113725547A (zh) * 2021-09-07 2021-11-30 宿迁学院 一种电池用防火防爆装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681758A (zh) * 2013-11-27 2015-06-03 波音公司 惰化含锂电池和相关容器的方法
US20150280204A1 (en) * 2014-03-31 2015-10-01 Samsung Sdi Co., Ltd. Rechargeable battery having fuse unit
CN109997274A (zh) * 2016-11-29 2019-07-09 三星Sdi株式会社 电池单元、电池子模块、电池模块或电池系统的壁结构
CN113725547A (zh) * 2021-09-07 2021-11-30 宿迁学院 一种电池用防火防爆装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117767509A (zh) * 2024-02-21 2024-03-26 宁德时代新能源科技股份有限公司 电池系统、控制方法、控制装置、系统及存储介质

Also Published As

Publication number Publication date
KR20240070606A (ko) 2024-05-21
CN118104098A (zh) 2024-05-28
CA3238320A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
US10784492B2 (en) Low profile pressure disconnect device for lithium ion batteries
WO2022006890A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006891A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006892A1 (zh) 电池、用电装置、制备电池的方法和装置
KR20150003779A (ko) 화재 방지 매체를 구비한 배터리 팩
WO2022205069A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
US11881601B2 (en) Box of battery, battery, power consumption device, and method and apparatus for producing box
WO2023240604A1 (zh) 安全调控机构、方法、电池系统和用电装置
WO2024077789A1 (zh) 电池及用电装置
US20220328927A1 (en) Battery, electric apparatus, and method and device for preparing battery
WO2023141774A1 (zh) 电池、用电设备、制造电池的方法和设备
KR20220145395A (ko) 배터리, 전기 장치, 배터리의 제조 방법 및 제조 장치
WO2023240605A1 (zh) 安全调控机构、方法、电池系统和用电装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
WO2022082398A1 (zh) 电池、用电装置、制造电池的方法及装置
WO2022082392A1 (zh) 电池、用电设备、制备电池的方法和设备
EP4016714B1 (en) Case body for battery, battery and electric device
JP2024507420A (ja) 電池の筐体、電池、電力消費装置、電池の製造方法及び装置
JP2023530784A (ja) 電池用筐体、電池、電力消費装置、電池の製造方法及びその装置
WO2023245472A1 (zh) 电池包及其安全控制方法、用电装置
WO2022082389A1 (zh) 电池、用电设备、制备电池的方法和装置
EP4009433B1 (en) Battery, electric apparatus, and battery manufacturing method and device
WO2024002163A1 (zh) 电池单体、电池及用电装置
WO2023044619A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247013257

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020247013257

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 3238320

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022946290

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022946290

Country of ref document: EP

Effective date: 20240528